1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4 
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18 
19 struct folio_batch;
20 
21 unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 					pgoff_t start, pgoff_t end);
23 
invalidate_remote_inode(struct inode * inode)24 static inline void invalidate_remote_inode(struct inode *inode)
25 {
26 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 	    S_ISLNK(inode->i_mode))
28 		invalidate_mapping_pages(inode->i_mapping, 0, -1);
29 }
30 int invalidate_inode_pages2(struct address_space *mapping);
31 int invalidate_inode_pages2_range(struct address_space *mapping,
32 		pgoff_t start, pgoff_t end);
33 int write_inode_now(struct inode *, int sync);
34 int filemap_fdatawrite(struct address_space *);
35 int filemap_flush(struct address_space *);
36 int filemap_fdatawait_keep_errors(struct address_space *mapping);
37 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
38 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
39 		loff_t start_byte, loff_t end_byte);
40 
filemap_fdatawait(struct address_space * mapping)41 static inline int filemap_fdatawait(struct address_space *mapping)
42 {
43 	return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
44 }
45 
46 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
47 int filemap_write_and_wait_range(struct address_space *mapping,
48 		loff_t lstart, loff_t lend);
49 int __filemap_fdatawrite_range(struct address_space *mapping,
50 		loff_t start, loff_t end, int sync_mode);
51 int filemap_fdatawrite_range(struct address_space *mapping,
52 		loff_t start, loff_t end);
53 int filemap_check_errors(struct address_space *mapping);
54 void __filemap_set_wb_err(struct address_space *mapping, int err);
55 int filemap_fdatawrite_wbc(struct address_space *mapping,
56 			   struct writeback_control *wbc);
57 
filemap_write_and_wait(struct address_space * mapping)58 static inline int filemap_write_and_wait(struct address_space *mapping)
59 {
60 	return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
61 }
62 
63 /**
64  * filemap_set_wb_err - set a writeback error on an address_space
65  * @mapping: mapping in which to set writeback error
66  * @err: error to be set in mapping
67  *
68  * When writeback fails in some way, we must record that error so that
69  * userspace can be informed when fsync and the like are called.  We endeavor
70  * to report errors on any file that was open at the time of the error.  Some
71  * internal callers also need to know when writeback errors have occurred.
72  *
73  * When a writeback error occurs, most filesystems will want to call
74  * filemap_set_wb_err to record the error in the mapping so that it will be
75  * automatically reported whenever fsync is called on the file.
76  */
filemap_set_wb_err(struct address_space * mapping,int err)77 static inline void filemap_set_wb_err(struct address_space *mapping, int err)
78 {
79 	/* Fastpath for common case of no error */
80 	if (unlikely(err))
81 		__filemap_set_wb_err(mapping, err);
82 }
83 
84 /**
85  * filemap_check_wb_err - has an error occurred since the mark was sampled?
86  * @mapping: mapping to check for writeback errors
87  * @since: previously-sampled errseq_t
88  *
89  * Grab the errseq_t value from the mapping, and see if it has changed "since"
90  * the given value was sampled.
91  *
92  * If it has then report the latest error set, otherwise return 0.
93  */
filemap_check_wb_err(struct address_space * mapping,errseq_t since)94 static inline int filemap_check_wb_err(struct address_space *mapping,
95 					errseq_t since)
96 {
97 	return errseq_check(&mapping->wb_err, since);
98 }
99 
100 /**
101  * filemap_sample_wb_err - sample the current errseq_t to test for later errors
102  * @mapping: mapping to be sampled
103  *
104  * Writeback errors are always reported relative to a particular sample point
105  * in the past. This function provides those sample points.
106  */
filemap_sample_wb_err(struct address_space * mapping)107 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
108 {
109 	return errseq_sample(&mapping->wb_err);
110 }
111 
112 /**
113  * file_sample_sb_err - sample the current errseq_t to test for later errors
114  * @file: file pointer to be sampled
115  *
116  * Grab the most current superblock-level errseq_t value for the given
117  * struct file.
118  */
file_sample_sb_err(struct file * file)119 static inline errseq_t file_sample_sb_err(struct file *file)
120 {
121 	return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
122 }
123 
124 /*
125  * Flush file data before changing attributes.  Caller must hold any locks
126  * required to prevent further writes to this file until we're done setting
127  * flags.
128  */
inode_drain_writes(struct inode * inode)129 static inline int inode_drain_writes(struct inode *inode)
130 {
131 	inode_dio_wait(inode);
132 	return filemap_write_and_wait(inode->i_mapping);
133 }
134 
mapping_empty(struct address_space * mapping)135 static inline bool mapping_empty(struct address_space *mapping)
136 {
137 	return xa_empty(&mapping->i_pages);
138 }
139 
140 /*
141  * mapping_shrinkable - test if page cache state allows inode reclaim
142  * @mapping: the page cache mapping
143  *
144  * This checks the mapping's cache state for the pupose of inode
145  * reclaim and LRU management.
146  *
147  * The caller is expected to hold the i_lock, but is not required to
148  * hold the i_pages lock, which usually protects cache state. That's
149  * because the i_lock and the list_lru lock that protect the inode and
150  * its LRU state don't nest inside the irq-safe i_pages lock.
151  *
152  * Cache deletions are performed under the i_lock, which ensures that
153  * when an inode goes empty, it will reliably get queued on the LRU.
154  *
155  * Cache additions do not acquire the i_lock and may race with this
156  * check, in which case we'll report the inode as shrinkable when it
157  * has cache pages. This is okay: the shrinker also checks the
158  * refcount and the referenced bit, which will be elevated or set in
159  * the process of adding new cache pages to an inode.
160  */
mapping_shrinkable(struct address_space * mapping)161 static inline bool mapping_shrinkable(struct address_space *mapping)
162 {
163 	void *head;
164 
165 	/*
166 	 * On highmem systems, there could be lowmem pressure from the
167 	 * inodes before there is highmem pressure from the page
168 	 * cache. Make inodes shrinkable regardless of cache state.
169 	 */
170 	if (IS_ENABLED(CONFIG_HIGHMEM))
171 		return true;
172 
173 	/* Cache completely empty? Shrink away. */
174 	head = rcu_access_pointer(mapping->i_pages.xa_head);
175 	if (!head)
176 		return true;
177 
178 	/*
179 	 * The xarray stores single offset-0 entries directly in the
180 	 * head pointer, which allows non-resident page cache entries
181 	 * to escape the shadow shrinker's list of xarray nodes. The
182 	 * inode shrinker needs to pick them up under memory pressure.
183 	 */
184 	if (!xa_is_node(head) && xa_is_value(head))
185 		return true;
186 
187 	return false;
188 }
189 
190 /*
191  * Bits in mapping->flags.
192  */
193 enum mapping_flags {
194 	AS_EIO		= 0,	/* IO error on async write */
195 	AS_ENOSPC	= 1,	/* ENOSPC on async write */
196 	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
197 	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
198 	AS_EXITING	= 4, 	/* final truncate in progress */
199 	/* writeback related tags are not used */
200 	AS_NO_WRITEBACK_TAGS = 5,
201 	AS_LARGE_FOLIO_SUPPORT = 6,
202 };
203 
204 /**
205  * mapping_set_error - record a writeback error in the address_space
206  * @mapping: the mapping in which an error should be set
207  * @error: the error to set in the mapping
208  *
209  * When writeback fails in some way, we must record that error so that
210  * userspace can be informed when fsync and the like are called.  We endeavor
211  * to report errors on any file that was open at the time of the error.  Some
212  * internal callers also need to know when writeback errors have occurred.
213  *
214  * When a writeback error occurs, most filesystems will want to call
215  * mapping_set_error to record the error in the mapping so that it can be
216  * reported when the application calls fsync(2).
217  */
mapping_set_error(struct address_space * mapping,int error)218 static inline void mapping_set_error(struct address_space *mapping, int error)
219 {
220 	if (likely(!error))
221 		return;
222 
223 	/* Record in wb_err for checkers using errseq_t based tracking */
224 	__filemap_set_wb_err(mapping, error);
225 
226 	/* Record it in superblock */
227 	if (mapping->host)
228 		errseq_set(&mapping->host->i_sb->s_wb_err, error);
229 
230 	/* Record it in flags for now, for legacy callers */
231 	if (error == -ENOSPC)
232 		set_bit(AS_ENOSPC, &mapping->flags);
233 	else
234 		set_bit(AS_EIO, &mapping->flags);
235 }
236 
mapping_set_unevictable(struct address_space * mapping)237 static inline void mapping_set_unevictable(struct address_space *mapping)
238 {
239 	set_bit(AS_UNEVICTABLE, &mapping->flags);
240 }
241 
mapping_clear_unevictable(struct address_space * mapping)242 static inline void mapping_clear_unevictable(struct address_space *mapping)
243 {
244 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
245 }
246 
mapping_unevictable(struct address_space * mapping)247 static inline bool mapping_unevictable(struct address_space *mapping)
248 {
249 	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
250 }
251 
mapping_set_exiting(struct address_space * mapping)252 static inline void mapping_set_exiting(struct address_space *mapping)
253 {
254 	set_bit(AS_EXITING, &mapping->flags);
255 }
256 
mapping_exiting(struct address_space * mapping)257 static inline int mapping_exiting(struct address_space *mapping)
258 {
259 	return test_bit(AS_EXITING, &mapping->flags);
260 }
261 
mapping_set_no_writeback_tags(struct address_space * mapping)262 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
263 {
264 	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
265 }
266 
mapping_use_writeback_tags(struct address_space * mapping)267 static inline int mapping_use_writeback_tags(struct address_space *mapping)
268 {
269 	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
270 }
271 
mapping_gfp_mask(struct address_space * mapping)272 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
273 {
274 	return mapping->gfp_mask;
275 }
276 
277 /* Restricts the given gfp_mask to what the mapping allows. */
mapping_gfp_constraint(struct address_space * mapping,gfp_t gfp_mask)278 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
279 		gfp_t gfp_mask)
280 {
281 	return mapping_gfp_mask(mapping) & gfp_mask;
282 }
283 
284 /*
285  * This is non-atomic.  Only to be used before the mapping is activated.
286  * Probably needs a barrier...
287  */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)288 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
289 {
290 	m->gfp_mask = mask;
291 }
292 
293 /**
294  * mapping_set_large_folios() - Indicate the file supports large folios.
295  * @mapping: The file.
296  *
297  * The filesystem should call this function in its inode constructor to
298  * indicate that the VFS can use large folios to cache the contents of
299  * the file.
300  *
301  * Context: This should not be called while the inode is active as it
302  * is non-atomic.
303  */
mapping_set_large_folios(struct address_space * mapping)304 static inline void mapping_set_large_folios(struct address_space *mapping)
305 {
306 	__set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
307 }
308 
309 /*
310  * Large folio support currently depends on THP.  These dependencies are
311  * being worked on but are not yet fixed.
312  */
mapping_large_folio_support(struct address_space * mapping)313 static inline bool mapping_large_folio_support(struct address_space *mapping)
314 {
315 	return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
316 		test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
317 }
318 
filemap_nr_thps(struct address_space * mapping)319 static inline int filemap_nr_thps(struct address_space *mapping)
320 {
321 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
322 	return atomic_read(&mapping->nr_thps);
323 #else
324 	return 0;
325 #endif
326 }
327 
filemap_nr_thps_inc(struct address_space * mapping)328 static inline void filemap_nr_thps_inc(struct address_space *mapping)
329 {
330 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
331 	if (!mapping_large_folio_support(mapping))
332 		atomic_inc(&mapping->nr_thps);
333 #else
334 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
335 #endif
336 }
337 
filemap_nr_thps_dec(struct address_space * mapping)338 static inline void filemap_nr_thps_dec(struct address_space *mapping)
339 {
340 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
341 	if (!mapping_large_folio_support(mapping))
342 		atomic_dec(&mapping->nr_thps);
343 #else
344 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
345 #endif
346 }
347 
348 struct address_space *page_mapping(struct page *);
349 struct address_space *folio_mapping(struct folio *);
350 struct address_space *swapcache_mapping(struct folio *);
351 
352 /**
353  * folio_file_mapping - Find the mapping this folio belongs to.
354  * @folio: The folio.
355  *
356  * For folios which are in the page cache, return the mapping that this
357  * page belongs to.  Folios in the swap cache return the mapping of the
358  * swap file or swap device where the data is stored.  This is different
359  * from the mapping returned by folio_mapping().  The only reason to
360  * use it is if, like NFS, you return 0 from ->activate_swapfile.
361  *
362  * Do not call this for folios which aren't in the page cache or swap cache.
363  */
folio_file_mapping(struct folio * folio)364 static inline struct address_space *folio_file_mapping(struct folio *folio)
365 {
366 	if (unlikely(folio_test_swapcache(folio)))
367 		return swapcache_mapping(folio);
368 
369 	return folio->mapping;
370 }
371 
page_file_mapping(struct page * page)372 static inline struct address_space *page_file_mapping(struct page *page)
373 {
374 	return folio_file_mapping(page_folio(page));
375 }
376 
377 /*
378  * For file cache pages, return the address_space, otherwise return NULL
379  */
page_mapping_file(struct page * page)380 static inline struct address_space *page_mapping_file(struct page *page)
381 {
382 	struct folio *folio = page_folio(page);
383 
384 	if (unlikely(folio_test_swapcache(folio)))
385 		return NULL;
386 	return folio_mapping(folio);
387 }
388 
389 /**
390  * folio_inode - Get the host inode for this folio.
391  * @folio: The folio.
392  *
393  * For folios which are in the page cache, return the inode that this folio
394  * belongs to.
395  *
396  * Do not call this for folios which aren't in the page cache.
397  */
folio_inode(struct folio * folio)398 static inline struct inode *folio_inode(struct folio *folio)
399 {
400 	return folio->mapping->host;
401 }
402 
403 /**
404  * folio_attach_private - Attach private data to a folio.
405  * @folio: Folio to attach data to.
406  * @data: Data to attach to folio.
407  *
408  * Attaching private data to a folio increments the page's reference count.
409  * The data must be detached before the folio will be freed.
410  */
folio_attach_private(struct folio * folio,void * data)411 static inline void folio_attach_private(struct folio *folio, void *data)
412 {
413 	folio_get(folio);
414 	folio->private = data;
415 	folio_set_private(folio);
416 }
417 
418 /**
419  * folio_change_private - Change private data on a folio.
420  * @folio: Folio to change the data on.
421  * @data: Data to set on the folio.
422  *
423  * Change the private data attached to a folio and return the old
424  * data.  The page must previously have had data attached and the data
425  * must be detached before the folio will be freed.
426  *
427  * Return: Data that was previously attached to the folio.
428  */
folio_change_private(struct folio * folio,void * data)429 static inline void *folio_change_private(struct folio *folio, void *data)
430 {
431 	void *old = folio_get_private(folio);
432 
433 	folio->private = data;
434 	return old;
435 }
436 
437 /**
438  * folio_detach_private - Detach private data from a folio.
439  * @folio: Folio to detach data from.
440  *
441  * Removes the data that was previously attached to the folio and decrements
442  * the refcount on the page.
443  *
444  * Return: Data that was attached to the folio.
445  */
folio_detach_private(struct folio * folio)446 static inline void *folio_detach_private(struct folio *folio)
447 {
448 	void *data = folio_get_private(folio);
449 
450 	if (!folio_test_private(folio))
451 		return NULL;
452 	folio_clear_private(folio);
453 	folio->private = NULL;
454 	folio_put(folio);
455 
456 	return data;
457 }
458 
attach_page_private(struct page * page,void * data)459 static inline void attach_page_private(struct page *page, void *data)
460 {
461 	folio_attach_private(page_folio(page), data);
462 }
463 
detach_page_private(struct page * page)464 static inline void *detach_page_private(struct page *page)
465 {
466 	return folio_detach_private(page_folio(page));
467 }
468 
469 #ifdef CONFIG_NUMA
470 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order);
471 #else
filemap_alloc_folio(gfp_t gfp,unsigned int order)472 static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
473 {
474 	return folio_alloc(gfp, order);
475 }
476 #endif
477 
__page_cache_alloc(gfp_t gfp)478 static inline struct page *__page_cache_alloc(gfp_t gfp)
479 {
480 	return &filemap_alloc_folio(gfp, 0)->page;
481 }
482 
page_cache_alloc(struct address_space * x)483 static inline struct page *page_cache_alloc(struct address_space *x)
484 {
485 	return __page_cache_alloc(mapping_gfp_mask(x));
486 }
487 
readahead_gfp_mask(struct address_space * x)488 static inline gfp_t readahead_gfp_mask(struct address_space *x)
489 {
490 	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
491 }
492 
493 typedef int filler_t(struct file *, struct folio *);
494 
495 pgoff_t page_cache_next_miss(struct address_space *mapping,
496 			     pgoff_t index, unsigned long max_scan);
497 pgoff_t page_cache_prev_miss(struct address_space *mapping,
498 			     pgoff_t index, unsigned long max_scan);
499 
500 #define FGP_ACCESSED		0x00000001
501 #define FGP_LOCK		0x00000002
502 #define FGP_CREAT		0x00000004
503 #define FGP_WRITE		0x00000008
504 #define FGP_NOFS		0x00000010
505 #define FGP_NOWAIT		0x00000020
506 #define FGP_FOR_MMAP		0x00000040
507 #define FGP_ENTRY		0x00000080
508 #define FGP_STABLE		0x00000100
509 
510 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
511 		int fgp_flags, gfp_t gfp);
512 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
513 		int fgp_flags, gfp_t gfp);
514 
515 /**
516  * filemap_get_folio - Find and get a folio.
517  * @mapping: The address_space to search.
518  * @index: The page index.
519  *
520  * Looks up the page cache entry at @mapping & @index.  If a folio is
521  * present, it is returned with an increased refcount.
522  *
523  * Otherwise, %NULL is returned.
524  */
filemap_get_folio(struct address_space * mapping,pgoff_t index)525 static inline struct folio *filemap_get_folio(struct address_space *mapping,
526 					pgoff_t index)
527 {
528 	return __filemap_get_folio(mapping, index, 0, 0);
529 }
530 
531 /**
532  * filemap_lock_folio - Find and lock a folio.
533  * @mapping: The address_space to search.
534  * @index: The page index.
535  *
536  * Looks up the page cache entry at @mapping & @index.  If a folio is
537  * present, it is returned locked with an increased refcount.
538  *
539  * Context: May sleep.
540  * Return: A folio or %NULL if there is no folio in the cache for this
541  * index.  Will not return a shadow, swap or DAX entry.
542  */
filemap_lock_folio(struct address_space * mapping,pgoff_t index)543 static inline struct folio *filemap_lock_folio(struct address_space *mapping,
544 					pgoff_t index)
545 {
546 	return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
547 }
548 
549 /**
550  * filemap_grab_folio - grab a folio from the page cache
551  * @mapping: The address space to search
552  * @index: The page index
553  *
554  * Looks up the page cache entry at @mapping & @index. If no folio is found,
555  * a new folio is created. The folio is locked, marked as accessed, and
556  * returned.
557  *
558  * Return: A found or created folio. NULL if no folio is found and failed to
559  * create a folio.
560  */
filemap_grab_folio(struct address_space * mapping,pgoff_t index)561 static inline struct folio *filemap_grab_folio(struct address_space *mapping,
562 					pgoff_t index)
563 {
564 	return __filemap_get_folio(mapping, index,
565 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
566 			mapping_gfp_mask(mapping));
567 }
568 
569 /**
570  * find_get_page - find and get a page reference
571  * @mapping: the address_space to search
572  * @offset: the page index
573  *
574  * Looks up the page cache slot at @mapping & @offset.  If there is a
575  * page cache page, it is returned with an increased refcount.
576  *
577  * Otherwise, %NULL is returned.
578  */
find_get_page(struct address_space * mapping,pgoff_t offset)579 static inline struct page *find_get_page(struct address_space *mapping,
580 					pgoff_t offset)
581 {
582 	return pagecache_get_page(mapping, offset, 0, 0);
583 }
584 
find_get_page_flags(struct address_space * mapping,pgoff_t offset,int fgp_flags)585 static inline struct page *find_get_page_flags(struct address_space *mapping,
586 					pgoff_t offset, int fgp_flags)
587 {
588 	return pagecache_get_page(mapping, offset, fgp_flags, 0);
589 }
590 
591 /**
592  * find_lock_page - locate, pin and lock a pagecache page
593  * @mapping: the address_space to search
594  * @index: the page index
595  *
596  * Looks up the page cache entry at @mapping & @index.  If there is a
597  * page cache page, it is returned locked and with an increased
598  * refcount.
599  *
600  * Context: May sleep.
601  * Return: A struct page or %NULL if there is no page in the cache for this
602  * index.
603  */
find_lock_page(struct address_space * mapping,pgoff_t index)604 static inline struct page *find_lock_page(struct address_space *mapping,
605 					pgoff_t index)
606 {
607 	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
608 }
609 
610 /**
611  * find_or_create_page - locate or add a pagecache page
612  * @mapping: the page's address_space
613  * @index: the page's index into the mapping
614  * @gfp_mask: page allocation mode
615  *
616  * Looks up the page cache slot at @mapping & @offset.  If there is a
617  * page cache page, it is returned locked and with an increased
618  * refcount.
619  *
620  * If the page is not present, a new page is allocated using @gfp_mask
621  * and added to the page cache and the VM's LRU list.  The page is
622  * returned locked and with an increased refcount.
623  *
624  * On memory exhaustion, %NULL is returned.
625  *
626  * find_or_create_page() may sleep, even if @gfp_flags specifies an
627  * atomic allocation!
628  */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)629 static inline struct page *find_or_create_page(struct address_space *mapping,
630 					pgoff_t index, gfp_t gfp_mask)
631 {
632 	return pagecache_get_page(mapping, index,
633 					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
634 					gfp_mask);
635 }
636 
637 /**
638  * grab_cache_page_nowait - returns locked page at given index in given cache
639  * @mapping: target address_space
640  * @index: the page index
641  *
642  * Same as grab_cache_page(), but do not wait if the page is unavailable.
643  * This is intended for speculative data generators, where the data can
644  * be regenerated if the page couldn't be grabbed.  This routine should
645  * be safe to call while holding the lock for another page.
646  *
647  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
648  * and deadlock against the caller's locked page.
649  */
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)650 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
651 				pgoff_t index)
652 {
653 	return pagecache_get_page(mapping, index,
654 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
655 			mapping_gfp_mask(mapping));
656 }
657 
658 #define swapcache_index(folio)	__page_file_index(&(folio)->page)
659 
660 /**
661  * folio_index - File index of a folio.
662  * @folio: The folio.
663  *
664  * For a folio which is either in the page cache or the swap cache,
665  * return its index within the address_space it belongs to.  If you know
666  * the page is definitely in the page cache, you can look at the folio's
667  * index directly.
668  *
669  * Return: The index (offset in units of pages) of a folio in its file.
670  */
folio_index(struct folio * folio)671 static inline pgoff_t folio_index(struct folio *folio)
672 {
673         if (unlikely(folio_test_swapcache(folio)))
674                 return swapcache_index(folio);
675         return folio->index;
676 }
677 
678 /**
679  * folio_next_index - Get the index of the next folio.
680  * @folio: The current folio.
681  *
682  * Return: The index of the folio which follows this folio in the file.
683  */
folio_next_index(struct folio * folio)684 static inline pgoff_t folio_next_index(struct folio *folio)
685 {
686 	return folio->index + folio_nr_pages(folio);
687 }
688 
689 /**
690  * folio_file_page - The page for a particular index.
691  * @folio: The folio which contains this index.
692  * @index: The index we want to look up.
693  *
694  * Sometimes after looking up a folio in the page cache, we need to
695  * obtain the specific page for an index (eg a page fault).
696  *
697  * Return: The page containing the file data for this index.
698  */
folio_file_page(struct folio * folio,pgoff_t index)699 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
700 {
701 	/* HugeTLBfs indexes the page cache in units of hpage_size */
702 	if (folio_test_hugetlb(folio))
703 		return &folio->page;
704 	return folio_page(folio, index & (folio_nr_pages(folio) - 1));
705 }
706 
707 /**
708  * folio_contains - Does this folio contain this index?
709  * @folio: The folio.
710  * @index: The page index within the file.
711  *
712  * Context: The caller should have the page locked in order to prevent
713  * (eg) shmem from moving the page between the page cache and swap cache
714  * and changing its index in the middle of the operation.
715  * Return: true or false.
716  */
folio_contains(struct folio * folio,pgoff_t index)717 static inline bool folio_contains(struct folio *folio, pgoff_t index)
718 {
719 	/* HugeTLBfs indexes the page cache in units of hpage_size */
720 	if (folio_test_hugetlb(folio))
721 		return folio->index == index;
722 	return index - folio_index(folio) < folio_nr_pages(folio);
723 }
724 
725 /*
726  * Given the page we found in the page cache, return the page corresponding
727  * to this index in the file
728  */
find_subpage(struct page * head,pgoff_t index)729 static inline struct page *find_subpage(struct page *head, pgoff_t index)
730 {
731 	/* HugeTLBfs wants the head page regardless */
732 	if (PageHuge(head))
733 		return head;
734 
735 	return head + (index & (thp_nr_pages(head) - 1));
736 }
737 
738 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
739 		pgoff_t end, struct folio_batch *fbatch);
740 unsigned filemap_get_folios_contig(struct address_space *mapping,
741 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
742 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
743 		pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
744 
745 struct page *grab_cache_page_write_begin(struct address_space *mapping,
746 			pgoff_t index);
747 
748 /*
749  * Returns locked page at given index in given cache, creating it if needed.
750  */
grab_cache_page(struct address_space * mapping,pgoff_t index)751 static inline struct page *grab_cache_page(struct address_space *mapping,
752 								pgoff_t index)
753 {
754 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
755 }
756 
757 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
758 		filler_t *filler, struct file *file);
759 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
760 		gfp_t flags);
761 struct page *read_cache_page(struct address_space *, pgoff_t index,
762 		filler_t *filler, struct file *file);
763 extern struct page * read_cache_page_gfp(struct address_space *mapping,
764 				pgoff_t index, gfp_t gfp_mask);
765 
read_mapping_page(struct address_space * mapping,pgoff_t index,struct file * file)766 static inline struct page *read_mapping_page(struct address_space *mapping,
767 				pgoff_t index, struct file *file)
768 {
769 	return read_cache_page(mapping, index, NULL, file);
770 }
771 
read_mapping_folio(struct address_space * mapping,pgoff_t index,struct file * file)772 static inline struct folio *read_mapping_folio(struct address_space *mapping,
773 				pgoff_t index, struct file *file)
774 {
775 	return read_cache_folio(mapping, index, NULL, file);
776 }
777 
778 /*
779  * Get index of the page within radix-tree (but not for hugetlb pages).
780  * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
781  */
page_to_index(struct page * page)782 static inline pgoff_t page_to_index(struct page *page)
783 {
784 	struct page *head;
785 
786 	if (likely(!PageTransTail(page)))
787 		return page->index;
788 
789 	head = compound_head(page);
790 	/*
791 	 *  We don't initialize ->index for tail pages: calculate based on
792 	 *  head page
793 	 */
794 	return head->index + page - head;
795 }
796 
797 extern pgoff_t hugetlb_basepage_index(struct page *page);
798 
799 /*
800  * Get the offset in PAGE_SIZE (even for hugetlb pages).
801  * (TODO: hugetlb pages should have ->index in PAGE_SIZE)
802  */
page_to_pgoff(struct page * page)803 static inline pgoff_t page_to_pgoff(struct page *page)
804 {
805 	if (unlikely(PageHuge(page)))
806 		return hugetlb_basepage_index(page);
807 	return page_to_index(page);
808 }
809 
810 /*
811  * Return byte-offset into filesystem object for page.
812  */
page_offset(struct page * page)813 static inline loff_t page_offset(struct page *page)
814 {
815 	return ((loff_t)page->index) << PAGE_SHIFT;
816 }
817 
page_file_offset(struct page * page)818 static inline loff_t page_file_offset(struct page *page)
819 {
820 	return ((loff_t)page_index(page)) << PAGE_SHIFT;
821 }
822 
823 /**
824  * folio_pos - Returns the byte position of this folio in its file.
825  * @folio: The folio.
826  */
folio_pos(struct folio * folio)827 static inline loff_t folio_pos(struct folio *folio)
828 {
829 	return page_offset(&folio->page);
830 }
831 
832 /**
833  * folio_file_pos - Returns the byte position of this folio in its file.
834  * @folio: The folio.
835  *
836  * This differs from folio_pos() for folios which belong to a swap file.
837  * NFS is the only filesystem today which needs to use folio_file_pos().
838  */
folio_file_pos(struct folio * folio)839 static inline loff_t folio_file_pos(struct folio *folio)
840 {
841 	return page_file_offset(&folio->page);
842 }
843 
844 /*
845  * Get the offset in PAGE_SIZE (even for hugetlb folios).
846  * (TODO: hugetlb folios should have ->index in PAGE_SIZE)
847  */
folio_pgoff(struct folio * folio)848 static inline pgoff_t folio_pgoff(struct folio *folio)
849 {
850 	if (unlikely(folio_test_hugetlb(folio)))
851 		return hugetlb_basepage_index(&folio->page);
852 	return folio->index;
853 }
854 
855 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
856 				     unsigned long address);
857 
linear_page_index(struct vm_area_struct * vma,unsigned long address)858 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
859 					unsigned long address)
860 {
861 	pgoff_t pgoff;
862 	if (unlikely(is_vm_hugetlb_page(vma)))
863 		return linear_hugepage_index(vma, address);
864 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
865 	pgoff += vma->vm_pgoff;
866 	return pgoff;
867 }
868 
869 struct wait_page_key {
870 	struct folio *folio;
871 	int bit_nr;
872 	int page_match;
873 };
874 
875 struct wait_page_queue {
876 	struct folio *folio;
877 	int bit_nr;
878 	wait_queue_entry_t wait;
879 };
880 
wake_page_match(struct wait_page_queue * wait_page,struct wait_page_key * key)881 static inline bool wake_page_match(struct wait_page_queue *wait_page,
882 				  struct wait_page_key *key)
883 {
884 	if (wait_page->folio != key->folio)
885 	       return false;
886 	key->page_match = 1;
887 
888 	if (wait_page->bit_nr != key->bit_nr)
889 		return false;
890 
891 	return true;
892 }
893 
894 void __folio_lock(struct folio *folio);
895 int __folio_lock_killable(struct folio *folio);
896 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
897 				unsigned int flags);
898 void unlock_page(struct page *page);
899 void folio_unlock(struct folio *folio);
900 
901 /**
902  * folio_trylock() - Attempt to lock a folio.
903  * @folio: The folio to attempt to lock.
904  *
905  * Sometimes it is undesirable to wait for a folio to be unlocked (eg
906  * when the locks are being taken in the wrong order, or if making
907  * progress through a batch of folios is more important than processing
908  * them in order).  Usually folio_lock() is the correct function to call.
909  *
910  * Context: Any context.
911  * Return: Whether the lock was successfully acquired.
912  */
folio_trylock(struct folio * folio)913 static inline bool folio_trylock(struct folio *folio)
914 {
915 	return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
916 }
917 
918 /*
919  * Return true if the page was successfully locked
920  */
trylock_page(struct page * page)921 static inline int trylock_page(struct page *page)
922 {
923 	return folio_trylock(page_folio(page));
924 }
925 
926 /**
927  * folio_lock() - Lock this folio.
928  * @folio: The folio to lock.
929  *
930  * The folio lock protects against many things, probably more than it
931  * should.  It is primarily held while a folio is being brought uptodate,
932  * either from its backing file or from swap.  It is also held while a
933  * folio is being truncated from its address_space, so holding the lock
934  * is sufficient to keep folio->mapping stable.
935  *
936  * The folio lock is also held while write() is modifying the page to
937  * provide POSIX atomicity guarantees (as long as the write does not
938  * cross a page boundary).  Other modifications to the data in the folio
939  * do not hold the folio lock and can race with writes, eg DMA and stores
940  * to mapped pages.
941  *
942  * Context: May sleep.  If you need to acquire the locks of two or
943  * more folios, they must be in order of ascending index, if they are
944  * in the same address_space.  If they are in different address_spaces,
945  * acquire the lock of the folio which belongs to the address_space which
946  * has the lowest address in memory first.
947  */
folio_lock(struct folio * folio)948 static inline void folio_lock(struct folio *folio)
949 {
950 	might_sleep();
951 	if (!folio_trylock(folio))
952 		__folio_lock(folio);
953 }
954 
955 /**
956  * lock_page() - Lock the folio containing this page.
957  * @page: The page to lock.
958  *
959  * See folio_lock() for a description of what the lock protects.
960  * This is a legacy function and new code should probably use folio_lock()
961  * instead.
962  *
963  * Context: May sleep.  Pages in the same folio share a lock, so do not
964  * attempt to lock two pages which share a folio.
965  */
lock_page(struct page * page)966 static inline void lock_page(struct page *page)
967 {
968 	struct folio *folio;
969 	might_sleep();
970 
971 	folio = page_folio(page);
972 	if (!folio_trylock(folio))
973 		__folio_lock(folio);
974 }
975 
976 /**
977  * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
978  * @folio: The folio to lock.
979  *
980  * Attempts to lock the folio, like folio_lock(), except that the sleep
981  * to acquire the lock is interruptible by a fatal signal.
982  *
983  * Context: May sleep; see folio_lock().
984  * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
985  */
folio_lock_killable(struct folio * folio)986 static inline int folio_lock_killable(struct folio *folio)
987 {
988 	might_sleep();
989 	if (!folio_trylock(folio))
990 		return __folio_lock_killable(folio);
991 	return 0;
992 }
993 
994 /*
995  * folio_lock_or_retry - Lock the folio, unless this would block and the
996  * caller indicated that it can handle a retry.
997  *
998  * Return value and mmap_lock implications depend on flags; see
999  * __folio_lock_or_retry().
1000  */
folio_lock_or_retry(struct folio * folio,struct mm_struct * mm,unsigned int flags)1001 static inline bool folio_lock_or_retry(struct folio *folio,
1002 		struct mm_struct *mm, unsigned int flags)
1003 {
1004 	might_sleep();
1005 	return folio_trylock(folio) || __folio_lock_or_retry(folio, mm, flags);
1006 }
1007 
1008 /*
1009  * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1010  * and should not be used directly.
1011  */
1012 void folio_wait_bit(struct folio *folio, int bit_nr);
1013 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1014 
1015 /*
1016  * Wait for a folio to be unlocked.
1017  *
1018  * This must be called with the caller "holding" the folio,
1019  * ie with increased folio reference count so that the folio won't
1020  * go away during the wait.
1021  */
folio_wait_locked(struct folio * folio)1022 static inline void folio_wait_locked(struct folio *folio)
1023 {
1024 	if (folio_test_locked(folio))
1025 		folio_wait_bit(folio, PG_locked);
1026 }
1027 
folio_wait_locked_killable(struct folio * folio)1028 static inline int folio_wait_locked_killable(struct folio *folio)
1029 {
1030 	if (!folio_test_locked(folio))
1031 		return 0;
1032 	return folio_wait_bit_killable(folio, PG_locked);
1033 }
1034 
wait_on_page_locked(struct page * page)1035 static inline void wait_on_page_locked(struct page *page)
1036 {
1037 	folio_wait_locked(page_folio(page));
1038 }
1039 
wait_on_page_locked_killable(struct page * page)1040 static inline int wait_on_page_locked_killable(struct page *page)
1041 {
1042 	return folio_wait_locked_killable(page_folio(page));
1043 }
1044 
1045 void wait_on_page_writeback(struct page *page);
1046 void folio_wait_writeback(struct folio *folio);
1047 int folio_wait_writeback_killable(struct folio *folio);
1048 void end_page_writeback(struct page *page);
1049 void folio_end_writeback(struct folio *folio);
1050 void wait_for_stable_page(struct page *page);
1051 void folio_wait_stable(struct folio *folio);
1052 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
__set_page_dirty(struct page * page,struct address_space * mapping,int warn)1053 static inline void __set_page_dirty(struct page *page,
1054 		struct address_space *mapping, int warn)
1055 {
1056 	__folio_mark_dirty(page_folio(page), mapping, warn);
1057 }
1058 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1059 void __folio_cancel_dirty(struct folio *folio);
folio_cancel_dirty(struct folio * folio)1060 static inline void folio_cancel_dirty(struct folio *folio)
1061 {
1062 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1063 	if (folio_test_dirty(folio))
1064 		__folio_cancel_dirty(folio);
1065 }
1066 bool folio_clear_dirty_for_io(struct folio *folio);
1067 bool clear_page_dirty_for_io(struct page *page);
1068 void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1069 int __must_check folio_write_one(struct folio *folio);
write_one_page(struct page * page)1070 static inline int __must_check write_one_page(struct page *page)
1071 {
1072 	return folio_write_one(page_folio(page));
1073 }
1074 
1075 int __set_page_dirty_nobuffers(struct page *page);
1076 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1077 
1078 #ifdef CONFIG_MIGRATION
1079 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1080 		struct folio *src, enum migrate_mode mode);
1081 #else
1082 #define filemap_migrate_folio NULL
1083 #endif
1084 void page_endio(struct page *page, bool is_write, int err);
1085 
1086 void folio_end_private_2(struct folio *folio);
1087 void folio_wait_private_2(struct folio *folio);
1088 int folio_wait_private_2_killable(struct folio *folio);
1089 
1090 /*
1091  * Add an arbitrary waiter to a page's wait queue
1092  */
1093 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
1094 
1095 /*
1096  * Fault in userspace address range.
1097  */
1098 size_t fault_in_writeable(char __user *uaddr, size_t size);
1099 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1100 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1101 size_t fault_in_readable(const char __user *uaddr, size_t size);
1102 
1103 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1104 		pgoff_t index, gfp_t gfp);
1105 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1106 		pgoff_t index, gfp_t gfp);
1107 void filemap_remove_folio(struct folio *folio);
1108 void __filemap_remove_folio(struct folio *folio, void *shadow);
1109 void replace_page_cache_folio(struct folio *old, struct folio *new);
1110 void delete_from_page_cache_batch(struct address_space *mapping,
1111 				  struct folio_batch *fbatch);
1112 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1113 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1114 		int whence);
1115 
1116 /* Must be non-static for BPF error injection */
1117 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1118 		pgoff_t index, gfp_t gfp, void **shadowp);
1119 
1120 bool filemap_range_has_writeback(struct address_space *mapping,
1121 				 loff_t start_byte, loff_t end_byte);
1122 
1123 /**
1124  * filemap_range_needs_writeback - check if range potentially needs writeback
1125  * @mapping:           address space within which to check
1126  * @start_byte:        offset in bytes where the range starts
1127  * @end_byte:          offset in bytes where the range ends (inclusive)
1128  *
1129  * Find at least one page in the range supplied, usually used to check if
1130  * direct writing in this range will trigger a writeback. Used by O_DIRECT
1131  * read/write with IOCB_NOWAIT, to see if the caller needs to do
1132  * filemap_write_and_wait_range() before proceeding.
1133  *
1134  * Return: %true if the caller should do filemap_write_and_wait_range() before
1135  * doing O_DIRECT to a page in this range, %false otherwise.
1136  */
filemap_range_needs_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)1137 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1138 						 loff_t start_byte,
1139 						 loff_t end_byte)
1140 {
1141 	if (!mapping->nrpages)
1142 		return false;
1143 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1144 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1145 		return false;
1146 	return filemap_range_has_writeback(mapping, start_byte, end_byte);
1147 }
1148 
1149 /**
1150  * struct readahead_control - Describes a readahead request.
1151  *
1152  * A readahead request is for consecutive pages.  Filesystems which
1153  * implement the ->readahead method should call readahead_page() or
1154  * readahead_page_batch() in a loop and attempt to start I/O against
1155  * each page in the request.
1156  *
1157  * Most of the fields in this struct are private and should be accessed
1158  * by the functions below.
1159  *
1160  * @file: The file, used primarily by network filesystems for authentication.
1161  *	  May be NULL if invoked internally by the filesystem.
1162  * @mapping: Readahead this filesystem object.
1163  * @ra: File readahead state.  May be NULL.
1164  */
1165 struct readahead_control {
1166 	struct file *file;
1167 	struct address_space *mapping;
1168 	struct file_ra_state *ra;
1169 /* private: use the readahead_* accessors instead */
1170 	pgoff_t _index;
1171 	unsigned int _nr_pages;
1172 	unsigned int _batch_count;
1173 	bool _workingset;
1174 	unsigned long _pflags;
1175 };
1176 
1177 #define DEFINE_READAHEAD(ractl, f, r, m, i)				\
1178 	struct readahead_control ractl = {				\
1179 		.file = f,						\
1180 		.mapping = m,						\
1181 		.ra = r,						\
1182 		._index = i,						\
1183 	}
1184 
1185 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
1186 
1187 void page_cache_ra_unbounded(struct readahead_control *,
1188 		unsigned long nr_to_read, unsigned long lookahead_count);
1189 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1190 void page_cache_async_ra(struct readahead_control *, struct folio *,
1191 		unsigned long req_count);
1192 void readahead_expand(struct readahead_control *ractl,
1193 		      loff_t new_start, size_t new_len);
1194 
1195 /**
1196  * page_cache_sync_readahead - generic file readahead
1197  * @mapping: address_space which holds the pagecache and I/O vectors
1198  * @ra: file_ra_state which holds the readahead state
1199  * @file: Used by the filesystem for authentication.
1200  * @index: Index of first page to be read.
1201  * @req_count: Total number of pages being read by the caller.
1202  *
1203  * page_cache_sync_readahead() should be called when a cache miss happened:
1204  * it will submit the read.  The readahead logic may decide to piggyback more
1205  * pages onto the read request if access patterns suggest it will improve
1206  * performance.
1207  */
1208 static inline
page_cache_sync_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t index,unsigned long req_count)1209 void page_cache_sync_readahead(struct address_space *mapping,
1210 		struct file_ra_state *ra, struct file *file, pgoff_t index,
1211 		unsigned long req_count)
1212 {
1213 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1214 	page_cache_sync_ra(&ractl, req_count);
1215 }
1216 
1217 /**
1218  * page_cache_async_readahead - file readahead for marked pages
1219  * @mapping: address_space which holds the pagecache and I/O vectors
1220  * @ra: file_ra_state which holds the readahead state
1221  * @file: Used by the filesystem for authentication.
1222  * @folio: The folio at @index which triggered the readahead call.
1223  * @index: Index of first page to be read.
1224  * @req_count: Total number of pages being read by the caller.
1225  *
1226  * page_cache_async_readahead() should be called when a page is used which
1227  * is marked as PageReadahead; this is a marker to suggest that the application
1228  * has used up enough of the readahead window that we should start pulling in
1229  * more pages.
1230  */
1231 static inline
page_cache_async_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,struct folio * folio,pgoff_t index,unsigned long req_count)1232 void page_cache_async_readahead(struct address_space *mapping,
1233 		struct file_ra_state *ra, struct file *file,
1234 		struct folio *folio, pgoff_t index, unsigned long req_count)
1235 {
1236 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1237 	page_cache_async_ra(&ractl, folio, req_count);
1238 }
1239 
__readahead_folio(struct readahead_control * ractl)1240 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1241 {
1242 	struct folio *folio;
1243 
1244 	BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1245 	ractl->_nr_pages -= ractl->_batch_count;
1246 	ractl->_index += ractl->_batch_count;
1247 
1248 	if (!ractl->_nr_pages) {
1249 		ractl->_batch_count = 0;
1250 		return NULL;
1251 	}
1252 
1253 	folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1254 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1255 	ractl->_batch_count = folio_nr_pages(folio);
1256 
1257 	return folio;
1258 }
1259 
1260 /**
1261  * readahead_page - Get the next page to read.
1262  * @ractl: The current readahead request.
1263  *
1264  * Context: The page is locked and has an elevated refcount.  The caller
1265  * should decreases the refcount once the page has been submitted for I/O
1266  * and unlock the page once all I/O to that page has completed.
1267  * Return: A pointer to the next page, or %NULL if we are done.
1268  */
readahead_page(struct readahead_control * ractl)1269 static inline struct page *readahead_page(struct readahead_control *ractl)
1270 {
1271 	struct folio *folio = __readahead_folio(ractl);
1272 
1273 	return &folio->page;
1274 }
1275 
1276 /**
1277  * readahead_folio - Get the next folio to read.
1278  * @ractl: The current readahead request.
1279  *
1280  * Context: The folio is locked.  The caller should unlock the folio once
1281  * all I/O to that folio has completed.
1282  * Return: A pointer to the next folio, or %NULL if we are done.
1283  */
readahead_folio(struct readahead_control * ractl)1284 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1285 {
1286 	struct folio *folio = __readahead_folio(ractl);
1287 
1288 	if (folio)
1289 		folio_put(folio);
1290 	return folio;
1291 }
1292 
__readahead_batch(struct readahead_control * rac,struct page ** array,unsigned int array_sz)1293 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1294 		struct page **array, unsigned int array_sz)
1295 {
1296 	unsigned int i = 0;
1297 	XA_STATE(xas, &rac->mapping->i_pages, 0);
1298 	struct page *page;
1299 
1300 	BUG_ON(rac->_batch_count > rac->_nr_pages);
1301 	rac->_nr_pages -= rac->_batch_count;
1302 	rac->_index += rac->_batch_count;
1303 	rac->_batch_count = 0;
1304 
1305 	xas_set(&xas, rac->_index);
1306 	rcu_read_lock();
1307 	xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1308 		if (xas_retry(&xas, page))
1309 			continue;
1310 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1311 		VM_BUG_ON_PAGE(PageTail(page), page);
1312 		array[i++] = page;
1313 		rac->_batch_count += thp_nr_pages(page);
1314 		if (i == array_sz)
1315 			break;
1316 	}
1317 	rcu_read_unlock();
1318 
1319 	return i;
1320 }
1321 
1322 /**
1323  * readahead_page_batch - Get a batch of pages to read.
1324  * @rac: The current readahead request.
1325  * @array: An array of pointers to struct page.
1326  *
1327  * Context: The pages are locked and have an elevated refcount.  The caller
1328  * should decreases the refcount once the page has been submitted for I/O
1329  * and unlock the page once all I/O to that page has completed.
1330  * Return: The number of pages placed in the array.  0 indicates the request
1331  * is complete.
1332  */
1333 #define readahead_page_batch(rac, array)				\
1334 	__readahead_batch(rac, array, ARRAY_SIZE(array))
1335 
1336 /**
1337  * readahead_pos - The byte offset into the file of this readahead request.
1338  * @rac: The readahead request.
1339  */
readahead_pos(struct readahead_control * rac)1340 static inline loff_t readahead_pos(struct readahead_control *rac)
1341 {
1342 	return (loff_t)rac->_index * PAGE_SIZE;
1343 }
1344 
1345 /**
1346  * readahead_length - The number of bytes in this readahead request.
1347  * @rac: The readahead request.
1348  */
readahead_length(struct readahead_control * rac)1349 static inline size_t readahead_length(struct readahead_control *rac)
1350 {
1351 	return rac->_nr_pages * PAGE_SIZE;
1352 }
1353 
1354 /**
1355  * readahead_index - The index of the first page in this readahead request.
1356  * @rac: The readahead request.
1357  */
readahead_index(struct readahead_control * rac)1358 static inline pgoff_t readahead_index(struct readahead_control *rac)
1359 {
1360 	return rac->_index;
1361 }
1362 
1363 /**
1364  * readahead_count - The number of pages in this readahead request.
1365  * @rac: The readahead request.
1366  */
readahead_count(struct readahead_control * rac)1367 static inline unsigned int readahead_count(struct readahead_control *rac)
1368 {
1369 	return rac->_nr_pages;
1370 }
1371 
1372 /**
1373  * readahead_batch_length - The number of bytes in the current batch.
1374  * @rac: The readahead request.
1375  */
readahead_batch_length(struct readahead_control * rac)1376 static inline size_t readahead_batch_length(struct readahead_control *rac)
1377 {
1378 	return rac->_batch_count * PAGE_SIZE;
1379 }
1380 
dir_pages(struct inode * inode)1381 static inline unsigned long dir_pages(struct inode *inode)
1382 {
1383 	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1384 			       PAGE_SHIFT;
1385 }
1386 
1387 /**
1388  * folio_mkwrite_check_truncate - check if folio was truncated
1389  * @folio: the folio to check
1390  * @inode: the inode to check the folio against
1391  *
1392  * Return: the number of bytes in the folio up to EOF,
1393  * or -EFAULT if the folio was truncated.
1394  */
folio_mkwrite_check_truncate(struct folio * folio,struct inode * inode)1395 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1396 					      struct inode *inode)
1397 {
1398 	loff_t size = i_size_read(inode);
1399 	pgoff_t index = size >> PAGE_SHIFT;
1400 	size_t offset = offset_in_folio(folio, size);
1401 
1402 	if (!folio->mapping)
1403 		return -EFAULT;
1404 
1405 	/* folio is wholly inside EOF */
1406 	if (folio_next_index(folio) - 1 < index)
1407 		return folio_size(folio);
1408 	/* folio is wholly past EOF */
1409 	if (folio->index > index || !offset)
1410 		return -EFAULT;
1411 	/* folio is partially inside EOF */
1412 	return offset;
1413 }
1414 
1415 /**
1416  * page_mkwrite_check_truncate - check if page was truncated
1417  * @page: the page to check
1418  * @inode: the inode to check the page against
1419  *
1420  * Returns the number of bytes in the page up to EOF,
1421  * or -EFAULT if the page was truncated.
1422  */
page_mkwrite_check_truncate(struct page * page,struct inode * inode)1423 static inline int page_mkwrite_check_truncate(struct page *page,
1424 					      struct inode *inode)
1425 {
1426 	loff_t size = i_size_read(inode);
1427 	pgoff_t index = size >> PAGE_SHIFT;
1428 	int offset = offset_in_page(size);
1429 
1430 	if (page->mapping != inode->i_mapping)
1431 		return -EFAULT;
1432 
1433 	/* page is wholly inside EOF */
1434 	if (page->index < index)
1435 		return PAGE_SIZE;
1436 	/* page is wholly past EOF */
1437 	if (page->index > index || !offset)
1438 		return -EFAULT;
1439 	/* page is partially inside EOF */
1440 	return offset;
1441 }
1442 
1443 /**
1444  * i_blocks_per_folio - How many blocks fit in this folio.
1445  * @inode: The inode which contains the blocks.
1446  * @folio: The folio.
1447  *
1448  * If the block size is larger than the size of this folio, return zero.
1449  *
1450  * Context: The caller should hold a refcount on the folio to prevent it
1451  * from being split.
1452  * Return: The number of filesystem blocks covered by this folio.
1453  */
1454 static inline
i_blocks_per_folio(struct inode * inode,struct folio * folio)1455 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1456 {
1457 	return folio_size(folio) >> inode->i_blkbits;
1458 }
1459 
1460 static inline
i_blocks_per_page(struct inode * inode,struct page * page)1461 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1462 {
1463 	return i_blocks_per_folio(inode, page_folio(page));
1464 }
1465 #endif /* _LINUX_PAGEMAP_H */
1466