1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 #include <linux/sched/mm.h>
33
34 #include "gem/i915_gem_context.h"
35 #include "gt/intel_breadcrumbs.h"
36 #include "gt/intel_context.h"
37 #include "gt/intel_engine.h"
38 #include "gt/intel_engine_heartbeat.h"
39 #include "gt/intel_engine_regs.h"
40 #include "gt/intel_gpu_commands.h"
41 #include "gt/intel_reset.h"
42 #include "gt/intel_ring.h"
43 #include "gt/intel_rps.h"
44
45 #include "i915_active.h"
46 #include "i915_config.h"
47 #include "i915_deps.h"
48 #include "i915_driver.h"
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "intel_pm.h"
52
53 struct execute_cb {
54 struct irq_work work;
55 struct i915_sw_fence *fence;
56 struct i915_request *signal;
57 };
58
59 static struct kmem_cache *slab_requests;
60 static struct kmem_cache *slab_execute_cbs;
61
i915_fence_get_driver_name(struct dma_fence * fence)62 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
63 {
64 return dev_name(to_request(fence)->i915->drm.dev);
65 }
66
i915_fence_get_timeline_name(struct dma_fence * fence)67 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
68 {
69 const struct i915_gem_context *ctx;
70
71 /*
72 * The timeline struct (as part of the ppgtt underneath a context)
73 * may be freed when the request is no longer in use by the GPU.
74 * We could extend the life of a context to beyond that of all
75 * fences, possibly keeping the hw resource around indefinitely,
76 * or we just give them a false name. Since
77 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
78 * lie seems justifiable.
79 */
80 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
81 return "signaled";
82
83 ctx = i915_request_gem_context(to_request(fence));
84 if (!ctx)
85 return "[" DRIVER_NAME "]";
86
87 return ctx->name;
88 }
89
i915_fence_signaled(struct dma_fence * fence)90 static bool i915_fence_signaled(struct dma_fence *fence)
91 {
92 return i915_request_completed(to_request(fence));
93 }
94
i915_fence_enable_signaling(struct dma_fence * fence)95 static bool i915_fence_enable_signaling(struct dma_fence *fence)
96 {
97 return i915_request_enable_breadcrumb(to_request(fence));
98 }
99
i915_fence_wait(struct dma_fence * fence,bool interruptible,signed long timeout)100 static signed long i915_fence_wait(struct dma_fence *fence,
101 bool interruptible,
102 signed long timeout)
103 {
104 return i915_request_wait_timeout(to_request(fence),
105 interruptible | I915_WAIT_PRIORITY,
106 timeout);
107 }
108
i915_request_slab_cache(void)109 struct kmem_cache *i915_request_slab_cache(void)
110 {
111 return slab_requests;
112 }
113
i915_fence_release(struct dma_fence * fence)114 static void i915_fence_release(struct dma_fence *fence)
115 {
116 struct i915_request *rq = to_request(fence);
117
118 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
119 rq->guc_prio != GUC_PRIO_FINI);
120
121 i915_request_free_capture_list(fetch_and_zero(&rq->capture_list));
122 if (rq->batch_res) {
123 i915_vma_resource_put(rq->batch_res);
124 rq->batch_res = NULL;
125 }
126
127 /*
128 * The request is put onto a RCU freelist (i.e. the address
129 * is immediately reused), mark the fences as being freed now.
130 * Otherwise the debugobjects for the fences are only marked as
131 * freed when the slab cache itself is freed, and so we would get
132 * caught trying to reuse dead objects.
133 */
134 i915_sw_fence_fini(&rq->submit);
135 i915_sw_fence_fini(&rq->semaphore);
136
137 /*
138 * Keep one request on each engine for reserved use under mempressure
139 * do not use with virtual engines as this really is only needed for
140 * kernel contexts.
141 *
142 * We do not hold a reference to the engine here and so have to be
143 * very careful in what rq->engine we poke. The virtual engine is
144 * referenced via the rq->context and we released that ref during
145 * i915_request_retire(), ergo we must not dereference a virtual
146 * engine here. Not that we would want to, as the only consumer of
147 * the reserved engine->request_pool is the power management parking,
148 * which must-not-fail, and that is only run on the physical engines.
149 *
150 * Since the request must have been executed to be have completed,
151 * we know that it will have been processed by the HW and will
152 * not be unsubmitted again, so rq->engine and rq->execution_mask
153 * at this point is stable. rq->execution_mask will be a single
154 * bit if the last and _only_ engine it could execution on was a
155 * physical engine, if it's multiple bits then it started on and
156 * could still be on a virtual engine. Thus if the mask is not a
157 * power-of-two we assume that rq->engine may still be a virtual
158 * engine and so a dangling invalid pointer that we cannot dereference
159 *
160 * For example, consider the flow of a bonded request through a virtual
161 * engine. The request is created with a wide engine mask (all engines
162 * that we might execute on). On processing the bond, the request mask
163 * is reduced to one or more engines. If the request is subsequently
164 * bound to a single engine, it will then be constrained to only
165 * execute on that engine and never returned to the virtual engine
166 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
167 * know that if the rq->execution_mask is a single bit, rq->engine
168 * can be a physical engine with the exact corresponding mask.
169 */
170 if (!intel_engine_is_virtual(rq->engine) &&
171 is_power_of_2(rq->execution_mask) &&
172 !cmpxchg(&rq->engine->request_pool, NULL, rq))
173 return;
174
175 kmem_cache_free(slab_requests, rq);
176 }
177
178 const struct dma_fence_ops i915_fence_ops = {
179 .get_driver_name = i915_fence_get_driver_name,
180 .get_timeline_name = i915_fence_get_timeline_name,
181 .enable_signaling = i915_fence_enable_signaling,
182 .signaled = i915_fence_signaled,
183 .wait = i915_fence_wait,
184 .release = i915_fence_release,
185 };
186
irq_execute_cb(struct irq_work * wrk)187 static void irq_execute_cb(struct irq_work *wrk)
188 {
189 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
190
191 i915_sw_fence_complete(cb->fence);
192 kmem_cache_free(slab_execute_cbs, cb);
193 }
194
195 static __always_inline void
__notify_execute_cb(struct i915_request * rq,bool (* fn)(struct irq_work * wrk))196 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
197 {
198 struct execute_cb *cb, *cn;
199
200 if (llist_empty(&rq->execute_cb))
201 return;
202
203 llist_for_each_entry_safe(cb, cn,
204 llist_del_all(&rq->execute_cb),
205 work.node.llist)
206 fn(&cb->work);
207 }
208
__notify_execute_cb_irq(struct i915_request * rq)209 static void __notify_execute_cb_irq(struct i915_request *rq)
210 {
211 __notify_execute_cb(rq, irq_work_queue);
212 }
213
irq_work_imm(struct irq_work * wrk)214 static bool irq_work_imm(struct irq_work *wrk)
215 {
216 wrk->func(wrk);
217 return false;
218 }
219
i915_request_notify_execute_cb_imm(struct i915_request * rq)220 void i915_request_notify_execute_cb_imm(struct i915_request *rq)
221 {
222 __notify_execute_cb(rq, irq_work_imm);
223 }
224
__i915_request_fill(struct i915_request * rq,u8 val)225 static void __i915_request_fill(struct i915_request *rq, u8 val)
226 {
227 void *vaddr = rq->ring->vaddr;
228 u32 head;
229
230 head = rq->infix;
231 if (rq->postfix < head) {
232 memset(vaddr + head, val, rq->ring->size - head);
233 head = 0;
234 }
235 memset(vaddr + head, val, rq->postfix - head);
236 }
237
238 /**
239 * i915_request_active_engine
240 * @rq: request to inspect
241 * @active: pointer in which to return the active engine
242 *
243 * Fills the currently active engine to the @active pointer if the request
244 * is active and still not completed.
245 *
246 * Returns true if request was active or false otherwise.
247 */
248 bool
i915_request_active_engine(struct i915_request * rq,struct intel_engine_cs ** active)249 i915_request_active_engine(struct i915_request *rq,
250 struct intel_engine_cs **active)
251 {
252 struct intel_engine_cs *engine, *locked;
253 bool ret = false;
254
255 /*
256 * Serialise with __i915_request_submit() so that it sees
257 * is-banned?, or we know the request is already inflight.
258 *
259 * Note that rq->engine is unstable, and so we double
260 * check that we have acquired the lock on the final engine.
261 */
262 locked = READ_ONCE(rq->engine);
263 spin_lock_irq(&locked->sched_engine->lock);
264 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
265 spin_unlock(&locked->sched_engine->lock);
266 locked = engine;
267 spin_lock(&locked->sched_engine->lock);
268 }
269
270 if (i915_request_is_active(rq)) {
271 if (!__i915_request_is_complete(rq))
272 *active = locked;
273 ret = true;
274 }
275
276 spin_unlock_irq(&locked->sched_engine->lock);
277
278 return ret;
279 }
280
__rq_init_watchdog(struct i915_request * rq)281 static void __rq_init_watchdog(struct i915_request *rq)
282 {
283 rq->watchdog.timer.function = NULL;
284 }
285
__rq_watchdog_expired(struct hrtimer * hrtimer)286 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
287 {
288 struct i915_request *rq =
289 container_of(hrtimer, struct i915_request, watchdog.timer);
290 struct intel_gt *gt = rq->engine->gt;
291
292 if (!i915_request_completed(rq)) {
293 if (llist_add(&rq->watchdog.link, >->watchdog.list))
294 schedule_work(>->watchdog.work);
295 } else {
296 i915_request_put(rq);
297 }
298
299 return HRTIMER_NORESTART;
300 }
301
__rq_arm_watchdog(struct i915_request * rq)302 static void __rq_arm_watchdog(struct i915_request *rq)
303 {
304 struct i915_request_watchdog *wdg = &rq->watchdog;
305 struct intel_context *ce = rq->context;
306
307 if (!ce->watchdog.timeout_us)
308 return;
309
310 i915_request_get(rq);
311
312 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
313 wdg->timer.function = __rq_watchdog_expired;
314 hrtimer_start_range_ns(&wdg->timer,
315 ns_to_ktime(ce->watchdog.timeout_us *
316 NSEC_PER_USEC),
317 NSEC_PER_MSEC,
318 HRTIMER_MODE_REL);
319 }
320
__rq_cancel_watchdog(struct i915_request * rq)321 static void __rq_cancel_watchdog(struct i915_request *rq)
322 {
323 struct i915_request_watchdog *wdg = &rq->watchdog;
324
325 if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
326 i915_request_put(rq);
327 }
328
329 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
330
331 /**
332 * i915_request_free_capture_list - Free a capture list
333 * @capture: Pointer to the first list item or NULL
334 *
335 */
i915_request_free_capture_list(struct i915_capture_list * capture)336 void i915_request_free_capture_list(struct i915_capture_list *capture)
337 {
338 while (capture) {
339 struct i915_capture_list *next = capture->next;
340
341 i915_vma_resource_put(capture->vma_res);
342 kfree(capture);
343 capture = next;
344 }
345 }
346
347 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list)
348
349 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL)
350
351 #else
352
353 #define i915_request_free_capture_list(_a) do {} while (0)
354
355 #define assert_capture_list_is_null(_a) do {} while (0)
356
357 #define clear_capture_list(_rq) do {} while (0)
358
359 #endif
360
i915_request_retire(struct i915_request * rq)361 bool i915_request_retire(struct i915_request *rq)
362 {
363 if (!__i915_request_is_complete(rq))
364 return false;
365
366 RQ_TRACE(rq, "\n");
367
368 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
369 trace_i915_request_retire(rq);
370 i915_request_mark_complete(rq);
371
372 __rq_cancel_watchdog(rq);
373
374 /*
375 * We know the GPU must have read the request to have
376 * sent us the seqno + interrupt, so use the position
377 * of tail of the request to update the last known position
378 * of the GPU head.
379 *
380 * Note this requires that we are always called in request
381 * completion order.
382 */
383 GEM_BUG_ON(!list_is_first(&rq->link,
384 &i915_request_timeline(rq)->requests));
385 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
386 /* Poison before we release our space in the ring */
387 __i915_request_fill(rq, POISON_FREE);
388 rq->ring->head = rq->postfix;
389
390 if (!i915_request_signaled(rq)) {
391 spin_lock_irq(&rq->lock);
392 dma_fence_signal_locked(&rq->fence);
393 spin_unlock_irq(&rq->lock);
394 }
395
396 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
397 intel_rps_dec_waiters(&rq->engine->gt->rps);
398
399 /*
400 * We only loosely track inflight requests across preemption,
401 * and so we may find ourselves attempting to retire a _completed_
402 * request that we have removed from the HW and put back on a run
403 * queue.
404 *
405 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
406 * after removing the breadcrumb and signaling it, so that we do not
407 * inadvertently attach the breadcrumb to a completed request.
408 */
409 rq->engine->remove_active_request(rq);
410 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
411
412 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
413
414 intel_context_exit(rq->context);
415 intel_context_unpin(rq->context);
416
417 i915_sched_node_fini(&rq->sched);
418 i915_request_put(rq);
419
420 return true;
421 }
422
i915_request_retire_upto(struct i915_request * rq)423 void i915_request_retire_upto(struct i915_request *rq)
424 {
425 struct intel_timeline * const tl = i915_request_timeline(rq);
426 struct i915_request *tmp;
427
428 RQ_TRACE(rq, "\n");
429 GEM_BUG_ON(!__i915_request_is_complete(rq));
430
431 do {
432 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
433 GEM_BUG_ON(!i915_request_completed(tmp));
434 } while (i915_request_retire(tmp) && tmp != rq);
435 }
436
437 static struct i915_request * const *
__engine_active(struct intel_engine_cs * engine)438 __engine_active(struct intel_engine_cs *engine)
439 {
440 return READ_ONCE(engine->execlists.active);
441 }
442
__request_in_flight(const struct i915_request * signal)443 static bool __request_in_flight(const struct i915_request *signal)
444 {
445 struct i915_request * const *port, *rq;
446 bool inflight = false;
447
448 if (!i915_request_is_ready(signal))
449 return false;
450
451 /*
452 * Even if we have unwound the request, it may still be on
453 * the GPU (preempt-to-busy). If that request is inside an
454 * unpreemptible critical section, it will not be removed. Some
455 * GPU functions may even be stuck waiting for the paired request
456 * (__await_execution) to be submitted and cannot be preempted
457 * until the bond is executing.
458 *
459 * As we know that there are always preemption points between
460 * requests, we know that only the currently executing request
461 * may be still active even though we have cleared the flag.
462 * However, we can't rely on our tracking of ELSP[0] to know
463 * which request is currently active and so maybe stuck, as
464 * the tracking maybe an event behind. Instead assume that
465 * if the context is still inflight, then it is still active
466 * even if the active flag has been cleared.
467 *
468 * To further complicate matters, if there a pending promotion, the HW
469 * may either perform a context switch to the second inflight execlists,
470 * or it may switch to the pending set of execlists. In the case of the
471 * latter, it may send the ACK and we process the event copying the
472 * pending[] over top of inflight[], _overwriting_ our *active. Since
473 * this implies the HW is arbitrating and not struck in *active, we do
474 * not worry about complete accuracy, but we do require no read/write
475 * tearing of the pointer [the read of the pointer must be valid, even
476 * as the array is being overwritten, for which we require the writes
477 * to avoid tearing.]
478 *
479 * Note that the read of *execlists->active may race with the promotion
480 * of execlists->pending[] to execlists->inflight[], overwritting
481 * the value at *execlists->active. This is fine. The promotion implies
482 * that we received an ACK from the HW, and so the context is not
483 * stuck -- if we do not see ourselves in *active, the inflight status
484 * is valid. If instead we see ourselves being copied into *active,
485 * we are inflight and may signal the callback.
486 */
487 if (!intel_context_inflight(signal->context))
488 return false;
489
490 rcu_read_lock();
491 for (port = __engine_active(signal->engine);
492 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
493 port++) {
494 if (rq->context == signal->context) {
495 inflight = i915_seqno_passed(rq->fence.seqno,
496 signal->fence.seqno);
497 break;
498 }
499 }
500 rcu_read_unlock();
501
502 return inflight;
503 }
504
505 static int
__await_execution(struct i915_request * rq,struct i915_request * signal,gfp_t gfp)506 __await_execution(struct i915_request *rq,
507 struct i915_request *signal,
508 gfp_t gfp)
509 {
510 struct execute_cb *cb;
511
512 if (i915_request_is_active(signal))
513 return 0;
514
515 cb = kmem_cache_alloc(slab_execute_cbs, gfp);
516 if (!cb)
517 return -ENOMEM;
518
519 cb->fence = &rq->submit;
520 i915_sw_fence_await(cb->fence);
521 init_irq_work(&cb->work, irq_execute_cb);
522
523 /*
524 * Register the callback first, then see if the signaler is already
525 * active. This ensures that if we race with the
526 * __notify_execute_cb from i915_request_submit() and we are not
527 * included in that list, we get a second bite of the cherry and
528 * execute it ourselves. After this point, a future
529 * i915_request_submit() will notify us.
530 *
531 * In i915_request_retire() we set the ACTIVE bit on a completed
532 * request (then flush the execute_cb). So by registering the
533 * callback first, then checking the ACTIVE bit, we serialise with
534 * the completed/retired request.
535 */
536 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
537 if (i915_request_is_active(signal) ||
538 __request_in_flight(signal))
539 i915_request_notify_execute_cb_imm(signal);
540 }
541
542 return 0;
543 }
544
fatal_error(int error)545 static bool fatal_error(int error)
546 {
547 switch (error) {
548 case 0: /* not an error! */
549 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
550 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
551 return false;
552 default:
553 return true;
554 }
555 }
556
__i915_request_skip(struct i915_request * rq)557 void __i915_request_skip(struct i915_request *rq)
558 {
559 GEM_BUG_ON(!fatal_error(rq->fence.error));
560
561 if (rq->infix == rq->postfix)
562 return;
563
564 RQ_TRACE(rq, "error: %d\n", rq->fence.error);
565
566 /*
567 * As this request likely depends on state from the lost
568 * context, clear out all the user operations leaving the
569 * breadcrumb at the end (so we get the fence notifications).
570 */
571 __i915_request_fill(rq, 0);
572 rq->infix = rq->postfix;
573 }
574
i915_request_set_error_once(struct i915_request * rq,int error)575 bool i915_request_set_error_once(struct i915_request *rq, int error)
576 {
577 int old;
578
579 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
580
581 if (i915_request_signaled(rq))
582 return false;
583
584 old = READ_ONCE(rq->fence.error);
585 do {
586 if (fatal_error(old))
587 return false;
588 } while (!try_cmpxchg(&rq->fence.error, &old, error));
589
590 return true;
591 }
592
i915_request_mark_eio(struct i915_request * rq)593 struct i915_request *i915_request_mark_eio(struct i915_request *rq)
594 {
595 if (__i915_request_is_complete(rq))
596 return NULL;
597
598 GEM_BUG_ON(i915_request_signaled(rq));
599
600 /* As soon as the request is completed, it may be retired */
601 rq = i915_request_get(rq);
602
603 i915_request_set_error_once(rq, -EIO);
604 i915_request_mark_complete(rq);
605
606 return rq;
607 }
608
__i915_request_submit(struct i915_request * request)609 bool __i915_request_submit(struct i915_request *request)
610 {
611 struct intel_engine_cs *engine = request->engine;
612 bool result = false;
613
614 RQ_TRACE(request, "\n");
615
616 GEM_BUG_ON(!irqs_disabled());
617 lockdep_assert_held(&engine->sched_engine->lock);
618
619 /*
620 * With the advent of preempt-to-busy, we frequently encounter
621 * requests that we have unsubmitted from HW, but left running
622 * until the next ack and so have completed in the meantime. On
623 * resubmission of that completed request, we can skip
624 * updating the payload, and execlists can even skip submitting
625 * the request.
626 *
627 * We must remove the request from the caller's priority queue,
628 * and the caller must only call us when the request is in their
629 * priority queue, under the sched_engine->lock. This ensures that the
630 * request has *not* yet been retired and we can safely move
631 * the request into the engine->active.list where it will be
632 * dropped upon retiring. (Otherwise if resubmit a *retired*
633 * request, this would be a horrible use-after-free.)
634 */
635 if (__i915_request_is_complete(request)) {
636 list_del_init(&request->sched.link);
637 goto active;
638 }
639
640 if (unlikely(!intel_context_is_schedulable(request->context)))
641 i915_request_set_error_once(request, -EIO);
642
643 if (unlikely(fatal_error(request->fence.error)))
644 __i915_request_skip(request);
645
646 /*
647 * Are we using semaphores when the gpu is already saturated?
648 *
649 * Using semaphores incurs a cost in having the GPU poll a
650 * memory location, busywaiting for it to change. The continual
651 * memory reads can have a noticeable impact on the rest of the
652 * system with the extra bus traffic, stalling the cpu as it too
653 * tries to access memory across the bus (perf stat -e bus-cycles).
654 *
655 * If we installed a semaphore on this request and we only submit
656 * the request after the signaler completed, that indicates the
657 * system is overloaded and using semaphores at this time only
658 * increases the amount of work we are doing. If so, we disable
659 * further use of semaphores until we are idle again, whence we
660 * optimistically try again.
661 */
662 if (request->sched.semaphores &&
663 i915_sw_fence_signaled(&request->semaphore))
664 engine->saturated |= request->sched.semaphores;
665
666 engine->emit_fini_breadcrumb(request,
667 request->ring->vaddr + request->postfix);
668
669 trace_i915_request_execute(request);
670 if (engine->bump_serial)
671 engine->bump_serial(engine);
672 else
673 engine->serial++;
674
675 result = true;
676
677 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
678 engine->add_active_request(request);
679 active:
680 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
681 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
682
683 /*
684 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
685 *
686 * In the future, perhaps when we have an active time-slicing scheduler,
687 * it will be interesting to unsubmit parallel execution and remove
688 * busywaits from the GPU until their master is restarted. This is
689 * quite hairy, we have to carefully rollback the fence and do a
690 * preempt-to-idle cycle on the target engine, all the while the
691 * master execute_cb may refire.
692 */
693 __notify_execute_cb_irq(request);
694
695 /* We may be recursing from the signal callback of another i915 fence */
696 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
697 i915_request_enable_breadcrumb(request);
698
699 return result;
700 }
701
i915_request_submit(struct i915_request * request)702 void i915_request_submit(struct i915_request *request)
703 {
704 struct intel_engine_cs *engine = request->engine;
705 unsigned long flags;
706
707 /* Will be called from irq-context when using foreign fences. */
708 spin_lock_irqsave(&engine->sched_engine->lock, flags);
709
710 __i915_request_submit(request);
711
712 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
713 }
714
__i915_request_unsubmit(struct i915_request * request)715 void __i915_request_unsubmit(struct i915_request *request)
716 {
717 struct intel_engine_cs *engine = request->engine;
718
719 /*
720 * Only unwind in reverse order, required so that the per-context list
721 * is kept in seqno/ring order.
722 */
723 RQ_TRACE(request, "\n");
724
725 GEM_BUG_ON(!irqs_disabled());
726 lockdep_assert_held(&engine->sched_engine->lock);
727
728 /*
729 * Before we remove this breadcrumb from the signal list, we have
730 * to ensure that a concurrent dma_fence_enable_signaling() does not
731 * attach itself. We first mark the request as no longer active and
732 * make sure that is visible to other cores, and then remove the
733 * breadcrumb if attached.
734 */
735 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
736 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
737 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
738 i915_request_cancel_breadcrumb(request);
739
740 /* We've already spun, don't charge on resubmitting. */
741 if (request->sched.semaphores && __i915_request_has_started(request))
742 request->sched.semaphores = 0;
743
744 /*
745 * We don't need to wake_up any waiters on request->execute, they
746 * will get woken by any other event or us re-adding this request
747 * to the engine timeline (__i915_request_submit()). The waiters
748 * should be quite adapt at finding that the request now has a new
749 * global_seqno to the one they went to sleep on.
750 */
751 }
752
i915_request_unsubmit(struct i915_request * request)753 void i915_request_unsubmit(struct i915_request *request)
754 {
755 struct intel_engine_cs *engine = request->engine;
756 unsigned long flags;
757
758 /* Will be called from irq-context when using foreign fences. */
759 spin_lock_irqsave(&engine->sched_engine->lock, flags);
760
761 __i915_request_unsubmit(request);
762
763 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
764 }
765
i915_request_cancel(struct i915_request * rq,int error)766 void i915_request_cancel(struct i915_request *rq, int error)
767 {
768 if (!i915_request_set_error_once(rq, error))
769 return;
770
771 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
772
773 intel_context_cancel_request(rq->context, rq);
774 }
775
776 static int
submit_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)777 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
778 {
779 struct i915_request *request =
780 container_of(fence, typeof(*request), submit);
781
782 switch (state) {
783 case FENCE_COMPLETE:
784 trace_i915_request_submit(request);
785
786 if (unlikely(fence->error))
787 i915_request_set_error_once(request, fence->error);
788 else
789 __rq_arm_watchdog(request);
790
791 /*
792 * We need to serialize use of the submit_request() callback
793 * with its hotplugging performed during an emergency
794 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
795 * critical section in order to force i915_gem_set_wedged() to
796 * wait until the submit_request() is completed before
797 * proceeding.
798 */
799 rcu_read_lock();
800 request->engine->submit_request(request);
801 rcu_read_unlock();
802 break;
803
804 case FENCE_FREE:
805 i915_request_put(request);
806 break;
807 }
808
809 return NOTIFY_DONE;
810 }
811
812 static int
semaphore_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)813 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
814 {
815 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
816
817 switch (state) {
818 case FENCE_COMPLETE:
819 break;
820
821 case FENCE_FREE:
822 i915_request_put(rq);
823 break;
824 }
825
826 return NOTIFY_DONE;
827 }
828
retire_requests(struct intel_timeline * tl)829 static void retire_requests(struct intel_timeline *tl)
830 {
831 struct i915_request *rq, *rn;
832
833 list_for_each_entry_safe(rq, rn, &tl->requests, link)
834 if (!i915_request_retire(rq))
835 break;
836 }
837
838 static noinline struct i915_request *
request_alloc_slow(struct intel_timeline * tl,struct i915_request ** rsvd,gfp_t gfp)839 request_alloc_slow(struct intel_timeline *tl,
840 struct i915_request **rsvd,
841 gfp_t gfp)
842 {
843 struct i915_request *rq;
844
845 /* If we cannot wait, dip into our reserves */
846 if (!gfpflags_allow_blocking(gfp)) {
847 rq = xchg(rsvd, NULL);
848 if (!rq) /* Use the normal failure path for one final WARN */
849 goto out;
850
851 return rq;
852 }
853
854 if (list_empty(&tl->requests))
855 goto out;
856
857 /* Move our oldest request to the slab-cache (if not in use!) */
858 rq = list_first_entry(&tl->requests, typeof(*rq), link);
859 i915_request_retire(rq);
860
861 rq = kmem_cache_alloc(slab_requests,
862 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
863 if (rq)
864 return rq;
865
866 /* Ratelimit ourselves to prevent oom from malicious clients */
867 rq = list_last_entry(&tl->requests, typeof(*rq), link);
868 cond_synchronize_rcu(rq->rcustate);
869
870 /* Retire our old requests in the hope that we free some */
871 retire_requests(tl);
872
873 out:
874 return kmem_cache_alloc(slab_requests, gfp);
875 }
876
__i915_request_ctor(void * arg)877 static void __i915_request_ctor(void *arg)
878 {
879 struct i915_request *rq = arg;
880
881 spin_lock_init(&rq->lock);
882 i915_sched_node_init(&rq->sched);
883 i915_sw_fence_init(&rq->submit, submit_notify);
884 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
885
886 clear_capture_list(rq);
887 rq->batch_res = NULL;
888
889 init_llist_head(&rq->execute_cb);
890 }
891
892 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
893 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL)
894 #else
895 #define clear_batch_ptr(_a) do {} while (0)
896 #endif
897
898 struct i915_request *
__i915_request_create(struct intel_context * ce,gfp_t gfp)899 __i915_request_create(struct intel_context *ce, gfp_t gfp)
900 {
901 struct intel_timeline *tl = ce->timeline;
902 struct i915_request *rq;
903 u32 seqno;
904 int ret;
905
906 might_alloc(gfp);
907
908 /* Check that the caller provided an already pinned context */
909 __intel_context_pin(ce);
910
911 /*
912 * Beware: Dragons be flying overhead.
913 *
914 * We use RCU to look up requests in flight. The lookups may
915 * race with the request being allocated from the slab freelist.
916 * That is the request we are writing to here, may be in the process
917 * of being read by __i915_active_request_get_rcu(). As such,
918 * we have to be very careful when overwriting the contents. During
919 * the RCU lookup, we change chase the request->engine pointer,
920 * read the request->global_seqno and increment the reference count.
921 *
922 * The reference count is incremented atomically. If it is zero,
923 * the lookup knows the request is unallocated and complete. Otherwise,
924 * it is either still in use, or has been reallocated and reset
925 * with dma_fence_init(). This increment is safe for release as we
926 * check that the request we have a reference to and matches the active
927 * request.
928 *
929 * Before we increment the refcount, we chase the request->engine
930 * pointer. We must not call kmem_cache_zalloc() or else we set
931 * that pointer to NULL and cause a crash during the lookup. If
932 * we see the request is completed (based on the value of the
933 * old engine and seqno), the lookup is complete and reports NULL.
934 * If we decide the request is not completed (new engine or seqno),
935 * then we grab a reference and double check that it is still the
936 * active request - which it won't be and restart the lookup.
937 *
938 * Do not use kmem_cache_zalloc() here!
939 */
940 rq = kmem_cache_alloc(slab_requests,
941 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
942 if (unlikely(!rq)) {
943 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
944 if (!rq) {
945 ret = -ENOMEM;
946 goto err_unreserve;
947 }
948 }
949
950 rq->context = ce;
951 rq->engine = ce->engine;
952 rq->ring = ce->ring;
953 rq->execution_mask = ce->engine->mask;
954 rq->i915 = ce->engine->i915;
955
956 ret = intel_timeline_get_seqno(tl, rq, &seqno);
957 if (ret)
958 goto err_free;
959
960 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
961 tl->fence_context, seqno);
962
963 RCU_INIT_POINTER(rq->timeline, tl);
964 rq->hwsp_seqno = tl->hwsp_seqno;
965 GEM_BUG_ON(__i915_request_is_complete(rq));
966
967 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
968
969 rq->guc_prio = GUC_PRIO_INIT;
970
971 /* We bump the ref for the fence chain */
972 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
973 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
974
975 i915_sched_node_reinit(&rq->sched);
976
977 /* No zalloc, everything must be cleared after use */
978 clear_batch_ptr(rq);
979 __rq_init_watchdog(rq);
980 assert_capture_list_is_null(rq);
981 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
982 GEM_BUG_ON(rq->batch_res);
983
984 /*
985 * Reserve space in the ring buffer for all the commands required to
986 * eventually emit this request. This is to guarantee that the
987 * i915_request_add() call can't fail. Note that the reserve may need
988 * to be redone if the request is not actually submitted straight
989 * away, e.g. because a GPU scheduler has deferred it.
990 *
991 * Note that due to how we add reserved_space to intel_ring_begin()
992 * we need to double our request to ensure that if we need to wrap
993 * around inside i915_request_add() there is sufficient space at
994 * the beginning of the ring as well.
995 */
996 rq->reserved_space =
997 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
998
999 /*
1000 * Record the position of the start of the request so that
1001 * should we detect the updated seqno part-way through the
1002 * GPU processing the request, we never over-estimate the
1003 * position of the head.
1004 */
1005 rq->head = rq->ring->emit;
1006
1007 ret = rq->engine->request_alloc(rq);
1008 if (ret)
1009 goto err_unwind;
1010
1011 rq->infix = rq->ring->emit; /* end of header; start of user payload */
1012
1013 intel_context_mark_active(ce);
1014 list_add_tail_rcu(&rq->link, &tl->requests);
1015
1016 return rq;
1017
1018 err_unwind:
1019 ce->ring->emit = rq->head;
1020
1021 /* Make sure we didn't add ourselves to external state before freeing */
1022 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
1023 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1024
1025 err_free:
1026 kmem_cache_free(slab_requests, rq);
1027 err_unreserve:
1028 intel_context_unpin(ce);
1029 return ERR_PTR(ret);
1030 }
1031
1032 struct i915_request *
i915_request_create(struct intel_context * ce)1033 i915_request_create(struct intel_context *ce)
1034 {
1035 struct i915_request *rq;
1036 struct intel_timeline *tl;
1037
1038 tl = intel_context_timeline_lock(ce);
1039 if (IS_ERR(tl))
1040 return ERR_CAST(tl);
1041
1042 /* Move our oldest request to the slab-cache (if not in use!) */
1043 rq = list_first_entry(&tl->requests, typeof(*rq), link);
1044 if (!list_is_last(&rq->link, &tl->requests))
1045 i915_request_retire(rq);
1046
1047 intel_context_enter(ce);
1048 rq = __i915_request_create(ce, GFP_KERNEL);
1049 intel_context_exit(ce); /* active reference transferred to request */
1050 if (IS_ERR(rq))
1051 goto err_unlock;
1052
1053 /* Check that we do not interrupt ourselves with a new request */
1054 rq->cookie = lockdep_pin_lock(&tl->mutex);
1055
1056 return rq;
1057
1058 err_unlock:
1059 intel_context_timeline_unlock(tl);
1060 return rq;
1061 }
1062
1063 static int
i915_request_await_start(struct i915_request * rq,struct i915_request * signal)1064 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1065 {
1066 struct dma_fence *fence;
1067 int err;
1068
1069 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1070 return 0;
1071
1072 if (i915_request_started(signal))
1073 return 0;
1074
1075 /*
1076 * The caller holds a reference on @signal, but we do not serialise
1077 * against it being retired and removed from the lists.
1078 *
1079 * We do not hold a reference to the request before @signal, and
1080 * so must be very careful to ensure that it is not _recycled_ as
1081 * we follow the link backwards.
1082 */
1083 fence = NULL;
1084 rcu_read_lock();
1085 do {
1086 struct list_head *pos = READ_ONCE(signal->link.prev);
1087 struct i915_request *prev;
1088
1089 /* Confirm signal has not been retired, the link is valid */
1090 if (unlikely(__i915_request_has_started(signal)))
1091 break;
1092
1093 /* Is signal the earliest request on its timeline? */
1094 if (pos == &rcu_dereference(signal->timeline)->requests)
1095 break;
1096
1097 /*
1098 * Peek at the request before us in the timeline. That
1099 * request will only be valid before it is retired, so
1100 * after acquiring a reference to it, confirm that it is
1101 * still part of the signaler's timeline.
1102 */
1103 prev = list_entry(pos, typeof(*prev), link);
1104 if (!i915_request_get_rcu(prev))
1105 break;
1106
1107 /* After the strong barrier, confirm prev is still attached */
1108 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1109 i915_request_put(prev);
1110 break;
1111 }
1112
1113 fence = &prev->fence;
1114 } while (0);
1115 rcu_read_unlock();
1116 if (!fence)
1117 return 0;
1118
1119 err = 0;
1120 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1121 err = i915_sw_fence_await_dma_fence(&rq->submit,
1122 fence, 0,
1123 I915_FENCE_GFP);
1124 dma_fence_put(fence);
1125
1126 return err;
1127 }
1128
1129 static intel_engine_mask_t
already_busywaiting(struct i915_request * rq)1130 already_busywaiting(struct i915_request *rq)
1131 {
1132 /*
1133 * Polling a semaphore causes bus traffic, delaying other users of
1134 * both the GPU and CPU. We want to limit the impact on others,
1135 * while taking advantage of early submission to reduce GPU
1136 * latency. Therefore we restrict ourselves to not using more
1137 * than one semaphore from each source, and not using a semaphore
1138 * if we have detected the engine is saturated (i.e. would not be
1139 * submitted early and cause bus traffic reading an already passed
1140 * semaphore).
1141 *
1142 * See the are-we-too-late? check in __i915_request_submit().
1143 */
1144 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1145 }
1146
1147 static int
__emit_semaphore_wait(struct i915_request * to,struct i915_request * from,u32 seqno)1148 __emit_semaphore_wait(struct i915_request *to,
1149 struct i915_request *from,
1150 u32 seqno)
1151 {
1152 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1153 u32 hwsp_offset;
1154 int len, err;
1155 u32 *cs;
1156
1157 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1158 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1159
1160 /* We need to pin the signaler's HWSP until we are finished reading. */
1161 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1162 if (err)
1163 return err;
1164
1165 len = 4;
1166 if (has_token)
1167 len += 2;
1168
1169 cs = intel_ring_begin(to, len);
1170 if (IS_ERR(cs))
1171 return PTR_ERR(cs);
1172
1173 /*
1174 * Using greater-than-or-equal here means we have to worry
1175 * about seqno wraparound. To side step that issue, we swap
1176 * the timeline HWSP upon wrapping, so that everyone listening
1177 * for the old (pre-wrap) values do not see the much smaller
1178 * (post-wrap) values than they were expecting (and so wait
1179 * forever).
1180 */
1181 *cs++ = (MI_SEMAPHORE_WAIT |
1182 MI_SEMAPHORE_GLOBAL_GTT |
1183 MI_SEMAPHORE_POLL |
1184 MI_SEMAPHORE_SAD_GTE_SDD) +
1185 has_token;
1186 *cs++ = seqno;
1187 *cs++ = hwsp_offset;
1188 *cs++ = 0;
1189 if (has_token) {
1190 *cs++ = 0;
1191 *cs++ = MI_NOOP;
1192 }
1193
1194 intel_ring_advance(to, cs);
1195 return 0;
1196 }
1197
1198 static bool
can_use_semaphore_wait(struct i915_request * to,struct i915_request * from)1199 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1200 {
1201 return to->engine->gt->ggtt == from->engine->gt->ggtt;
1202 }
1203
1204 static int
emit_semaphore_wait(struct i915_request * to,struct i915_request * from,gfp_t gfp)1205 emit_semaphore_wait(struct i915_request *to,
1206 struct i915_request *from,
1207 gfp_t gfp)
1208 {
1209 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1210 struct i915_sw_fence *wait = &to->submit;
1211
1212 if (!can_use_semaphore_wait(to, from))
1213 goto await_fence;
1214
1215 if (!intel_context_use_semaphores(to->context))
1216 goto await_fence;
1217
1218 if (i915_request_has_initial_breadcrumb(to))
1219 goto await_fence;
1220
1221 /*
1222 * If this or its dependents are waiting on an external fence
1223 * that may fail catastrophically, then we want to avoid using
1224 * sempahores as they bypass the fence signaling metadata, and we
1225 * lose the fence->error propagation.
1226 */
1227 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1228 goto await_fence;
1229
1230 /* Just emit the first semaphore we see as request space is limited. */
1231 if (already_busywaiting(to) & mask)
1232 goto await_fence;
1233
1234 if (i915_request_await_start(to, from) < 0)
1235 goto await_fence;
1236
1237 /* Only submit our spinner after the signaler is running! */
1238 if (__await_execution(to, from, gfp))
1239 goto await_fence;
1240
1241 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1242 goto await_fence;
1243
1244 to->sched.semaphores |= mask;
1245 wait = &to->semaphore;
1246
1247 await_fence:
1248 return i915_sw_fence_await_dma_fence(wait,
1249 &from->fence, 0,
1250 I915_FENCE_GFP);
1251 }
1252
intel_timeline_sync_has_start(struct intel_timeline * tl,struct dma_fence * fence)1253 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1254 struct dma_fence *fence)
1255 {
1256 return __intel_timeline_sync_is_later(tl,
1257 fence->context,
1258 fence->seqno - 1);
1259 }
1260
intel_timeline_sync_set_start(struct intel_timeline * tl,const struct dma_fence * fence)1261 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1262 const struct dma_fence *fence)
1263 {
1264 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1265 }
1266
1267 static int
__i915_request_await_execution(struct i915_request * to,struct i915_request * from)1268 __i915_request_await_execution(struct i915_request *to,
1269 struct i915_request *from)
1270 {
1271 int err;
1272
1273 GEM_BUG_ON(intel_context_is_barrier(from->context));
1274
1275 /* Submit both requests at the same time */
1276 err = __await_execution(to, from, I915_FENCE_GFP);
1277 if (err)
1278 return err;
1279
1280 /* Squash repeated depenendices to the same timelines */
1281 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1282 &from->fence))
1283 return 0;
1284
1285 /*
1286 * Wait until the start of this request.
1287 *
1288 * The execution cb fires when we submit the request to HW. But in
1289 * many cases this may be long before the request itself is ready to
1290 * run (consider that we submit 2 requests for the same context, where
1291 * the request of interest is behind an indefinite spinner). So we hook
1292 * up to both to reduce our queues and keep the execution lag minimised
1293 * in the worst case, though we hope that the await_start is elided.
1294 */
1295 err = i915_request_await_start(to, from);
1296 if (err < 0)
1297 return err;
1298
1299 /*
1300 * Ensure both start together [after all semaphores in signal]
1301 *
1302 * Now that we are queued to the HW at roughly the same time (thanks
1303 * to the execute cb) and are ready to run at roughly the same time
1304 * (thanks to the await start), our signaler may still be indefinitely
1305 * delayed by waiting on a semaphore from a remote engine. If our
1306 * signaler depends on a semaphore, so indirectly do we, and we do not
1307 * want to start our payload until our signaler also starts theirs.
1308 * So we wait.
1309 *
1310 * However, there is also a second condition for which we need to wait
1311 * for the precise start of the signaler. Consider that the signaler
1312 * was submitted in a chain of requests following another context
1313 * (with just an ordinary intra-engine fence dependency between the
1314 * two). In this case the signaler is queued to HW, but not for
1315 * immediate execution, and so we must wait until it reaches the
1316 * active slot.
1317 */
1318 if (can_use_semaphore_wait(to, from) &&
1319 intel_engine_has_semaphores(to->engine) &&
1320 !i915_request_has_initial_breadcrumb(to)) {
1321 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1322 if (err < 0)
1323 return err;
1324 }
1325
1326 /* Couple the dependency tree for PI on this exposed to->fence */
1327 if (to->engine->sched_engine->schedule) {
1328 err = i915_sched_node_add_dependency(&to->sched,
1329 &from->sched,
1330 I915_DEPENDENCY_WEAK);
1331 if (err < 0)
1332 return err;
1333 }
1334
1335 return intel_timeline_sync_set_start(i915_request_timeline(to),
1336 &from->fence);
1337 }
1338
mark_external(struct i915_request * rq)1339 static void mark_external(struct i915_request *rq)
1340 {
1341 /*
1342 * The downside of using semaphores is that we lose metadata passing
1343 * along the signaling chain. This is particularly nasty when we
1344 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1345 * fatal errors we want to scrub the request before it is executed,
1346 * which means that we cannot preload the request onto HW and have
1347 * it wait upon a semaphore.
1348 */
1349 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1350 }
1351
1352 static int
__i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1353 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1354 {
1355 mark_external(rq);
1356 return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1357 i915_fence_context_timeout(rq->engine->i915,
1358 fence->context),
1359 I915_FENCE_GFP);
1360 }
1361
1362 static int
i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1363 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1364 {
1365 struct dma_fence *iter;
1366 int err = 0;
1367
1368 if (!to_dma_fence_chain(fence))
1369 return __i915_request_await_external(rq, fence);
1370
1371 dma_fence_chain_for_each(iter, fence) {
1372 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1373
1374 if (!dma_fence_is_i915(chain->fence)) {
1375 err = __i915_request_await_external(rq, iter);
1376 break;
1377 }
1378
1379 err = i915_request_await_dma_fence(rq, chain->fence);
1380 if (err < 0)
1381 break;
1382 }
1383
1384 dma_fence_put(iter);
1385 return err;
1386 }
1387
is_parallel_rq(struct i915_request * rq)1388 static inline bool is_parallel_rq(struct i915_request *rq)
1389 {
1390 return intel_context_is_parallel(rq->context);
1391 }
1392
request_to_parent(struct i915_request * rq)1393 static inline struct intel_context *request_to_parent(struct i915_request *rq)
1394 {
1395 return intel_context_to_parent(rq->context);
1396 }
1397
is_same_parallel_context(struct i915_request * to,struct i915_request * from)1398 static bool is_same_parallel_context(struct i915_request *to,
1399 struct i915_request *from)
1400 {
1401 if (is_parallel_rq(to))
1402 return request_to_parent(to) == request_to_parent(from);
1403
1404 return false;
1405 }
1406
1407 int
i915_request_await_execution(struct i915_request * rq,struct dma_fence * fence)1408 i915_request_await_execution(struct i915_request *rq,
1409 struct dma_fence *fence)
1410 {
1411 struct dma_fence **child = &fence;
1412 unsigned int nchild = 1;
1413 int ret;
1414
1415 if (dma_fence_is_array(fence)) {
1416 struct dma_fence_array *array = to_dma_fence_array(fence);
1417
1418 /* XXX Error for signal-on-any fence arrays */
1419
1420 child = array->fences;
1421 nchild = array->num_fences;
1422 GEM_BUG_ON(!nchild);
1423 }
1424
1425 do {
1426 fence = *child++;
1427 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1428 continue;
1429
1430 if (fence->context == rq->fence.context)
1431 continue;
1432
1433 /*
1434 * We don't squash repeated fence dependencies here as we
1435 * want to run our callback in all cases.
1436 */
1437
1438 if (dma_fence_is_i915(fence)) {
1439 if (is_same_parallel_context(rq, to_request(fence)))
1440 continue;
1441 ret = __i915_request_await_execution(rq,
1442 to_request(fence));
1443 } else {
1444 ret = i915_request_await_external(rq, fence);
1445 }
1446 if (ret < 0)
1447 return ret;
1448 } while (--nchild);
1449
1450 return 0;
1451 }
1452
1453 static int
await_request_submit(struct i915_request * to,struct i915_request * from)1454 await_request_submit(struct i915_request *to, struct i915_request *from)
1455 {
1456 /*
1457 * If we are waiting on a virtual engine, then it may be
1458 * constrained to execute on a single engine *prior* to submission.
1459 * When it is submitted, it will be first submitted to the virtual
1460 * engine and then passed to the physical engine. We cannot allow
1461 * the waiter to be submitted immediately to the physical engine
1462 * as it may then bypass the virtual request.
1463 */
1464 if (to->engine == READ_ONCE(from->engine))
1465 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1466 &from->submit,
1467 I915_FENCE_GFP);
1468 else
1469 return __i915_request_await_execution(to, from);
1470 }
1471
1472 static int
i915_request_await_request(struct i915_request * to,struct i915_request * from)1473 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1474 {
1475 int ret;
1476
1477 GEM_BUG_ON(to == from);
1478 GEM_BUG_ON(to->timeline == from->timeline);
1479
1480 if (i915_request_completed(from)) {
1481 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1482 return 0;
1483 }
1484
1485 if (to->engine->sched_engine->schedule) {
1486 ret = i915_sched_node_add_dependency(&to->sched,
1487 &from->sched,
1488 I915_DEPENDENCY_EXTERNAL);
1489 if (ret < 0)
1490 return ret;
1491 }
1492
1493 if (!intel_engine_uses_guc(to->engine) &&
1494 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1495 ret = await_request_submit(to, from);
1496 else
1497 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1498 if (ret < 0)
1499 return ret;
1500
1501 return 0;
1502 }
1503
1504 int
i915_request_await_dma_fence(struct i915_request * rq,struct dma_fence * fence)1505 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1506 {
1507 struct dma_fence **child = &fence;
1508 unsigned int nchild = 1;
1509 int ret;
1510
1511 /*
1512 * Note that if the fence-array was created in signal-on-any mode,
1513 * we should *not* decompose it into its individual fences. However,
1514 * we don't currently store which mode the fence-array is operating
1515 * in. Fortunately, the only user of signal-on-any is private to
1516 * amdgpu and we should not see any incoming fence-array from
1517 * sync-file being in signal-on-any mode.
1518 */
1519 if (dma_fence_is_array(fence)) {
1520 struct dma_fence_array *array = to_dma_fence_array(fence);
1521
1522 child = array->fences;
1523 nchild = array->num_fences;
1524 GEM_BUG_ON(!nchild);
1525 }
1526
1527 do {
1528 fence = *child++;
1529 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1530 continue;
1531
1532 /*
1533 * Requests on the same timeline are explicitly ordered, along
1534 * with their dependencies, by i915_request_add() which ensures
1535 * that requests are submitted in-order through each ring.
1536 */
1537 if (fence->context == rq->fence.context)
1538 continue;
1539
1540 /* Squash repeated waits to the same timelines */
1541 if (fence->context &&
1542 intel_timeline_sync_is_later(i915_request_timeline(rq),
1543 fence))
1544 continue;
1545
1546 if (dma_fence_is_i915(fence)) {
1547 if (is_same_parallel_context(rq, to_request(fence)))
1548 continue;
1549 ret = i915_request_await_request(rq, to_request(fence));
1550 } else {
1551 ret = i915_request_await_external(rq, fence);
1552 }
1553 if (ret < 0)
1554 return ret;
1555
1556 /* Record the latest fence used against each timeline */
1557 if (fence->context)
1558 intel_timeline_sync_set(i915_request_timeline(rq),
1559 fence);
1560 } while (--nchild);
1561
1562 return 0;
1563 }
1564
1565 /**
1566 * i915_request_await_deps - set this request to (async) wait upon a struct
1567 * i915_deps dma_fence collection
1568 * @rq: request we are wishing to use
1569 * @deps: The struct i915_deps containing the dependencies.
1570 *
1571 * Returns 0 if successful, negative error code on error.
1572 */
i915_request_await_deps(struct i915_request * rq,const struct i915_deps * deps)1573 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps)
1574 {
1575 int i, err;
1576
1577 for (i = 0; i < deps->num_deps; ++i) {
1578 err = i915_request_await_dma_fence(rq, deps->fences[i]);
1579 if (err)
1580 return err;
1581 }
1582
1583 return 0;
1584 }
1585
1586 /**
1587 * i915_request_await_object - set this request to (async) wait upon a bo
1588 * @to: request we are wishing to use
1589 * @obj: object which may be in use on another ring.
1590 * @write: whether the wait is on behalf of a writer
1591 *
1592 * This code is meant to abstract object synchronization with the GPU.
1593 * Conceptually we serialise writes between engines inside the GPU.
1594 * We only allow one engine to write into a buffer at any time, but
1595 * multiple readers. To ensure each has a coherent view of memory, we must:
1596 *
1597 * - If there is an outstanding write request to the object, the new
1598 * request must wait for it to complete (either CPU or in hw, requests
1599 * on the same ring will be naturally ordered).
1600 *
1601 * - If we are a write request (pending_write_domain is set), the new
1602 * request must wait for outstanding read requests to complete.
1603 *
1604 * Returns 0 if successful, else propagates up the lower layer error.
1605 */
1606 int
i915_request_await_object(struct i915_request * to,struct drm_i915_gem_object * obj,bool write)1607 i915_request_await_object(struct i915_request *to,
1608 struct drm_i915_gem_object *obj,
1609 bool write)
1610 {
1611 struct dma_resv_iter cursor;
1612 struct dma_fence *fence;
1613 int ret = 0;
1614
1615 dma_resv_for_each_fence(&cursor, obj->base.resv,
1616 dma_resv_usage_rw(write), fence) {
1617 ret = i915_request_await_dma_fence(to, fence);
1618 if (ret)
1619 break;
1620 }
1621
1622 return ret;
1623 }
1624
i915_request_await_huc(struct i915_request * rq)1625 static void i915_request_await_huc(struct i915_request *rq)
1626 {
1627 struct intel_huc *huc = &rq->context->engine->gt->uc.huc;
1628
1629 /* don't stall kernel submissions! */
1630 if (!rcu_access_pointer(rq->context->gem_context))
1631 return;
1632
1633 if (intel_huc_wait_required(huc))
1634 i915_sw_fence_await_sw_fence(&rq->submit,
1635 &huc->delayed_load.fence,
1636 &rq->hucq);
1637 }
1638
1639 static struct i915_request *
__i915_request_ensure_parallel_ordering(struct i915_request * rq,struct intel_timeline * timeline)1640 __i915_request_ensure_parallel_ordering(struct i915_request *rq,
1641 struct intel_timeline *timeline)
1642 {
1643 struct i915_request *prev;
1644
1645 GEM_BUG_ON(!is_parallel_rq(rq));
1646
1647 prev = request_to_parent(rq)->parallel.last_rq;
1648 if (prev) {
1649 if (!__i915_request_is_complete(prev)) {
1650 i915_sw_fence_await_sw_fence(&rq->submit,
1651 &prev->submit,
1652 &rq->submitq);
1653
1654 if (rq->engine->sched_engine->schedule)
1655 __i915_sched_node_add_dependency(&rq->sched,
1656 &prev->sched,
1657 &rq->dep,
1658 0);
1659 }
1660 i915_request_put(prev);
1661 }
1662
1663 request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1664
1665 return to_request(__i915_active_fence_set(&timeline->last_request,
1666 &rq->fence));
1667 }
1668
1669 static struct i915_request *
__i915_request_ensure_ordering(struct i915_request * rq,struct intel_timeline * timeline)1670 __i915_request_ensure_ordering(struct i915_request *rq,
1671 struct intel_timeline *timeline)
1672 {
1673 struct i915_request *prev;
1674
1675 GEM_BUG_ON(is_parallel_rq(rq));
1676
1677 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1678 &rq->fence));
1679
1680 if (prev && !__i915_request_is_complete(prev)) {
1681 bool uses_guc = intel_engine_uses_guc(rq->engine);
1682 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1683 rq->engine->mask);
1684 bool same_context = prev->context == rq->context;
1685
1686 /*
1687 * The requests are supposed to be kept in order. However,
1688 * we need to be wary in case the timeline->last_request
1689 * is used as a barrier for external modification to this
1690 * context.
1691 */
1692 GEM_BUG_ON(same_context &&
1693 i915_seqno_passed(prev->fence.seqno,
1694 rq->fence.seqno));
1695
1696 if ((same_context && uses_guc) || (!uses_guc && pow2))
1697 i915_sw_fence_await_sw_fence(&rq->submit,
1698 &prev->submit,
1699 &rq->submitq);
1700 else
1701 __i915_sw_fence_await_dma_fence(&rq->submit,
1702 &prev->fence,
1703 &rq->dmaq);
1704 if (rq->engine->sched_engine->schedule)
1705 __i915_sched_node_add_dependency(&rq->sched,
1706 &prev->sched,
1707 &rq->dep,
1708 0);
1709 }
1710
1711 return prev;
1712 }
1713
1714 static struct i915_request *
__i915_request_add_to_timeline(struct i915_request * rq)1715 __i915_request_add_to_timeline(struct i915_request *rq)
1716 {
1717 struct intel_timeline *timeline = i915_request_timeline(rq);
1718 struct i915_request *prev;
1719
1720 /*
1721 * Media workloads may require HuC, so stall them until HuC loading is
1722 * complete. Note that HuC not being loaded when a user submission
1723 * arrives can only happen when HuC is loaded via GSC and in that case
1724 * we still expect the window between us starting to accept submissions
1725 * and HuC loading completion to be small (a few hundred ms).
1726 */
1727 if (rq->engine->class == VIDEO_DECODE_CLASS)
1728 i915_request_await_huc(rq);
1729
1730 /*
1731 * Dependency tracking and request ordering along the timeline
1732 * is special cased so that we can eliminate redundant ordering
1733 * operations while building the request (we know that the timeline
1734 * itself is ordered, and here we guarantee it).
1735 *
1736 * As we know we will need to emit tracking along the timeline,
1737 * we embed the hooks into our request struct -- at the cost of
1738 * having to have specialised no-allocation interfaces (which will
1739 * be beneficial elsewhere).
1740 *
1741 * A second benefit to open-coding i915_request_await_request is
1742 * that we can apply a slight variant of the rules specialised
1743 * for timelines that jump between engines (such as virtual engines).
1744 * If we consider the case of virtual engine, we must emit a dma-fence
1745 * to prevent scheduling of the second request until the first is
1746 * complete (to maximise our greedy late load balancing) and this
1747 * precludes optimising to use semaphores serialisation of a single
1748 * timeline across engines.
1749 *
1750 * We do not order parallel submission requests on the timeline as each
1751 * parallel submission context has its own timeline and the ordering
1752 * rules for parallel requests are that they must be submitted in the
1753 * order received from the execbuf IOCTL. So rather than using the
1754 * timeline we store a pointer to last request submitted in the
1755 * relationship in the gem context and insert a submission fence
1756 * between that request and request passed into this function or
1757 * alternatively we use completion fence if gem context has a single
1758 * timeline and this is the first submission of an execbuf IOCTL.
1759 */
1760 if (likely(!is_parallel_rq(rq)))
1761 prev = __i915_request_ensure_ordering(rq, timeline);
1762 else
1763 prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1764
1765 /*
1766 * Make sure that no request gazumped us - if it was allocated after
1767 * our i915_request_alloc() and called __i915_request_add() before
1768 * us, the timeline will hold its seqno which is later than ours.
1769 */
1770 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1771
1772 return prev;
1773 }
1774
1775 /*
1776 * NB: This function is not allowed to fail. Doing so would mean the the
1777 * request is not being tracked for completion but the work itself is
1778 * going to happen on the hardware. This would be a Bad Thing(tm).
1779 */
__i915_request_commit(struct i915_request * rq)1780 struct i915_request *__i915_request_commit(struct i915_request *rq)
1781 {
1782 struct intel_engine_cs *engine = rq->engine;
1783 struct intel_ring *ring = rq->ring;
1784 u32 *cs;
1785
1786 RQ_TRACE(rq, "\n");
1787
1788 /*
1789 * To ensure that this call will not fail, space for its emissions
1790 * should already have been reserved in the ring buffer. Let the ring
1791 * know that it is time to use that space up.
1792 */
1793 GEM_BUG_ON(rq->reserved_space > ring->space);
1794 rq->reserved_space = 0;
1795 rq->emitted_jiffies = jiffies;
1796
1797 /*
1798 * Record the position of the start of the breadcrumb so that
1799 * should we detect the updated seqno part-way through the
1800 * GPU processing the request, we never over-estimate the
1801 * position of the ring's HEAD.
1802 */
1803 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1804 GEM_BUG_ON(IS_ERR(cs));
1805 rq->postfix = intel_ring_offset(rq, cs);
1806
1807 return __i915_request_add_to_timeline(rq);
1808 }
1809
__i915_request_queue_bh(struct i915_request * rq)1810 void __i915_request_queue_bh(struct i915_request *rq)
1811 {
1812 i915_sw_fence_commit(&rq->semaphore);
1813 i915_sw_fence_commit(&rq->submit);
1814 }
1815
__i915_request_queue(struct i915_request * rq,const struct i915_sched_attr * attr)1816 void __i915_request_queue(struct i915_request *rq,
1817 const struct i915_sched_attr *attr)
1818 {
1819 /*
1820 * Let the backend know a new request has arrived that may need
1821 * to adjust the existing execution schedule due to a high priority
1822 * request - i.e. we may want to preempt the current request in order
1823 * to run a high priority dependency chain *before* we can execute this
1824 * request.
1825 *
1826 * This is called before the request is ready to run so that we can
1827 * decide whether to preempt the entire chain so that it is ready to
1828 * run at the earliest possible convenience.
1829 */
1830 if (attr && rq->engine->sched_engine->schedule)
1831 rq->engine->sched_engine->schedule(rq, attr);
1832
1833 local_bh_disable();
1834 __i915_request_queue_bh(rq);
1835 local_bh_enable(); /* kick tasklets */
1836 }
1837
i915_request_add(struct i915_request * rq)1838 void i915_request_add(struct i915_request *rq)
1839 {
1840 struct intel_timeline * const tl = i915_request_timeline(rq);
1841 struct i915_sched_attr attr = {};
1842 struct i915_gem_context *ctx;
1843
1844 lockdep_assert_held(&tl->mutex);
1845 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1846
1847 trace_i915_request_add(rq);
1848 __i915_request_commit(rq);
1849
1850 /* XXX placeholder for selftests */
1851 rcu_read_lock();
1852 ctx = rcu_dereference(rq->context->gem_context);
1853 if (ctx)
1854 attr = ctx->sched;
1855 rcu_read_unlock();
1856
1857 __i915_request_queue(rq, &attr);
1858
1859 mutex_unlock(&tl->mutex);
1860 }
1861
local_clock_ns(unsigned int * cpu)1862 static unsigned long local_clock_ns(unsigned int *cpu)
1863 {
1864 unsigned long t;
1865
1866 /*
1867 * Cheaply and approximately convert from nanoseconds to microseconds.
1868 * The result and subsequent calculations are also defined in the same
1869 * approximate microseconds units. The principal source of timing
1870 * error here is from the simple truncation.
1871 *
1872 * Note that local_clock() is only defined wrt to the current CPU;
1873 * the comparisons are no longer valid if we switch CPUs. Instead of
1874 * blocking preemption for the entire busywait, we can detect the CPU
1875 * switch and use that as indicator of system load and a reason to
1876 * stop busywaiting, see busywait_stop().
1877 */
1878 *cpu = get_cpu();
1879 t = local_clock();
1880 put_cpu();
1881
1882 return t;
1883 }
1884
busywait_stop(unsigned long timeout,unsigned int cpu)1885 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1886 {
1887 unsigned int this_cpu;
1888
1889 if (time_after(local_clock_ns(&this_cpu), timeout))
1890 return true;
1891
1892 return this_cpu != cpu;
1893 }
1894
__i915_spin_request(struct i915_request * const rq,int state)1895 static bool __i915_spin_request(struct i915_request * const rq, int state)
1896 {
1897 unsigned long timeout_ns;
1898 unsigned int cpu;
1899
1900 /*
1901 * Only wait for the request if we know it is likely to complete.
1902 *
1903 * We don't track the timestamps around requests, nor the average
1904 * request length, so we do not have a good indicator that this
1905 * request will complete within the timeout. What we do know is the
1906 * order in which requests are executed by the context and so we can
1907 * tell if the request has been started. If the request is not even
1908 * running yet, it is a fair assumption that it will not complete
1909 * within our relatively short timeout.
1910 */
1911 if (!i915_request_is_running(rq))
1912 return false;
1913
1914 /*
1915 * When waiting for high frequency requests, e.g. during synchronous
1916 * rendering split between the CPU and GPU, the finite amount of time
1917 * required to set up the irq and wait upon it limits the response
1918 * rate. By busywaiting on the request completion for a short while we
1919 * can service the high frequency waits as quick as possible. However,
1920 * if it is a slow request, we want to sleep as quickly as possible.
1921 * The tradeoff between waiting and sleeping is roughly the time it
1922 * takes to sleep on a request, on the order of a microsecond.
1923 */
1924
1925 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1926 timeout_ns += local_clock_ns(&cpu);
1927 do {
1928 if (dma_fence_is_signaled(&rq->fence))
1929 return true;
1930
1931 if (signal_pending_state(state, current))
1932 break;
1933
1934 if (busywait_stop(timeout_ns, cpu))
1935 break;
1936
1937 cpu_relax();
1938 } while (!need_resched());
1939
1940 return false;
1941 }
1942
1943 struct request_wait {
1944 struct dma_fence_cb cb;
1945 struct task_struct *tsk;
1946 };
1947
request_wait_wake(struct dma_fence * fence,struct dma_fence_cb * cb)1948 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1949 {
1950 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1951
1952 wake_up_process(fetch_and_zero(&wait->tsk));
1953 }
1954
1955 /**
1956 * i915_request_wait_timeout - wait until execution of request has finished
1957 * @rq: the request to wait upon
1958 * @flags: how to wait
1959 * @timeout: how long to wait in jiffies
1960 *
1961 * i915_request_wait_timeout() waits for the request to be completed, for a
1962 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1963 * unbounded wait).
1964 *
1965 * Returns the remaining time (in jiffies) if the request completed, which may
1966 * be zero if the request is unfinished after the timeout expires.
1967 * If the timeout is 0, it will return 1 if the fence is signaled.
1968 *
1969 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1970 * pending before the request completes.
1971 *
1972 * NOTE: This function has the same wait semantics as dma-fence.
1973 */
i915_request_wait_timeout(struct i915_request * rq,unsigned int flags,long timeout)1974 long i915_request_wait_timeout(struct i915_request *rq,
1975 unsigned int flags,
1976 long timeout)
1977 {
1978 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1979 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1980 struct request_wait wait;
1981
1982 might_sleep();
1983 GEM_BUG_ON(timeout < 0);
1984
1985 if (dma_fence_is_signaled(&rq->fence))
1986 return timeout ?: 1;
1987
1988 if (!timeout)
1989 return -ETIME;
1990
1991 trace_i915_request_wait_begin(rq, flags);
1992
1993 /*
1994 * We must never wait on the GPU while holding a lock as we
1995 * may need to perform a GPU reset. So while we don't need to
1996 * serialise wait/reset with an explicit lock, we do want
1997 * lockdep to detect potential dependency cycles.
1998 */
1999 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
2000
2001 /*
2002 * Optimistic spin before touching IRQs.
2003 *
2004 * We may use a rather large value here to offset the penalty of
2005 * switching away from the active task. Frequently, the client will
2006 * wait upon an old swapbuffer to throttle itself to remain within a
2007 * frame of the gpu. If the client is running in lockstep with the gpu,
2008 * then it should not be waiting long at all, and a sleep now will incur
2009 * extra scheduler latency in producing the next frame. To try to
2010 * avoid adding the cost of enabling/disabling the interrupt to the
2011 * short wait, we first spin to see if the request would have completed
2012 * in the time taken to setup the interrupt.
2013 *
2014 * We need upto 5us to enable the irq, and upto 20us to hide the
2015 * scheduler latency of a context switch, ignoring the secondary
2016 * impacts from a context switch such as cache eviction.
2017 *
2018 * The scheme used for low-latency IO is called "hybrid interrupt
2019 * polling". The suggestion there is to sleep until just before you
2020 * expect to be woken by the device interrupt and then poll for its
2021 * completion. That requires having a good predictor for the request
2022 * duration, which we currently lack.
2023 */
2024 if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
2025 __i915_spin_request(rq, state))
2026 goto out;
2027
2028 /*
2029 * This client is about to stall waiting for the GPU. In many cases
2030 * this is undesirable and limits the throughput of the system, as
2031 * many clients cannot continue processing user input/output whilst
2032 * blocked. RPS autotuning may take tens of milliseconds to respond
2033 * to the GPU load and thus incurs additional latency for the client.
2034 * We can circumvent that by promoting the GPU frequency to maximum
2035 * before we sleep. This makes the GPU throttle up much more quickly
2036 * (good for benchmarks and user experience, e.g. window animations),
2037 * but at a cost of spending more power processing the workload
2038 * (bad for battery).
2039 */
2040 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
2041 intel_rps_boost(rq);
2042
2043 wait.tsk = current;
2044 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
2045 goto out;
2046
2047 /*
2048 * Flush the submission tasklet, but only if it may help this request.
2049 *
2050 * We sometimes experience some latency between the HW interrupts and
2051 * tasklet execution (mostly due to ksoftirqd latency, but it can also
2052 * be due to lazy CS events), so lets run the tasklet manually if there
2053 * is a chance it may submit this request. If the request is not ready
2054 * to run, as it is waiting for other fences to be signaled, flushing
2055 * the tasklet is busy work without any advantage for this client.
2056 *
2057 * If the HW is being lazy, this is the last chance before we go to
2058 * sleep to catch any pending events. We will check periodically in
2059 * the heartbeat to flush the submission tasklets as a last resort
2060 * for unhappy HW.
2061 */
2062 if (i915_request_is_ready(rq))
2063 __intel_engine_flush_submission(rq->engine, false);
2064
2065 for (;;) {
2066 set_current_state(state);
2067
2068 if (dma_fence_is_signaled(&rq->fence))
2069 break;
2070
2071 if (signal_pending_state(state, current)) {
2072 timeout = -ERESTARTSYS;
2073 break;
2074 }
2075
2076 if (!timeout) {
2077 timeout = -ETIME;
2078 break;
2079 }
2080
2081 timeout = io_schedule_timeout(timeout);
2082 }
2083 __set_current_state(TASK_RUNNING);
2084
2085 if (READ_ONCE(wait.tsk))
2086 dma_fence_remove_callback(&rq->fence, &wait.cb);
2087 GEM_BUG_ON(!list_empty(&wait.cb.node));
2088
2089 out:
2090 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
2091 trace_i915_request_wait_end(rq);
2092 return timeout;
2093 }
2094
2095 /**
2096 * i915_request_wait - wait until execution of request has finished
2097 * @rq: the request to wait upon
2098 * @flags: how to wait
2099 * @timeout: how long to wait in jiffies
2100 *
2101 * i915_request_wait() waits for the request to be completed, for a
2102 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
2103 * unbounded wait).
2104 *
2105 * Returns the remaining time (in jiffies) if the request completed, which may
2106 * be zero or -ETIME if the request is unfinished after the timeout expires.
2107 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
2108 * pending before the request completes.
2109 *
2110 * NOTE: This function behaves differently from dma-fence wait semantics for
2111 * timeout = 0. It returns 0 on success, and -ETIME if not signaled.
2112 */
i915_request_wait(struct i915_request * rq,unsigned int flags,long timeout)2113 long i915_request_wait(struct i915_request *rq,
2114 unsigned int flags,
2115 long timeout)
2116 {
2117 long ret = i915_request_wait_timeout(rq, flags, timeout);
2118
2119 if (!ret)
2120 return -ETIME;
2121
2122 if (ret > 0 && !timeout)
2123 return 0;
2124
2125 return ret;
2126 }
2127
print_sched_attr(const struct i915_sched_attr * attr,char * buf,int x,int len)2128 static int print_sched_attr(const struct i915_sched_attr *attr,
2129 char *buf, int x, int len)
2130 {
2131 if (attr->priority == I915_PRIORITY_INVALID)
2132 return x;
2133
2134 x += snprintf(buf + x, len - x,
2135 " prio=%d", attr->priority);
2136
2137 return x;
2138 }
2139
queue_status(const struct i915_request * rq)2140 static char queue_status(const struct i915_request *rq)
2141 {
2142 if (i915_request_is_active(rq))
2143 return 'E';
2144
2145 if (i915_request_is_ready(rq))
2146 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2147
2148 return 'U';
2149 }
2150
run_status(const struct i915_request * rq)2151 static const char *run_status(const struct i915_request *rq)
2152 {
2153 if (__i915_request_is_complete(rq))
2154 return "!";
2155
2156 if (__i915_request_has_started(rq))
2157 return "*";
2158
2159 if (!i915_sw_fence_signaled(&rq->semaphore))
2160 return "&";
2161
2162 return "";
2163 }
2164
fence_status(const struct i915_request * rq)2165 static const char *fence_status(const struct i915_request *rq)
2166 {
2167 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2168 return "+";
2169
2170 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2171 return "-";
2172
2173 return "";
2174 }
2175
i915_request_show(struct drm_printer * m,const struct i915_request * rq,const char * prefix,int indent)2176 void i915_request_show(struct drm_printer *m,
2177 const struct i915_request *rq,
2178 const char *prefix,
2179 int indent)
2180 {
2181 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2182 char buf[80] = "";
2183 int x = 0;
2184
2185 /*
2186 * The prefix is used to show the queue status, for which we use
2187 * the following flags:
2188 *
2189 * U [Unready]
2190 * - initial status upon being submitted by the user
2191 *
2192 * - the request is not ready for execution as it is waiting
2193 * for external fences
2194 *
2195 * R [Ready]
2196 * - all fences the request was waiting on have been signaled,
2197 * and the request is now ready for execution and will be
2198 * in a backend queue
2199 *
2200 * - a ready request may still need to wait on semaphores
2201 * [internal fences]
2202 *
2203 * V [Ready/virtual]
2204 * - same as ready, but queued over multiple backends
2205 *
2206 * E [Executing]
2207 * - the request has been transferred from the backend queue and
2208 * submitted for execution on HW
2209 *
2210 * - a completed request may still be regarded as executing, its
2211 * status may not be updated until it is retired and removed
2212 * from the lists
2213 */
2214
2215 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2216
2217 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2218 prefix, indent, " ",
2219 queue_status(rq),
2220 rq->fence.context, rq->fence.seqno,
2221 run_status(rq),
2222 fence_status(rq),
2223 buf,
2224 jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2225 name);
2226 }
2227
engine_match_ring(struct intel_engine_cs * engine,struct i915_request * rq)2228 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2229 {
2230 u32 ring = ENGINE_READ(engine, RING_START);
2231
2232 return ring == i915_ggtt_offset(rq->ring->vma);
2233 }
2234
match_ring(struct i915_request * rq)2235 static bool match_ring(struct i915_request *rq)
2236 {
2237 struct intel_engine_cs *engine;
2238 bool found;
2239 int i;
2240
2241 if (!intel_engine_is_virtual(rq->engine))
2242 return engine_match_ring(rq->engine, rq);
2243
2244 found = false;
2245 i = 0;
2246 while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2247 found = engine_match_ring(engine, rq);
2248 if (found)
2249 break;
2250 }
2251
2252 return found;
2253 }
2254
i915_test_request_state(struct i915_request * rq)2255 enum i915_request_state i915_test_request_state(struct i915_request *rq)
2256 {
2257 if (i915_request_completed(rq))
2258 return I915_REQUEST_COMPLETE;
2259
2260 if (!i915_request_started(rq))
2261 return I915_REQUEST_PENDING;
2262
2263 if (match_ring(rq))
2264 return I915_REQUEST_ACTIVE;
2265
2266 return I915_REQUEST_QUEUED;
2267 }
2268
2269 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2270 #include "selftests/mock_request.c"
2271 #include "selftests/i915_request.c"
2272 #endif
2273
i915_request_module_exit(void)2274 void i915_request_module_exit(void)
2275 {
2276 kmem_cache_destroy(slab_execute_cbs);
2277 kmem_cache_destroy(slab_requests);
2278 }
2279
i915_request_module_init(void)2280 int __init i915_request_module_init(void)
2281 {
2282 slab_requests =
2283 kmem_cache_create("i915_request",
2284 sizeof(struct i915_request),
2285 __alignof__(struct i915_request),
2286 SLAB_HWCACHE_ALIGN |
2287 SLAB_RECLAIM_ACCOUNT |
2288 SLAB_TYPESAFE_BY_RCU,
2289 __i915_request_ctor);
2290 if (!slab_requests)
2291 return -ENOMEM;
2292
2293 slab_execute_cbs = KMEM_CACHE(execute_cb,
2294 SLAB_HWCACHE_ALIGN |
2295 SLAB_RECLAIM_ACCOUNT |
2296 SLAB_TYPESAFE_BY_RCU);
2297 if (!slab_execute_cbs)
2298 goto err_requests;
2299
2300 return 0;
2301
2302 err_requests:
2303 kmem_cache_destroy(slab_requests);
2304 return -ENOMEM;
2305 }
2306