1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include "display/intel_display.h"
8 #include "display/intel_frontbuffer.h"
9 #include "gt/intel_gt.h"
10 
11 #include "i915_drv.h"
12 #include "i915_gem_clflush.h"
13 #include "i915_gem_domain.h"
14 #include "i915_gem_gtt.h"
15 #include "i915_gem_ioctls.h"
16 #include "i915_gem_lmem.h"
17 #include "i915_gem_mman.h"
18 #include "i915_gem_object.h"
19 #include "i915_vma.h"
20 
21 #define VTD_GUARD (168u * I915_GTT_PAGE_SIZE) /* 168 or tile-row PTE padding */
22 
gpu_write_needs_clflush(struct drm_i915_gem_object * obj)23 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
24 {
25 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
26 
27 	if (IS_DGFX(i915))
28 		return false;
29 
30 	return !(obj->cache_level == I915_CACHE_NONE ||
31 		 obj->cache_level == I915_CACHE_WT);
32 }
33 
i915_gem_cpu_write_needs_clflush(struct drm_i915_gem_object * obj)34 bool i915_gem_cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
35 {
36 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
37 
38 	if (obj->cache_dirty)
39 		return false;
40 
41 	if (IS_DGFX(i915))
42 		return false;
43 
44 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
45 		return true;
46 
47 	/* Currently in use by HW (display engine)? Keep flushed. */
48 	return i915_gem_object_is_framebuffer(obj);
49 }
50 
51 static void
flush_write_domain(struct drm_i915_gem_object * obj,unsigned int flush_domains)52 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
53 {
54 	struct i915_vma *vma;
55 
56 	assert_object_held(obj);
57 
58 	if (!(obj->write_domain & flush_domains))
59 		return;
60 
61 	switch (obj->write_domain) {
62 	case I915_GEM_DOMAIN_GTT:
63 		spin_lock(&obj->vma.lock);
64 		for_each_ggtt_vma(vma, obj) {
65 			if (i915_vma_unset_ggtt_write(vma))
66 				intel_gt_flush_ggtt_writes(vma->vm->gt);
67 		}
68 		spin_unlock(&obj->vma.lock);
69 
70 		i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
71 		break;
72 
73 	case I915_GEM_DOMAIN_WC:
74 		wmb();
75 		break;
76 
77 	case I915_GEM_DOMAIN_CPU:
78 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
79 		break;
80 
81 	case I915_GEM_DOMAIN_RENDER:
82 		if (gpu_write_needs_clflush(obj))
83 			obj->cache_dirty = true;
84 		break;
85 	}
86 
87 	obj->write_domain = 0;
88 }
89 
__i915_gem_object_flush_for_display(struct drm_i915_gem_object * obj)90 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
91 {
92 	/*
93 	 * We manually flush the CPU domain so that we can override and
94 	 * force the flush for the display, and perform it asyncrhonously.
95 	 */
96 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
97 	if (obj->cache_dirty)
98 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
99 	obj->write_domain = 0;
100 }
101 
i915_gem_object_flush_if_display(struct drm_i915_gem_object * obj)102 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
103 {
104 	if (!i915_gem_object_is_framebuffer(obj))
105 		return;
106 
107 	i915_gem_object_lock(obj, NULL);
108 	__i915_gem_object_flush_for_display(obj);
109 	i915_gem_object_unlock(obj);
110 }
111 
i915_gem_object_flush_if_display_locked(struct drm_i915_gem_object * obj)112 void i915_gem_object_flush_if_display_locked(struct drm_i915_gem_object *obj)
113 {
114 	if (i915_gem_object_is_framebuffer(obj))
115 		__i915_gem_object_flush_for_display(obj);
116 }
117 
118 /**
119  * Moves a single object to the WC read, and possibly write domain.
120  * @obj: object to act on
121  * @write: ask for write access or read only
122  *
123  * This function returns when the move is complete, including waiting on
124  * flushes to occur.
125  */
126 int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object * obj,bool write)127 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
128 {
129 	int ret;
130 
131 	assert_object_held(obj);
132 
133 	ret = i915_gem_object_wait(obj,
134 				   I915_WAIT_INTERRUPTIBLE |
135 				   (write ? I915_WAIT_ALL : 0),
136 				   MAX_SCHEDULE_TIMEOUT);
137 	if (ret)
138 		return ret;
139 
140 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
141 		return 0;
142 
143 	/* Flush and acquire obj->pages so that we are coherent through
144 	 * direct access in memory with previous cached writes through
145 	 * shmemfs and that our cache domain tracking remains valid.
146 	 * For example, if the obj->filp was moved to swap without us
147 	 * being notified and releasing the pages, we would mistakenly
148 	 * continue to assume that the obj remained out of the CPU cached
149 	 * domain.
150 	 */
151 	ret = i915_gem_object_pin_pages(obj);
152 	if (ret)
153 		return ret;
154 
155 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
156 
157 	/* Serialise direct access to this object with the barriers for
158 	 * coherent writes from the GPU, by effectively invalidating the
159 	 * WC domain upon first access.
160 	 */
161 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
162 		mb();
163 
164 	/* It should now be out of any other write domains, and we can update
165 	 * the domain values for our changes.
166 	 */
167 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
168 	obj->read_domains |= I915_GEM_DOMAIN_WC;
169 	if (write) {
170 		obj->read_domains = I915_GEM_DOMAIN_WC;
171 		obj->write_domain = I915_GEM_DOMAIN_WC;
172 		obj->mm.dirty = true;
173 	}
174 
175 	i915_gem_object_unpin_pages(obj);
176 	return 0;
177 }
178 
179 /**
180  * Moves a single object to the GTT read, and possibly write domain.
181  * @obj: object to act on
182  * @write: ask for write access or read only
183  *
184  * This function returns when the move is complete, including waiting on
185  * flushes to occur.
186  */
187 int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object * obj,bool write)188 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
189 {
190 	int ret;
191 
192 	assert_object_held(obj);
193 
194 	ret = i915_gem_object_wait(obj,
195 				   I915_WAIT_INTERRUPTIBLE |
196 				   (write ? I915_WAIT_ALL : 0),
197 				   MAX_SCHEDULE_TIMEOUT);
198 	if (ret)
199 		return ret;
200 
201 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
202 		return 0;
203 
204 	/* Flush and acquire obj->pages so that we are coherent through
205 	 * direct access in memory with previous cached writes through
206 	 * shmemfs and that our cache domain tracking remains valid.
207 	 * For example, if the obj->filp was moved to swap without us
208 	 * being notified and releasing the pages, we would mistakenly
209 	 * continue to assume that the obj remained out of the CPU cached
210 	 * domain.
211 	 */
212 	ret = i915_gem_object_pin_pages(obj);
213 	if (ret)
214 		return ret;
215 
216 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
217 
218 	/* Serialise direct access to this object with the barriers for
219 	 * coherent writes from the GPU, by effectively invalidating the
220 	 * GTT domain upon first access.
221 	 */
222 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
223 		mb();
224 
225 	/* It should now be out of any other write domains, and we can update
226 	 * the domain values for our changes.
227 	 */
228 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
229 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
230 	if (write) {
231 		struct i915_vma *vma;
232 
233 		obj->read_domains = I915_GEM_DOMAIN_GTT;
234 		obj->write_domain = I915_GEM_DOMAIN_GTT;
235 		obj->mm.dirty = true;
236 
237 		spin_lock(&obj->vma.lock);
238 		for_each_ggtt_vma(vma, obj)
239 			if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
240 				i915_vma_set_ggtt_write(vma);
241 		spin_unlock(&obj->vma.lock);
242 	}
243 
244 	i915_gem_object_unpin_pages(obj);
245 	return 0;
246 }
247 
248 /**
249  * Changes the cache-level of an object across all VMA.
250  * @obj: object to act on
251  * @cache_level: new cache level to set for the object
252  *
253  * After this function returns, the object will be in the new cache-level
254  * across all GTT and the contents of the backing storage will be coherent,
255  * with respect to the new cache-level. In order to keep the backing storage
256  * coherent for all users, we only allow a single cache level to be set
257  * globally on the object and prevent it from being changed whilst the
258  * hardware is reading from the object. That is if the object is currently
259  * on the scanout it will be set to uncached (or equivalent display
260  * cache coherency) and all non-MOCS GPU access will also be uncached so
261  * that all direct access to the scanout remains coherent.
262  */
i915_gem_object_set_cache_level(struct drm_i915_gem_object * obj,enum i915_cache_level cache_level)263 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
264 				    enum i915_cache_level cache_level)
265 {
266 	int ret;
267 
268 	if (obj->cache_level == cache_level)
269 		return 0;
270 
271 	ret = i915_gem_object_wait(obj,
272 				   I915_WAIT_INTERRUPTIBLE |
273 				   I915_WAIT_ALL,
274 				   MAX_SCHEDULE_TIMEOUT);
275 	if (ret)
276 		return ret;
277 
278 	/* Always invalidate stale cachelines */
279 	if (obj->cache_level != cache_level) {
280 		i915_gem_object_set_cache_coherency(obj, cache_level);
281 		obj->cache_dirty = true;
282 	}
283 
284 	/* The cache-level will be applied when each vma is rebound. */
285 	return i915_gem_object_unbind(obj,
286 				      I915_GEM_OBJECT_UNBIND_ACTIVE |
287 				      I915_GEM_OBJECT_UNBIND_BARRIER);
288 }
289 
i915_gem_get_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)290 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
291 			       struct drm_file *file)
292 {
293 	struct drm_i915_gem_caching *args = data;
294 	struct drm_i915_gem_object *obj;
295 	int err = 0;
296 
297 	if (IS_DGFX(to_i915(dev)))
298 		return -ENODEV;
299 
300 	rcu_read_lock();
301 	obj = i915_gem_object_lookup_rcu(file, args->handle);
302 	if (!obj) {
303 		err = -ENOENT;
304 		goto out;
305 	}
306 
307 	switch (obj->cache_level) {
308 	case I915_CACHE_LLC:
309 	case I915_CACHE_L3_LLC:
310 		args->caching = I915_CACHING_CACHED;
311 		break;
312 
313 	case I915_CACHE_WT:
314 		args->caching = I915_CACHING_DISPLAY;
315 		break;
316 
317 	default:
318 		args->caching = I915_CACHING_NONE;
319 		break;
320 	}
321 out:
322 	rcu_read_unlock();
323 	return err;
324 }
325 
i915_gem_set_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)326 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
327 			       struct drm_file *file)
328 {
329 	struct drm_i915_private *i915 = to_i915(dev);
330 	struct drm_i915_gem_caching *args = data;
331 	struct drm_i915_gem_object *obj;
332 	enum i915_cache_level level;
333 	int ret = 0;
334 
335 	if (IS_DGFX(i915))
336 		return -ENODEV;
337 
338 	switch (args->caching) {
339 	case I915_CACHING_NONE:
340 		level = I915_CACHE_NONE;
341 		break;
342 	case I915_CACHING_CACHED:
343 		/*
344 		 * Due to a HW issue on BXT A stepping, GPU stores via a
345 		 * snooped mapping may leave stale data in a corresponding CPU
346 		 * cacheline, whereas normally such cachelines would get
347 		 * invalidated.
348 		 */
349 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
350 			return -ENODEV;
351 
352 		level = I915_CACHE_LLC;
353 		break;
354 	case I915_CACHING_DISPLAY:
355 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
356 		break;
357 	default:
358 		return -EINVAL;
359 	}
360 
361 	obj = i915_gem_object_lookup(file, args->handle);
362 	if (!obj)
363 		return -ENOENT;
364 
365 	/*
366 	 * The caching mode of proxy object is handled by its generator, and
367 	 * not allowed to be changed by userspace.
368 	 */
369 	if (i915_gem_object_is_proxy(obj)) {
370 		/*
371 		 * Silently allow cached for userptr; the vulkan driver
372 		 * sets all objects to cached
373 		 */
374 		if (!i915_gem_object_is_userptr(obj) ||
375 		    args->caching != I915_CACHING_CACHED)
376 			ret = -ENXIO;
377 
378 		goto out;
379 	}
380 
381 	ret = i915_gem_object_lock_interruptible(obj, NULL);
382 	if (ret)
383 		goto out;
384 
385 	ret = i915_gem_object_set_cache_level(obj, level);
386 	i915_gem_object_unlock(obj);
387 
388 out:
389 	i915_gem_object_put(obj);
390 	return ret;
391 }
392 
393 /*
394  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
395  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
396  * (for pageflips). We only flush the caches while preparing the buffer for
397  * display, the callers are responsible for frontbuffer flush.
398  */
399 struct i915_vma *
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object * obj,struct i915_gem_ww_ctx * ww,u32 alignment,const struct i915_gtt_view * view,unsigned int flags)400 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
401 				     struct i915_gem_ww_ctx *ww,
402 				     u32 alignment,
403 				     const struct i915_gtt_view *view,
404 				     unsigned int flags)
405 {
406 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
407 	struct i915_vma *vma;
408 	int ret;
409 
410 	/* Frame buffer must be in LMEM */
411 	if (HAS_LMEM(i915) && !i915_gem_object_is_lmem(obj))
412 		return ERR_PTR(-EINVAL);
413 
414 	/*
415 	 * The display engine is not coherent with the LLC cache on gen6.  As
416 	 * a result, we make sure that the pinning that is about to occur is
417 	 * done with uncached PTEs. This is lowest common denominator for all
418 	 * chipsets.
419 	 *
420 	 * However for gen6+, we could do better by using the GFDT bit instead
421 	 * of uncaching, which would allow us to flush all the LLC-cached data
422 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
423 	 */
424 	ret = i915_gem_object_set_cache_level(obj,
425 					      HAS_WT(i915) ?
426 					      I915_CACHE_WT : I915_CACHE_NONE);
427 	if (ret)
428 		return ERR_PTR(ret);
429 
430 	/* VT-d may overfetch before/after the vma, so pad with scratch */
431 	if (intel_scanout_needs_vtd_wa(i915)) {
432 		unsigned int guard = VTD_GUARD;
433 
434 		if (i915_gem_object_is_tiled(obj))
435 			guard = max(guard,
436 				    i915_gem_object_get_tile_row_size(obj));
437 
438 		flags |= PIN_OFFSET_GUARD | guard;
439 	}
440 
441 	/*
442 	 * As the user may map the buffer once pinned in the display plane
443 	 * (e.g. libkms for the bootup splash), we have to ensure that we
444 	 * always use map_and_fenceable for all scanout buffers. However,
445 	 * it may simply be too big to fit into mappable, in which case
446 	 * put it anyway and hope that userspace can cope (but always first
447 	 * try to preserve the existing ABI).
448 	 */
449 	vma = ERR_PTR(-ENOSPC);
450 	if ((flags & PIN_MAPPABLE) == 0 &&
451 	    (!view || view->type == I915_GTT_VIEW_NORMAL))
452 		vma = i915_gem_object_ggtt_pin_ww(obj, ww, view, 0, alignment,
453 						  flags | PIN_MAPPABLE |
454 						  PIN_NONBLOCK);
455 	if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK))
456 		vma = i915_gem_object_ggtt_pin_ww(obj, ww, view, 0,
457 						  alignment, flags);
458 	if (IS_ERR(vma))
459 		return vma;
460 
461 	vma->display_alignment = max(vma->display_alignment, alignment);
462 	i915_vma_mark_scanout(vma);
463 
464 	i915_gem_object_flush_if_display_locked(obj);
465 
466 	return vma;
467 }
468 
469 /**
470  * Moves a single object to the CPU read, and possibly write domain.
471  * @obj: object to act on
472  * @write: requesting write or read-only access
473  *
474  * This function returns when the move is complete, including waiting on
475  * flushes to occur.
476  */
477 int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object * obj,bool write)478 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
479 {
480 	int ret;
481 
482 	assert_object_held(obj);
483 
484 	ret = i915_gem_object_wait(obj,
485 				   I915_WAIT_INTERRUPTIBLE |
486 				   (write ? I915_WAIT_ALL : 0),
487 				   MAX_SCHEDULE_TIMEOUT);
488 	if (ret)
489 		return ret;
490 
491 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
492 
493 	/* Flush the CPU cache if it's still invalid. */
494 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
495 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
496 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
497 	}
498 
499 	/* It should now be out of any other write domains, and we can update
500 	 * the domain values for our changes.
501 	 */
502 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
503 
504 	/* If we're writing through the CPU, then the GPU read domains will
505 	 * need to be invalidated at next use.
506 	 */
507 	if (write)
508 		__start_cpu_write(obj);
509 
510 	return 0;
511 }
512 
513 /**
514  * Called when user space prepares to use an object with the CPU, either
515  * through the mmap ioctl's mapping or a GTT mapping.
516  * @dev: drm device
517  * @data: ioctl data blob
518  * @file: drm file
519  */
520 int
i915_gem_set_domain_ioctl(struct drm_device * dev,void * data,struct drm_file * file)521 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
522 			  struct drm_file *file)
523 {
524 	struct drm_i915_gem_set_domain *args = data;
525 	struct drm_i915_gem_object *obj;
526 	u32 read_domains = args->read_domains;
527 	u32 write_domain = args->write_domain;
528 	int err;
529 
530 	if (IS_DGFX(to_i915(dev)))
531 		return -ENODEV;
532 
533 	/* Only handle setting domains to types used by the CPU. */
534 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
535 		return -EINVAL;
536 
537 	/*
538 	 * Having something in the write domain implies it's in the read
539 	 * domain, and only that read domain.  Enforce that in the request.
540 	 */
541 	if (write_domain && read_domains != write_domain)
542 		return -EINVAL;
543 
544 	if (!read_domains)
545 		return 0;
546 
547 	obj = i915_gem_object_lookup(file, args->handle);
548 	if (!obj)
549 		return -ENOENT;
550 
551 	/*
552 	 * Try to flush the object off the GPU without holding the lock.
553 	 * We will repeat the flush holding the lock in the normal manner
554 	 * to catch cases where we are gazumped.
555 	 */
556 	err = i915_gem_object_wait(obj,
557 				   I915_WAIT_INTERRUPTIBLE |
558 				   I915_WAIT_PRIORITY |
559 				   (write_domain ? I915_WAIT_ALL : 0),
560 				   MAX_SCHEDULE_TIMEOUT);
561 	if (err)
562 		goto out;
563 
564 	if (i915_gem_object_is_userptr(obj)) {
565 		/*
566 		 * Try to grab userptr pages, iris uses set_domain to check
567 		 * userptr validity
568 		 */
569 		err = i915_gem_object_userptr_validate(obj);
570 		if (!err)
571 			err = i915_gem_object_wait(obj,
572 						   I915_WAIT_INTERRUPTIBLE |
573 						   I915_WAIT_PRIORITY |
574 						   (write_domain ? I915_WAIT_ALL : 0),
575 						   MAX_SCHEDULE_TIMEOUT);
576 		goto out;
577 	}
578 
579 	/*
580 	 * Proxy objects do not control access to the backing storage, ergo
581 	 * they cannot be used as a means to manipulate the cache domain
582 	 * tracking for that backing storage. The proxy object is always
583 	 * considered to be outside of any cache domain.
584 	 */
585 	if (i915_gem_object_is_proxy(obj)) {
586 		err = -ENXIO;
587 		goto out;
588 	}
589 
590 	err = i915_gem_object_lock_interruptible(obj, NULL);
591 	if (err)
592 		goto out;
593 
594 	/*
595 	 * Flush and acquire obj->pages so that we are coherent through
596 	 * direct access in memory with previous cached writes through
597 	 * shmemfs and that our cache domain tracking remains valid.
598 	 * For example, if the obj->filp was moved to swap without us
599 	 * being notified and releasing the pages, we would mistakenly
600 	 * continue to assume that the obj remained out of the CPU cached
601 	 * domain.
602 	 */
603 	err = i915_gem_object_pin_pages(obj);
604 	if (err)
605 		goto out_unlock;
606 
607 	/*
608 	 * Already in the desired write domain? Nothing for us to do!
609 	 *
610 	 * We apply a little bit of cunning here to catch a broader set of
611 	 * no-ops. If obj->write_domain is set, we must be in the same
612 	 * obj->read_domains, and only that domain. Therefore, if that
613 	 * obj->write_domain matches the request read_domains, we are
614 	 * already in the same read/write domain and can skip the operation,
615 	 * without having to further check the requested write_domain.
616 	 */
617 	if (READ_ONCE(obj->write_domain) == read_domains)
618 		goto out_unpin;
619 
620 	if (read_domains & I915_GEM_DOMAIN_WC)
621 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
622 	else if (read_domains & I915_GEM_DOMAIN_GTT)
623 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
624 	else
625 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
626 
627 out_unpin:
628 	i915_gem_object_unpin_pages(obj);
629 
630 out_unlock:
631 	i915_gem_object_unlock(obj);
632 
633 	if (!err && write_domain)
634 		i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
635 
636 out:
637 	i915_gem_object_put(obj);
638 	return err;
639 }
640 
641 /*
642  * Pins the specified object's pages and synchronizes the object with
643  * GPU accesses. Sets needs_clflush to non-zero if the caller should
644  * flush the object from the CPU cache.
645  */
i915_gem_object_prepare_read(struct drm_i915_gem_object * obj,unsigned int * needs_clflush)646 int i915_gem_object_prepare_read(struct drm_i915_gem_object *obj,
647 				 unsigned int *needs_clflush)
648 {
649 	int ret;
650 
651 	*needs_clflush = 0;
652 	if (!i915_gem_object_has_struct_page(obj))
653 		return -ENODEV;
654 
655 	assert_object_held(obj);
656 
657 	ret = i915_gem_object_wait(obj,
658 				   I915_WAIT_INTERRUPTIBLE,
659 				   MAX_SCHEDULE_TIMEOUT);
660 	if (ret)
661 		return ret;
662 
663 	ret = i915_gem_object_pin_pages(obj);
664 	if (ret)
665 		return ret;
666 
667 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
668 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
669 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
670 		if (ret)
671 			goto err_unpin;
672 		else
673 			goto out;
674 	}
675 
676 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
677 
678 	/* If we're not in the cpu read domain, set ourself into the gtt
679 	 * read domain and manually flush cachelines (if required). This
680 	 * optimizes for the case when the gpu will dirty the data
681 	 * anyway again before the next pread happens.
682 	 */
683 	if (!obj->cache_dirty &&
684 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
685 		*needs_clflush = CLFLUSH_BEFORE;
686 
687 out:
688 	/* return with the pages pinned */
689 	return 0;
690 
691 err_unpin:
692 	i915_gem_object_unpin_pages(obj);
693 	return ret;
694 }
695 
i915_gem_object_prepare_write(struct drm_i915_gem_object * obj,unsigned int * needs_clflush)696 int i915_gem_object_prepare_write(struct drm_i915_gem_object *obj,
697 				  unsigned int *needs_clflush)
698 {
699 	int ret;
700 
701 	*needs_clflush = 0;
702 	if (!i915_gem_object_has_struct_page(obj))
703 		return -ENODEV;
704 
705 	assert_object_held(obj);
706 
707 	ret = i915_gem_object_wait(obj,
708 				   I915_WAIT_INTERRUPTIBLE |
709 				   I915_WAIT_ALL,
710 				   MAX_SCHEDULE_TIMEOUT);
711 	if (ret)
712 		return ret;
713 
714 	ret = i915_gem_object_pin_pages(obj);
715 	if (ret)
716 		return ret;
717 
718 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
719 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
720 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
721 		if (ret)
722 			goto err_unpin;
723 		else
724 			goto out;
725 	}
726 
727 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
728 
729 	/* If we're not in the cpu write domain, set ourself into the
730 	 * gtt write domain and manually flush cachelines (as required).
731 	 * This optimizes for the case when the gpu will use the data
732 	 * right away and we therefore have to clflush anyway.
733 	 */
734 	if (!obj->cache_dirty) {
735 		*needs_clflush |= CLFLUSH_AFTER;
736 
737 		/*
738 		 * Same trick applies to invalidate partially written
739 		 * cachelines read before writing.
740 		 */
741 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
742 			*needs_clflush |= CLFLUSH_BEFORE;
743 	}
744 
745 out:
746 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
747 	obj->mm.dirty = true;
748 	/* return with the pages pinned */
749 	return 0;
750 
751 err_unpin:
752 	i915_gem_object_unpin_pages(obj);
753 	return ret;
754 }
755