1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Clocksource driver for the synthetic counter and timers
5  * provided by the Hyper-V hypervisor to guest VMs, as described
6  * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7  * is instruction set architecture independent.
8  *
9  * Copyright (C) 2019, Microsoft, Inc.
10  *
11  * Author:  Michael Kelley <mikelley@microsoft.com>
12  */
13 
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/clockchips.h>
17 #include <linux/clocksource.h>
18 #include <linux/sched_clock.h>
19 #include <linux/mm.h>
20 #include <linux/cpuhotplug.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/acpi.h>
24 #include <linux/hyperv.h>
25 #include <clocksource/hyperv_timer.h>
26 #include <asm/hyperv-tlfs.h>
27 #include <asm/mshyperv.h>
28 
29 static struct clock_event_device __percpu *hv_clock_event;
30 static u64 hv_sched_clock_offset __ro_after_init;
31 
32 /*
33  * If false, we're using the old mechanism for stimer0 interrupts
34  * where it sends a VMbus message when it expires. The old
35  * mechanism is used when running on older versions of Hyper-V
36  * that don't support Direct Mode. While Hyper-V provides
37  * four stimer's per CPU, Linux uses only stimer0.
38  *
39  * Because Direct Mode does not require processing a VMbus
40  * message, stimer interrupts can be enabled earlier in the
41  * process of booting a CPU, and consistent with when timer
42  * interrupts are enabled for other clocksource drivers.
43  * However, for legacy versions of Hyper-V when Direct Mode
44  * is not enabled, setting up stimer interrupts must be
45  * delayed until VMbus is initialized and can process the
46  * interrupt message.
47  */
48 static bool direct_mode_enabled;
49 
50 static int stimer0_irq = -1;
51 static int stimer0_message_sint;
52 static DEFINE_PER_CPU(long, stimer0_evt);
53 
54 /*
55  * Common code for stimer0 interrupts coming via Direct Mode or
56  * as a VMbus message.
57  */
hv_stimer0_isr(void)58 void hv_stimer0_isr(void)
59 {
60 	struct clock_event_device *ce;
61 
62 	ce = this_cpu_ptr(hv_clock_event);
63 	ce->event_handler(ce);
64 }
65 EXPORT_SYMBOL_GPL(hv_stimer0_isr);
66 
67 /*
68  * stimer0 interrupt handler for architectures that support
69  * per-cpu interrupts, which also implies Direct Mode.
70  */
hv_stimer0_percpu_isr(int irq,void * dev_id)71 static irqreturn_t hv_stimer0_percpu_isr(int irq, void *dev_id)
72 {
73 	hv_stimer0_isr();
74 	return IRQ_HANDLED;
75 }
76 
hv_ce_set_next_event(unsigned long delta,struct clock_event_device * evt)77 static int hv_ce_set_next_event(unsigned long delta,
78 				struct clock_event_device *evt)
79 {
80 	u64 current_tick;
81 
82 	current_tick = hv_read_reference_counter();
83 	current_tick += delta;
84 	hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick);
85 	return 0;
86 }
87 
hv_ce_shutdown(struct clock_event_device * evt)88 static int hv_ce_shutdown(struct clock_event_device *evt)
89 {
90 	hv_set_register(HV_REGISTER_STIMER0_COUNT, 0);
91 	hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0);
92 	if (direct_mode_enabled && stimer0_irq >= 0)
93 		disable_percpu_irq(stimer0_irq);
94 
95 	return 0;
96 }
97 
hv_ce_set_oneshot(struct clock_event_device * evt)98 static int hv_ce_set_oneshot(struct clock_event_device *evt)
99 {
100 	union hv_stimer_config timer_cfg;
101 
102 	timer_cfg.as_uint64 = 0;
103 	timer_cfg.enable = 1;
104 	timer_cfg.auto_enable = 1;
105 	if (direct_mode_enabled) {
106 		/*
107 		 * When it expires, the timer will directly interrupt
108 		 * on the specified hardware vector/IRQ.
109 		 */
110 		timer_cfg.direct_mode = 1;
111 		timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
112 		if (stimer0_irq >= 0)
113 			enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
114 	} else {
115 		/*
116 		 * When it expires, the timer will generate a VMbus message,
117 		 * to be handled by the normal VMbus interrupt handler.
118 		 */
119 		timer_cfg.direct_mode = 0;
120 		timer_cfg.sintx = stimer0_message_sint;
121 	}
122 	hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64);
123 	return 0;
124 }
125 
126 /*
127  * hv_stimer_init - Per-cpu initialization of the clockevent
128  */
hv_stimer_init(unsigned int cpu)129 static int hv_stimer_init(unsigned int cpu)
130 {
131 	struct clock_event_device *ce;
132 
133 	if (!hv_clock_event)
134 		return 0;
135 
136 	ce = per_cpu_ptr(hv_clock_event, cpu);
137 	ce->name = "Hyper-V clockevent";
138 	ce->features = CLOCK_EVT_FEAT_ONESHOT;
139 	ce->cpumask = cpumask_of(cpu);
140 	ce->rating = 1000;
141 	ce->set_state_shutdown = hv_ce_shutdown;
142 	ce->set_state_oneshot = hv_ce_set_oneshot;
143 	ce->set_next_event = hv_ce_set_next_event;
144 
145 	clockevents_config_and_register(ce,
146 					HV_CLOCK_HZ,
147 					HV_MIN_DELTA_TICKS,
148 					HV_MAX_MAX_DELTA_TICKS);
149 	return 0;
150 }
151 
152 /*
153  * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
154  */
hv_stimer_cleanup(unsigned int cpu)155 int hv_stimer_cleanup(unsigned int cpu)
156 {
157 	struct clock_event_device *ce;
158 
159 	if (!hv_clock_event)
160 		return 0;
161 
162 	/*
163 	 * In the legacy case where Direct Mode is not enabled
164 	 * (which can only be on x86/64), stimer cleanup happens
165 	 * relatively early in the CPU offlining process. We
166 	 * must unbind the stimer-based clockevent device so
167 	 * that the LAPIC timer can take over until clockevents
168 	 * are no longer needed in the offlining process. Note
169 	 * that clockevents_unbind_device() eventually calls
170 	 * hv_ce_shutdown().
171 	 *
172 	 * The unbind should not be done when Direct Mode is
173 	 * enabled because we may be on an architecture where
174 	 * there are no other clockevent devices to fallback to.
175 	 */
176 	ce = per_cpu_ptr(hv_clock_event, cpu);
177 	if (direct_mode_enabled)
178 		hv_ce_shutdown(ce);
179 	else
180 		clockevents_unbind_device(ce, cpu);
181 
182 	return 0;
183 }
184 EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
185 
186 /*
187  * These placeholders are overridden by arch specific code on
188  * architectures that need special setup of the stimer0 IRQ because
189  * they don't support per-cpu IRQs (such as x86/x64).
190  */
hv_setup_stimer0_handler(void (* handler)(void))191 void __weak hv_setup_stimer0_handler(void (*handler)(void))
192 {
193 };
194 
hv_remove_stimer0_handler(void)195 void __weak hv_remove_stimer0_handler(void)
196 {
197 };
198 
199 /* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
hv_setup_stimer0_irq(void)200 static int hv_setup_stimer0_irq(void)
201 {
202 	int ret;
203 
204 	ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
205 			ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
206 	if (ret < 0) {
207 		pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
208 		return ret;
209 	}
210 	stimer0_irq = ret;
211 
212 	ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
213 		"Hyper-V stimer0", &stimer0_evt);
214 	if (ret) {
215 		pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
216 			stimer0_irq, ret);
217 		acpi_unregister_gsi(stimer0_irq);
218 		stimer0_irq = -1;
219 	}
220 	return ret;
221 }
222 
hv_remove_stimer0_irq(void)223 static void hv_remove_stimer0_irq(void)
224 {
225 	if (stimer0_irq == -1) {
226 		hv_remove_stimer0_handler();
227 	} else {
228 		free_percpu_irq(stimer0_irq, &stimer0_evt);
229 		acpi_unregister_gsi(stimer0_irq);
230 		stimer0_irq = -1;
231 	}
232 }
233 
234 /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
hv_stimer_alloc(bool have_percpu_irqs)235 int hv_stimer_alloc(bool have_percpu_irqs)
236 {
237 	int ret;
238 
239 	/*
240 	 * Synthetic timers are always available except on old versions of
241 	 * Hyper-V on x86.  In that case, return as error as Linux will use a
242 	 * clockevent based on emulated LAPIC timer hardware.
243 	 */
244 	if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
245 		return -EINVAL;
246 
247 	hv_clock_event = alloc_percpu(struct clock_event_device);
248 	if (!hv_clock_event)
249 		return -ENOMEM;
250 
251 	direct_mode_enabled = ms_hyperv.misc_features &
252 			HV_STIMER_DIRECT_MODE_AVAILABLE;
253 
254 	/*
255 	 * If Direct Mode isn't enabled, the remainder of the initialization
256 	 * is done later by hv_stimer_legacy_init()
257 	 */
258 	if (!direct_mode_enabled)
259 		return 0;
260 
261 	if (have_percpu_irqs) {
262 		ret = hv_setup_stimer0_irq();
263 		if (ret)
264 			goto free_clock_event;
265 	} else {
266 		hv_setup_stimer0_handler(hv_stimer0_isr);
267 	}
268 
269 	/*
270 	 * Since we are in Direct Mode, stimer initialization
271 	 * can be done now with a CPUHP value in the same range
272 	 * as other clockevent devices.
273 	 */
274 	ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
275 			"clockevents/hyperv/stimer:starting",
276 			hv_stimer_init, hv_stimer_cleanup);
277 	if (ret < 0) {
278 		hv_remove_stimer0_irq();
279 		goto free_clock_event;
280 	}
281 	return ret;
282 
283 free_clock_event:
284 	free_percpu(hv_clock_event);
285 	hv_clock_event = NULL;
286 	return ret;
287 }
288 EXPORT_SYMBOL_GPL(hv_stimer_alloc);
289 
290 /*
291  * hv_stimer_legacy_init -- Called from the VMbus driver to handle
292  * the case when Direct Mode is not enabled, and the stimer
293  * must be initialized late in the CPU onlining process.
294  *
295  */
hv_stimer_legacy_init(unsigned int cpu,int sint)296 void hv_stimer_legacy_init(unsigned int cpu, int sint)
297 {
298 	if (direct_mode_enabled)
299 		return;
300 
301 	/*
302 	 * This function gets called by each vCPU, so setting the
303 	 * global stimer_message_sint value each time is conceptually
304 	 * not ideal, but the value passed in is always the same and
305 	 * it avoids introducing yet another interface into this
306 	 * clocksource driver just to set the sint in the legacy case.
307 	 */
308 	stimer0_message_sint = sint;
309 	(void)hv_stimer_init(cpu);
310 }
311 EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
312 
313 /*
314  * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
315  * handle the case when Direct Mode is not enabled, and the
316  * stimer must be cleaned up early in the CPU offlining
317  * process.
318  */
hv_stimer_legacy_cleanup(unsigned int cpu)319 void hv_stimer_legacy_cleanup(unsigned int cpu)
320 {
321 	if (direct_mode_enabled)
322 		return;
323 	(void)hv_stimer_cleanup(cpu);
324 }
325 EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
326 
327 /*
328  * Do a global cleanup of clockevents for the cases of kexec and
329  * vmbus exit
330  */
hv_stimer_global_cleanup(void)331 void hv_stimer_global_cleanup(void)
332 {
333 	int	cpu;
334 
335 	/*
336 	 * hv_stime_legacy_cleanup() will stop the stimer if Direct
337 	 * Mode is not enabled, and fallback to the LAPIC timer.
338 	 */
339 	for_each_present_cpu(cpu) {
340 		hv_stimer_legacy_cleanup(cpu);
341 	}
342 
343 	if (!hv_clock_event)
344 		return;
345 
346 	if (direct_mode_enabled) {
347 		cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
348 		hv_remove_stimer0_irq();
349 		stimer0_irq = -1;
350 	}
351 	free_percpu(hv_clock_event);
352 	hv_clock_event = NULL;
353 
354 }
355 EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
356 
357 /*
358  * Code and definitions for the Hyper-V clocksources.  Two
359  * clocksources are defined: one that reads the Hyper-V defined MSR, and
360  * the other that uses the TSC reference page feature as defined in the
361  * TLFS.  The MSR version is for compatibility with old versions of
362  * Hyper-V and 32-bit x86.  The TSC reference page version is preferred.
363  */
364 
365 static union {
366 	struct ms_hyperv_tsc_page page;
367 	u8 reserved[PAGE_SIZE];
368 } tsc_pg __aligned(PAGE_SIZE);
369 
370 static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page;
371 static unsigned long tsc_pfn;
372 
hv_get_tsc_pfn(void)373 unsigned long hv_get_tsc_pfn(void)
374 {
375 	return tsc_pfn;
376 }
377 EXPORT_SYMBOL_GPL(hv_get_tsc_pfn);
378 
hv_get_tsc_page(void)379 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
380 {
381 	return tsc_page;
382 }
383 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
384 
read_hv_clock_tsc(void)385 static u64 notrace read_hv_clock_tsc(void)
386 {
387 	u64 current_tick = hv_read_tsc_page(hv_get_tsc_page());
388 
389 	if (current_tick == U64_MAX)
390 		current_tick = hv_get_register(HV_REGISTER_TIME_REF_COUNT);
391 
392 	return current_tick;
393 }
394 
read_hv_clock_tsc_cs(struct clocksource * arg)395 static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
396 {
397 	return read_hv_clock_tsc();
398 }
399 
read_hv_sched_clock_tsc(void)400 static u64 notrace read_hv_sched_clock_tsc(void)
401 {
402 	return (read_hv_clock_tsc() - hv_sched_clock_offset) *
403 		(NSEC_PER_SEC / HV_CLOCK_HZ);
404 }
405 
suspend_hv_clock_tsc(struct clocksource * arg)406 static void suspend_hv_clock_tsc(struct clocksource *arg)
407 {
408 	union hv_reference_tsc_msr tsc_msr;
409 
410 	/* Disable the TSC page */
411 	tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
412 	tsc_msr.enable = 0;
413 	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
414 }
415 
416 
resume_hv_clock_tsc(struct clocksource * arg)417 static void resume_hv_clock_tsc(struct clocksource *arg)
418 {
419 	union hv_reference_tsc_msr tsc_msr;
420 
421 	/* Re-enable the TSC page */
422 	tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
423 	tsc_msr.enable = 1;
424 	tsc_msr.pfn = tsc_pfn;
425 	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
426 }
427 
428 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
hv_cs_enable(struct clocksource * cs)429 static int hv_cs_enable(struct clocksource *cs)
430 {
431 	vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
432 	return 0;
433 }
434 #endif
435 
436 static struct clocksource hyperv_cs_tsc = {
437 	.name	= "hyperv_clocksource_tsc_page",
438 	.rating	= 500,
439 	.read	= read_hv_clock_tsc_cs,
440 	.mask	= CLOCKSOURCE_MASK(64),
441 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
442 	.suspend= suspend_hv_clock_tsc,
443 	.resume	= resume_hv_clock_tsc,
444 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
445 	.enable = hv_cs_enable,
446 	.vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
447 #else
448 	.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
449 #endif
450 };
451 
read_hv_clock_msr(void)452 static u64 notrace read_hv_clock_msr(void)
453 {
454 	/*
455 	 * Read the partition counter to get the current tick count. This count
456 	 * is set to 0 when the partition is created and is incremented in
457 	 * 100 nanosecond units.
458 	 */
459 	return hv_get_register(HV_REGISTER_TIME_REF_COUNT);
460 }
461 
read_hv_clock_msr_cs(struct clocksource * arg)462 static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
463 {
464 	return read_hv_clock_msr();
465 }
466 
read_hv_sched_clock_msr(void)467 static u64 notrace read_hv_sched_clock_msr(void)
468 {
469 	return (read_hv_clock_msr() - hv_sched_clock_offset) *
470 		(NSEC_PER_SEC / HV_CLOCK_HZ);
471 }
472 
473 static struct clocksource hyperv_cs_msr = {
474 	.name	= "hyperv_clocksource_msr",
475 	.rating	= 500,
476 	.read	= read_hv_clock_msr_cs,
477 	.mask	= CLOCKSOURCE_MASK(64),
478 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
479 };
480 
481 /*
482  * Reference to pv_ops must be inline so objtool
483  * detection of noinstr violations can work correctly.
484  */
485 #ifdef CONFIG_GENERIC_SCHED_CLOCK
hv_setup_sched_clock(void * sched_clock)486 static __always_inline void hv_setup_sched_clock(void *sched_clock)
487 {
488 	/*
489 	 * We're on an architecture with generic sched clock (not x86/x64).
490 	 * The Hyper-V sched clock read function returns nanoseconds, not
491 	 * the normal 100ns units of the Hyper-V synthetic clock.
492 	 */
493 	sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
494 }
495 #elif defined CONFIG_PARAVIRT
hv_setup_sched_clock(void * sched_clock)496 static __always_inline void hv_setup_sched_clock(void *sched_clock)
497 {
498 	/* We're on x86/x64 *and* using PV ops */
499 	paravirt_set_sched_clock(sched_clock);
500 }
501 #else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
hv_setup_sched_clock(void * sched_clock)502 static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
503 #endif /* CONFIG_GENERIC_SCHED_CLOCK */
504 
hv_init_tsc_clocksource(void)505 static bool __init hv_init_tsc_clocksource(void)
506 {
507 	union hv_reference_tsc_msr tsc_msr;
508 
509 	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
510 		return false;
511 
512 	/*
513 	 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
514 	 * handles frequency and offset changes due to live migration,
515 	 * pause/resume, and other VM management operations.  So lower the
516 	 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
517 	 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
518 	 * TSC will be preferred over the virtualized ARM64 arch counter.
519 	 * While the Hyper-V MSR clocksource won't be used since the
520 	 * Reference TSC clocksource is present, change its rating as
521 	 * well for consistency.
522 	 */
523 	if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
524 		hyperv_cs_tsc.rating = 250;
525 		hyperv_cs_msr.rating = 250;
526 	}
527 
528 	hv_read_reference_counter = read_hv_clock_tsc;
529 
530 	/*
531 	 * TSC page mapping works differently in root compared to guest.
532 	 * - In guest partition the guest PFN has to be passed to the
533 	 *   hypervisor.
534 	 * - In root partition it's other way around: it has to map the PFN
535 	 *   provided by the hypervisor.
536 	 *   But it can't be mapped right here as it's too early and MMU isn't
537 	 *   ready yet. So, we only set the enable bit here and will remap the
538 	 *   page later in hv_remap_tsc_clocksource().
539 	 *
540 	 * It worth mentioning, that TSC clocksource read function
541 	 * (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when
542 	 * TSC page is zeroed (which is the case until the PFN is remapped) and
543 	 * thus TSC clocksource will work even without the real TSC page
544 	 * mapped.
545 	 */
546 	tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
547 	if (hv_root_partition)
548 		tsc_pfn = tsc_msr.pfn;
549 	else
550 		tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page));
551 	tsc_msr.enable = 1;
552 	tsc_msr.pfn = tsc_pfn;
553 	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
554 
555 	clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
556 
557 	hv_sched_clock_offset = hv_read_reference_counter();
558 	hv_setup_sched_clock(read_hv_sched_clock_tsc);
559 
560 	return true;
561 }
562 
hv_init_clocksource(void)563 void __init hv_init_clocksource(void)
564 {
565 	/*
566 	 * Try to set up the TSC page clocksource. If it succeeds, we're
567 	 * done. Otherwise, set up the MSR clocksource.  At least one of
568 	 * these will always be available except on very old versions of
569 	 * Hyper-V on x86.  In that case we won't have a Hyper-V
570 	 * clocksource, but Linux will still run with a clocksource based
571 	 * on the emulated PIT or LAPIC timer.
572 	 */
573 	if (hv_init_tsc_clocksource())
574 		return;
575 
576 	if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
577 		return;
578 
579 	hv_read_reference_counter = read_hv_clock_msr;
580 	clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
581 
582 	hv_sched_clock_offset = hv_read_reference_counter();
583 	hv_setup_sched_clock(read_hv_sched_clock_msr);
584 }
585 
hv_remap_tsc_clocksource(void)586 void __init hv_remap_tsc_clocksource(void)
587 {
588 	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
589 		return;
590 
591 	if (!hv_root_partition) {
592 		WARN(1, "%s: attempt to remap TSC page in guest partition\n",
593 		     __func__);
594 		return;
595 	}
596 
597 	tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg),
598 			    MEMREMAP_WB);
599 	if (!tsc_page)
600 		pr_err("Failed to remap Hyper-V TSC page.\n");
601 }
602