1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * pSeries_lpar.c
4 * Copyright (C) 2001 Todd Inglett, IBM Corporation
5 *
6 * pSeries LPAR support.
7 */
8
9 /* Enables debugging of low-level hash table routines - careful! */
10 #undef DEBUG
11 #define pr_fmt(fmt) "lpar: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/console.h>
16 #include <linux/export.h>
17 #include <linux/jump_label.h>
18 #include <linux/delay.h>
19 #include <linux/stop_machine.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/workqueue.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pgtable.h>
25 #include <linux/debugfs.h>
26
27 #include <asm/processor.h>
28 #include <asm/mmu.h>
29 #include <asm/page.h>
30 #include <asm/setup.h>
31 #include <asm/mmu_context.h>
32 #include <asm/iommu.h>
33 #include <asm/tlb.h>
34 #include <asm/cputable.h>
35 #include <asm/papr-sysparm.h>
36 #include <asm/udbg.h>
37 #include <asm/smp.h>
38 #include <asm/trace.h>
39 #include <asm/firmware.h>
40 #include <asm/plpar_wrappers.h>
41 #include <asm/kexec.h>
42 #include <asm/fadump.h>
43 #include <asm/dtl.h>
44
45 #include "pseries.h"
46
47 /* Flag bits for H_BULK_REMOVE */
48 #define HBR_REQUEST 0x4000000000000000UL
49 #define HBR_RESPONSE 0x8000000000000000UL
50 #define HBR_END 0xc000000000000000UL
51 #define HBR_AVPN 0x0200000000000000UL
52 #define HBR_ANDCOND 0x0100000000000000UL
53
54
55 /* in hvCall.S */
56 EXPORT_SYMBOL(plpar_hcall);
57 EXPORT_SYMBOL(plpar_hcall9);
58 EXPORT_SYMBOL(plpar_hcall_norets);
59
60 #ifdef CONFIG_PPC_64S_HASH_MMU
61 /*
62 * H_BLOCK_REMOVE supported block size for this page size in segment who's base
63 * page size is that page size.
64 *
65 * The first index is the segment base page size, the second one is the actual
66 * page size.
67 */
68 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
69 #endif
70
71 /*
72 * Due to the involved complexity, and that the current hypervisor is only
73 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
74 * buffer size to 8 size block.
75 */
76 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8
77
78 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
79 static u8 dtl_mask = DTL_LOG_PREEMPT;
80 #else
81 static u8 dtl_mask;
82 #endif
83
alloc_dtl_buffers(unsigned long * time_limit)84 void alloc_dtl_buffers(unsigned long *time_limit)
85 {
86 int cpu;
87 struct paca_struct *pp;
88 struct dtl_entry *dtl;
89
90 for_each_possible_cpu(cpu) {
91 pp = paca_ptrs[cpu];
92 if (pp->dispatch_log)
93 continue;
94 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
95 if (!dtl) {
96 pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
97 cpu);
98 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
99 pr_warn("Stolen time statistics will be unreliable\n");
100 #endif
101 break;
102 }
103
104 pp->dtl_ridx = 0;
105 pp->dispatch_log = dtl;
106 pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
107 pp->dtl_curr = dtl;
108
109 if (time_limit && time_after(jiffies, *time_limit)) {
110 cond_resched();
111 *time_limit = jiffies + HZ;
112 }
113 }
114 }
115
register_dtl_buffer(int cpu)116 void register_dtl_buffer(int cpu)
117 {
118 long ret;
119 struct paca_struct *pp;
120 struct dtl_entry *dtl;
121 int hwcpu = get_hard_smp_processor_id(cpu);
122
123 pp = paca_ptrs[cpu];
124 dtl = pp->dispatch_log;
125 if (dtl && dtl_mask) {
126 pp->dtl_ridx = 0;
127 pp->dtl_curr = dtl;
128 lppaca_of(cpu).dtl_idx = 0;
129
130 /* hypervisor reads buffer length from this field */
131 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
132 ret = register_dtl(hwcpu, __pa(dtl));
133 if (ret)
134 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
135 cpu, hwcpu, ret);
136
137 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
138 }
139 }
140
141 #ifdef CONFIG_PPC_SPLPAR
142 struct dtl_worker {
143 struct delayed_work work;
144 int cpu;
145 };
146
147 struct vcpu_dispatch_data {
148 int last_disp_cpu;
149
150 int total_disp;
151
152 int same_cpu_disp;
153 int same_chip_disp;
154 int diff_chip_disp;
155 int far_chip_disp;
156
157 int numa_home_disp;
158 int numa_remote_disp;
159 int numa_far_disp;
160 };
161
162 /*
163 * This represents the number of cpus in the hypervisor. Since there is no
164 * architected way to discover the number of processors in the host, we
165 * provision for dealing with NR_CPUS. This is currently 2048 by default, and
166 * is sufficient for our purposes. This will need to be tweaked if
167 * CONFIG_NR_CPUS is changed.
168 */
169 #define NR_CPUS_H NR_CPUS
170
171 DEFINE_RWLOCK(dtl_access_lock);
172 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
173 static DEFINE_PER_CPU(u64, dtl_entry_ridx);
174 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
175 static enum cpuhp_state dtl_worker_state;
176 static DEFINE_MUTEX(dtl_enable_mutex);
177 static int vcpudispatch_stats_on __read_mostly;
178 static int vcpudispatch_stats_freq = 50;
179 static __be32 *vcpu_associativity, *pcpu_associativity;
180
181
free_dtl_buffers(unsigned long * time_limit)182 static void free_dtl_buffers(unsigned long *time_limit)
183 {
184 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
185 int cpu;
186 struct paca_struct *pp;
187
188 for_each_possible_cpu(cpu) {
189 pp = paca_ptrs[cpu];
190 if (!pp->dispatch_log)
191 continue;
192 kmem_cache_free(dtl_cache, pp->dispatch_log);
193 pp->dtl_ridx = 0;
194 pp->dispatch_log = 0;
195 pp->dispatch_log_end = 0;
196 pp->dtl_curr = 0;
197
198 if (time_limit && time_after(jiffies, *time_limit)) {
199 cond_resched();
200 *time_limit = jiffies + HZ;
201 }
202 }
203 #endif
204 }
205
init_cpu_associativity(void)206 static int init_cpu_associativity(void)
207 {
208 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
209 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
210 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
211 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
212
213 if (!vcpu_associativity || !pcpu_associativity) {
214 pr_err("error allocating memory for associativity information\n");
215 return -ENOMEM;
216 }
217
218 return 0;
219 }
220
destroy_cpu_associativity(void)221 static void destroy_cpu_associativity(void)
222 {
223 kfree(vcpu_associativity);
224 kfree(pcpu_associativity);
225 vcpu_associativity = pcpu_associativity = 0;
226 }
227
__get_cpu_associativity(int cpu,__be32 * cpu_assoc,int flag)228 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
229 {
230 __be32 *assoc;
231 int rc = 0;
232
233 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
234 if (!assoc[0]) {
235 rc = hcall_vphn(cpu, flag, &assoc[0]);
236 if (rc)
237 return NULL;
238 }
239
240 return assoc;
241 }
242
get_pcpu_associativity(int cpu)243 static __be32 *get_pcpu_associativity(int cpu)
244 {
245 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
246 }
247
get_vcpu_associativity(int cpu)248 static __be32 *get_vcpu_associativity(int cpu)
249 {
250 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
251 }
252
cpu_relative_dispatch_distance(int last_disp_cpu,int cur_disp_cpu)253 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
254 {
255 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
256
257 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
258 return -EINVAL;
259
260 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
261 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
262
263 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
264 return -EIO;
265
266 return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
267 }
268
cpu_home_node_dispatch_distance(int disp_cpu)269 static int cpu_home_node_dispatch_distance(int disp_cpu)
270 {
271 __be32 *disp_cpu_assoc, *vcpu_assoc;
272 int vcpu_id = smp_processor_id();
273
274 if (disp_cpu >= NR_CPUS_H) {
275 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
276 disp_cpu, NR_CPUS_H);
277 return -EINVAL;
278 }
279
280 disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
281 vcpu_assoc = get_vcpu_associativity(vcpu_id);
282
283 if (!disp_cpu_assoc || !vcpu_assoc)
284 return -EIO;
285
286 return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc);
287 }
288
update_vcpu_disp_stat(int disp_cpu)289 static void update_vcpu_disp_stat(int disp_cpu)
290 {
291 struct vcpu_dispatch_data *disp;
292 int distance;
293
294 disp = this_cpu_ptr(&vcpu_disp_data);
295 if (disp->last_disp_cpu == -1) {
296 disp->last_disp_cpu = disp_cpu;
297 return;
298 }
299
300 disp->total_disp++;
301
302 if (disp->last_disp_cpu == disp_cpu ||
303 (cpu_first_thread_sibling(disp->last_disp_cpu) ==
304 cpu_first_thread_sibling(disp_cpu)))
305 disp->same_cpu_disp++;
306 else {
307 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
308 disp_cpu);
309 if (distance < 0)
310 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
311 smp_processor_id());
312 else {
313 switch (distance) {
314 case 0:
315 disp->same_chip_disp++;
316 break;
317 case 1:
318 disp->diff_chip_disp++;
319 break;
320 case 2:
321 disp->far_chip_disp++;
322 break;
323 default:
324 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
325 smp_processor_id(),
326 disp->last_disp_cpu,
327 disp_cpu,
328 distance);
329 }
330 }
331 }
332
333 distance = cpu_home_node_dispatch_distance(disp_cpu);
334 if (distance < 0)
335 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
336 smp_processor_id());
337 else {
338 switch (distance) {
339 case 0:
340 disp->numa_home_disp++;
341 break;
342 case 1:
343 disp->numa_remote_disp++;
344 break;
345 case 2:
346 disp->numa_far_disp++;
347 break;
348 default:
349 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
350 smp_processor_id(),
351 disp_cpu,
352 distance);
353 }
354 }
355
356 disp->last_disp_cpu = disp_cpu;
357 }
358
process_dtl_buffer(struct work_struct * work)359 static void process_dtl_buffer(struct work_struct *work)
360 {
361 struct dtl_entry dtle;
362 u64 i = __this_cpu_read(dtl_entry_ridx);
363 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
364 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
365 struct lppaca *vpa = local_paca->lppaca_ptr;
366 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
367
368 if (!local_paca->dispatch_log)
369 return;
370
371 /* if we have been migrated away, we cancel ourself */
372 if (d->cpu != smp_processor_id()) {
373 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
374 smp_processor_id());
375 return;
376 }
377
378 if (i == be64_to_cpu(vpa->dtl_idx))
379 goto out;
380
381 while (i < be64_to_cpu(vpa->dtl_idx)) {
382 dtle = *dtl;
383 barrier();
384 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
385 /* buffer has overflowed */
386 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
387 d->cpu,
388 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
389 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
390 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
391 continue;
392 }
393 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
394 ++i;
395 ++dtl;
396 if (dtl == dtl_end)
397 dtl = local_paca->dispatch_log;
398 }
399
400 __this_cpu_write(dtl_entry_ridx, i);
401
402 out:
403 schedule_delayed_work_on(d->cpu, to_delayed_work(work),
404 HZ / vcpudispatch_stats_freq);
405 }
406
dtl_worker_online(unsigned int cpu)407 static int dtl_worker_online(unsigned int cpu)
408 {
409 struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
410
411 memset(d, 0, sizeof(*d));
412 INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
413 d->cpu = cpu;
414
415 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
416 per_cpu(dtl_entry_ridx, cpu) = 0;
417 register_dtl_buffer(cpu);
418 #else
419 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
420 #endif
421
422 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
423 return 0;
424 }
425
dtl_worker_offline(unsigned int cpu)426 static int dtl_worker_offline(unsigned int cpu)
427 {
428 struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
429
430 cancel_delayed_work_sync(&d->work);
431
432 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
433 unregister_dtl(get_hard_smp_processor_id(cpu));
434 #endif
435
436 return 0;
437 }
438
set_global_dtl_mask(u8 mask)439 static void set_global_dtl_mask(u8 mask)
440 {
441 int cpu;
442
443 dtl_mask = mask;
444 for_each_present_cpu(cpu)
445 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
446 }
447
reset_global_dtl_mask(void)448 static void reset_global_dtl_mask(void)
449 {
450 int cpu;
451
452 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
453 dtl_mask = DTL_LOG_PREEMPT;
454 #else
455 dtl_mask = 0;
456 #endif
457 for_each_present_cpu(cpu)
458 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
459 }
460
dtl_worker_enable(unsigned long * time_limit)461 static int dtl_worker_enable(unsigned long *time_limit)
462 {
463 int rc = 0, state;
464
465 if (!write_trylock(&dtl_access_lock)) {
466 rc = -EBUSY;
467 goto out;
468 }
469
470 set_global_dtl_mask(DTL_LOG_ALL);
471
472 /* Setup dtl buffers and register those */
473 alloc_dtl_buffers(time_limit);
474
475 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
476 dtl_worker_online, dtl_worker_offline);
477 if (state < 0) {
478 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
479 free_dtl_buffers(time_limit);
480 reset_global_dtl_mask();
481 write_unlock(&dtl_access_lock);
482 rc = -EINVAL;
483 goto out;
484 }
485 dtl_worker_state = state;
486
487 out:
488 return rc;
489 }
490
dtl_worker_disable(unsigned long * time_limit)491 static void dtl_worker_disable(unsigned long *time_limit)
492 {
493 cpuhp_remove_state(dtl_worker_state);
494 free_dtl_buffers(time_limit);
495 reset_global_dtl_mask();
496 write_unlock(&dtl_access_lock);
497 }
498
vcpudispatch_stats_write(struct file * file,const char __user * p,size_t count,loff_t * ppos)499 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
500 size_t count, loff_t *ppos)
501 {
502 unsigned long time_limit = jiffies + HZ;
503 struct vcpu_dispatch_data *disp;
504 int rc, cmd, cpu;
505 char buf[16];
506
507 if (count > 15)
508 return -EINVAL;
509
510 if (copy_from_user(buf, p, count))
511 return -EFAULT;
512
513 buf[count] = 0;
514 rc = kstrtoint(buf, 0, &cmd);
515 if (rc || cmd < 0 || cmd > 1) {
516 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
517 return rc ? rc : -EINVAL;
518 }
519
520 mutex_lock(&dtl_enable_mutex);
521
522 if ((cmd == 0 && !vcpudispatch_stats_on) ||
523 (cmd == 1 && vcpudispatch_stats_on))
524 goto out;
525
526 if (cmd) {
527 rc = init_cpu_associativity();
528 if (rc)
529 goto out;
530
531 for_each_possible_cpu(cpu) {
532 disp = per_cpu_ptr(&vcpu_disp_data, cpu);
533 memset(disp, 0, sizeof(*disp));
534 disp->last_disp_cpu = -1;
535 }
536
537 rc = dtl_worker_enable(&time_limit);
538 if (rc) {
539 destroy_cpu_associativity();
540 goto out;
541 }
542 } else {
543 dtl_worker_disable(&time_limit);
544 destroy_cpu_associativity();
545 }
546
547 vcpudispatch_stats_on = cmd;
548
549 out:
550 mutex_unlock(&dtl_enable_mutex);
551 if (rc)
552 return rc;
553 return count;
554 }
555
vcpudispatch_stats_display(struct seq_file * p,void * v)556 static int vcpudispatch_stats_display(struct seq_file *p, void *v)
557 {
558 int cpu;
559 struct vcpu_dispatch_data *disp;
560
561 if (!vcpudispatch_stats_on) {
562 seq_puts(p, "off\n");
563 return 0;
564 }
565
566 for_each_online_cpu(cpu) {
567 disp = per_cpu_ptr(&vcpu_disp_data, cpu);
568 seq_printf(p, "cpu%d", cpu);
569 seq_put_decimal_ull(p, " ", disp->total_disp);
570 seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
571 seq_put_decimal_ull(p, " ", disp->same_chip_disp);
572 seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
573 seq_put_decimal_ull(p, " ", disp->far_chip_disp);
574 seq_put_decimal_ull(p, " ", disp->numa_home_disp);
575 seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
576 seq_put_decimal_ull(p, " ", disp->numa_far_disp);
577 seq_puts(p, "\n");
578 }
579
580 return 0;
581 }
582
vcpudispatch_stats_open(struct inode * inode,struct file * file)583 static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
584 {
585 return single_open(file, vcpudispatch_stats_display, NULL);
586 }
587
588 static const struct proc_ops vcpudispatch_stats_proc_ops = {
589 .proc_open = vcpudispatch_stats_open,
590 .proc_read = seq_read,
591 .proc_write = vcpudispatch_stats_write,
592 .proc_lseek = seq_lseek,
593 .proc_release = single_release,
594 };
595
vcpudispatch_stats_freq_write(struct file * file,const char __user * p,size_t count,loff_t * ppos)596 static ssize_t vcpudispatch_stats_freq_write(struct file *file,
597 const char __user *p, size_t count, loff_t *ppos)
598 {
599 int rc, freq;
600 char buf[16];
601
602 if (count > 15)
603 return -EINVAL;
604
605 if (copy_from_user(buf, p, count))
606 return -EFAULT;
607
608 buf[count] = 0;
609 rc = kstrtoint(buf, 0, &freq);
610 if (rc || freq < 1 || freq > HZ) {
611 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
612 HZ);
613 return rc ? rc : -EINVAL;
614 }
615
616 vcpudispatch_stats_freq = freq;
617
618 return count;
619 }
620
vcpudispatch_stats_freq_display(struct seq_file * p,void * v)621 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
622 {
623 seq_printf(p, "%d\n", vcpudispatch_stats_freq);
624 return 0;
625 }
626
vcpudispatch_stats_freq_open(struct inode * inode,struct file * file)627 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
628 {
629 return single_open(file, vcpudispatch_stats_freq_display, NULL);
630 }
631
632 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = {
633 .proc_open = vcpudispatch_stats_freq_open,
634 .proc_read = seq_read,
635 .proc_write = vcpudispatch_stats_freq_write,
636 .proc_lseek = seq_lseek,
637 .proc_release = single_release,
638 };
639
vcpudispatch_stats_procfs_init(void)640 static int __init vcpudispatch_stats_procfs_init(void)
641 {
642 /*
643 * Avoid smp_processor_id while preemptible. All CPUs should have
644 * the same value for lppaca_shared_proc.
645 */
646 preempt_disable();
647 if (!lppaca_shared_proc(get_lppaca())) {
648 preempt_enable();
649 return 0;
650 }
651 preempt_enable();
652
653 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
654 &vcpudispatch_stats_proc_ops))
655 pr_err("vcpudispatch_stats: error creating procfs file\n");
656 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
657 &vcpudispatch_stats_freq_proc_ops))
658 pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
659
660 return 0;
661 }
662
663 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
664
665 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
pseries_paravirt_steal_clock(int cpu)666 u64 pseries_paravirt_steal_clock(int cpu)
667 {
668 struct lppaca *lppaca = &lppaca_of(cpu);
669
670 return be64_to_cpu(READ_ONCE(lppaca->enqueue_dispatch_tb)) +
671 be64_to_cpu(READ_ONCE(lppaca->ready_enqueue_tb));
672 }
673 #endif
674
675 #endif /* CONFIG_PPC_SPLPAR */
676
vpa_init(int cpu)677 void vpa_init(int cpu)
678 {
679 int hwcpu = get_hard_smp_processor_id(cpu);
680 unsigned long addr;
681 long ret;
682
683 /*
684 * The spec says it "may be problematic" if CPU x registers the VPA of
685 * CPU y. We should never do that, but wail if we ever do.
686 */
687 WARN_ON(cpu != smp_processor_id());
688
689 if (cpu_has_feature(CPU_FTR_ALTIVEC))
690 lppaca_of(cpu).vmxregs_in_use = 1;
691
692 if (cpu_has_feature(CPU_FTR_ARCH_207S))
693 lppaca_of(cpu).ebb_regs_in_use = 1;
694
695 addr = __pa(&lppaca_of(cpu));
696 ret = register_vpa(hwcpu, addr);
697
698 if (ret) {
699 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
700 "%lx failed with %ld\n", cpu, hwcpu, addr, ret);
701 return;
702 }
703
704 #ifdef CONFIG_PPC_64S_HASH_MMU
705 /*
706 * PAPR says this feature is SLB-Buffer but firmware never
707 * reports that. All SPLPAR support SLB shadow buffer.
708 */
709 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
710 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
711 ret = register_slb_shadow(hwcpu, addr);
712 if (ret)
713 pr_err("WARNING: SLB shadow buffer registration for "
714 "cpu %d (hw %d) of area %lx failed with %ld\n",
715 cpu, hwcpu, addr, ret);
716 }
717 #endif /* CONFIG_PPC_64S_HASH_MMU */
718
719 /*
720 * Register dispatch trace log, if one has been allocated.
721 */
722 register_dtl_buffer(cpu);
723 }
724
725 #ifdef CONFIG_PPC_BOOK3S_64
726
pseries_lpar_register_process_table(unsigned long base,unsigned long page_size,unsigned long table_size)727 static int __init pseries_lpar_register_process_table(unsigned long base,
728 unsigned long page_size, unsigned long table_size)
729 {
730 long rc;
731 unsigned long flags = 0;
732
733 if (table_size)
734 flags |= PROC_TABLE_NEW;
735 if (radix_enabled()) {
736 flags |= PROC_TABLE_RADIX;
737 if (mmu_has_feature(MMU_FTR_GTSE))
738 flags |= PROC_TABLE_GTSE;
739 } else
740 flags |= PROC_TABLE_HPT_SLB;
741 for (;;) {
742 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
743 page_size, table_size);
744 if (!H_IS_LONG_BUSY(rc))
745 break;
746 mdelay(get_longbusy_msecs(rc));
747 }
748 if (rc != H_SUCCESS) {
749 pr_err("Failed to register process table (rc=%ld)\n", rc);
750 BUG();
751 }
752 return rc;
753 }
754
755 #ifdef CONFIG_PPC_64S_HASH_MMU
756
pSeries_lpar_hpte_insert(unsigned long hpte_group,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int apsize,int ssize)757 static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
758 unsigned long vpn, unsigned long pa,
759 unsigned long rflags, unsigned long vflags,
760 int psize, int apsize, int ssize)
761 {
762 unsigned long lpar_rc;
763 unsigned long flags;
764 unsigned long slot;
765 unsigned long hpte_v, hpte_r;
766
767 if (!(vflags & HPTE_V_BOLTED))
768 pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
769 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
770 hpte_group, vpn, pa, rflags, vflags, psize);
771
772 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
773 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
774
775 if (!(vflags & HPTE_V_BOLTED))
776 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
777
778 /* Now fill in the actual HPTE */
779 /* Set CEC cookie to 0 */
780 /* Zero page = 0 */
781 /* I-cache Invalidate = 0 */
782 /* I-cache synchronize = 0 */
783 /* Exact = 0 */
784 flags = 0;
785
786 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
787 flags |= H_COALESCE_CAND;
788
789 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
790 if (unlikely(lpar_rc == H_PTEG_FULL)) {
791 pr_devel("Hash table group is full\n");
792 return -1;
793 }
794
795 /*
796 * Since we try and ioremap PHBs we don't own, the pte insert
797 * will fail. However we must catch the failure in hash_page
798 * or we will loop forever, so return -2 in this case.
799 */
800 if (unlikely(lpar_rc != H_SUCCESS)) {
801 pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
802 return -2;
803 }
804 if (!(vflags & HPTE_V_BOLTED))
805 pr_devel(" -> slot: %lu\n", slot & 7);
806
807 /* Because of iSeries, we have to pass down the secondary
808 * bucket bit here as well
809 */
810 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
811 }
812
813 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
814
pSeries_lpar_hpte_remove(unsigned long hpte_group)815 static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
816 {
817 unsigned long slot_offset;
818 unsigned long lpar_rc;
819 int i;
820 unsigned long dummy1, dummy2;
821
822 /* pick a random slot to start at */
823 slot_offset = mftb() & 0x7;
824
825 for (i = 0; i < HPTES_PER_GROUP; i++) {
826
827 /* don't remove a bolted entry */
828 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
829 HPTE_V_BOLTED, &dummy1, &dummy2);
830 if (lpar_rc == H_SUCCESS)
831 return i;
832
833 /*
834 * The test for adjunct partition is performed before the
835 * ANDCOND test. H_RESOURCE may be returned, so we need to
836 * check for that as well.
837 */
838 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
839
840 slot_offset++;
841 slot_offset &= 0x7;
842 }
843
844 return -1;
845 }
846
847 /* Called during kexec sequence with MMU off */
manual_hpte_clear_all(void)848 static notrace void manual_hpte_clear_all(void)
849 {
850 unsigned long size_bytes = 1UL << ppc64_pft_size;
851 unsigned long hpte_count = size_bytes >> 4;
852 struct {
853 unsigned long pteh;
854 unsigned long ptel;
855 } ptes[4];
856 long lpar_rc;
857 unsigned long i, j;
858
859 /* Read in batches of 4,
860 * invalidate only valid entries not in the VRMA
861 * hpte_count will be a multiple of 4
862 */
863 for (i = 0; i < hpte_count; i += 4) {
864 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
865 if (lpar_rc != H_SUCCESS) {
866 pr_info("Failed to read hash page table at %ld err %ld\n",
867 i, lpar_rc);
868 continue;
869 }
870 for (j = 0; j < 4; j++){
871 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
872 HPTE_V_VRMA_MASK)
873 continue;
874 if (ptes[j].pteh & HPTE_V_VALID)
875 plpar_pte_remove_raw(0, i + j, 0,
876 &(ptes[j].pteh), &(ptes[j].ptel));
877 }
878 }
879 }
880
881 /* Called during kexec sequence with MMU off */
hcall_hpte_clear_all(void)882 static notrace int hcall_hpte_clear_all(void)
883 {
884 int rc;
885
886 do {
887 rc = plpar_hcall_norets(H_CLEAR_HPT);
888 } while (rc == H_CONTINUE);
889
890 return rc;
891 }
892
893 /* Called during kexec sequence with MMU off */
pseries_hpte_clear_all(void)894 static notrace void pseries_hpte_clear_all(void)
895 {
896 int rc;
897
898 rc = hcall_hpte_clear_all();
899 if (rc != H_SUCCESS)
900 manual_hpte_clear_all();
901
902 #ifdef __LITTLE_ENDIAN__
903 /*
904 * Reset exceptions to big endian.
905 *
906 * FIXME this is a hack for kexec, we need to reset the exception
907 * endian before starting the new kernel and this is a convenient place
908 * to do it.
909 *
910 * This is also called on boot when a fadump happens. In that case we
911 * must not change the exception endian mode.
912 */
913 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
914 pseries_big_endian_exceptions();
915 #endif
916 }
917
918 /*
919 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
920 * the low 3 bits of flags happen to line up. So no transform is needed.
921 * We can probably optimize here and assume the high bits of newpp are
922 * already zero. For now I am paranoid.
923 */
pSeries_lpar_hpte_updatepp(unsigned long slot,unsigned long newpp,unsigned long vpn,int psize,int apsize,int ssize,unsigned long inv_flags)924 static long pSeries_lpar_hpte_updatepp(unsigned long slot,
925 unsigned long newpp,
926 unsigned long vpn,
927 int psize, int apsize,
928 int ssize, unsigned long inv_flags)
929 {
930 unsigned long lpar_rc;
931 unsigned long flags;
932 unsigned long want_v;
933
934 want_v = hpte_encode_avpn(vpn, psize, ssize);
935
936 flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN;
937 flags |= (newpp & HPTE_R_KEY_HI) >> 48;
938 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
939 /* Move pp0 into bit 8 (IBM 55) */
940 flags |= (newpp & HPTE_R_PP0) >> 55;
941
942 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
943 want_v, slot, flags, psize);
944
945 lpar_rc = plpar_pte_protect(flags, slot, want_v);
946
947 if (lpar_rc == H_NOT_FOUND) {
948 pr_devel("not found !\n");
949 return -1;
950 }
951
952 pr_devel("ok\n");
953
954 BUG_ON(lpar_rc != H_SUCCESS);
955
956 return 0;
957 }
958
__pSeries_lpar_hpte_find(unsigned long want_v,unsigned long hpte_group)959 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
960 {
961 long lpar_rc;
962 unsigned long i, j;
963 struct {
964 unsigned long pteh;
965 unsigned long ptel;
966 } ptes[4];
967
968 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
969
970 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
971 if (lpar_rc != H_SUCCESS) {
972 pr_info("Failed to read hash page table at %ld err %ld\n",
973 hpte_group, lpar_rc);
974 continue;
975 }
976
977 for (j = 0; j < 4; j++) {
978 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
979 (ptes[j].pteh & HPTE_V_VALID))
980 return i + j;
981 }
982 }
983
984 return -1;
985 }
986
pSeries_lpar_hpte_find(unsigned long vpn,int psize,int ssize)987 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
988 {
989 long slot;
990 unsigned long hash;
991 unsigned long want_v;
992 unsigned long hpte_group;
993
994 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
995 want_v = hpte_encode_avpn(vpn, psize, ssize);
996
997 /*
998 * We try to keep bolted entries always in primary hash
999 * But in some case we can find them in secondary too.
1000 */
1001 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1002 slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
1003 if (slot < 0) {
1004 /* Try in secondary */
1005 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1006 slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
1007 if (slot < 0)
1008 return -1;
1009 }
1010 return hpte_group + slot;
1011 }
1012
pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,unsigned long ea,int psize,int ssize)1013 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
1014 unsigned long ea,
1015 int psize, int ssize)
1016 {
1017 unsigned long vpn;
1018 unsigned long lpar_rc, slot, vsid, flags;
1019
1020 vsid = get_kernel_vsid(ea, ssize);
1021 vpn = hpt_vpn(ea, vsid, ssize);
1022
1023 slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1024 BUG_ON(slot == -1);
1025
1026 flags = newpp & (HPTE_R_PP | HPTE_R_N);
1027 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
1028 /* Move pp0 into bit 8 (IBM 55) */
1029 flags |= (newpp & HPTE_R_PP0) >> 55;
1030
1031 flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO);
1032
1033 lpar_rc = plpar_pte_protect(flags, slot, 0);
1034
1035 BUG_ON(lpar_rc != H_SUCCESS);
1036 }
1037
pSeries_lpar_hpte_invalidate(unsigned long slot,unsigned long vpn,int psize,int apsize,int ssize,int local)1038 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
1039 int psize, int apsize,
1040 int ssize, int local)
1041 {
1042 unsigned long want_v;
1043 unsigned long lpar_rc;
1044 unsigned long dummy1, dummy2;
1045
1046 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
1047 slot, vpn, psize, local);
1048
1049 want_v = hpte_encode_avpn(vpn, psize, ssize);
1050 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
1051 if (lpar_rc == H_NOT_FOUND)
1052 return;
1053
1054 BUG_ON(lpar_rc != H_SUCCESS);
1055 }
1056
1057
1058 /*
1059 * As defined in the PAPR's section 14.5.4.1.8
1060 * The control mask doesn't include the returned reference and change bit from
1061 * the processed PTE.
1062 */
1063 #define HBLKR_AVPN 0x0100000000000000UL
1064 #define HBLKR_CTRL_MASK 0xf800000000000000UL
1065 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL
1066 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL
1067 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL
1068
1069 /*
1070 * Returned true if we are supporting this block size for the specified segment
1071 * base page size and actual page size.
1072 *
1073 * Currently, we only support 8 size block.
1074 */
is_supported_hlbkrm(int bpsize,int psize)1075 static inline bool is_supported_hlbkrm(int bpsize, int psize)
1076 {
1077 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
1078 }
1079
1080 /**
1081 * H_BLOCK_REMOVE caller.
1082 * @idx should point to the latest @param entry set with a PTEX.
1083 * If PTE cannot be processed because another CPUs has already locked that
1084 * group, those entries are put back in @param starting at index 1.
1085 * If entries has to be retried and @retry_busy is set to true, these entries
1086 * are retried until success. If @retry_busy is set to false, the returned
1087 * is the number of entries yet to process.
1088 */
call_block_remove(unsigned long idx,unsigned long * param,bool retry_busy)1089 static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
1090 bool retry_busy)
1091 {
1092 unsigned long i, rc, new_idx;
1093 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1094
1095 if (idx < 2) {
1096 pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1097 return 0;
1098 }
1099 again:
1100 new_idx = 0;
1101 if (idx > PLPAR_HCALL9_BUFSIZE) {
1102 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1103 idx = PLPAR_HCALL9_BUFSIZE;
1104 } else if (idx < PLPAR_HCALL9_BUFSIZE)
1105 param[idx] = HBR_END;
1106
1107 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1108 param[0], /* AVA */
1109 param[1], param[2], param[3], param[4], /* TS0-7 */
1110 param[5], param[6], param[7], param[8]);
1111 if (rc == H_SUCCESS)
1112 return 0;
1113
1114 BUG_ON(rc != H_PARTIAL);
1115
1116 /* Check that the unprocessed entries were 'not found' or 'busy' */
1117 for (i = 0; i < idx-1; i++) {
1118 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1119
1120 if (ctrl == HBLKR_CTRL_ERRBUSY) {
1121 param[++new_idx] = param[i+1];
1122 continue;
1123 }
1124
1125 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1126 && ctrl != HBLKR_CTRL_ERRNOTFOUND);
1127 }
1128
1129 /*
1130 * If there were entries found busy, retry these entries if requested,
1131 * of if all the entries have to be retried.
1132 */
1133 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1134 idx = new_idx + 1;
1135 goto again;
1136 }
1137
1138 return new_idx;
1139 }
1140
1141 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1142 /*
1143 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1144 * to make sure that we avoid bouncing the hypervisor tlbie lock.
1145 */
1146 #define PPC64_HUGE_HPTE_BATCH 12
1147
hugepage_block_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1148 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1149 int count, int psize, int ssize)
1150 {
1151 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1152 unsigned long shift, current_vpgb, vpgb;
1153 int i, pix = 0;
1154
1155 shift = mmu_psize_defs[psize].shift;
1156
1157 for (i = 0; i < count; i++) {
1158 /*
1159 * Shifting 3 bits more on the right to get a
1160 * 8 pages aligned virtual addresse.
1161 */
1162 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1163 if (!pix || vpgb != current_vpgb) {
1164 /*
1165 * Need to start a new 8 pages block, flush
1166 * the current one if needed.
1167 */
1168 if (pix)
1169 (void)call_block_remove(pix, param, true);
1170 current_vpgb = vpgb;
1171 param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1172 pix = 1;
1173 }
1174
1175 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1176 if (pix == PLPAR_HCALL9_BUFSIZE) {
1177 pix = call_block_remove(pix, param, false);
1178 /*
1179 * pix = 0 means that all the entries were
1180 * removed, we can start a new block.
1181 * Otherwise, this means that there are entries
1182 * to retry, and pix points to latest one, so
1183 * we should increment it and try to continue
1184 * the same block.
1185 */
1186 if (pix)
1187 pix++;
1188 }
1189 }
1190 if (pix)
1191 (void)call_block_remove(pix, param, true);
1192 }
1193
hugepage_bulk_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1194 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1195 int count, int psize, int ssize)
1196 {
1197 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1198 int i = 0, pix = 0, rc;
1199
1200 for (i = 0; i < count; i++) {
1201
1202 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1203 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1204 ssize, 0);
1205 } else {
1206 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1207 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1208 pix += 2;
1209 if (pix == 8) {
1210 rc = plpar_hcall9(H_BULK_REMOVE, param,
1211 param[0], param[1], param[2],
1212 param[3], param[4], param[5],
1213 param[6], param[7]);
1214 BUG_ON(rc != H_SUCCESS);
1215 pix = 0;
1216 }
1217 }
1218 }
1219 if (pix) {
1220 param[pix] = HBR_END;
1221 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1222 param[2], param[3], param[4], param[5],
1223 param[6], param[7]);
1224 BUG_ON(rc != H_SUCCESS);
1225 }
1226 }
1227
__pSeries_lpar_hugepage_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1228 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1229 unsigned long *vpn,
1230 int count, int psize,
1231 int ssize)
1232 {
1233 unsigned long flags = 0;
1234 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1235
1236 if (lock_tlbie)
1237 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1238
1239 /* Assuming THP size is 16M */
1240 if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
1241 hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1242 else
1243 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1244
1245 if (lock_tlbie)
1246 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1247 }
1248
pSeries_lpar_hugepage_invalidate(unsigned long vsid,unsigned long addr,unsigned char * hpte_slot_array,int psize,int ssize,int local)1249 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1250 unsigned long addr,
1251 unsigned char *hpte_slot_array,
1252 int psize, int ssize, int local)
1253 {
1254 int i, index = 0;
1255 unsigned long s_addr = addr;
1256 unsigned int max_hpte_count, valid;
1257 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1258 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1259 unsigned long shift, hidx, vpn = 0, hash, slot;
1260
1261 shift = mmu_psize_defs[psize].shift;
1262 max_hpte_count = 1U << (PMD_SHIFT - shift);
1263
1264 for (i = 0; i < max_hpte_count; i++) {
1265 valid = hpte_valid(hpte_slot_array, i);
1266 if (!valid)
1267 continue;
1268 hidx = hpte_hash_index(hpte_slot_array, i);
1269
1270 /* get the vpn */
1271 addr = s_addr + (i * (1ul << shift));
1272 vpn = hpt_vpn(addr, vsid, ssize);
1273 hash = hpt_hash(vpn, shift, ssize);
1274 if (hidx & _PTEIDX_SECONDARY)
1275 hash = ~hash;
1276
1277 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1278 slot += hidx & _PTEIDX_GROUP_IX;
1279
1280 slot_array[index] = slot;
1281 vpn_array[index] = vpn;
1282 if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1283 /*
1284 * Now do a bluk invalidate
1285 */
1286 __pSeries_lpar_hugepage_invalidate(slot_array,
1287 vpn_array,
1288 PPC64_HUGE_HPTE_BATCH,
1289 psize, ssize);
1290 index = 0;
1291 } else
1292 index++;
1293 }
1294 if (index)
1295 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1296 index, psize, ssize);
1297 }
1298 #else
pSeries_lpar_hugepage_invalidate(unsigned long vsid,unsigned long addr,unsigned char * hpte_slot_array,int psize,int ssize,int local)1299 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1300 unsigned long addr,
1301 unsigned char *hpte_slot_array,
1302 int psize, int ssize, int local)
1303 {
1304 WARN(1, "%s called without THP support\n", __func__);
1305 }
1306 #endif
1307
pSeries_lpar_hpte_removebolted(unsigned long ea,int psize,int ssize)1308 static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1309 int psize, int ssize)
1310 {
1311 unsigned long vpn;
1312 unsigned long slot, vsid;
1313
1314 vsid = get_kernel_vsid(ea, ssize);
1315 vpn = hpt_vpn(ea, vsid, ssize);
1316
1317 slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1318 if (slot == -1)
1319 return -ENOENT;
1320
1321 /*
1322 * lpar doesn't use the passed actual page size
1323 */
1324 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1325 return 0;
1326 }
1327
1328
compute_slot(real_pte_t pte,unsigned long vpn,unsigned long index,unsigned long shift,int ssize)1329 static inline unsigned long compute_slot(real_pte_t pte,
1330 unsigned long vpn,
1331 unsigned long index,
1332 unsigned long shift,
1333 int ssize)
1334 {
1335 unsigned long slot, hash, hidx;
1336
1337 hash = hpt_hash(vpn, shift, ssize);
1338 hidx = __rpte_to_hidx(pte, index);
1339 if (hidx & _PTEIDX_SECONDARY)
1340 hash = ~hash;
1341 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1342 slot += hidx & _PTEIDX_GROUP_IX;
1343 return slot;
1344 }
1345
1346 /**
1347 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1348 * "all within the same naturally aligned 8 page virtual address block".
1349 */
do_block_remove(unsigned long number,struct ppc64_tlb_batch * batch,unsigned long * param)1350 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1351 unsigned long *param)
1352 {
1353 unsigned long vpn;
1354 unsigned long i, pix = 0;
1355 unsigned long index, shift, slot, current_vpgb, vpgb;
1356 real_pte_t pte;
1357 int psize, ssize;
1358
1359 psize = batch->psize;
1360 ssize = batch->ssize;
1361
1362 for (i = 0; i < number; i++) {
1363 vpn = batch->vpn[i];
1364 pte = batch->pte[i];
1365 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1366 /*
1367 * Shifting 3 bits more on the right to get a
1368 * 8 pages aligned virtual addresse.
1369 */
1370 vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1371 if (!pix || vpgb != current_vpgb) {
1372 /*
1373 * Need to start a new 8 pages block, flush
1374 * the current one if needed.
1375 */
1376 if (pix)
1377 (void)call_block_remove(pix, param,
1378 true);
1379 current_vpgb = vpgb;
1380 param[0] = hpte_encode_avpn(vpn, psize,
1381 ssize);
1382 pix = 1;
1383 }
1384
1385 slot = compute_slot(pte, vpn, index, shift, ssize);
1386 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1387
1388 if (pix == PLPAR_HCALL9_BUFSIZE) {
1389 pix = call_block_remove(pix, param, false);
1390 /*
1391 * pix = 0 means that all the entries were
1392 * removed, we can start a new block.
1393 * Otherwise, this means that there are entries
1394 * to retry, and pix points to latest one, so
1395 * we should increment it and try to continue
1396 * the same block.
1397 */
1398 if (pix)
1399 pix++;
1400 }
1401 } pte_iterate_hashed_end();
1402 }
1403
1404 if (pix)
1405 (void)call_block_remove(pix, param, true);
1406 }
1407
1408 /*
1409 * TLB Block Invalidate Characteristics
1410 *
1411 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE
1412 * is able to process for each couple segment base page size, actual page size.
1413 *
1414 * The ibm,get-system-parameter properties is returning a buffer with the
1415 * following layout:
1416 *
1417 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
1418 * -----------------
1419 * TLB Block Invalidate Specifiers:
1420 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
1421 * [ 1 byte Number of page sizes (N) that are supported for the specified
1422 * TLB invalidate block size ]
1423 * [ 1 byte Encoded segment base page size and actual page size
1424 * MSB=0 means 4k segment base page size and actual page size
1425 * MSB=1 the penc value in mmu_psize_def ]
1426 * ...
1427 * -----------------
1428 * Next TLB Block Invalidate Specifiers...
1429 * -----------------
1430 * [ 0 ]
1431 */
set_hblkrm_bloc_size(int bpsize,int psize,unsigned int block_size)1432 static inline void set_hblkrm_bloc_size(int bpsize, int psize,
1433 unsigned int block_size)
1434 {
1435 if (block_size > hblkrm_size[bpsize][psize])
1436 hblkrm_size[bpsize][psize] = block_size;
1437 }
1438
1439 /*
1440 * Decode the Encoded segment base page size and actual page size.
1441 * PAPR specifies:
1442 * - bit 7 is the L bit
1443 * - bits 0-5 are the penc value
1444 * If the L bit is 0, this means 4K segment base page size and actual page size
1445 * otherwise the penc value should be read.
1446 */
1447 #define HBLKRM_L_MASK 0x80
1448 #define HBLKRM_PENC_MASK 0x3f
check_lp_set_hblkrm(unsigned int lp,unsigned int block_size)1449 static inline void __init check_lp_set_hblkrm(unsigned int lp,
1450 unsigned int block_size)
1451 {
1452 unsigned int bpsize, psize;
1453
1454 /* First, check the L bit, if not set, this means 4K */
1455 if ((lp & HBLKRM_L_MASK) == 0) {
1456 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
1457 return;
1458 }
1459
1460 lp &= HBLKRM_PENC_MASK;
1461 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
1462 struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
1463
1464 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1465 if (def->penc[psize] == lp) {
1466 set_hblkrm_bloc_size(bpsize, psize, block_size);
1467 return;
1468 }
1469 }
1470 }
1471 }
1472
1473 /*
1474 * The size of the TLB Block Invalidate Characteristics is variable. But at the
1475 * maximum it will be the number of possible page sizes *2 + 10 bytes.
1476 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
1477 * (128 bytes) for the buffer to get plenty of space.
1478 */
1479 #define SPLPAR_TLB_BIC_MAXLENGTH 128
1480
pseries_lpar_read_hblkrm_characteristics(void)1481 void __init pseries_lpar_read_hblkrm_characteristics(void)
1482 {
1483 static struct papr_sysparm_buf buf __initdata;
1484 int len, idx, bpsize;
1485
1486 if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
1487 return;
1488
1489 if (papr_sysparm_get(PAPR_SYSPARM_TLB_BLOCK_INVALIDATE_ATTRS, &buf))
1490 return;
1491
1492 len = be16_to_cpu(buf.len);
1493 if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
1494 pr_warn("%s too large returned buffer %d", __func__, len);
1495 return;
1496 }
1497
1498 idx = 0;
1499 while (idx < len) {
1500 u8 block_shift = buf.val[idx++];
1501 u32 block_size;
1502 unsigned int npsize;
1503
1504 if (!block_shift)
1505 break;
1506
1507 block_size = 1 << block_shift;
1508
1509 for (npsize = buf.val[idx++];
1510 npsize > 0 && idx < len; npsize--)
1511 check_lp_set_hblkrm((unsigned int)buf.val[idx++],
1512 block_size);
1513 }
1514
1515 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
1516 for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
1517 if (hblkrm_size[bpsize][idx])
1518 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
1519 bpsize, idx, hblkrm_size[bpsize][idx]);
1520 }
1521
1522 /*
1523 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1524 * lock.
1525 */
pSeries_lpar_flush_hash_range(unsigned long number,int local)1526 static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1527 {
1528 unsigned long vpn;
1529 unsigned long i, pix, rc;
1530 unsigned long flags = 0;
1531 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1532 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1533 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1534 unsigned long index, shift, slot;
1535 real_pte_t pte;
1536 int psize, ssize;
1537
1538 if (lock_tlbie)
1539 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1540
1541 if (is_supported_hlbkrm(batch->psize, batch->psize)) {
1542 do_block_remove(number, batch, param);
1543 goto out;
1544 }
1545
1546 psize = batch->psize;
1547 ssize = batch->ssize;
1548 pix = 0;
1549 for (i = 0; i < number; i++) {
1550 vpn = batch->vpn[i];
1551 pte = batch->pte[i];
1552 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1553 slot = compute_slot(pte, vpn, index, shift, ssize);
1554 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1555 /*
1556 * lpar doesn't use the passed actual page size
1557 */
1558 pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1559 0, ssize, local);
1560 } else {
1561 param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1562 param[pix+1] = hpte_encode_avpn(vpn, psize,
1563 ssize);
1564 pix += 2;
1565 if (pix == 8) {
1566 rc = plpar_hcall9(H_BULK_REMOVE, param,
1567 param[0], param[1], param[2],
1568 param[3], param[4], param[5],
1569 param[6], param[7]);
1570 BUG_ON(rc != H_SUCCESS);
1571 pix = 0;
1572 }
1573 }
1574 } pte_iterate_hashed_end();
1575 }
1576 if (pix) {
1577 param[pix] = HBR_END;
1578 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1579 param[2], param[3], param[4], param[5],
1580 param[6], param[7]);
1581 BUG_ON(rc != H_SUCCESS);
1582 }
1583
1584 out:
1585 if (lock_tlbie)
1586 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1587 }
1588
disable_bulk_remove(char * str)1589 static int __init disable_bulk_remove(char *str)
1590 {
1591 if (strcmp(str, "off") == 0 &&
1592 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1593 pr_info("Disabling BULK_REMOVE firmware feature");
1594 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1595 }
1596 return 1;
1597 }
1598
1599 __setup("bulk_remove=", disable_bulk_remove);
1600
1601 #define HPT_RESIZE_TIMEOUT 10000 /* ms */
1602
1603 struct hpt_resize_state {
1604 unsigned long shift;
1605 int commit_rc;
1606 };
1607
pseries_lpar_resize_hpt_commit(void * data)1608 static int pseries_lpar_resize_hpt_commit(void *data)
1609 {
1610 struct hpt_resize_state *state = data;
1611
1612 state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1613 if (state->commit_rc != H_SUCCESS)
1614 return -EIO;
1615
1616 /* Hypervisor has transitioned the HTAB, update our globals */
1617 ppc64_pft_size = state->shift;
1618 htab_size_bytes = 1UL << ppc64_pft_size;
1619 htab_hash_mask = (htab_size_bytes >> 7) - 1;
1620
1621 return 0;
1622 }
1623
1624 /*
1625 * Must be called in process context. The caller must hold the
1626 * cpus_lock.
1627 */
pseries_lpar_resize_hpt(unsigned long shift)1628 static int pseries_lpar_resize_hpt(unsigned long shift)
1629 {
1630 struct hpt_resize_state state = {
1631 .shift = shift,
1632 .commit_rc = H_FUNCTION,
1633 };
1634 unsigned int delay, total_delay = 0;
1635 int rc;
1636 ktime_t t0, t1, t2;
1637
1638 might_sleep();
1639
1640 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1641 return -ENODEV;
1642
1643 pr_info("Attempting to resize HPT to shift %lu\n", shift);
1644
1645 t0 = ktime_get();
1646
1647 rc = plpar_resize_hpt_prepare(0, shift);
1648 while (H_IS_LONG_BUSY(rc)) {
1649 delay = get_longbusy_msecs(rc);
1650 total_delay += delay;
1651 if (total_delay > HPT_RESIZE_TIMEOUT) {
1652 /* prepare with shift==0 cancels an in-progress resize */
1653 rc = plpar_resize_hpt_prepare(0, 0);
1654 if (rc != H_SUCCESS)
1655 pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1656 rc);
1657 return -ETIMEDOUT;
1658 }
1659 msleep(delay);
1660 rc = plpar_resize_hpt_prepare(0, shift);
1661 }
1662
1663 switch (rc) {
1664 case H_SUCCESS:
1665 /* Continue on */
1666 break;
1667
1668 case H_PARAMETER:
1669 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1670 return -EINVAL;
1671 case H_RESOURCE:
1672 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1673 return -EPERM;
1674 default:
1675 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1676 return -EIO;
1677 }
1678
1679 t1 = ktime_get();
1680
1681 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1682 &state, NULL);
1683
1684 t2 = ktime_get();
1685
1686 if (rc != 0) {
1687 switch (state.commit_rc) {
1688 case H_PTEG_FULL:
1689 return -ENOSPC;
1690
1691 default:
1692 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1693 state.commit_rc);
1694 return -EIO;
1695 };
1696 }
1697
1698 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1699 shift, (long long) ktime_ms_delta(t1, t0),
1700 (long long) ktime_ms_delta(t2, t1));
1701
1702 return 0;
1703 }
1704
hpte_init_pseries(void)1705 void __init hpte_init_pseries(void)
1706 {
1707 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate;
1708 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp;
1709 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1710 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert;
1711 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove;
1712 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted;
1713 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range;
1714 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all;
1715 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1716
1717 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1718 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1719
1720 /*
1721 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1722 * to inform the hypervisor that we wish to use the HPT.
1723 */
1724 if (cpu_has_feature(CPU_FTR_ARCH_300))
1725 pseries_lpar_register_process_table(0, 0, 0);
1726 }
1727 #endif /* CONFIG_PPC_64S_HASH_MMU */
1728
1729 #ifdef CONFIG_PPC_RADIX_MMU
radix_init_pseries(void)1730 void __init radix_init_pseries(void)
1731 {
1732 pr_info("Using radix MMU under hypervisor\n");
1733
1734 pseries_lpar_register_process_table(__pa(process_tb),
1735 0, PRTB_SIZE_SHIFT - 12);
1736 }
1737 #endif
1738
1739 #ifdef CONFIG_PPC_SMLPAR
1740 #define CMO_FREE_HINT_DEFAULT 1
1741 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1742
cmo_free_hint(char * str)1743 static int __init cmo_free_hint(char *str)
1744 {
1745 char *parm;
1746 parm = strstrip(str);
1747
1748 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1749 pr_info("%s: CMO free page hinting is not active.\n", __func__);
1750 cmo_free_hint_flag = 0;
1751 return 1;
1752 }
1753
1754 cmo_free_hint_flag = 1;
1755 pr_info("%s: CMO free page hinting is active.\n", __func__);
1756
1757 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1758 return 1;
1759
1760 return 0;
1761 }
1762
1763 __setup("cmo_free_hint=", cmo_free_hint);
1764
pSeries_set_page_state(struct page * page,int order,unsigned long state)1765 static void pSeries_set_page_state(struct page *page, int order,
1766 unsigned long state)
1767 {
1768 int i, j;
1769 unsigned long cmo_page_sz, addr;
1770
1771 cmo_page_sz = cmo_get_page_size();
1772 addr = __pa((unsigned long)page_address(page));
1773
1774 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1775 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1776 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1777 }
1778 }
1779
arch_free_page(struct page * page,int order)1780 void arch_free_page(struct page *page, int order)
1781 {
1782 if (radix_enabled())
1783 return;
1784 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1785 return;
1786
1787 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1788 }
1789 EXPORT_SYMBOL(arch_free_page);
1790
1791 #endif /* CONFIG_PPC_SMLPAR */
1792 #endif /* CONFIG_PPC_BOOK3S_64 */
1793
1794 #ifdef CONFIG_TRACEPOINTS
1795 #ifdef CONFIG_JUMP_LABEL
1796 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1797
hcall_tracepoint_regfunc(void)1798 int hcall_tracepoint_regfunc(void)
1799 {
1800 static_key_slow_inc(&hcall_tracepoint_key);
1801 return 0;
1802 }
1803
hcall_tracepoint_unregfunc(void)1804 void hcall_tracepoint_unregfunc(void)
1805 {
1806 static_key_slow_dec(&hcall_tracepoint_key);
1807 }
1808 #else
1809 /*
1810 * We optimise our hcall path by placing hcall_tracepoint_refcount
1811 * directly in the TOC so we can check if the hcall tracepoints are
1812 * enabled via a single load.
1813 */
1814
1815 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1816 extern long hcall_tracepoint_refcount;
1817
hcall_tracepoint_regfunc(void)1818 int hcall_tracepoint_regfunc(void)
1819 {
1820 hcall_tracepoint_refcount++;
1821 return 0;
1822 }
1823
hcall_tracepoint_unregfunc(void)1824 void hcall_tracepoint_unregfunc(void)
1825 {
1826 hcall_tracepoint_refcount--;
1827 }
1828 #endif
1829
1830 /*
1831 * Keep track of hcall tracing depth and prevent recursion. Warn if any is
1832 * detected because it may indicate a problem. This will not catch all
1833 * problems with tracing code making hcalls, because the tracing might have
1834 * been invoked from a non-hcall, so the first hcall could recurse into it
1835 * without warning here, but this better than nothing.
1836 *
1837 * Hcalls with specific problems being traced should use the _notrace
1838 * plpar_hcall variants.
1839 */
1840 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1841
1842
__trace_hcall_entry(unsigned long opcode,unsigned long * args)1843 notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1844 {
1845 unsigned long flags;
1846 unsigned int *depth;
1847
1848 local_irq_save(flags);
1849
1850 depth = this_cpu_ptr(&hcall_trace_depth);
1851
1852 if (WARN_ON_ONCE(*depth))
1853 goto out;
1854
1855 (*depth)++;
1856 preempt_disable();
1857 trace_hcall_entry(opcode, args);
1858 (*depth)--;
1859
1860 out:
1861 local_irq_restore(flags);
1862 }
1863
__trace_hcall_exit(long opcode,long retval,unsigned long * retbuf)1864 notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1865 {
1866 unsigned long flags;
1867 unsigned int *depth;
1868
1869 local_irq_save(flags);
1870
1871 depth = this_cpu_ptr(&hcall_trace_depth);
1872
1873 if (*depth) /* Don't warn again on the way out */
1874 goto out;
1875
1876 (*depth)++;
1877 trace_hcall_exit(opcode, retval, retbuf);
1878 preempt_enable();
1879 (*depth)--;
1880
1881 out:
1882 local_irq_restore(flags);
1883 }
1884 #endif
1885
1886 /**
1887 * h_get_mpp
1888 * H_GET_MPP hcall returns info in 7 parms
1889 */
h_get_mpp(struct hvcall_mpp_data * mpp_data)1890 int h_get_mpp(struct hvcall_mpp_data *mpp_data)
1891 {
1892 int rc;
1893 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1894
1895 rc = plpar_hcall9(H_GET_MPP, retbuf);
1896
1897 mpp_data->entitled_mem = retbuf[0];
1898 mpp_data->mapped_mem = retbuf[1];
1899
1900 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1901 mpp_data->pool_num = retbuf[2] & 0xffff;
1902
1903 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1904 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1905 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1906
1907 mpp_data->pool_size = retbuf[4];
1908 mpp_data->loan_request = retbuf[5];
1909 mpp_data->backing_mem = retbuf[6];
1910
1911 return rc;
1912 }
1913 EXPORT_SYMBOL(h_get_mpp);
1914
h_get_mpp_x(struct hvcall_mpp_x_data * mpp_x_data)1915 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1916 {
1917 int rc;
1918 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1919
1920 rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1921
1922 mpp_x_data->coalesced_bytes = retbuf[0];
1923 mpp_x_data->pool_coalesced_bytes = retbuf[1];
1924 mpp_x_data->pool_purr_cycles = retbuf[2];
1925 mpp_x_data->pool_spurr_cycles = retbuf[3];
1926
1927 return rc;
1928 }
1929
1930 #ifdef CONFIG_PPC_64S_HASH_MMU
vsid_unscramble(unsigned long vsid,int ssize)1931 static unsigned long __init vsid_unscramble(unsigned long vsid, int ssize)
1932 {
1933 unsigned long protovsid;
1934 unsigned long va_bits = VA_BITS;
1935 unsigned long modinv, vsid_modulus;
1936 unsigned long max_mod_inv, tmp_modinv;
1937
1938 if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1939 va_bits = 65;
1940
1941 if (ssize == MMU_SEGSIZE_256M) {
1942 modinv = VSID_MULINV_256M;
1943 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1944 } else {
1945 modinv = VSID_MULINV_1T;
1946 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1947 }
1948
1949 /*
1950 * vsid outside our range.
1951 */
1952 if (vsid >= vsid_modulus)
1953 return 0;
1954
1955 /*
1956 * If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1957 * and vsid = (protovsid * x) % vsid_modulus, then we say:
1958 * protovsid = (vsid * modinv) % vsid_modulus
1959 */
1960
1961 /* Check if (vsid * modinv) overflow (63 bits) */
1962 max_mod_inv = 0x7fffffffffffffffull / vsid;
1963 if (modinv < max_mod_inv)
1964 return (vsid * modinv) % vsid_modulus;
1965
1966 tmp_modinv = modinv/max_mod_inv;
1967 modinv %= max_mod_inv;
1968
1969 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1970 protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1971
1972 return protovsid;
1973 }
1974
reserve_vrma_context_id(void)1975 static int __init reserve_vrma_context_id(void)
1976 {
1977 unsigned long protovsid;
1978
1979 /*
1980 * Reserve context ids which map to reserved virtual addresses. For now
1981 * we only reserve the context id which maps to the VRMA VSID. We ignore
1982 * the addresses in "ibm,adjunct-virtual-addresses" because we don't
1983 * enable adjunct support via the "ibm,client-architecture-support"
1984 * interface.
1985 */
1986 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1987 hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1988 return 0;
1989 }
1990 machine_device_initcall(pseries, reserve_vrma_context_id);
1991 #endif
1992
1993 #ifdef CONFIG_DEBUG_FS
1994 /* debugfs file interface for vpa data */
vpa_file_read(struct file * filp,char __user * buf,size_t len,loff_t * pos)1995 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
1996 loff_t *pos)
1997 {
1998 int cpu = (long)filp->private_data;
1999 struct lppaca *lppaca = &lppaca_of(cpu);
2000
2001 return simple_read_from_buffer(buf, len, pos, lppaca,
2002 sizeof(struct lppaca));
2003 }
2004
2005 static const struct file_operations vpa_fops = {
2006 .open = simple_open,
2007 .read = vpa_file_read,
2008 .llseek = default_llseek,
2009 };
2010
vpa_debugfs_init(void)2011 static int __init vpa_debugfs_init(void)
2012 {
2013 char name[16];
2014 long i;
2015 struct dentry *vpa_dir;
2016
2017 if (!firmware_has_feature(FW_FEATURE_SPLPAR))
2018 return 0;
2019
2020 vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir);
2021
2022 /* set up the per-cpu vpa file*/
2023 for_each_possible_cpu(i) {
2024 sprintf(name, "cpu-%ld", i);
2025 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops);
2026 }
2027
2028 return 0;
2029 }
2030 machine_arch_initcall(pseries, vpa_debugfs_init);
2031 #endif /* CONFIG_DEBUG_FS */
2032