1 /*
2  * Copyright (c) 2015-2022, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 
9 #include <arch.h>
10 #include <arch_helpers.h>
11 #include <common/debug.h>
12 #include <common/interrupt_props.h>
13 #include <drivers/arm/gicv3.h>
14 #include <lib/spinlock.h>
15 
16 #include "gicv3_private.h"
17 
18 const gicv3_driver_data_t *gicv3_driver_data;
19 
20 /*
21  * Spinlock to guard registers needing read-modify-write. APIs protected by this
22  * spinlock are used either at boot time (when only a single CPU is active), or
23  * when the system is fully coherent.
24  */
25 static spinlock_t gic_lock;
26 
27 /*
28  * Redistributor power operations are weakly bound so that they can be
29  * overridden
30  */
31 #pragma weak gicv3_rdistif_off
32 #pragma weak gicv3_rdistif_on
33 
34 /* Check interrupt ID for SGI/(E)PPI and (E)SPIs */
35 static bool is_sgi_ppi(unsigned int id);
36 
37 /*
38  * Helper macros to save and restore GICR and GICD registers
39  * corresponding to their numbers to and from the context
40  */
41 #define RESTORE_GICR_REG(base, ctx, name, i)	\
42 	gicr_write_##name((base), (i), (ctx)->gicr_##name[(i)])
43 
44 #define SAVE_GICR_REG(base, ctx, name, i)	\
45 	(ctx)->gicr_##name[(i)] = gicr_read_##name((base), (i))
46 
47 /* Helper macros to save and restore GICD registers to and from the context */
48 #define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG)		\
49 	do {								\
50 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
51 				int_id += (1U << REG##R_SHIFT)) {	\
52 			gicd_write_##reg((base), int_id,		\
53 				(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >> \
54 							REG##R_SHIFT]);	\
55 		}							\
56 	} while (false)
57 
58 #define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG)			\
59 	do {								\
60 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
61 				int_id += (1U << REG##R_SHIFT)) {	\
62 			(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >>	\
63 			REG##R_SHIFT] = gicd_read_##reg((base), int_id); \
64 		}							\
65 	} while (false)
66 
67 #if GIC_EXT_INTID
68 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)		\
69 	do {								\
70 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
71 				int_id += (1U << REG##R_SHIFT)) {	\
72 			gicd_write_##reg((base), int_id,		\
73 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID -	\
74 			round_up(TOTAL_SPI_INTR_NUM, 1U << REG##R_SHIFT)))\
75 						>> REG##R_SHIFT]);	\
76 		}							\
77 	} while (false)
78 
79 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)			\
80 	do {								\
81 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
82 				int_id += (1U << REG##R_SHIFT)) {	\
83 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID -	\
84 			round_up(TOTAL_SPI_INTR_NUM, 1U << REG##R_SHIFT)))\
85 			>> REG##R_SHIFT] = gicd_read_##reg((base), int_id);\
86 		}							\
87 	} while (false)
88 #else
89 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)
90 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)
91 #endif /* GIC_EXT_INTID */
92 
93 /*******************************************************************************
94  * This function initialises the ARM GICv3 driver in EL3 with provided platform
95  * inputs.
96  ******************************************************************************/
gicv3_driver_init(const gicv3_driver_data_t * plat_driver_data)97 void __init gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
98 {
99 	unsigned int gic_version;
100 	unsigned int gicv2_compat;
101 
102 	assert(plat_driver_data != NULL);
103 	assert(plat_driver_data->gicd_base != 0U);
104 	assert(plat_driver_data->rdistif_num != 0U);
105 	assert(plat_driver_data->rdistif_base_addrs != NULL);
106 
107 	assert(IS_IN_EL3());
108 
109 	assert((plat_driver_data->interrupt_props_num != 0U) ?
110 	       (plat_driver_data->interrupt_props != NULL) : 1);
111 
112 	/* Check for system register support */
113 #ifndef __aarch64__
114 	assert((read_id_pfr1() &
115 			(ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)) != 0U);
116 #else
117 	assert((read_id_aa64pfr0_el1() &
118 			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)) != 0U);
119 #endif /* !__aarch64__ */
120 
121 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
122 	gic_version >>= PIDR2_ARCH_REV_SHIFT;
123 	gic_version &= PIDR2_ARCH_REV_MASK;
124 
125 	/* Check GIC version */
126 #if !GIC_ENABLE_V4_EXTN
127 	assert(gic_version == ARCH_REV_GICV3);
128 #endif
129 	/*
130 	 * Find out whether the GIC supports the GICv2 compatibility mode.
131 	 * The ARE_S bit resets to 0 if supported
132 	 */
133 	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
134 	gicv2_compat >>= CTLR_ARE_S_SHIFT;
135 	gicv2_compat = gicv2_compat & CTLR_ARE_S_MASK;
136 
137 	if (plat_driver_data->gicr_base != 0U) {
138 		/*
139 		 * Find the base address of each implemented Redistributor interface.
140 		 * The number of interfaces should be equal to the number of CPUs in the
141 		 * system. The memory for saving these addresses has to be allocated by
142 		 * the platform port
143 		 */
144 		gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
145 						   plat_driver_data->rdistif_num,
146 						   plat_driver_data->gicr_base,
147 						   plat_driver_data->mpidr_to_core_pos);
148 #if !HW_ASSISTED_COHERENCY
149 		/*
150 		 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
151 		 */
152 		flush_dcache_range((uintptr_t)(plat_driver_data->rdistif_base_addrs),
153 			plat_driver_data->rdistif_num *
154 			sizeof(*(plat_driver_data->rdistif_base_addrs)));
155 #endif
156 	}
157 	gicv3_driver_data = plat_driver_data;
158 
159 	/*
160 	 * The GIC driver data is initialized by the primary CPU with caches
161 	 * enabled. When the secondary CPU boots up, it initializes the
162 	 * GICC/GICR interface with the caches disabled. Hence flush the
163 	 * driver data to ensure coherency. This is not required if the
164 	 * platform has HW_ASSISTED_COHERENCY enabled.
165 	 */
166 #if !HW_ASSISTED_COHERENCY
167 	flush_dcache_range((uintptr_t)&gicv3_driver_data,
168 		sizeof(gicv3_driver_data));
169 	flush_dcache_range((uintptr_t)gicv3_driver_data,
170 		sizeof(*gicv3_driver_data));
171 #endif
172 	gicv3_check_erratas_applies(plat_driver_data->gicd_base);
173 
174 	INFO("GICv%u with%s legacy support detected.\n", gic_version,
175 				(gicv2_compat == 0U) ? "" : "out");
176 	INFO("ARM GICv%u driver initialized in EL3\n", gic_version);
177 }
178 
179 /*******************************************************************************
180  * This function initialises the GIC distributor interface based upon the data
181  * provided by the platform while initialising the driver.
182  ******************************************************************************/
gicv3_distif_init(void)183 void __init gicv3_distif_init(void)
184 {
185 	unsigned int bitmap;
186 
187 	assert(gicv3_driver_data != NULL);
188 	assert(gicv3_driver_data->gicd_base != 0U);
189 
190 	assert(IS_IN_EL3());
191 
192 	/*
193 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
194 	 * the ARE_S bit. The Distributor might generate a system error
195 	 * otherwise.
196 	 */
197 	gicd_clr_ctlr(gicv3_driver_data->gicd_base,
198 		      CTLR_ENABLE_G0_BIT |
199 		      CTLR_ENABLE_G1S_BIT |
200 		      CTLR_ENABLE_G1NS_BIT,
201 		      RWP_TRUE);
202 
203 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
204 	gicd_set_ctlr(gicv3_driver_data->gicd_base,
205 			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
206 
207 	/* Set the default attribute of all (E)SPIs */
208 	gicv3_spis_config_defaults(gicv3_driver_data->gicd_base);
209 
210 	bitmap = gicv3_secure_spis_config_props(
211 			gicv3_driver_data->gicd_base,
212 			gicv3_driver_data->interrupt_props,
213 			gicv3_driver_data->interrupt_props_num);
214 
215 	/* Enable the secure (E)SPIs now that they have been configured */
216 	gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
217 }
218 
219 /*******************************************************************************
220  * This function initialises the GIC Redistributor interface of the calling CPU
221  * (identified by the 'proc_num' parameter) based upon the data provided by the
222  * platform while initialising the driver.
223  ******************************************************************************/
gicv3_rdistif_init(unsigned int proc_num)224 void gicv3_rdistif_init(unsigned int proc_num)
225 {
226 	uintptr_t gicr_base;
227 	unsigned int bitmap;
228 	uint32_t ctlr;
229 
230 	assert(gicv3_driver_data != NULL);
231 	assert(proc_num < gicv3_driver_data->rdistif_num);
232 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
233 	assert(gicv3_driver_data->gicd_base != 0U);
234 
235 	ctlr = gicd_read_ctlr(gicv3_driver_data->gicd_base);
236 	assert((ctlr & CTLR_ARE_S_BIT) != 0U);
237 
238 	assert(IS_IN_EL3());
239 
240 	/* Power on redistributor */
241 	gicv3_rdistif_on(proc_num);
242 
243 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
244 	assert(gicr_base != 0U);
245 
246 	/* Set the default attribute of all SGIs and (E)PPIs */
247 	gicv3_ppi_sgi_config_defaults(gicr_base);
248 
249 	bitmap = gicv3_secure_ppi_sgi_config_props(gicr_base,
250 			gicv3_driver_data->interrupt_props,
251 			gicv3_driver_data->interrupt_props_num);
252 
253 	/* Enable interrupt groups as required, if not already */
254 	if ((ctlr & bitmap) != bitmap) {
255 		gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
256 	}
257 }
258 
259 /*******************************************************************************
260  * Functions to perform power operations on GIC Redistributor
261  ******************************************************************************/
gicv3_rdistif_off(unsigned int proc_num)262 void gicv3_rdistif_off(unsigned int proc_num)
263 {
264 }
265 
gicv3_rdistif_on(unsigned int proc_num)266 void gicv3_rdistif_on(unsigned int proc_num)
267 {
268 }
269 
270 /*******************************************************************************
271  * This function enables the GIC CPU interface of the calling CPU using only
272  * system register accesses.
273  ******************************************************************************/
gicv3_cpuif_enable(unsigned int proc_num)274 void gicv3_cpuif_enable(unsigned int proc_num)
275 {
276 	uintptr_t gicr_base;
277 	u_register_t scr_el3;
278 	unsigned int icc_sre_el3;
279 
280 	assert(gicv3_driver_data != NULL);
281 	assert(proc_num < gicv3_driver_data->rdistif_num);
282 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
283 	assert(IS_IN_EL3());
284 
285 	/* Mark the connected core as awake */
286 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
287 	gicv3_rdistif_mark_core_awake(gicr_base);
288 
289 	/* Disable the legacy interrupt bypass */
290 	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
291 
292 	/*
293 	 * Enable system register access for EL3 and allow lower exception
294 	 * levels to configure the same for themselves. If the legacy mode is
295 	 * not supported, the SRE bit is RAO/WI
296 	 */
297 	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
298 	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
299 
300 	scr_el3 = read_scr_el3();
301 
302 	/*
303 	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
304 	 * ICC_SRE_EL2 registers.
305 	 */
306 	write_scr_el3(scr_el3 | SCR_NS_BIT);
307 	isb();
308 
309 	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
310 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
311 	isb();
312 
313 	/* Switch to secure state. */
314 	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
315 	isb();
316 
317 	/* Write the secure ICC_SRE_EL1 register */
318 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
319 	isb();
320 
321 	/* Program the idle priority in the PMR */
322 	write_icc_pmr_el1(GIC_PRI_MASK);
323 
324 	/* Enable Group0 interrupts */
325 	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
326 
327 	/* Enable Group1 Secure interrupts */
328 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
329 				IGRPEN1_EL3_ENABLE_G1S_BIT);
330 	isb();
331 	/* Add DSB to ensure visibility of System register writes */
332 	dsb();
333 }
334 
335 /*******************************************************************************
336  * This function disables the GIC CPU interface of the calling CPU using
337  * only system register accesses.
338  ******************************************************************************/
gicv3_cpuif_disable(unsigned int proc_num)339 void gicv3_cpuif_disable(unsigned int proc_num)
340 {
341 	uintptr_t gicr_base;
342 
343 	assert(gicv3_driver_data != NULL);
344 	assert(proc_num < gicv3_driver_data->rdistif_num);
345 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
346 
347 	assert(IS_IN_EL3());
348 
349 	/* Disable legacy interrupt bypass */
350 	write_icc_sre_el3(read_icc_sre_el3() |
351 			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
352 
353 	/* Disable Group0 interrupts */
354 	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
355 			      ~IGRPEN1_EL1_ENABLE_G0_BIT);
356 
357 	/* Disable Group1 Secure and Non-Secure interrupts */
358 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
359 			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
360 			      IGRPEN1_EL3_ENABLE_G1S_BIT));
361 
362 	/* Synchronise accesses to group enable registers */
363 	isb();
364 	/* Add DSB to ensure visibility of System register writes */
365 	dsb();
366 
367 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
368 	assert(gicr_base != 0UL);
369 
370 	/*
371 	 * dsb() already issued previously after clearing the CPU group
372 	 * enabled, apply below workaround to toggle the "DPG*"
373 	 * bits of GICR_CTLR register for unblocking event.
374 	 */
375 	gicv3_apply_errata_wa_2384374(gicr_base);
376 
377 	/* Mark the connected core as asleep */
378 	gicv3_rdistif_mark_core_asleep(gicr_base);
379 }
380 
381 /*******************************************************************************
382  * This function returns the id of the highest priority pending interrupt at
383  * the GIC cpu interface.
384  ******************************************************************************/
gicv3_get_pending_interrupt_id(void)385 unsigned int gicv3_get_pending_interrupt_id(void)
386 {
387 	unsigned int id;
388 
389 	assert(IS_IN_EL3());
390 	id = (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
391 
392 	/*
393 	 * If the ID is special identifier corresponding to G1S or G1NS
394 	 * interrupt, then read the highest pending group 1 interrupt.
395 	 */
396 	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID)) {
397 		return (uint32_t)read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
398 	}
399 
400 	return id;
401 }
402 
403 /*******************************************************************************
404  * This function returns the type of the highest priority pending interrupt at
405  * the GIC cpu interface. The return values can be one of the following :
406  *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
407  *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
408  *   0 - 1019           : The interrupt type is secure Group 0.
409  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
410  *                            sufficient priority to be signaled
411  ******************************************************************************/
gicv3_get_pending_interrupt_type(void)412 unsigned int gicv3_get_pending_interrupt_type(void)
413 {
414 	assert(IS_IN_EL3());
415 	return (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
416 }
417 
418 /*******************************************************************************
419  * This function returns the type of the interrupt id depending upon the group
420  * this interrupt has been configured under by the interrupt controller i.e.
421  * group0 or group1 Secure / Non Secure. The return value can be one of the
422  * following :
423  *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
424  *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
425  *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
426  *                   interrupt.
427  ******************************************************************************/
gicv3_get_interrupt_type(unsigned int id,unsigned int proc_num)428 unsigned int gicv3_get_interrupt_type(unsigned int id, unsigned int proc_num)
429 {
430 	unsigned int igroup, grpmodr;
431 	uintptr_t gicr_base;
432 
433 	assert(IS_IN_EL3());
434 	assert(gicv3_driver_data != NULL);
435 
436 	/* Ensure the parameters are valid */
437 	assert((id < PENDING_G1S_INTID) || (id >= MIN_LPI_ID));
438 	assert(proc_num < gicv3_driver_data->rdistif_num);
439 
440 	/* All LPI interrupts are Group 1 non secure */
441 	if (id >= MIN_LPI_ID) {
442 		return INTR_GROUP1NS;
443 	}
444 
445 	/* Check interrupt ID */
446 	if (is_sgi_ppi(id)) {
447 		/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
448 		assert(gicv3_driver_data->rdistif_base_addrs != NULL);
449 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
450 		igroup = gicr_get_igroupr(gicr_base, id);
451 		grpmodr = gicr_get_igrpmodr(gicr_base, id);
452 	} else {
453 		/* SPIs: 32-1019, ESPIs: 4096-5119 */
454 		assert(gicv3_driver_data->gicd_base != 0U);
455 		igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id);
456 		grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id);
457 	}
458 
459 	/*
460 	 * If the IGROUP bit is set, then it is a Group 1 Non secure
461 	 * interrupt
462 	 */
463 	if (igroup != 0U) {
464 		return INTR_GROUP1NS;
465 	}
466 
467 	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
468 	if (grpmodr != 0U) {
469 		return INTR_GROUP1S;
470 	}
471 
472 	/* Else it is a Group 0 Secure interrupt */
473 	return INTR_GROUP0;
474 }
475 
476 /*****************************************************************************
477  * Function to save and disable the GIC ITS register context. The power
478  * management of GIC ITS is implementation-defined and this function doesn't
479  * save any memory structures required to support ITS. As the sequence to save
480  * this state is implementation defined, it should be executed in platform
481  * specific code. Calling this function alone and then powering down the GIC and
482  * ITS without implementing the aforementioned platform specific code will
483  * corrupt the ITS state.
484  *
485  * This function must be invoked after the GIC CPU interface is disabled.
486  *****************************************************************************/
gicv3_its_save_disable(uintptr_t gits_base,gicv3_its_ctx_t * const its_ctx)487 void gicv3_its_save_disable(uintptr_t gits_base,
488 				gicv3_its_ctx_t * const its_ctx)
489 {
490 	unsigned int i;
491 
492 	assert(gicv3_driver_data != NULL);
493 	assert(IS_IN_EL3());
494 	assert(its_ctx != NULL);
495 	assert(gits_base != 0U);
496 
497 	its_ctx->gits_ctlr = gits_read_ctlr(gits_base);
498 
499 	/* Disable the ITS */
500 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
501 
502 	/* Wait for quiescent state */
503 	gits_wait_for_quiescent_bit(gits_base);
504 
505 	its_ctx->gits_cbaser = gits_read_cbaser(gits_base);
506 	its_ctx->gits_cwriter = gits_read_cwriter(gits_base);
507 
508 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
509 		its_ctx->gits_baser[i] = gits_read_baser(gits_base, i);
510 	}
511 }
512 
513 /*****************************************************************************
514  * Function to restore the GIC ITS register context. The power
515  * management of GIC ITS is implementation defined and this function doesn't
516  * restore any memory structures required to support ITS. The assumption is
517  * that these structures are in memory and are retained during system suspend.
518  *
519  * This must be invoked before the GIC CPU interface is enabled.
520  *****************************************************************************/
gicv3_its_restore(uintptr_t gits_base,const gicv3_its_ctx_t * const its_ctx)521 void gicv3_its_restore(uintptr_t gits_base,
522 			const gicv3_its_ctx_t * const its_ctx)
523 {
524 	unsigned int i;
525 
526 	assert(gicv3_driver_data != NULL);
527 	assert(IS_IN_EL3());
528 	assert(its_ctx != NULL);
529 	assert(gits_base != 0U);
530 
531 	/* Assert that the GITS is disabled and quiescent */
532 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0U);
533 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0U);
534 
535 	gits_write_cbaser(gits_base, its_ctx->gits_cbaser);
536 	gits_write_cwriter(gits_base, its_ctx->gits_cwriter);
537 
538 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
539 		gits_write_baser(gits_base, i, its_ctx->gits_baser[i]);
540 	}
541 
542 	/* Restore the ITS CTLR but leave the ITS disabled */
543 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
544 }
545 
546 /*****************************************************************************
547  * Function to save the GIC Redistributor register context. This function
548  * must be invoked after CPU interface disable and prior to Distributor save.
549  *****************************************************************************/
gicv3_rdistif_save(unsigned int proc_num,gicv3_redist_ctx_t * const rdist_ctx)550 void gicv3_rdistif_save(unsigned int proc_num,
551 			gicv3_redist_ctx_t * const rdist_ctx)
552 {
553 	uintptr_t gicr_base;
554 	unsigned int i, ppi_regs_num, regs_num;
555 
556 	assert(gicv3_driver_data != NULL);
557 	assert(proc_num < gicv3_driver_data->rdistif_num);
558 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
559 	assert(IS_IN_EL3());
560 	assert(rdist_ctx != NULL);
561 
562 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
563 
564 #if GIC_EXT_INTID
565 	/* Calculate number of PPI registers */
566 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
567 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
568 	/* All other values except PPInum [0-2] are reserved */
569 	if (ppi_regs_num > 3U) {
570 		ppi_regs_num = 1U;
571 	}
572 #else
573 	ppi_regs_num = 1U;
574 #endif
575 	/*
576 	 * Wait for any write to GICR_CTLR to complete before trying to save any
577 	 * state.
578 	 */
579 	gicr_wait_for_pending_write(gicr_base);
580 
581 	rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base);
582 
583 	rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base);
584 	rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base);
585 
586 	/* 32 interrupt IDs per register */
587 	for (i = 0U; i < ppi_regs_num; ++i) {
588 		SAVE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
589 		SAVE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
590 		SAVE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
591 		SAVE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
592 		SAVE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
593 	}
594 
595 	/* 16 interrupt IDs per GICR_ICFGR register */
596 	regs_num = ppi_regs_num << 1;
597 	for (i = 0U; i < regs_num; ++i) {
598 		SAVE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
599 	}
600 
601 	rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base);
602 
603 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
604 	regs_num = ppi_regs_num << 3;
605 	for (i = 0U; i < regs_num; ++i) {
606 		rdist_ctx->gicr_ipriorityr[i] =
607 		gicr_ipriorityr_read(gicr_base, i);
608 	}
609 
610 	/*
611 	 * Call the pre-save hook that implements the IMP DEF sequence that may
612 	 * be required on some GIC implementations. As this may need to access
613 	 * the Redistributor registers, we pass it proc_num.
614 	 */
615 	gicv3_distif_pre_save(proc_num);
616 }
617 
618 /*****************************************************************************
619  * Function to restore the GIC Redistributor register context. We disable
620  * LPI and per-cpu interrupts before we start restore of the Redistributor.
621  * This function must be invoked after Distributor restore but prior to
622  * CPU interface enable. The pending and active interrupts are restored
623  * after the interrupts are fully configured and enabled.
624  *****************************************************************************/
gicv3_rdistif_init_restore(unsigned int proc_num,const gicv3_redist_ctx_t * const rdist_ctx)625 void gicv3_rdistif_init_restore(unsigned int proc_num,
626 				const gicv3_redist_ctx_t * const rdist_ctx)
627 {
628 	uintptr_t gicr_base;
629 	unsigned int i, ppi_regs_num, regs_num;
630 
631 	assert(gicv3_driver_data != NULL);
632 	assert(proc_num < gicv3_driver_data->rdistif_num);
633 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
634 	assert(IS_IN_EL3());
635 	assert(rdist_ctx != NULL);
636 
637 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
638 
639 #if GIC_EXT_INTID
640 	/* Calculate number of PPI registers */
641 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
642 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
643 	/* All other values except PPInum [0-2] are reserved */
644 	if (ppi_regs_num > 3U) {
645 		ppi_regs_num = 1U;
646 	}
647 #else
648 	ppi_regs_num = 1U;
649 #endif
650 	/* Power on redistributor */
651 	gicv3_rdistif_on(proc_num);
652 
653 	/*
654 	 * Call the post-restore hook that implements the IMP DEF sequence that
655 	 * may be required on some GIC implementations. As this may need to
656 	 * access the Redistributor registers, we pass it proc_num.
657 	 */
658 	gicv3_distif_post_restore(proc_num);
659 
660 	/*
661 	 * Disable all SGIs (imp. def.)/(E)PPIs before configuring them.
662 	 * This is a more scalable approach as it avoids clearing the enable
663 	 * bits in the GICD_CTLR.
664 	 */
665 	for (i = 0U; i < ppi_regs_num; ++i) {
666 		gicr_write_icenabler(gicr_base, i, ~0U);
667 	}
668 
669 	/* Wait for pending writes to GICR_ICENABLER */
670 	gicr_wait_for_pending_write(gicr_base);
671 
672 	/*
673 	 * Disable the LPIs to avoid unpredictable behavior when writing to
674 	 * GICR_PROPBASER and GICR_PENDBASER.
675 	 */
676 	gicr_write_ctlr(gicr_base,
677 			rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT));
678 
679 	/* Restore registers' content */
680 	gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser);
681 	gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser);
682 
683 	/* 32 interrupt IDs per register */
684 	for (i = 0U; i < ppi_regs_num; ++i) {
685 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
686 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
687 	}
688 
689 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
690 	regs_num = ppi_regs_num << 3;
691 	for (i = 0U; i < regs_num; ++i) {
692 		gicr_ipriorityr_write(gicr_base, i,
693 					rdist_ctx->gicr_ipriorityr[i]);
694 	}
695 
696 	/* 16 interrupt IDs per GICR_ICFGR register */
697 	regs_num = ppi_regs_num << 1;
698 	for (i = 0U; i < regs_num; ++i) {
699 		RESTORE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
700 	}
701 
702 	gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr);
703 
704 	/* Restore after group and priorities are set.
705 	 * 32 interrupt IDs per register
706 	 */
707 	for (i = 0U; i < ppi_regs_num; ++i) {
708 		RESTORE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
709 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
710 	}
711 
712 	/*
713 	 * Wait for all writes to the Distributor to complete before enabling
714 	 * the SGI and (E)PPIs.
715 	 */
716 	gicr_wait_for_upstream_pending_write(gicr_base);
717 
718 	/* 32 interrupt IDs per GICR_ISENABLER register */
719 	for (i = 0U; i < ppi_regs_num; ++i) {
720 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
721 	}
722 
723 	/*
724 	 * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case
725 	 * the first write to GICR_CTLR was still in flight (this write only
726 	 * restores GICR_CTLR.Enable_LPIs and no waiting is required for this
727 	 * bit).
728 	 */
729 	gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr);
730 	gicr_wait_for_pending_write(gicr_base);
731 }
732 
733 /*****************************************************************************
734  * Function to save the GIC Distributor register context. This function
735  * must be invoked after CPU interface disable and Redistributor save.
736  *****************************************************************************/
gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)737 void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)
738 {
739 	assert(gicv3_driver_data != NULL);
740 	assert(gicv3_driver_data->gicd_base != 0U);
741 	assert(IS_IN_EL3());
742 	assert(dist_ctx != NULL);
743 
744 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
745 	unsigned int num_ints = gicv3_get_spi_limit(gicd_base);
746 #if GIC_EXT_INTID
747 	unsigned int num_eints = gicv3_get_espi_limit(gicd_base);
748 #endif
749 
750 	/* Wait for pending write to complete */
751 	gicd_wait_for_pending_write(gicd_base);
752 
753 	/* Save the GICD_CTLR */
754 	dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base);
755 
756 	/* Save GICD_IGROUPR for INTIDs 32 - 1019 */
757 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
758 
759 	/* Save GICD_IGROUPRE for INTIDs 4096 - 5119 */
760 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
761 
762 	/* Save GICD_ISENABLER for INT_IDs 32 - 1019 */
763 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
764 
765 	/* Save GICD_ISENABLERE for INT_IDs 4096 - 5119 */
766 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
767 
768 	/* Save GICD_ISPENDR for INTIDs 32 - 1019 */
769 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
770 
771 	/* Save GICD_ISPENDRE for INTIDs 4096 - 5119 */
772 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints,	ispendr, ISPEND);
773 
774 	/* Save GICD_ISACTIVER for INTIDs 32 - 1019 */
775 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
776 
777 	/* Save GICD_ISACTIVERE for INTIDs 4096 - 5119 */
778 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
779 
780 	/* Save GICD_IPRIORITYR for INTIDs 32 - 1019 */
781 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
782 
783 	/* Save GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
784 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
785 
786 	/* Save GICD_ICFGR for INTIDs 32 - 1019 */
787 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
788 
789 	/* Save GICD_ICFGRE for INTIDs 4096 - 5119 */
790 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
791 
792 	/* Save GICD_IGRPMODR for INTIDs 32 - 1019 */
793 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
794 
795 	/* Save GICD_IGRPMODRE for INTIDs 4096 - 5119 */
796 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
797 
798 	/* Save GICD_NSACR for INTIDs 32 - 1019 */
799 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
800 
801 	/* Save GICD_NSACRE for INTIDs 4096 - 5119 */
802 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
803 
804 	/* Save GICD_IROUTER for INTIDs 32 - 1019 */
805 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
806 
807 	/* Save GICD_IROUTERE for INTIDs 4096 - 5119 */
808 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
809 
810 	/*
811 	 * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when
812 	 * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3
813 	 * driver.
814 	 */
815 }
816 
817 /*****************************************************************************
818  * Function to restore the GIC Distributor register context. We disable G0, G1S
819  * and G1NS interrupt groups before we start restore of the Distributor. This
820  * function must be invoked prior to Redistributor restore and CPU interface
821  * enable. The pending and active interrupts are restored after the interrupts
822  * are fully configured and enabled.
823  *****************************************************************************/
gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)824 void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)
825 {
826 	assert(gicv3_driver_data != NULL);
827 	assert(gicv3_driver_data->gicd_base != 0U);
828 	assert(IS_IN_EL3());
829 	assert(dist_ctx != NULL);
830 
831 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
832 
833 	/*
834 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
835 	 * the ARE_S bit. The Distributor might generate a system error
836 	 * otherwise.
837 	 */
838 	gicd_clr_ctlr(gicd_base,
839 		      CTLR_ENABLE_G0_BIT |
840 		      CTLR_ENABLE_G1S_BIT |
841 		      CTLR_ENABLE_G1NS_BIT,
842 		      RWP_TRUE);
843 
844 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
845 	gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
846 
847 	unsigned int num_ints = gicv3_get_spi_limit(gicd_base);
848 #if GIC_EXT_INTID
849 	unsigned int num_eints = gicv3_get_espi_limit(gicd_base);
850 #endif
851 	/* Restore GICD_IGROUPR for INTIDs 32 - 1019 */
852 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
853 
854 	/* Restore GICD_IGROUPRE for INTIDs 4096 - 5119 */
855 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
856 
857 	/* Restore GICD_IPRIORITYR for INTIDs 32 - 1019 */
858 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
859 
860 	/* Restore GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
861 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
862 
863 	/* Restore GICD_ICFGR for INTIDs 32 - 1019 */
864 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
865 
866 	/* Restore GICD_ICFGRE for INTIDs 4096 - 5119 */
867 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
868 
869 	/* Restore GICD_IGRPMODR for INTIDs 32 - 1019 */
870 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
871 
872 	/* Restore GICD_IGRPMODRE for INTIDs 4096 - 5119 */
873 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
874 
875 	/* Restore GICD_NSACR for INTIDs 32 - 1019 */
876 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
877 
878 	/* Restore GICD_NSACRE for INTIDs 4096 - 5119 */
879 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
880 
881 	/* Restore GICD_IROUTER for INTIDs 32 - 1019 */
882 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
883 
884 	/* Restore GICD_IROUTERE for INTIDs 4096 - 5119 */
885 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
886 
887 	/*
888 	 * Restore ISENABLER(E), ISPENDR(E) and ISACTIVER(E) after
889 	 * the interrupts are configured.
890 	 */
891 
892 	/* Restore GICD_ISENABLER for INT_IDs 32 - 1019 */
893 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
894 
895 	/* Restore GICD_ISENABLERE for INT_IDs 4096 - 5119 */
896 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
897 
898 	/* Restore GICD_ISPENDR for INTIDs 32 - 1019 */
899 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
900 
901 	/* Restore GICD_ISPENDRE for INTIDs 4096 - 5119 */
902 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ispendr, ISPEND);
903 
904 	/* Restore GICD_ISACTIVER for INTIDs 32 - 1019 */
905 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
906 
907 	/* Restore GICD_ISACTIVERE for INTIDs 4096 - 5119 */
908 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
909 
910 	/* Restore the GICD_CTLR */
911 	gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr);
912 	gicd_wait_for_pending_write(gicd_base);
913 }
914 
915 /*******************************************************************************
916  * This function gets the priority of the interrupt the processor is currently
917  * servicing.
918  ******************************************************************************/
gicv3_get_running_priority(void)919 unsigned int gicv3_get_running_priority(void)
920 {
921 	return (unsigned int)read_icc_rpr_el1();
922 }
923 
924 /*******************************************************************************
925  * This function checks if the interrupt identified by id is active (whether the
926  * state is either active, or active and pending). The proc_num is used if the
927  * interrupt is SGI or (E)PPI and programs the corresponding Redistributor
928  * interface.
929  ******************************************************************************/
gicv3_get_interrupt_active(unsigned int id,unsigned int proc_num)930 unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num)
931 {
932 	assert(gicv3_driver_data != NULL);
933 	assert(gicv3_driver_data->gicd_base != 0U);
934 	assert(proc_num < gicv3_driver_data->rdistif_num);
935 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
936 
937 	/* Check interrupt ID */
938 	if (is_sgi_ppi(id)) {
939 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
940 		return gicr_get_isactiver(
941 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
942 	}
943 
944 	/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
945 	return gicd_get_isactiver(gicv3_driver_data->gicd_base, id);
946 }
947 
948 /*******************************************************************************
949  * This function enables the interrupt identified by id. The proc_num
950  * is used if the interrupt is SGI or PPI, and programs the corresponding
951  * Redistributor interface.
952  ******************************************************************************/
gicv3_enable_interrupt(unsigned int id,unsigned int proc_num)953 void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num)
954 {
955 	assert(gicv3_driver_data != NULL);
956 	assert(gicv3_driver_data->gicd_base != 0U);
957 	assert(proc_num < gicv3_driver_data->rdistif_num);
958 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
959 
960 	/*
961 	 * Ensure that any shared variable updates depending on out of band
962 	 * interrupt trigger are observed before enabling interrupt.
963 	 */
964 	dsbishst();
965 
966 	/* Check interrupt ID */
967 	if (is_sgi_ppi(id)) {
968 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
969 		gicr_set_isenabler(
970 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
971 	} else {
972 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
973 		gicd_set_isenabler(gicv3_driver_data->gicd_base, id);
974 	}
975 }
976 
977 /*******************************************************************************
978  * This function disables the interrupt identified by id. The proc_num
979  * is used if the interrupt is SGI or PPI, and programs the corresponding
980  * Redistributor interface.
981  ******************************************************************************/
gicv3_disable_interrupt(unsigned int id,unsigned int proc_num)982 void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num)
983 {
984 	assert(gicv3_driver_data != NULL);
985 	assert(gicv3_driver_data->gicd_base != 0U);
986 	assert(proc_num < gicv3_driver_data->rdistif_num);
987 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
988 
989 	/*
990 	 * Disable interrupt, and ensure that any shared variable updates
991 	 * depending on out of band interrupt trigger are observed afterwards.
992 	 */
993 
994 	/* Check interrupt ID */
995 	if (is_sgi_ppi(id)) {
996 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
997 		gicr_set_icenabler(
998 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
999 
1000 		/* Write to clear enable requires waiting for pending writes */
1001 		gicr_wait_for_pending_write(
1002 			gicv3_driver_data->rdistif_base_addrs[proc_num]);
1003 	} else {
1004 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1005 		gicd_set_icenabler(gicv3_driver_data->gicd_base, id);
1006 
1007 		/* Write to clear enable requires waiting for pending writes */
1008 		gicd_wait_for_pending_write(gicv3_driver_data->gicd_base);
1009 	}
1010 
1011 	dsbishst();
1012 }
1013 
1014 /*******************************************************************************
1015  * This function sets the interrupt priority as supplied for the given interrupt
1016  * id.
1017  ******************************************************************************/
gicv3_set_interrupt_priority(unsigned int id,unsigned int proc_num,unsigned int priority)1018 void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num,
1019 		unsigned int priority)
1020 {
1021 	uintptr_t gicr_base;
1022 
1023 	assert(gicv3_driver_data != NULL);
1024 	assert(gicv3_driver_data->gicd_base != 0U);
1025 	assert(proc_num < gicv3_driver_data->rdistif_num);
1026 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1027 
1028 	/* Check interrupt ID */
1029 	if (is_sgi_ppi(id)) {
1030 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1031 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1032 		gicr_set_ipriorityr(gicr_base, id, priority);
1033 	} else {
1034 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1035 		gicd_set_ipriorityr(gicv3_driver_data->gicd_base, id, priority);
1036 	}
1037 }
1038 
1039 /*******************************************************************************
1040  * This function assigns group for the interrupt identified by id. The proc_num
1041  * is used if the interrupt is SGI or (E)PPI, and programs the corresponding
1042  * Redistributor interface. The group can be any of GICV3_INTR_GROUP*
1043  ******************************************************************************/
gicv3_set_interrupt_type(unsigned int id,unsigned int proc_num,unsigned int type)1044 void gicv3_set_interrupt_type(unsigned int id, unsigned int proc_num,
1045 		unsigned int type)
1046 {
1047 	bool igroup = false, grpmod = false;
1048 	uintptr_t gicr_base;
1049 
1050 	assert(gicv3_driver_data != NULL);
1051 	assert(gicv3_driver_data->gicd_base != 0U);
1052 	assert(proc_num < gicv3_driver_data->rdistif_num);
1053 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1054 
1055 	switch (type) {
1056 	case INTR_GROUP1S:
1057 		igroup = false;
1058 		grpmod = true;
1059 		break;
1060 	case INTR_GROUP0:
1061 		igroup = false;
1062 		grpmod = false;
1063 		break;
1064 	case INTR_GROUP1NS:
1065 		igroup = true;
1066 		grpmod = false;
1067 		break;
1068 	default:
1069 		assert(false);
1070 		break;
1071 	}
1072 
1073 	/* Check interrupt ID */
1074 	if (is_sgi_ppi(id)) {
1075 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1076 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1077 
1078 		igroup ? gicr_set_igroupr(gicr_base, id) :
1079 			 gicr_clr_igroupr(gicr_base, id);
1080 		grpmod ? gicr_set_igrpmodr(gicr_base, id) :
1081 			 gicr_clr_igrpmodr(gicr_base, id);
1082 	} else {
1083 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1084 
1085 		/* Serialize read-modify-write to Distributor registers */
1086 		spin_lock(&gic_lock);
1087 
1088 		igroup ? gicd_set_igroupr(gicv3_driver_data->gicd_base, id) :
1089 			 gicd_clr_igroupr(gicv3_driver_data->gicd_base, id);
1090 		grpmod ? gicd_set_igrpmodr(gicv3_driver_data->gicd_base, id) :
1091 			 gicd_clr_igrpmodr(gicv3_driver_data->gicd_base, id);
1092 
1093 		spin_unlock(&gic_lock);
1094 	}
1095 }
1096 
1097 /*******************************************************************************
1098  * This function raises the specified SGI of the specified group.
1099  *
1100  * The target parameter must be a valid MPIDR in the system.
1101  ******************************************************************************/
gicv3_raise_sgi(unsigned int sgi_num,gicv3_irq_group_t group,u_register_t target)1102 void gicv3_raise_sgi(unsigned int sgi_num, gicv3_irq_group_t group,
1103 		u_register_t target)
1104 {
1105 	unsigned int tgt, aff3, aff2, aff1, aff0;
1106 	uint64_t sgi_val;
1107 
1108 	/* Verify interrupt number is in the SGI range */
1109 	assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID));
1110 
1111 	/* Extract affinity fields from target */
1112 	aff0 = MPIDR_AFFLVL0_VAL(target);
1113 	aff1 = MPIDR_AFFLVL1_VAL(target);
1114 	aff2 = MPIDR_AFFLVL2_VAL(target);
1115 	aff3 = MPIDR_AFFLVL3_VAL(target);
1116 
1117 	/*
1118 	 * Make target list from affinity 0, and ensure GICv3 SGI can target
1119 	 * this PE.
1120 	 */
1121 	assert(aff0 < GICV3_MAX_SGI_TARGETS);
1122 	tgt = BIT_32(aff0);
1123 
1124 	/* Raise SGI to PE specified by its affinity */
1125 	sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF,
1126 			tgt);
1127 
1128 	/*
1129 	 * Ensure that any shared variable updates depending on out of band
1130 	 * interrupt trigger are observed before raising SGI.
1131 	 */
1132 	dsbishst();
1133 
1134 	switch (group) {
1135 	case GICV3_G0:
1136 		write_icc_sgi0r_el1(sgi_val);
1137 		break;
1138 	case GICV3_G1NS:
1139 		write_icc_asgi1r(sgi_val);
1140 		break;
1141 	case GICV3_G1S:
1142 		write_icc_sgi1r(sgi_val);
1143 		break;
1144 	default:
1145 		assert(false);
1146 		break;
1147 	}
1148 
1149 	isb();
1150 }
1151 
1152 /*******************************************************************************
1153  * This function sets the interrupt routing for the given (E)SPI interrupt id.
1154  * The interrupt routing is specified in routing mode and mpidr.
1155  *
1156  * The routing mode can be either of:
1157  *  - GICV3_IRM_ANY
1158  *  - GICV3_IRM_PE
1159  *
1160  * The mpidr is the affinity of the PE to which the interrupt will be routed,
1161  * and is ignored for routing mode GICV3_IRM_ANY.
1162  ******************************************************************************/
gicv3_set_spi_routing(unsigned int id,unsigned int irm,u_register_t mpidr)1163 void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr)
1164 {
1165 	unsigned long long aff;
1166 	uint64_t router;
1167 
1168 	assert(gicv3_driver_data != NULL);
1169 	assert(gicv3_driver_data->gicd_base != 0U);
1170 
1171 	assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE));
1172 
1173 	assert(IS_SPI(id));
1174 
1175 	aff = gicd_irouter_val_from_mpidr(mpidr, irm);
1176 	gicd_write_irouter(gicv3_driver_data->gicd_base, id, aff);
1177 
1178 	/*
1179 	 * In implementations that do not require 1 of N distribution of SPIs,
1180 	 * IRM might be RAZ/WI. Read back and verify IRM bit.
1181 	 */
1182 	if (irm == GICV3_IRM_ANY) {
1183 		router = gicd_read_irouter(gicv3_driver_data->gicd_base, id);
1184 		if (((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK) == 0U) {
1185 			ERROR("GICv3 implementation doesn't support routing ANY\n");
1186 			panic();
1187 		}
1188 	}
1189 }
1190 
1191 /*******************************************************************************
1192  * This function clears the pending status of an interrupt identified by id.
1193  * The proc_num is used if the interrupt is SGI or (E)PPI, and programs the
1194  * corresponding Redistributor interface.
1195  ******************************************************************************/
gicv3_clear_interrupt_pending(unsigned int id,unsigned int proc_num)1196 void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num)
1197 {
1198 	assert(gicv3_driver_data != NULL);
1199 	assert(gicv3_driver_data->gicd_base != 0U);
1200 	assert(proc_num < gicv3_driver_data->rdistif_num);
1201 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1202 
1203 	/*
1204 	 * Clear pending interrupt, and ensure that any shared variable updates
1205 	 * depending on out of band interrupt trigger are observed afterwards.
1206 	 */
1207 
1208 	/* Check interrupt ID */
1209 	if (is_sgi_ppi(id)) {
1210 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1211 		gicr_set_icpendr(
1212 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1213 	} else {
1214 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1215 		gicd_set_icpendr(gicv3_driver_data->gicd_base, id);
1216 	}
1217 
1218 	dsbishst();
1219 }
1220 
1221 /*******************************************************************************
1222  * This function sets the pending status of an interrupt identified by id.
1223  * The proc_num is used if the interrupt is SGI or PPI and programs the
1224  * corresponding Redistributor interface.
1225  ******************************************************************************/
gicv3_set_interrupt_pending(unsigned int id,unsigned int proc_num)1226 void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num)
1227 {
1228 	assert(gicv3_driver_data != NULL);
1229 	assert(gicv3_driver_data->gicd_base != 0U);
1230 	assert(proc_num < gicv3_driver_data->rdistif_num);
1231 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1232 
1233 	/*
1234 	 * Ensure that any shared variable updates depending on out of band
1235 	 * interrupt trigger are observed before setting interrupt pending.
1236 	 */
1237 	dsbishst();
1238 
1239 	/* Check interrupt ID */
1240 	if (is_sgi_ppi(id)) {
1241 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1242 		gicr_set_ispendr(
1243 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1244 	} else {
1245 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1246 		gicd_set_ispendr(gicv3_driver_data->gicd_base, id);
1247 	}
1248 }
1249 
1250 /*******************************************************************************
1251  * This function sets the PMR register with the supplied value. Returns the
1252  * original PMR.
1253  ******************************************************************************/
gicv3_set_pmr(unsigned int mask)1254 unsigned int gicv3_set_pmr(unsigned int mask)
1255 {
1256 	unsigned int old_mask;
1257 
1258 	old_mask = (unsigned int)read_icc_pmr_el1();
1259 
1260 	/*
1261 	 * Order memory updates w.r.t. PMR write, and ensure they're visible
1262 	 * before potential out of band interrupt trigger because of PMR update.
1263 	 * PMR system register writes are self-synchronizing, so no ISB required
1264 	 * thereafter.
1265 	 */
1266 	dsbishst();
1267 	write_icc_pmr_el1(mask);
1268 
1269 	return old_mask;
1270 }
1271 
1272 /*******************************************************************************
1273  * This function delegates the responsibility of discovering the corresponding
1274  * Redistributor frames to each CPU itself. It is a modified version of
1275  * gicv3_rdistif_base_addrs_probe() and is executed by each CPU in the platform
1276  * unlike the previous way in which only the Primary CPU did the discovery of
1277  * all the Redistributor frames for every CPU. It also handles the scenario in
1278  * which the frames of various CPUs are not contiguous in physical memory.
1279  ******************************************************************************/
gicv3_rdistif_probe(const uintptr_t gicr_frame)1280 int gicv3_rdistif_probe(const uintptr_t gicr_frame)
1281 {
1282 	u_register_t mpidr, mpidr_self;
1283 	unsigned int proc_num;
1284 	uint64_t typer_val;
1285 	uintptr_t rdistif_base;
1286 	bool gicr_frame_found = false;
1287 
1288 	assert(gicv3_driver_data->gicr_base == 0U);
1289 
1290 	/* Ensure this function is called with Data Cache enabled */
1291 #ifndef __aarch64__
1292 	assert((read_sctlr() & SCTLR_C_BIT) != 0U);
1293 #else
1294 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
1295 #endif /* !__aarch64__ */
1296 
1297 	mpidr_self = read_mpidr_el1() & MPIDR_AFFINITY_MASK;
1298 	rdistif_base = gicr_frame;
1299 	do {
1300 		typer_val = gicr_read_typer(rdistif_base);
1301 		mpidr = mpidr_from_gicr_typer(typer_val);
1302 		if (gicv3_driver_data->mpidr_to_core_pos != NULL) {
1303 			proc_num = gicv3_driver_data->mpidr_to_core_pos(mpidr);
1304 		} else {
1305 			proc_num = (unsigned int)(typer_val >>
1306 				TYPER_PROC_NUM_SHIFT) & TYPER_PROC_NUM_MASK;
1307 		}
1308 		if (mpidr == mpidr_self) {
1309 			/* The base address doesn't need to be initialized on
1310 			 * every warm boot.
1311 			 */
1312 			if (gicv3_driver_data->rdistif_base_addrs[proc_num]
1313 								!= 0U) {
1314 				return 0;
1315 			}
1316 			gicv3_driver_data->rdistif_base_addrs[proc_num] =
1317 			rdistif_base;
1318 			gicr_frame_found = true;
1319 			break;
1320 		}
1321 		rdistif_base += gicv3_redist_size(typer_val);
1322 	} while ((typer_val & TYPER_LAST_BIT) == 0U);
1323 
1324 	if (!gicr_frame_found) {
1325 		return -1;
1326 	}
1327 
1328 	/*
1329 	 * Flush the driver data to ensure coherency. This is
1330 	 * not required if platform has HW_ASSISTED_COHERENCY
1331 	 * enabled.
1332 	 */
1333 #if !HW_ASSISTED_COHERENCY
1334 	/*
1335 	 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
1336 	 */
1337 	flush_dcache_range((uintptr_t)&(gicv3_driver_data->rdistif_base_addrs[proc_num]),
1338 		sizeof(*(gicv3_driver_data->rdistif_base_addrs)));
1339 #endif
1340 	return 0; /* Found matching GICR frame */
1341 }
1342 
1343 /******************************************************************************
1344  * This function checks the interrupt ID and returns true for SGIs and (E)PPIs
1345  * and false for (E)SPIs IDs.
1346  *****************************************************************************/
is_sgi_ppi(unsigned int id)1347 static bool is_sgi_ppi(unsigned int id)
1348 {
1349 	/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
1350 	if (IS_SGI_PPI(id)) {
1351 		return true;
1352 	}
1353 
1354 	/* SPIs: 32-1019, ESPIs: 4096-5119 */
1355 	if (IS_SPI(id)) {
1356 		return false;
1357 	}
1358 
1359 	assert(false);
1360 	panic();
1361 }
1362