1 /*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/sched/mm.h>
26 #include <linux/dma-fence-array.h>
27 #include <drm/drm_gem.h>
28
29 #include "display/intel_display.h"
30 #include "display/intel_frontbuffer.h"
31 #include "gem/i915_gem_lmem.h"
32 #include "gem/i915_gem_tiling.h"
33 #include "gt/intel_engine.h"
34 #include "gt/intel_engine_heartbeat.h"
35 #include "gt/intel_gt.h"
36 #include "gt/intel_gt_requests.h"
37
38 #include "i915_drv.h"
39 #include "i915_gem_evict.h"
40 #include "i915_sw_fence_work.h"
41 #include "i915_trace.h"
42 #include "i915_vma.h"
43 #include "i915_vma_resource.h"
44
assert_vma_held_evict(const struct i915_vma * vma)45 static inline void assert_vma_held_evict(const struct i915_vma *vma)
46 {
47 /*
48 * We may be forced to unbind when the vm is dead, to clean it up.
49 * This is the only exception to the requirement of the object lock
50 * being held.
51 */
52 if (kref_read(&vma->vm->ref))
53 assert_object_held_shared(vma->obj);
54 }
55
56 static struct kmem_cache *slab_vmas;
57
i915_vma_alloc(void)58 static struct i915_vma *i915_vma_alloc(void)
59 {
60 return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
61 }
62
i915_vma_free(struct i915_vma * vma)63 static void i915_vma_free(struct i915_vma *vma)
64 {
65 return kmem_cache_free(slab_vmas, vma);
66 }
67
68 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
69
70 #include <linux/stackdepot.h>
71
vma_print_allocator(struct i915_vma * vma,const char * reason)72 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
73 {
74 char buf[512];
75
76 if (!vma->node.stack) {
77 drm_dbg(&to_i915(vma->obj->base.dev)->drm,
78 "vma.node [%08llx + %08llx] %s: unknown owner\n",
79 vma->node.start, vma->node.size, reason);
80 return;
81 }
82
83 stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
84 drm_dbg(&to_i915(vma->obj->base.dev)->drm,
85 "vma.node [%08llx + %08llx] %s: inserted at %s\n",
86 vma->node.start, vma->node.size, reason, buf);
87 }
88
89 #else
90
vma_print_allocator(struct i915_vma * vma,const char * reason)91 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
92 {
93 }
94
95 #endif
96
active_to_vma(struct i915_active * ref)97 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
98 {
99 return container_of(ref, typeof(struct i915_vma), active);
100 }
101
__i915_vma_active(struct i915_active * ref)102 static int __i915_vma_active(struct i915_active *ref)
103 {
104 return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT;
105 }
106
__i915_vma_retire(struct i915_active * ref)107 static void __i915_vma_retire(struct i915_active *ref)
108 {
109 i915_vma_put(active_to_vma(ref));
110 }
111
112 static struct i915_vma *
vma_create(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_gtt_view * view)113 vma_create(struct drm_i915_gem_object *obj,
114 struct i915_address_space *vm,
115 const struct i915_gtt_view *view)
116 {
117 struct i915_vma *pos = ERR_PTR(-E2BIG);
118 struct i915_vma *vma;
119 struct rb_node *rb, **p;
120 int err;
121
122 /* The aliasing_ppgtt should never be used directly! */
123 GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
124
125 vma = i915_vma_alloc();
126 if (vma == NULL)
127 return ERR_PTR(-ENOMEM);
128
129 vma->ops = &vm->vma_ops;
130 vma->obj = obj;
131 vma->size = obj->base.size;
132 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
133
134 i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
135
136 /* Declare ourselves safe for use inside shrinkers */
137 if (IS_ENABLED(CONFIG_LOCKDEP)) {
138 fs_reclaim_acquire(GFP_KERNEL);
139 might_lock(&vma->active.mutex);
140 fs_reclaim_release(GFP_KERNEL);
141 }
142
143 INIT_LIST_HEAD(&vma->closed_link);
144 INIT_LIST_HEAD(&vma->obj_link);
145 RB_CLEAR_NODE(&vma->obj_node);
146
147 if (view && view->type != I915_GTT_VIEW_NORMAL) {
148 vma->gtt_view = *view;
149 if (view->type == I915_GTT_VIEW_PARTIAL) {
150 GEM_BUG_ON(range_overflows_t(u64,
151 view->partial.offset,
152 view->partial.size,
153 obj->base.size >> PAGE_SHIFT));
154 vma->size = view->partial.size;
155 vma->size <<= PAGE_SHIFT;
156 GEM_BUG_ON(vma->size > obj->base.size);
157 } else if (view->type == I915_GTT_VIEW_ROTATED) {
158 vma->size = intel_rotation_info_size(&view->rotated);
159 vma->size <<= PAGE_SHIFT;
160 } else if (view->type == I915_GTT_VIEW_REMAPPED) {
161 vma->size = intel_remapped_info_size(&view->remapped);
162 vma->size <<= PAGE_SHIFT;
163 }
164 }
165
166 if (unlikely(vma->size > vm->total))
167 goto err_vma;
168
169 GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
170
171 err = mutex_lock_interruptible(&vm->mutex);
172 if (err) {
173 pos = ERR_PTR(err);
174 goto err_vma;
175 }
176
177 vma->vm = vm;
178 list_add_tail(&vma->vm_link, &vm->unbound_list);
179
180 spin_lock(&obj->vma.lock);
181 if (i915_is_ggtt(vm)) {
182 if (unlikely(overflows_type(vma->size, u32)))
183 goto err_unlock;
184
185 vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
186 i915_gem_object_get_tiling(obj),
187 i915_gem_object_get_stride(obj));
188 if (unlikely(vma->fence_size < vma->size || /* overflow */
189 vma->fence_size > vm->total))
190 goto err_unlock;
191
192 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
193
194 vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
195 i915_gem_object_get_tiling(obj),
196 i915_gem_object_get_stride(obj));
197 GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
198
199 __set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
200 }
201
202 rb = NULL;
203 p = &obj->vma.tree.rb_node;
204 while (*p) {
205 long cmp;
206
207 rb = *p;
208 pos = rb_entry(rb, struct i915_vma, obj_node);
209
210 /*
211 * If the view already exists in the tree, another thread
212 * already created a matching vma, so return the older instance
213 * and dispose of ours.
214 */
215 cmp = i915_vma_compare(pos, vm, view);
216 if (cmp < 0)
217 p = &rb->rb_right;
218 else if (cmp > 0)
219 p = &rb->rb_left;
220 else
221 goto err_unlock;
222 }
223 rb_link_node(&vma->obj_node, rb, p);
224 rb_insert_color(&vma->obj_node, &obj->vma.tree);
225
226 if (i915_vma_is_ggtt(vma))
227 /*
228 * We put the GGTT vma at the start of the vma-list, followed
229 * by the ppGGTT vma. This allows us to break early when
230 * iterating over only the GGTT vma for an object, see
231 * for_each_ggtt_vma()
232 */
233 list_add(&vma->obj_link, &obj->vma.list);
234 else
235 list_add_tail(&vma->obj_link, &obj->vma.list);
236
237 spin_unlock(&obj->vma.lock);
238 mutex_unlock(&vm->mutex);
239
240 return vma;
241
242 err_unlock:
243 spin_unlock(&obj->vma.lock);
244 list_del_init(&vma->vm_link);
245 mutex_unlock(&vm->mutex);
246 err_vma:
247 i915_vma_free(vma);
248 return pos;
249 }
250
251 static struct i915_vma *
i915_vma_lookup(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_gtt_view * view)252 i915_vma_lookup(struct drm_i915_gem_object *obj,
253 struct i915_address_space *vm,
254 const struct i915_gtt_view *view)
255 {
256 struct rb_node *rb;
257
258 rb = obj->vma.tree.rb_node;
259 while (rb) {
260 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
261 long cmp;
262
263 cmp = i915_vma_compare(vma, vm, view);
264 if (cmp == 0)
265 return vma;
266
267 if (cmp < 0)
268 rb = rb->rb_right;
269 else
270 rb = rb->rb_left;
271 }
272
273 return NULL;
274 }
275
276 /**
277 * i915_vma_instance - return the singleton instance of the VMA
278 * @obj: parent &struct drm_i915_gem_object to be mapped
279 * @vm: address space in which the mapping is located
280 * @view: additional mapping requirements
281 *
282 * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
283 * the same @view characteristics. If a match is not found, one is created.
284 * Once created, the VMA is kept until either the object is freed, or the
285 * address space is closed.
286 *
287 * Returns the vma, or an error pointer.
288 */
289 struct i915_vma *
i915_vma_instance(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_gtt_view * view)290 i915_vma_instance(struct drm_i915_gem_object *obj,
291 struct i915_address_space *vm,
292 const struct i915_gtt_view *view)
293 {
294 struct i915_vma *vma;
295
296 GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
297 GEM_BUG_ON(!kref_read(&vm->ref));
298
299 spin_lock(&obj->vma.lock);
300 vma = i915_vma_lookup(obj, vm, view);
301 spin_unlock(&obj->vma.lock);
302
303 /* vma_create() will resolve the race if another creates the vma */
304 if (unlikely(!vma))
305 vma = vma_create(obj, vm, view);
306
307 GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
308 return vma;
309 }
310
311 struct i915_vma_work {
312 struct dma_fence_work base;
313 struct i915_address_space *vm;
314 struct i915_vm_pt_stash stash;
315 struct i915_vma_resource *vma_res;
316 struct drm_i915_gem_object *obj;
317 struct i915_sw_dma_fence_cb cb;
318 enum i915_cache_level cache_level;
319 unsigned int flags;
320 };
321
__vma_bind(struct dma_fence_work * work)322 static void __vma_bind(struct dma_fence_work *work)
323 {
324 struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
325 struct i915_vma_resource *vma_res = vw->vma_res;
326
327 /*
328 * We are about the bind the object, which must mean we have already
329 * signaled the work to potentially clear/move the pages underneath. If
330 * something went wrong at that stage then the object should have
331 * unknown_state set, in which case we need to skip the bind.
332 */
333 if (i915_gem_object_has_unknown_state(vw->obj))
334 return;
335
336 vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
337 vma_res, vw->cache_level, vw->flags);
338 }
339
__vma_release(struct dma_fence_work * work)340 static void __vma_release(struct dma_fence_work *work)
341 {
342 struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
343
344 if (vw->obj)
345 i915_gem_object_put(vw->obj);
346
347 i915_vm_free_pt_stash(vw->vm, &vw->stash);
348 if (vw->vma_res)
349 i915_vma_resource_put(vw->vma_res);
350 }
351
352 static const struct dma_fence_work_ops bind_ops = {
353 .name = "bind",
354 .work = __vma_bind,
355 .release = __vma_release,
356 };
357
i915_vma_work(void)358 struct i915_vma_work *i915_vma_work(void)
359 {
360 struct i915_vma_work *vw;
361
362 vw = kzalloc(sizeof(*vw), GFP_KERNEL);
363 if (!vw)
364 return NULL;
365
366 dma_fence_work_init(&vw->base, &bind_ops);
367 vw->base.dma.error = -EAGAIN; /* disable the worker by default */
368
369 return vw;
370 }
371
i915_vma_wait_for_bind(struct i915_vma * vma)372 int i915_vma_wait_for_bind(struct i915_vma *vma)
373 {
374 int err = 0;
375
376 if (rcu_access_pointer(vma->active.excl.fence)) {
377 struct dma_fence *fence;
378
379 rcu_read_lock();
380 fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
381 rcu_read_unlock();
382 if (fence) {
383 err = dma_fence_wait(fence, true);
384 dma_fence_put(fence);
385 }
386 }
387
388 return err;
389 }
390
391 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
i915_vma_verify_bind_complete(struct i915_vma * vma)392 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
393 {
394 struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
395 int err;
396
397 if (!fence)
398 return 0;
399
400 if (dma_fence_is_signaled(fence))
401 err = fence->error;
402 else
403 err = -EBUSY;
404
405 dma_fence_put(fence);
406
407 return err;
408 }
409 #else
410 #define i915_vma_verify_bind_complete(_vma) 0
411 #endif
412
413 I915_SELFTEST_EXPORT void
i915_vma_resource_init_from_vma(struct i915_vma_resource * vma_res,struct i915_vma * vma)414 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
415 struct i915_vma *vma)
416 {
417 struct drm_i915_gem_object *obj = vma->obj;
418
419 i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
420 obj->mm.rsgt, i915_gem_object_is_readonly(obj),
421 i915_gem_object_is_lmem(obj), obj->mm.region,
422 vma->ops, vma->private, __i915_vma_offset(vma),
423 __i915_vma_size(vma), vma->size, vma->guard);
424 }
425
426 /**
427 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
428 * @vma: VMA to map
429 * @cache_level: mapping cache level
430 * @flags: flags like global or local mapping
431 * @work: preallocated worker for allocating and binding the PTE
432 * @vma_res: pointer to a preallocated vma resource. The resource is either
433 * consumed or freed.
434 *
435 * DMA addresses are taken from the scatter-gather table of this object (or of
436 * this VMA in case of non-default GGTT views) and PTE entries set up.
437 * Note that DMA addresses are also the only part of the SG table we care about.
438 */
i915_vma_bind(struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags,struct i915_vma_work * work,struct i915_vma_resource * vma_res)439 int i915_vma_bind(struct i915_vma *vma,
440 enum i915_cache_level cache_level,
441 u32 flags,
442 struct i915_vma_work *work,
443 struct i915_vma_resource *vma_res)
444 {
445 u32 bind_flags;
446 u32 vma_flags;
447 int ret;
448
449 lockdep_assert_held(&vma->vm->mutex);
450 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
451 GEM_BUG_ON(vma->size > i915_vma_size(vma));
452
453 if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
454 vma->node.size,
455 vma->vm->total))) {
456 i915_vma_resource_free(vma_res);
457 return -ENODEV;
458 }
459
460 if (GEM_DEBUG_WARN_ON(!flags)) {
461 i915_vma_resource_free(vma_res);
462 return -EINVAL;
463 }
464
465 bind_flags = flags;
466 bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
467
468 vma_flags = atomic_read(&vma->flags);
469 vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
470
471 bind_flags &= ~vma_flags;
472 if (bind_flags == 0) {
473 i915_vma_resource_free(vma_res);
474 return 0;
475 }
476
477 GEM_BUG_ON(!atomic_read(&vma->pages_count));
478
479 /* Wait for or await async unbinds touching our range */
480 if (work && bind_flags & vma->vm->bind_async_flags)
481 ret = i915_vma_resource_bind_dep_await(vma->vm,
482 &work->base.chain,
483 vma->node.start,
484 vma->node.size,
485 true,
486 GFP_NOWAIT |
487 __GFP_RETRY_MAYFAIL |
488 __GFP_NOWARN);
489 else
490 ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
491 vma->node.size, true);
492 if (ret) {
493 i915_vma_resource_free(vma_res);
494 return ret;
495 }
496
497 if (vma->resource || !vma_res) {
498 /* Rebinding with an additional I915_VMA_*_BIND */
499 GEM_WARN_ON(!vma_flags);
500 i915_vma_resource_free(vma_res);
501 } else {
502 i915_vma_resource_init_from_vma(vma_res, vma);
503 vma->resource = vma_res;
504 }
505 trace_i915_vma_bind(vma, bind_flags);
506 if (work && bind_flags & vma->vm->bind_async_flags) {
507 struct dma_fence *prev;
508
509 work->vma_res = i915_vma_resource_get(vma->resource);
510 work->cache_level = cache_level;
511 work->flags = bind_flags;
512
513 /*
514 * Note we only want to chain up to the migration fence on
515 * the pages (not the object itself). As we don't track that,
516 * yet, we have to use the exclusive fence instead.
517 *
518 * Also note that we do not want to track the async vma as
519 * part of the obj->resv->excl_fence as it only affects
520 * execution and not content or object's backing store lifetime.
521 */
522 prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
523 if (prev) {
524 __i915_sw_fence_await_dma_fence(&work->base.chain,
525 prev,
526 &work->cb);
527 dma_fence_put(prev);
528 }
529
530 work->base.dma.error = 0; /* enable the queue_work() */
531 work->obj = i915_gem_object_get(vma->obj);
532 } else {
533 ret = i915_gem_object_wait_moving_fence(vma->obj, true);
534 if (ret) {
535 i915_vma_resource_free(vma->resource);
536 vma->resource = NULL;
537
538 return ret;
539 }
540 vma->ops->bind_vma(vma->vm, NULL, vma->resource, cache_level,
541 bind_flags);
542 }
543
544 atomic_or(bind_flags, &vma->flags);
545 return 0;
546 }
547
i915_vma_pin_iomap(struct i915_vma * vma)548 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
549 {
550 void __iomem *ptr;
551 int err;
552
553 if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
554 return IOMEM_ERR_PTR(-EINVAL);
555
556 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
557 GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
558 GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
559
560 ptr = READ_ONCE(vma->iomap);
561 if (ptr == NULL) {
562 /*
563 * TODO: consider just using i915_gem_object_pin_map() for lmem
564 * instead, which already supports mapping non-contiguous chunks
565 * of pages, that way we can also drop the
566 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
567 */
568 if (i915_gem_object_is_lmem(vma->obj)) {
569 ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
570 vma->obj->base.size);
571 } else if (i915_vma_is_map_and_fenceable(vma)) {
572 ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
573 i915_vma_offset(vma),
574 i915_vma_size(vma));
575 } else {
576 ptr = (void __iomem *)
577 i915_gem_object_pin_map(vma->obj, I915_MAP_WC);
578 if (IS_ERR(ptr)) {
579 err = PTR_ERR(ptr);
580 goto err;
581 }
582 ptr = page_pack_bits(ptr, 1);
583 }
584
585 if (ptr == NULL) {
586 err = -ENOMEM;
587 goto err;
588 }
589
590 if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
591 if (page_unmask_bits(ptr))
592 __i915_gem_object_release_map(vma->obj);
593 else
594 io_mapping_unmap(ptr);
595 ptr = vma->iomap;
596 }
597 }
598
599 __i915_vma_pin(vma);
600
601 err = i915_vma_pin_fence(vma);
602 if (err)
603 goto err_unpin;
604
605 i915_vma_set_ggtt_write(vma);
606
607 /* NB Access through the GTT requires the device to be awake. */
608 return page_mask_bits(ptr);
609
610 err_unpin:
611 __i915_vma_unpin(vma);
612 err:
613 return IOMEM_ERR_PTR(err);
614 }
615
i915_vma_flush_writes(struct i915_vma * vma)616 void i915_vma_flush_writes(struct i915_vma *vma)
617 {
618 if (i915_vma_unset_ggtt_write(vma))
619 intel_gt_flush_ggtt_writes(vma->vm->gt);
620 }
621
i915_vma_unpin_iomap(struct i915_vma * vma)622 void i915_vma_unpin_iomap(struct i915_vma *vma)
623 {
624 GEM_BUG_ON(vma->iomap == NULL);
625
626 /* XXX We keep the mapping until __i915_vma_unbind()/evict() */
627
628 i915_vma_flush_writes(vma);
629
630 i915_vma_unpin_fence(vma);
631 i915_vma_unpin(vma);
632 }
633
i915_vma_unpin_and_release(struct i915_vma ** p_vma,unsigned int flags)634 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
635 {
636 struct i915_vma *vma;
637 struct drm_i915_gem_object *obj;
638
639 vma = fetch_and_zero(p_vma);
640 if (!vma)
641 return;
642
643 obj = vma->obj;
644 GEM_BUG_ON(!obj);
645
646 i915_vma_unpin(vma);
647
648 if (flags & I915_VMA_RELEASE_MAP)
649 i915_gem_object_unpin_map(obj);
650
651 i915_gem_object_put(obj);
652 }
653
i915_vma_misplaced(const struct i915_vma * vma,u64 size,u64 alignment,u64 flags)654 bool i915_vma_misplaced(const struct i915_vma *vma,
655 u64 size, u64 alignment, u64 flags)
656 {
657 if (!drm_mm_node_allocated(&vma->node))
658 return false;
659
660 if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
661 return true;
662
663 if (i915_vma_size(vma) < size)
664 return true;
665
666 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
667 if (alignment && !IS_ALIGNED(i915_vma_offset(vma), alignment))
668 return true;
669
670 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
671 return true;
672
673 if (flags & PIN_OFFSET_BIAS &&
674 i915_vma_offset(vma) < (flags & PIN_OFFSET_MASK))
675 return true;
676
677 if (flags & PIN_OFFSET_FIXED &&
678 i915_vma_offset(vma) != (flags & PIN_OFFSET_MASK))
679 return true;
680
681 if (flags & PIN_OFFSET_GUARD &&
682 vma->guard < (flags & PIN_OFFSET_MASK))
683 return true;
684
685 return false;
686 }
687
__i915_vma_set_map_and_fenceable(struct i915_vma * vma)688 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
689 {
690 bool mappable, fenceable;
691
692 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
693 GEM_BUG_ON(!vma->fence_size);
694
695 fenceable = (i915_vma_size(vma) >= vma->fence_size &&
696 IS_ALIGNED(i915_vma_offset(vma), vma->fence_alignment));
697
698 mappable = i915_ggtt_offset(vma) + vma->fence_size <=
699 i915_vm_to_ggtt(vma->vm)->mappable_end;
700
701 if (mappable && fenceable)
702 set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
703 else
704 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
705 }
706
i915_gem_valid_gtt_space(struct i915_vma * vma,unsigned long color)707 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
708 {
709 struct drm_mm_node *node = &vma->node;
710 struct drm_mm_node *other;
711
712 /*
713 * On some machines we have to be careful when putting differing types
714 * of snoopable memory together to avoid the prefetcher crossing memory
715 * domains and dying. During vm initialisation, we decide whether or not
716 * these constraints apply and set the drm_mm.color_adjust
717 * appropriately.
718 */
719 if (!i915_vm_has_cache_coloring(vma->vm))
720 return true;
721
722 /* Only valid to be called on an already inserted vma */
723 GEM_BUG_ON(!drm_mm_node_allocated(node));
724 GEM_BUG_ON(list_empty(&node->node_list));
725
726 other = list_prev_entry(node, node_list);
727 if (i915_node_color_differs(other, color) &&
728 !drm_mm_hole_follows(other))
729 return false;
730
731 other = list_next_entry(node, node_list);
732 if (i915_node_color_differs(other, color) &&
733 !drm_mm_hole_follows(node))
734 return false;
735
736 return true;
737 }
738
739 /**
740 * i915_vma_insert - finds a slot for the vma in its address space
741 * @vma: the vma
742 * @size: requested size in bytes (can be larger than the VMA)
743 * @alignment: required alignment
744 * @flags: mask of PIN_* flags to use
745 *
746 * First we try to allocate some free space that meets the requirements for
747 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
748 * preferrably the oldest idle entry to make room for the new VMA.
749 *
750 * Returns:
751 * 0 on success, negative error code otherwise.
752 */
753 static int
i915_vma_insert(struct i915_vma * vma,struct i915_gem_ww_ctx * ww,u64 size,u64 alignment,u64 flags)754 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
755 u64 size, u64 alignment, u64 flags)
756 {
757 unsigned long color, guard;
758 u64 start, end;
759 int ret;
760
761 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
762 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
763 GEM_BUG_ON(hweight64(flags & (PIN_OFFSET_GUARD | PIN_OFFSET_FIXED | PIN_OFFSET_BIAS)) > 1);
764
765 size = max(size, vma->size);
766 alignment = max_t(typeof(alignment), alignment, vma->display_alignment);
767 if (flags & PIN_MAPPABLE) {
768 size = max_t(typeof(size), size, vma->fence_size);
769 alignment = max_t(typeof(alignment),
770 alignment, vma->fence_alignment);
771 }
772
773 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
774 GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
775 GEM_BUG_ON(!is_power_of_2(alignment));
776
777 guard = vma->guard; /* retain guard across rebinds */
778 if (flags & PIN_OFFSET_GUARD) {
779 GEM_BUG_ON(overflows_type(flags & PIN_OFFSET_MASK, u32));
780 guard = max_t(u32, guard, flags & PIN_OFFSET_MASK);
781 }
782 /*
783 * As we align the node upon insertion, but the hardware gets
784 * node.start + guard, the easiest way to make that work is
785 * to make the guard a multiple of the alignment size.
786 */
787 guard = ALIGN(guard, alignment);
788
789 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
790 GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
791
792 end = vma->vm->total;
793 if (flags & PIN_MAPPABLE)
794 end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
795 if (flags & PIN_ZONE_4G)
796 end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
797 GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
798
799 alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
800
801 /*
802 * If binding the object/GGTT view requires more space than the entire
803 * aperture has, reject it early before evicting everything in a vain
804 * attempt to find space.
805 */
806 if (size > end - 2 * guard) {
807 drm_dbg(&to_i915(vma->obj->base.dev)->drm,
808 "Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
809 size, flags & PIN_MAPPABLE ? "mappable" : "total", end);
810 return -ENOSPC;
811 }
812
813 color = 0;
814
815 if (i915_vm_has_cache_coloring(vma->vm))
816 color = vma->obj->cache_level;
817
818 if (flags & PIN_OFFSET_FIXED) {
819 u64 offset = flags & PIN_OFFSET_MASK;
820 if (!IS_ALIGNED(offset, alignment) ||
821 range_overflows(offset, size, end))
822 return -EINVAL;
823 /*
824 * The caller knows not of the guard added by others and
825 * requests for the offset of the start of its buffer
826 * to be fixed, which may not be the same as the position
827 * of the vma->node due to the guard pages.
828 */
829 if (offset < guard || offset + size > end - guard)
830 return -ENOSPC;
831
832 ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
833 size + 2 * guard,
834 offset - guard,
835 color, flags);
836 if (ret)
837 return ret;
838 } else {
839 size += 2 * guard;
840 /*
841 * We only support huge gtt pages through the 48b PPGTT,
842 * however we also don't want to force any alignment for
843 * objects which need to be tightly packed into the low 32bits.
844 *
845 * Note that we assume that GGTT are limited to 4GiB for the
846 * forseeable future. See also i915_ggtt_offset().
847 */
848 if (upper_32_bits(end - 1) &&
849 vma->page_sizes.sg > I915_GTT_PAGE_SIZE &&
850 !HAS_64K_PAGES(vma->vm->i915)) {
851 /*
852 * We can't mix 64K and 4K PTEs in the same page-table
853 * (2M block), and so to avoid the ugliness and
854 * complexity of coloring we opt for just aligning 64K
855 * objects to 2M.
856 */
857 u64 page_alignment =
858 rounddown_pow_of_two(vma->page_sizes.sg |
859 I915_GTT_PAGE_SIZE_2M);
860
861 /*
862 * Check we don't expand for the limited Global GTT
863 * (mappable aperture is even more precious!). This
864 * also checks that we exclude the aliasing-ppgtt.
865 */
866 GEM_BUG_ON(i915_vma_is_ggtt(vma));
867
868 alignment = max(alignment, page_alignment);
869
870 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
871 size = round_up(size, I915_GTT_PAGE_SIZE_2M);
872 }
873
874 ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
875 size, alignment, color,
876 start, end, flags);
877 if (ret)
878 return ret;
879
880 GEM_BUG_ON(vma->node.start < start);
881 GEM_BUG_ON(vma->node.start + vma->node.size > end);
882 }
883 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
884 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
885
886 list_move_tail(&vma->vm_link, &vma->vm->bound_list);
887 vma->guard = guard;
888
889 return 0;
890 }
891
892 static void
i915_vma_detach(struct i915_vma * vma)893 i915_vma_detach(struct i915_vma *vma)
894 {
895 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
896 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
897
898 /*
899 * And finally now the object is completely decoupled from this
900 * vma, we can drop its hold on the backing storage and allow
901 * it to be reaped by the shrinker.
902 */
903 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
904 }
905
try_qad_pin(struct i915_vma * vma,unsigned int flags)906 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
907 {
908 unsigned int bound;
909
910 bound = atomic_read(&vma->flags);
911
912 if (flags & PIN_VALIDATE) {
913 flags &= I915_VMA_BIND_MASK;
914
915 return (flags & bound) == flags;
916 }
917
918 /* with the lock mandatory for unbind, we don't race here */
919 flags &= I915_VMA_BIND_MASK;
920 do {
921 if (unlikely(flags & ~bound))
922 return false;
923
924 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
925 return false;
926
927 GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
928 } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
929
930 return true;
931 }
932
933 static struct scatterlist *
rotate_pages(struct drm_i915_gem_object * obj,unsigned int offset,unsigned int width,unsigned int height,unsigned int src_stride,unsigned int dst_stride,struct sg_table * st,struct scatterlist * sg)934 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
935 unsigned int width, unsigned int height,
936 unsigned int src_stride, unsigned int dst_stride,
937 struct sg_table *st, struct scatterlist *sg)
938 {
939 unsigned int column, row;
940 pgoff_t src_idx;
941
942 for (column = 0; column < width; column++) {
943 unsigned int left;
944
945 src_idx = src_stride * (height - 1) + column + offset;
946 for (row = 0; row < height; row++) {
947 st->nents++;
948 /*
949 * We don't need the pages, but need to initialize
950 * the entries so the sg list can be happily traversed.
951 * The only thing we need are DMA addresses.
952 */
953 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
954 sg_dma_address(sg) =
955 i915_gem_object_get_dma_address(obj, src_idx);
956 sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
957 sg = sg_next(sg);
958 src_idx -= src_stride;
959 }
960
961 left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
962
963 if (!left)
964 continue;
965
966 st->nents++;
967
968 /*
969 * The DE ignores the PTEs for the padding tiles, the sg entry
970 * here is just a conenience to indicate how many padding PTEs
971 * to insert at this spot.
972 */
973 sg_set_page(sg, NULL, left, 0);
974 sg_dma_address(sg) = 0;
975 sg_dma_len(sg) = left;
976 sg = sg_next(sg);
977 }
978
979 return sg;
980 }
981
982 static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info * rot_info,struct drm_i915_gem_object * obj)983 intel_rotate_pages(struct intel_rotation_info *rot_info,
984 struct drm_i915_gem_object *obj)
985 {
986 unsigned int size = intel_rotation_info_size(rot_info);
987 struct drm_i915_private *i915 = to_i915(obj->base.dev);
988 struct sg_table *st;
989 struct scatterlist *sg;
990 int ret = -ENOMEM;
991 int i;
992
993 /* Allocate target SG list. */
994 st = kmalloc(sizeof(*st), GFP_KERNEL);
995 if (!st)
996 goto err_st_alloc;
997
998 ret = sg_alloc_table(st, size, GFP_KERNEL);
999 if (ret)
1000 goto err_sg_alloc;
1001
1002 st->nents = 0;
1003 sg = st->sgl;
1004
1005 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
1006 sg = rotate_pages(obj, rot_info->plane[i].offset,
1007 rot_info->plane[i].width, rot_info->plane[i].height,
1008 rot_info->plane[i].src_stride,
1009 rot_info->plane[i].dst_stride,
1010 st, sg);
1011
1012 return st;
1013
1014 err_sg_alloc:
1015 kfree(st);
1016 err_st_alloc:
1017
1018 drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1019 obj->base.size, rot_info->plane[0].width,
1020 rot_info->plane[0].height, size);
1021
1022 return ERR_PTR(ret);
1023 }
1024
1025 static struct scatterlist *
add_padding_pages(unsigned int count,struct sg_table * st,struct scatterlist * sg)1026 add_padding_pages(unsigned int count,
1027 struct sg_table *st, struct scatterlist *sg)
1028 {
1029 st->nents++;
1030
1031 /*
1032 * The DE ignores the PTEs for the padding tiles, the sg entry
1033 * here is just a convenience to indicate how many padding PTEs
1034 * to insert at this spot.
1035 */
1036 sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
1037 sg_dma_address(sg) = 0;
1038 sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1039 sg = sg_next(sg);
1040
1041 return sg;
1042 }
1043
1044 static struct scatterlist *
remap_tiled_color_plane_pages(struct drm_i915_gem_object * obj,unsigned long offset,unsigned int alignment_pad,unsigned int width,unsigned int height,unsigned int src_stride,unsigned int dst_stride,struct sg_table * st,struct scatterlist * sg,unsigned int * gtt_offset)1045 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1046 unsigned long offset, unsigned int alignment_pad,
1047 unsigned int width, unsigned int height,
1048 unsigned int src_stride, unsigned int dst_stride,
1049 struct sg_table *st, struct scatterlist *sg,
1050 unsigned int *gtt_offset)
1051 {
1052 unsigned int row;
1053
1054 if (!width || !height)
1055 return sg;
1056
1057 if (alignment_pad)
1058 sg = add_padding_pages(alignment_pad, st, sg);
1059
1060 for (row = 0; row < height; row++) {
1061 unsigned int left = width * I915_GTT_PAGE_SIZE;
1062
1063 while (left) {
1064 dma_addr_t addr;
1065 unsigned int length;
1066
1067 /*
1068 * We don't need the pages, but need to initialize
1069 * the entries so the sg list can be happily traversed.
1070 * The only thing we need are DMA addresses.
1071 */
1072
1073 addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1074
1075 length = min(left, length);
1076
1077 st->nents++;
1078
1079 sg_set_page(sg, NULL, length, 0);
1080 sg_dma_address(sg) = addr;
1081 sg_dma_len(sg) = length;
1082 sg = sg_next(sg);
1083
1084 offset += length / I915_GTT_PAGE_SIZE;
1085 left -= length;
1086 }
1087
1088 offset += src_stride - width;
1089
1090 left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1091
1092 if (!left)
1093 continue;
1094
1095 sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1096 }
1097
1098 *gtt_offset += alignment_pad + dst_stride * height;
1099
1100 return sg;
1101 }
1102
1103 static struct scatterlist *
remap_contiguous_pages(struct drm_i915_gem_object * obj,pgoff_t obj_offset,unsigned int count,struct sg_table * st,struct scatterlist * sg)1104 remap_contiguous_pages(struct drm_i915_gem_object *obj,
1105 pgoff_t obj_offset,
1106 unsigned int count,
1107 struct sg_table *st, struct scatterlist *sg)
1108 {
1109 struct scatterlist *iter;
1110 unsigned int offset;
1111
1112 iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1113 GEM_BUG_ON(!iter);
1114
1115 do {
1116 unsigned int len;
1117
1118 len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1119 count << PAGE_SHIFT);
1120 sg_set_page(sg, NULL, len, 0);
1121 sg_dma_address(sg) =
1122 sg_dma_address(iter) + (offset << PAGE_SHIFT);
1123 sg_dma_len(sg) = len;
1124
1125 st->nents++;
1126 count -= len >> PAGE_SHIFT;
1127 if (count == 0)
1128 return sg;
1129
1130 sg = __sg_next(sg);
1131 iter = __sg_next(iter);
1132 offset = 0;
1133 } while (1);
1134 }
1135
1136 static struct scatterlist *
remap_linear_color_plane_pages(struct drm_i915_gem_object * obj,pgoff_t obj_offset,unsigned int alignment_pad,unsigned int size,struct sg_table * st,struct scatterlist * sg,unsigned int * gtt_offset)1137 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1138 pgoff_t obj_offset, unsigned int alignment_pad,
1139 unsigned int size,
1140 struct sg_table *st, struct scatterlist *sg,
1141 unsigned int *gtt_offset)
1142 {
1143 if (!size)
1144 return sg;
1145
1146 if (alignment_pad)
1147 sg = add_padding_pages(alignment_pad, st, sg);
1148
1149 sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1150 sg = sg_next(sg);
1151
1152 *gtt_offset += alignment_pad + size;
1153
1154 return sg;
1155 }
1156
1157 static struct scatterlist *
remap_color_plane_pages(const struct intel_remapped_info * rem_info,struct drm_i915_gem_object * obj,int color_plane,struct sg_table * st,struct scatterlist * sg,unsigned int * gtt_offset)1158 remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1159 struct drm_i915_gem_object *obj,
1160 int color_plane,
1161 struct sg_table *st, struct scatterlist *sg,
1162 unsigned int *gtt_offset)
1163 {
1164 unsigned int alignment_pad = 0;
1165
1166 if (rem_info->plane_alignment)
1167 alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1168
1169 if (rem_info->plane[color_plane].linear)
1170 sg = remap_linear_color_plane_pages(obj,
1171 rem_info->plane[color_plane].offset,
1172 alignment_pad,
1173 rem_info->plane[color_plane].size,
1174 st, sg,
1175 gtt_offset);
1176
1177 else
1178 sg = remap_tiled_color_plane_pages(obj,
1179 rem_info->plane[color_plane].offset,
1180 alignment_pad,
1181 rem_info->plane[color_plane].width,
1182 rem_info->plane[color_plane].height,
1183 rem_info->plane[color_plane].src_stride,
1184 rem_info->plane[color_plane].dst_stride,
1185 st, sg,
1186 gtt_offset);
1187
1188 return sg;
1189 }
1190
1191 static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info * rem_info,struct drm_i915_gem_object * obj)1192 intel_remap_pages(struct intel_remapped_info *rem_info,
1193 struct drm_i915_gem_object *obj)
1194 {
1195 unsigned int size = intel_remapped_info_size(rem_info);
1196 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1197 struct sg_table *st;
1198 struct scatterlist *sg;
1199 unsigned int gtt_offset = 0;
1200 int ret = -ENOMEM;
1201 int i;
1202
1203 /* Allocate target SG list. */
1204 st = kmalloc(sizeof(*st), GFP_KERNEL);
1205 if (!st)
1206 goto err_st_alloc;
1207
1208 ret = sg_alloc_table(st, size, GFP_KERNEL);
1209 if (ret)
1210 goto err_sg_alloc;
1211
1212 st->nents = 0;
1213 sg = st->sgl;
1214
1215 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1216 sg = remap_color_plane_pages(rem_info, obj, i, st, sg, >t_offset);
1217
1218 i915_sg_trim(st);
1219
1220 return st;
1221
1222 err_sg_alloc:
1223 kfree(st);
1224 err_st_alloc:
1225
1226 drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1227 obj->base.size, rem_info->plane[0].width,
1228 rem_info->plane[0].height, size);
1229
1230 return ERR_PTR(ret);
1231 }
1232
1233 static noinline struct sg_table *
intel_partial_pages(const struct i915_gtt_view * view,struct drm_i915_gem_object * obj)1234 intel_partial_pages(const struct i915_gtt_view *view,
1235 struct drm_i915_gem_object *obj)
1236 {
1237 struct sg_table *st;
1238 struct scatterlist *sg;
1239 unsigned int count = view->partial.size;
1240 int ret = -ENOMEM;
1241
1242 st = kmalloc(sizeof(*st), GFP_KERNEL);
1243 if (!st)
1244 goto err_st_alloc;
1245
1246 ret = sg_alloc_table(st, count, GFP_KERNEL);
1247 if (ret)
1248 goto err_sg_alloc;
1249
1250 st->nents = 0;
1251
1252 sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1253
1254 sg_mark_end(sg);
1255 i915_sg_trim(st); /* Drop any unused tail entries. */
1256
1257 return st;
1258
1259 err_sg_alloc:
1260 kfree(st);
1261 err_st_alloc:
1262 return ERR_PTR(ret);
1263 }
1264
1265 static int
__i915_vma_get_pages(struct i915_vma * vma)1266 __i915_vma_get_pages(struct i915_vma *vma)
1267 {
1268 struct sg_table *pages;
1269
1270 /*
1271 * The vma->pages are only valid within the lifespan of the borrowed
1272 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1273 * must be the vma->pages. A simple rule is that vma->pages must only
1274 * be accessed when the obj->mm.pages are pinned.
1275 */
1276 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1277
1278 switch (vma->gtt_view.type) {
1279 default:
1280 GEM_BUG_ON(vma->gtt_view.type);
1281 fallthrough;
1282 case I915_GTT_VIEW_NORMAL:
1283 pages = vma->obj->mm.pages;
1284 break;
1285
1286 case I915_GTT_VIEW_ROTATED:
1287 pages =
1288 intel_rotate_pages(&vma->gtt_view.rotated, vma->obj);
1289 break;
1290
1291 case I915_GTT_VIEW_REMAPPED:
1292 pages =
1293 intel_remap_pages(&vma->gtt_view.remapped, vma->obj);
1294 break;
1295
1296 case I915_GTT_VIEW_PARTIAL:
1297 pages = intel_partial_pages(&vma->gtt_view, vma->obj);
1298 break;
1299 }
1300
1301 if (IS_ERR(pages)) {
1302 drm_err(&vma->vm->i915->drm,
1303 "Failed to get pages for VMA view type %u (%ld)!\n",
1304 vma->gtt_view.type, PTR_ERR(pages));
1305 return PTR_ERR(pages);
1306 }
1307
1308 vma->pages = pages;
1309
1310 return 0;
1311 }
1312
i915_vma_get_pages(struct i915_vma * vma)1313 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1314 {
1315 int err;
1316
1317 if (atomic_add_unless(&vma->pages_count, 1, 0))
1318 return 0;
1319
1320 err = i915_gem_object_pin_pages(vma->obj);
1321 if (err)
1322 return err;
1323
1324 err = __i915_vma_get_pages(vma);
1325 if (err)
1326 goto err_unpin;
1327
1328 vma->page_sizes = vma->obj->mm.page_sizes;
1329 atomic_inc(&vma->pages_count);
1330
1331 return 0;
1332
1333 err_unpin:
1334 __i915_gem_object_unpin_pages(vma->obj);
1335
1336 return err;
1337 }
1338
vma_invalidate_tlb(struct i915_address_space * vm,u32 * tlb)1339 void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb)
1340 {
1341 /*
1342 * Before we release the pages that were bound by this vma, we
1343 * must invalidate all the TLBs that may still have a reference
1344 * back to our physical address. It only needs to be done once,
1345 * so after updating the PTE to point away from the pages, record
1346 * the most recent TLB invalidation seqno, and if we have not yet
1347 * flushed the TLBs upon release, perform a full invalidation.
1348 */
1349 WRITE_ONCE(*tlb, intel_gt_next_invalidate_tlb_full(vm->gt));
1350 }
1351
__vma_put_pages(struct i915_vma * vma,unsigned int count)1352 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1353 {
1354 /* We allocate under vma_get_pages, so beware the shrinker */
1355 GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1356
1357 if (atomic_sub_return(count, &vma->pages_count) == 0) {
1358 if (vma->pages != vma->obj->mm.pages) {
1359 sg_free_table(vma->pages);
1360 kfree(vma->pages);
1361 }
1362 vma->pages = NULL;
1363
1364 i915_gem_object_unpin_pages(vma->obj);
1365 }
1366 }
1367
i915_vma_put_pages(struct i915_vma * vma)1368 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1369 {
1370 if (atomic_add_unless(&vma->pages_count, -1, 1))
1371 return;
1372
1373 __vma_put_pages(vma, 1);
1374 }
1375
vma_unbind_pages(struct i915_vma * vma)1376 static void vma_unbind_pages(struct i915_vma *vma)
1377 {
1378 unsigned int count;
1379
1380 lockdep_assert_held(&vma->vm->mutex);
1381
1382 /* The upper portion of pages_count is the number of bindings */
1383 count = atomic_read(&vma->pages_count);
1384 count >>= I915_VMA_PAGES_BIAS;
1385 GEM_BUG_ON(!count);
1386
1387 __vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1388 }
1389
i915_vma_pin_ww(struct i915_vma * vma,struct i915_gem_ww_ctx * ww,u64 size,u64 alignment,u64 flags)1390 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1391 u64 size, u64 alignment, u64 flags)
1392 {
1393 struct i915_vma_work *work = NULL;
1394 struct dma_fence *moving = NULL;
1395 struct i915_vma_resource *vma_res = NULL;
1396 intel_wakeref_t wakeref = 0;
1397 unsigned int bound;
1398 int err;
1399
1400 assert_vma_held(vma);
1401 GEM_BUG_ON(!ww);
1402
1403 BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1404 BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1405
1406 GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1407
1408 /* First try and grab the pin without rebinding the vma */
1409 if (try_qad_pin(vma, flags))
1410 return 0;
1411
1412 err = i915_vma_get_pages(vma);
1413 if (err)
1414 return err;
1415
1416 if (flags & PIN_GLOBAL)
1417 wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1418
1419 if (flags & vma->vm->bind_async_flags) {
1420 /* lock VM */
1421 err = i915_vm_lock_objects(vma->vm, ww);
1422 if (err)
1423 goto err_rpm;
1424
1425 work = i915_vma_work();
1426 if (!work) {
1427 err = -ENOMEM;
1428 goto err_rpm;
1429 }
1430
1431 work->vm = vma->vm;
1432
1433 err = i915_gem_object_get_moving_fence(vma->obj, &moving);
1434 if (err)
1435 goto err_rpm;
1436
1437 dma_fence_work_chain(&work->base, moving);
1438
1439 /* Allocate enough page directories to used PTE */
1440 if (vma->vm->allocate_va_range) {
1441 err = i915_vm_alloc_pt_stash(vma->vm,
1442 &work->stash,
1443 vma->size);
1444 if (err)
1445 goto err_fence;
1446
1447 err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1448 if (err)
1449 goto err_fence;
1450 }
1451 }
1452
1453 vma_res = i915_vma_resource_alloc();
1454 if (IS_ERR(vma_res)) {
1455 err = PTR_ERR(vma_res);
1456 goto err_fence;
1457 }
1458
1459 /*
1460 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1461 *
1462 * We conflate the Global GTT with the user's vma when using the
1463 * aliasing-ppgtt, but it is still vitally important to try and
1464 * keep the use cases distinct. For example, userptr objects are
1465 * not allowed inside the Global GTT as that will cause lock
1466 * inversions when we have to evict them the mmu_notifier callbacks -
1467 * but they are allowed to be part of the user ppGTT which can never
1468 * be mapped. As such we try to give the distinct users of the same
1469 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1470 * and i915_ppgtt separate].
1471 *
1472 * NB this may cause us to mask real lock inversions -- while the
1473 * code is safe today, lockdep may not be able to spot future
1474 * transgressions.
1475 */
1476 err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1477 !(flags & PIN_GLOBAL));
1478 if (err)
1479 goto err_vma_res;
1480
1481 /* No more allocations allowed now we hold vm->mutex */
1482
1483 if (unlikely(i915_vma_is_closed(vma))) {
1484 err = -ENOENT;
1485 goto err_unlock;
1486 }
1487
1488 bound = atomic_read(&vma->flags);
1489 if (unlikely(bound & I915_VMA_ERROR)) {
1490 err = -ENOMEM;
1491 goto err_unlock;
1492 }
1493
1494 if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1495 err = -EAGAIN; /* pins are meant to be fairly temporary */
1496 goto err_unlock;
1497 }
1498
1499 if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1500 if (!(flags & PIN_VALIDATE))
1501 __i915_vma_pin(vma);
1502 goto err_unlock;
1503 }
1504
1505 err = i915_active_acquire(&vma->active);
1506 if (err)
1507 goto err_unlock;
1508
1509 if (!(bound & I915_VMA_BIND_MASK)) {
1510 err = i915_vma_insert(vma, ww, size, alignment, flags);
1511 if (err)
1512 goto err_active;
1513
1514 if (i915_is_ggtt(vma->vm))
1515 __i915_vma_set_map_and_fenceable(vma);
1516 }
1517
1518 GEM_BUG_ON(!vma->pages);
1519 err = i915_vma_bind(vma,
1520 vma->obj->cache_level,
1521 flags, work, vma_res);
1522 vma_res = NULL;
1523 if (err)
1524 goto err_remove;
1525
1526 /* There should only be at most 2 active bindings (user, global) */
1527 GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1528 atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1529 list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1530
1531 if (!(flags & PIN_VALIDATE)) {
1532 __i915_vma_pin(vma);
1533 GEM_BUG_ON(!i915_vma_is_pinned(vma));
1534 }
1535 GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1536 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1537
1538 err_remove:
1539 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1540 i915_vma_detach(vma);
1541 drm_mm_remove_node(&vma->node);
1542 }
1543 err_active:
1544 i915_active_release(&vma->active);
1545 err_unlock:
1546 mutex_unlock(&vma->vm->mutex);
1547 err_vma_res:
1548 i915_vma_resource_free(vma_res);
1549 err_fence:
1550 if (work)
1551 dma_fence_work_commit_imm(&work->base);
1552 err_rpm:
1553 if (wakeref)
1554 intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1555
1556 if (moving)
1557 dma_fence_put(moving);
1558
1559 i915_vma_put_pages(vma);
1560 return err;
1561 }
1562
flush_idle_contexts(struct intel_gt * gt)1563 static void flush_idle_contexts(struct intel_gt *gt)
1564 {
1565 struct intel_engine_cs *engine;
1566 enum intel_engine_id id;
1567
1568 for_each_engine(engine, gt, id)
1569 intel_engine_flush_barriers(engine);
1570
1571 intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1572 }
1573
__i915_ggtt_pin(struct i915_vma * vma,struct i915_gem_ww_ctx * ww,u32 align,unsigned int flags)1574 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1575 u32 align, unsigned int flags)
1576 {
1577 struct i915_address_space *vm = vma->vm;
1578 struct intel_gt *gt;
1579 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1580 int err;
1581
1582 do {
1583 err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1584
1585 if (err != -ENOSPC) {
1586 if (!err) {
1587 err = i915_vma_wait_for_bind(vma);
1588 if (err)
1589 i915_vma_unpin(vma);
1590 }
1591 return err;
1592 }
1593
1594 /* Unlike i915_vma_pin, we don't take no for an answer! */
1595 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1596 flush_idle_contexts(gt);
1597 if (mutex_lock_interruptible(&vm->mutex) == 0) {
1598 /*
1599 * We pass NULL ww here, as we don't want to unbind
1600 * locked objects when called from execbuf when pinning
1601 * is removed. This would probably regress badly.
1602 */
1603 i915_gem_evict_vm(vm, NULL, NULL);
1604 mutex_unlock(&vm->mutex);
1605 }
1606 } while (1);
1607 }
1608
i915_ggtt_pin(struct i915_vma * vma,struct i915_gem_ww_ctx * ww,u32 align,unsigned int flags)1609 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1610 u32 align, unsigned int flags)
1611 {
1612 struct i915_gem_ww_ctx _ww;
1613 int err;
1614
1615 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1616
1617 if (ww)
1618 return __i915_ggtt_pin(vma, ww, align, flags);
1619
1620 lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1621
1622 for_i915_gem_ww(&_ww, err, true) {
1623 err = i915_gem_object_lock(vma->obj, &_ww);
1624 if (!err)
1625 err = __i915_ggtt_pin(vma, &_ww, align, flags);
1626 }
1627
1628 return err;
1629 }
1630
__vma_close(struct i915_vma * vma,struct intel_gt * gt)1631 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1632 {
1633 /*
1634 * We defer actually closing, unbinding and destroying the VMA until
1635 * the next idle point, or if the object is freed in the meantime. By
1636 * postponing the unbind, we allow for it to be resurrected by the
1637 * client, avoiding the work required to rebind the VMA. This is
1638 * advantageous for DRI, where the client/server pass objects
1639 * between themselves, temporarily opening a local VMA to the
1640 * object, and then closing it again. The same object is then reused
1641 * on the next frame (or two, depending on the depth of the swap queue)
1642 * causing us to rebind the VMA once more. This ends up being a lot
1643 * of wasted work for the steady state.
1644 */
1645 GEM_BUG_ON(i915_vma_is_closed(vma));
1646 list_add(&vma->closed_link, >->closed_vma);
1647 }
1648
i915_vma_close(struct i915_vma * vma)1649 void i915_vma_close(struct i915_vma *vma)
1650 {
1651 struct intel_gt *gt = vma->vm->gt;
1652 unsigned long flags;
1653
1654 if (i915_vma_is_ggtt(vma))
1655 return;
1656
1657 GEM_BUG_ON(!atomic_read(&vma->open_count));
1658 if (atomic_dec_and_lock_irqsave(&vma->open_count,
1659 >->closed_lock,
1660 flags)) {
1661 __vma_close(vma, gt);
1662 spin_unlock_irqrestore(>->closed_lock, flags);
1663 }
1664 }
1665
__i915_vma_remove_closed(struct i915_vma * vma)1666 static void __i915_vma_remove_closed(struct i915_vma *vma)
1667 {
1668 list_del_init(&vma->closed_link);
1669 }
1670
i915_vma_reopen(struct i915_vma * vma)1671 void i915_vma_reopen(struct i915_vma *vma)
1672 {
1673 struct intel_gt *gt = vma->vm->gt;
1674
1675 spin_lock_irq(>->closed_lock);
1676 if (i915_vma_is_closed(vma))
1677 __i915_vma_remove_closed(vma);
1678 spin_unlock_irq(>->closed_lock);
1679 }
1680
force_unbind(struct i915_vma * vma)1681 static void force_unbind(struct i915_vma *vma)
1682 {
1683 if (!drm_mm_node_allocated(&vma->node))
1684 return;
1685
1686 atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1687 WARN_ON(__i915_vma_unbind(vma));
1688 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1689 }
1690
release_references(struct i915_vma * vma,struct intel_gt * gt,bool vm_ddestroy)1691 static void release_references(struct i915_vma *vma, struct intel_gt *gt,
1692 bool vm_ddestroy)
1693 {
1694 struct drm_i915_gem_object *obj = vma->obj;
1695
1696 GEM_BUG_ON(i915_vma_is_active(vma));
1697
1698 spin_lock(&obj->vma.lock);
1699 list_del(&vma->obj_link);
1700 if (!RB_EMPTY_NODE(&vma->obj_node))
1701 rb_erase(&vma->obj_node, &obj->vma.tree);
1702
1703 spin_unlock(&obj->vma.lock);
1704
1705 spin_lock_irq(>->closed_lock);
1706 __i915_vma_remove_closed(vma);
1707 spin_unlock_irq(>->closed_lock);
1708
1709 if (vm_ddestroy)
1710 i915_vm_resv_put(vma->vm);
1711
1712 i915_active_fini(&vma->active);
1713 GEM_WARN_ON(vma->resource);
1714 i915_vma_free(vma);
1715 }
1716
1717 /**
1718 * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1719 * the initial reference.
1720 *
1721 * This function should be called when it's decided the vma isn't needed
1722 * anymore. The caller must assure that it doesn't race with another lookup
1723 * plus destroy, typically by taking an appropriate reference.
1724 *
1725 * Current callsites are
1726 * - __i915_gem_object_pages_fini()
1727 * - __i915_vm_close() - Blocks the above function by taking a reference on
1728 * the object.
1729 * - __i915_vma_parked() - Blocks the above functions by taking a reference
1730 * on the vm and a reference on the object. Also takes the object lock so
1731 * destruction from __i915_vma_parked() can be blocked by holding the
1732 * object lock. Since the object lock is only allowed from within i915 with
1733 * an object refcount, holding the object lock also implicitly blocks the
1734 * vma freeing from __i915_gem_object_pages_fini().
1735 *
1736 * Because of locks taken during destruction, a vma is also guaranteed to
1737 * stay alive while the following locks are held if it was looked up while
1738 * holding one of the locks:
1739 * - vm->mutex
1740 * - obj->vma.lock
1741 * - gt->closed_lock
1742 */
i915_vma_destroy_locked(struct i915_vma * vma)1743 void i915_vma_destroy_locked(struct i915_vma *vma)
1744 {
1745 lockdep_assert_held(&vma->vm->mutex);
1746
1747 force_unbind(vma);
1748 list_del_init(&vma->vm_link);
1749 release_references(vma, vma->vm->gt, false);
1750 }
1751
i915_vma_destroy(struct i915_vma * vma)1752 void i915_vma_destroy(struct i915_vma *vma)
1753 {
1754 struct intel_gt *gt;
1755 bool vm_ddestroy;
1756
1757 mutex_lock(&vma->vm->mutex);
1758 force_unbind(vma);
1759 list_del_init(&vma->vm_link);
1760 vm_ddestroy = vma->vm_ddestroy;
1761 vma->vm_ddestroy = false;
1762
1763 /* vma->vm may be freed when releasing vma->vm->mutex. */
1764 gt = vma->vm->gt;
1765 mutex_unlock(&vma->vm->mutex);
1766 release_references(vma, gt, vm_ddestroy);
1767 }
1768
i915_vma_parked(struct intel_gt * gt)1769 void i915_vma_parked(struct intel_gt *gt)
1770 {
1771 struct i915_vma *vma, *next;
1772 LIST_HEAD(closed);
1773
1774 spin_lock_irq(>->closed_lock);
1775 list_for_each_entry_safe(vma, next, >->closed_vma, closed_link) {
1776 struct drm_i915_gem_object *obj = vma->obj;
1777 struct i915_address_space *vm = vma->vm;
1778
1779 /* XXX All to avoid keeping a reference on i915_vma itself */
1780
1781 if (!kref_get_unless_zero(&obj->base.refcount))
1782 continue;
1783
1784 if (!i915_vm_tryget(vm)) {
1785 i915_gem_object_put(obj);
1786 continue;
1787 }
1788
1789 list_move(&vma->closed_link, &closed);
1790 }
1791 spin_unlock_irq(>->closed_lock);
1792
1793 /* As the GT is held idle, no vma can be reopened as we destroy them */
1794 list_for_each_entry_safe(vma, next, &closed, closed_link) {
1795 struct drm_i915_gem_object *obj = vma->obj;
1796 struct i915_address_space *vm = vma->vm;
1797
1798 if (i915_gem_object_trylock(obj, NULL)) {
1799 INIT_LIST_HEAD(&vma->closed_link);
1800 i915_vma_destroy(vma);
1801 i915_gem_object_unlock(obj);
1802 } else {
1803 /* back you go.. */
1804 spin_lock_irq(>->closed_lock);
1805 list_add(&vma->closed_link, >->closed_vma);
1806 spin_unlock_irq(>->closed_lock);
1807 }
1808
1809 i915_gem_object_put(obj);
1810 i915_vm_put(vm);
1811 }
1812 }
1813
__i915_vma_iounmap(struct i915_vma * vma)1814 static void __i915_vma_iounmap(struct i915_vma *vma)
1815 {
1816 GEM_BUG_ON(i915_vma_is_pinned(vma));
1817
1818 if (vma->iomap == NULL)
1819 return;
1820
1821 if (page_unmask_bits(vma->iomap))
1822 __i915_gem_object_release_map(vma->obj);
1823 else
1824 io_mapping_unmap(vma->iomap);
1825 vma->iomap = NULL;
1826 }
1827
i915_vma_revoke_mmap(struct i915_vma * vma)1828 void i915_vma_revoke_mmap(struct i915_vma *vma)
1829 {
1830 struct drm_vma_offset_node *node;
1831 u64 vma_offset;
1832
1833 if (!i915_vma_has_userfault(vma))
1834 return;
1835
1836 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1837 GEM_BUG_ON(!vma->obj->userfault_count);
1838
1839 node = &vma->mmo->vma_node;
1840 vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
1841 unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1842 drm_vma_node_offset_addr(node) + vma_offset,
1843 vma->size,
1844 1);
1845
1846 i915_vma_unset_userfault(vma);
1847 if (!--vma->obj->userfault_count)
1848 list_del(&vma->obj->userfault_link);
1849 }
1850
1851 static int
__i915_request_await_bind(struct i915_request * rq,struct i915_vma * vma)1852 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1853 {
1854 return __i915_request_await_exclusive(rq, &vma->active);
1855 }
1856
__i915_vma_move_to_active(struct i915_vma * vma,struct i915_request * rq)1857 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1858 {
1859 int err;
1860
1861 /* Wait for the vma to be bound before we start! */
1862 err = __i915_request_await_bind(rq, vma);
1863 if (err)
1864 return err;
1865
1866 return i915_active_add_request(&vma->active, rq);
1867 }
1868
_i915_vma_move_to_active(struct i915_vma * vma,struct i915_request * rq,struct dma_fence * fence,unsigned int flags)1869 int _i915_vma_move_to_active(struct i915_vma *vma,
1870 struct i915_request *rq,
1871 struct dma_fence *fence,
1872 unsigned int flags)
1873 {
1874 struct drm_i915_gem_object *obj = vma->obj;
1875 int err;
1876
1877 assert_object_held(obj);
1878
1879 GEM_BUG_ON(!vma->pages);
1880
1881 if (!(flags & __EXEC_OBJECT_NO_REQUEST_AWAIT)) {
1882 err = i915_request_await_object(rq, vma->obj, flags & EXEC_OBJECT_WRITE);
1883 if (unlikely(err))
1884 return err;
1885 }
1886 err = __i915_vma_move_to_active(vma, rq);
1887 if (unlikely(err))
1888 return err;
1889
1890 /*
1891 * Reserve fences slot early to prevent an allocation after preparing
1892 * the workload and associating fences with dma_resv.
1893 */
1894 if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1895 struct dma_fence *curr;
1896 int idx;
1897
1898 dma_fence_array_for_each(curr, idx, fence)
1899 ;
1900 err = dma_resv_reserve_fences(vma->obj->base.resv, idx);
1901 if (unlikely(err))
1902 return err;
1903 }
1904
1905 if (flags & EXEC_OBJECT_WRITE) {
1906 struct intel_frontbuffer *front;
1907
1908 front = __intel_frontbuffer_get(obj);
1909 if (unlikely(front)) {
1910 if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1911 i915_active_add_request(&front->write, rq);
1912 intel_frontbuffer_put(front);
1913 }
1914 }
1915
1916 if (fence) {
1917 struct dma_fence *curr;
1918 enum dma_resv_usage usage;
1919 int idx;
1920
1921 if (flags & EXEC_OBJECT_WRITE) {
1922 usage = DMA_RESV_USAGE_WRITE;
1923 obj->write_domain = I915_GEM_DOMAIN_RENDER;
1924 obj->read_domains = 0;
1925 } else {
1926 usage = DMA_RESV_USAGE_READ;
1927 obj->write_domain = 0;
1928 }
1929
1930 dma_fence_array_for_each(curr, idx, fence)
1931 dma_resv_add_fence(vma->obj->base.resv, curr, usage);
1932 }
1933
1934 if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
1935 i915_active_add_request(&vma->fence->active, rq);
1936
1937 obj->read_domains |= I915_GEM_GPU_DOMAINS;
1938 obj->mm.dirty = true;
1939
1940 GEM_BUG_ON(!i915_vma_is_active(vma));
1941 return 0;
1942 }
1943
__i915_vma_evict(struct i915_vma * vma,bool async)1944 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
1945 {
1946 struct i915_vma_resource *vma_res = vma->resource;
1947 struct dma_fence *unbind_fence;
1948
1949 GEM_BUG_ON(i915_vma_is_pinned(vma));
1950 assert_vma_held_evict(vma);
1951
1952 if (i915_vma_is_map_and_fenceable(vma)) {
1953 /* Force a pagefault for domain tracking on next user access */
1954 i915_vma_revoke_mmap(vma);
1955
1956 /*
1957 * Check that we have flushed all writes through the GGTT
1958 * before the unbind, other due to non-strict nature of those
1959 * indirect writes they may end up referencing the GGTT PTE
1960 * after the unbind.
1961 *
1962 * Note that we may be concurrently poking at the GGTT_WRITE
1963 * bit from set-domain, as we mark all GGTT vma associated
1964 * with an object. We know this is for another vma, as we
1965 * are currently unbinding this one -- so if this vma will be
1966 * reused, it will be refaulted and have its dirty bit set
1967 * before the next write.
1968 */
1969 i915_vma_flush_writes(vma);
1970
1971 /* release the fence reg _after_ flushing */
1972 i915_vma_revoke_fence(vma);
1973
1974 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
1975 }
1976
1977 __i915_vma_iounmap(vma);
1978
1979 GEM_BUG_ON(vma->fence);
1980 GEM_BUG_ON(i915_vma_has_userfault(vma));
1981
1982 /* Object backend must be async capable. */
1983 GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
1984
1985 /* If vm is not open, unbind is a nop. */
1986 vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
1987 kref_read(&vma->vm->ref);
1988 vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) ||
1989 vma->vm->skip_pte_rewrite;
1990 trace_i915_vma_unbind(vma);
1991
1992 if (async)
1993 unbind_fence = i915_vma_resource_unbind(vma_res,
1994 &vma->obj->mm.tlb);
1995 else
1996 unbind_fence = i915_vma_resource_unbind(vma_res, NULL);
1997
1998 vma->resource = NULL;
1999
2000 atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
2001 &vma->flags);
2002
2003 i915_vma_detach(vma);
2004
2005 if (!async) {
2006 if (unbind_fence) {
2007 dma_fence_wait(unbind_fence, false);
2008 dma_fence_put(unbind_fence);
2009 unbind_fence = NULL;
2010 }
2011 vma_invalidate_tlb(vma->vm, &vma->obj->mm.tlb);
2012 }
2013
2014 /*
2015 * Binding itself may not have completed until the unbind fence signals,
2016 * so don't drop the pages until that happens, unless the resource is
2017 * async_capable.
2018 */
2019
2020 vma_unbind_pages(vma);
2021 return unbind_fence;
2022 }
2023
__i915_vma_unbind(struct i915_vma * vma)2024 int __i915_vma_unbind(struct i915_vma *vma)
2025 {
2026 int ret;
2027
2028 lockdep_assert_held(&vma->vm->mutex);
2029 assert_vma_held_evict(vma);
2030
2031 if (!drm_mm_node_allocated(&vma->node))
2032 return 0;
2033
2034 if (i915_vma_is_pinned(vma)) {
2035 vma_print_allocator(vma, "is pinned");
2036 return -EAGAIN;
2037 }
2038
2039 /*
2040 * After confirming that no one else is pinning this vma, wait for
2041 * any laggards who may have crept in during the wait (through
2042 * a residual pin skipping the vm->mutex) to complete.
2043 */
2044 ret = i915_vma_sync(vma);
2045 if (ret)
2046 return ret;
2047
2048 GEM_BUG_ON(i915_vma_is_active(vma));
2049 __i915_vma_evict(vma, false);
2050
2051 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2052 return 0;
2053 }
2054
__i915_vma_unbind_async(struct i915_vma * vma)2055 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
2056 {
2057 struct dma_fence *fence;
2058
2059 lockdep_assert_held(&vma->vm->mutex);
2060
2061 if (!drm_mm_node_allocated(&vma->node))
2062 return NULL;
2063
2064 if (i915_vma_is_pinned(vma) ||
2065 &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
2066 return ERR_PTR(-EAGAIN);
2067
2068 /*
2069 * We probably need to replace this with awaiting the fences of the
2070 * object's dma_resv when the vma active goes away. When doing that
2071 * we need to be careful to not add the vma_resource unbind fence
2072 * immediately to the object's dma_resv, because then unbinding
2073 * the next vma from the object, in case there are many, will
2074 * actually await the unbinding of the previous vmas, which is
2075 * undesirable.
2076 */
2077 if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
2078 I915_ACTIVE_AWAIT_EXCL |
2079 I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2080 return ERR_PTR(-EBUSY);
2081 }
2082
2083 fence = __i915_vma_evict(vma, true);
2084
2085 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2086
2087 return fence;
2088 }
2089
i915_vma_unbind(struct i915_vma * vma)2090 int i915_vma_unbind(struct i915_vma *vma)
2091 {
2092 struct i915_address_space *vm = vma->vm;
2093 intel_wakeref_t wakeref = 0;
2094 int err;
2095
2096 assert_object_held_shared(vma->obj);
2097
2098 /* Optimistic wait before taking the mutex */
2099 err = i915_vma_sync(vma);
2100 if (err)
2101 return err;
2102
2103 if (!drm_mm_node_allocated(&vma->node))
2104 return 0;
2105
2106 if (i915_vma_is_pinned(vma)) {
2107 vma_print_allocator(vma, "is pinned");
2108 return -EAGAIN;
2109 }
2110
2111 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2112 /* XXX not always required: nop_clear_range */
2113 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2114
2115 err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2116 if (err)
2117 goto out_rpm;
2118
2119 err = __i915_vma_unbind(vma);
2120 mutex_unlock(&vm->mutex);
2121
2122 out_rpm:
2123 if (wakeref)
2124 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2125 return err;
2126 }
2127
i915_vma_unbind_async(struct i915_vma * vma,bool trylock_vm)2128 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2129 {
2130 struct drm_i915_gem_object *obj = vma->obj;
2131 struct i915_address_space *vm = vma->vm;
2132 intel_wakeref_t wakeref = 0;
2133 struct dma_fence *fence;
2134 int err;
2135
2136 /*
2137 * We need the dma-resv lock since we add the
2138 * unbind fence to the dma-resv object.
2139 */
2140 assert_object_held(obj);
2141
2142 if (!drm_mm_node_allocated(&vma->node))
2143 return 0;
2144
2145 if (i915_vma_is_pinned(vma)) {
2146 vma_print_allocator(vma, "is pinned");
2147 return -EAGAIN;
2148 }
2149
2150 if (!obj->mm.rsgt)
2151 return -EBUSY;
2152
2153 err = dma_resv_reserve_fences(obj->base.resv, 2);
2154 if (err)
2155 return -EBUSY;
2156
2157 /*
2158 * It would be great if we could grab this wakeref from the
2159 * async unbind work if needed, but we can't because it uses
2160 * kmalloc and it's in the dma-fence signalling critical path.
2161 */
2162 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2163 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2164
2165 if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2166 err = -EBUSY;
2167 goto out_rpm;
2168 } else if (!trylock_vm) {
2169 err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2170 if (err)
2171 goto out_rpm;
2172 }
2173
2174 fence = __i915_vma_unbind_async(vma);
2175 mutex_unlock(&vm->mutex);
2176 if (IS_ERR_OR_NULL(fence)) {
2177 err = PTR_ERR_OR_ZERO(fence);
2178 goto out_rpm;
2179 }
2180
2181 dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ);
2182 dma_fence_put(fence);
2183
2184 out_rpm:
2185 if (wakeref)
2186 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2187 return err;
2188 }
2189
i915_vma_unbind_unlocked(struct i915_vma * vma)2190 int i915_vma_unbind_unlocked(struct i915_vma *vma)
2191 {
2192 int err;
2193
2194 i915_gem_object_lock(vma->obj, NULL);
2195 err = i915_vma_unbind(vma);
2196 i915_gem_object_unlock(vma->obj);
2197
2198 return err;
2199 }
2200
i915_vma_make_unshrinkable(struct i915_vma * vma)2201 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2202 {
2203 i915_gem_object_make_unshrinkable(vma->obj);
2204 return vma;
2205 }
2206
i915_vma_make_shrinkable(struct i915_vma * vma)2207 void i915_vma_make_shrinkable(struct i915_vma *vma)
2208 {
2209 i915_gem_object_make_shrinkable(vma->obj);
2210 }
2211
i915_vma_make_purgeable(struct i915_vma * vma)2212 void i915_vma_make_purgeable(struct i915_vma *vma)
2213 {
2214 i915_gem_object_make_purgeable(vma->obj);
2215 }
2216
2217 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2218 #include "selftests/i915_vma.c"
2219 #endif
2220
i915_vma_module_exit(void)2221 void i915_vma_module_exit(void)
2222 {
2223 kmem_cache_destroy(slab_vmas);
2224 }
2225
i915_vma_module_init(void)2226 int __init i915_vma_module_init(void)
2227 {
2228 slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2229 if (!slab_vmas)
2230 return -ENOMEM;
2231
2232 return 0;
2233 }
2234