1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2022 Intel Corporation
9 */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 const struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30 {
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 enum nl80211_bss_scan_width scan_width)
48 {
49 struct ieee80211_rate *bitrates;
50 u32 mandatory_rates = 0;
51 enum ieee80211_rate_flags mandatory_flag;
52 int i;
53
54 if (WARN_ON(!sband))
55 return 1;
56
57 if (sband->band == NL80211_BAND_2GHZ) {
58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 else
62 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 } else {
64 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 }
66
67 bitrates = sband->bitrates;
68 for (i = 0; i < sband->n_bitrates; i++)
69 if (bitrates[i].flags & mandatory_flag)
70 mandatory_rates |= BIT(i);
71 return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 if (chan <= 0)
80 return 0; /* not supported */
81 switch (band) {
82 case NL80211_BAND_2GHZ:
83 case NL80211_BAND_LC:
84 if (chan == 14)
85 return MHZ_TO_KHZ(2484);
86 else if (chan < 14)
87 return MHZ_TO_KHZ(2407 + chan * 5);
88 break;
89 case NL80211_BAND_5GHZ:
90 if (chan >= 182 && chan <= 196)
91 return MHZ_TO_KHZ(4000 + chan * 5);
92 else
93 return MHZ_TO_KHZ(5000 + chan * 5);
94 break;
95 case NL80211_BAND_6GHZ:
96 /* see 802.11ax D6.1 27.3.23.2 */
97 if (chan == 2)
98 return MHZ_TO_KHZ(5935);
99 if (chan <= 233)
100 return MHZ_TO_KHZ(5950 + chan * 5);
101 break;
102 case NL80211_BAND_60GHZ:
103 if (chan < 7)
104 return MHZ_TO_KHZ(56160 + chan * 2160);
105 break;
106 case NL80211_BAND_S1GHZ:
107 return 902000 + chan * 500;
108 default:
109 ;
110 }
111 return 0; /* not supported */
112 }
113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114
115 enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117 {
118 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119 return NL80211_CHAN_WIDTH_20_NOHT;
120
121 /*S1G defines a single allowed channel width per channel.
122 * Extract that width here.
123 */
124 if (chan->flags & IEEE80211_CHAN_1MHZ)
125 return NL80211_CHAN_WIDTH_1;
126 else if (chan->flags & IEEE80211_CHAN_2MHZ)
127 return NL80211_CHAN_WIDTH_2;
128 else if (chan->flags & IEEE80211_CHAN_4MHZ)
129 return NL80211_CHAN_WIDTH_4;
130 else if (chan->flags & IEEE80211_CHAN_8MHZ)
131 return NL80211_CHAN_WIDTH_8;
132 else if (chan->flags & IEEE80211_CHAN_16MHZ)
133 return NL80211_CHAN_WIDTH_16;
134
135 pr_err("unknown channel width for channel at %dKHz?\n",
136 ieee80211_channel_to_khz(chan));
137
138 return NL80211_CHAN_WIDTH_1;
139 }
140 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141
ieee80211_freq_khz_to_channel(u32 freq)142 int ieee80211_freq_khz_to_channel(u32 freq)
143 {
144 /* TODO: just handle MHz for now */
145 freq = KHZ_TO_MHZ(freq);
146
147 /* see 802.11 17.3.8.3.2 and Annex J */
148 if (freq == 2484)
149 return 14;
150 else if (freq < 2484)
151 return (freq - 2407) / 5;
152 else if (freq >= 4910 && freq <= 4980)
153 return (freq - 4000) / 5;
154 else if (freq < 5925)
155 return (freq - 5000) / 5;
156 else if (freq == 5935)
157 return 2;
158 else if (freq <= 45000) /* DMG band lower limit */
159 /* see 802.11ax D6.1 27.3.22.2 */
160 return (freq - 5950) / 5;
161 else if (freq >= 58320 && freq <= 70200)
162 return (freq - 56160) / 2160;
163 else
164 return 0;
165 }
166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169 u32 freq)
170 {
171 enum nl80211_band band;
172 struct ieee80211_supported_band *sband;
173 int i;
174
175 for (band = 0; band < NUM_NL80211_BANDS; band++) {
176 sband = wiphy->bands[band];
177
178 if (!sband)
179 continue;
180
181 for (i = 0; i < sband->n_channels; i++) {
182 struct ieee80211_channel *chan = &sband->channels[i];
183
184 if (ieee80211_channel_to_khz(chan) == freq)
185 return chan;
186 }
187 }
188
189 return NULL;
190 }
191 EXPORT_SYMBOL(ieee80211_get_channel_khz);
192
set_mandatory_flags_band(struct ieee80211_supported_band * sband)193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194 {
195 int i, want;
196
197 switch (sband->band) {
198 case NL80211_BAND_5GHZ:
199 case NL80211_BAND_6GHZ:
200 want = 3;
201 for (i = 0; i < sband->n_bitrates; i++) {
202 if (sband->bitrates[i].bitrate == 60 ||
203 sband->bitrates[i].bitrate == 120 ||
204 sband->bitrates[i].bitrate == 240) {
205 sband->bitrates[i].flags |=
206 IEEE80211_RATE_MANDATORY_A;
207 want--;
208 }
209 }
210 WARN_ON(want);
211 break;
212 case NL80211_BAND_2GHZ:
213 case NL80211_BAND_LC:
214 want = 7;
215 for (i = 0; i < sband->n_bitrates; i++) {
216 switch (sband->bitrates[i].bitrate) {
217 case 10:
218 case 20:
219 case 55:
220 case 110:
221 sband->bitrates[i].flags |=
222 IEEE80211_RATE_MANDATORY_B |
223 IEEE80211_RATE_MANDATORY_G;
224 want--;
225 break;
226 case 60:
227 case 120:
228 case 240:
229 sband->bitrates[i].flags |=
230 IEEE80211_RATE_MANDATORY_G;
231 want--;
232 fallthrough;
233 default:
234 sband->bitrates[i].flags |=
235 IEEE80211_RATE_ERP_G;
236 break;
237 }
238 }
239 WARN_ON(want != 0 && want != 3);
240 break;
241 case NL80211_BAND_60GHZ:
242 /* check for mandatory HT MCS 1..4 */
243 WARN_ON(!sband->ht_cap.ht_supported);
244 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245 break;
246 case NL80211_BAND_S1GHZ:
247 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248 * mandatory is ok.
249 */
250 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251 break;
252 case NUM_NL80211_BANDS:
253 default:
254 WARN_ON(1);
255 break;
256 }
257 }
258
ieee80211_set_bitrate_flags(struct wiphy * wiphy)259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260 {
261 enum nl80211_band band;
262
263 for (band = 0; band < NUM_NL80211_BANDS; band++)
264 if (wiphy->bands[band])
265 set_mandatory_flags_band(wiphy->bands[band]);
266 }
267
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269 {
270 int i;
271 for (i = 0; i < wiphy->n_cipher_suites; i++)
272 if (cipher == wiphy->cipher_suites[i])
273 return true;
274 return false;
275 }
276
277 static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279 {
280 struct wiphy *wiphy = &rdev->wiphy;
281 int i;
282
283 for (i = 0; i < wiphy->n_cipher_suites; i++) {
284 switch (wiphy->cipher_suites[i]) {
285 case WLAN_CIPHER_SUITE_AES_CMAC:
286 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289 return true;
290 }
291 }
292
293 return false;
294 }
295
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297 int key_idx, bool pairwise)
298 {
299 int max_key_idx;
300
301 if (pairwise)
302 max_key_idx = 3;
303 else if (wiphy_ext_feature_isset(&rdev->wiphy,
304 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305 wiphy_ext_feature_isset(&rdev->wiphy,
306 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307 max_key_idx = 7;
308 else if (cfg80211_igtk_cipher_supported(rdev))
309 max_key_idx = 5;
310 else
311 max_key_idx = 3;
312
313 if (key_idx < 0 || key_idx > max_key_idx)
314 return false;
315
316 return true;
317 }
318
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320 struct key_params *params, int key_idx,
321 bool pairwise, const u8 *mac_addr)
322 {
323 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324 return -EINVAL;
325
326 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327 return -EINVAL;
328
329 if (pairwise && !mac_addr)
330 return -EINVAL;
331
332 switch (params->cipher) {
333 case WLAN_CIPHER_SUITE_TKIP:
334 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
335 if ((pairwise && key_idx) ||
336 params->mode != NL80211_KEY_RX_TX)
337 return -EINVAL;
338 break;
339 case WLAN_CIPHER_SUITE_CCMP:
340 case WLAN_CIPHER_SUITE_CCMP_256:
341 case WLAN_CIPHER_SUITE_GCMP:
342 case WLAN_CIPHER_SUITE_GCMP_256:
343 /* IEEE802.11-2016 allows only 0 and - when supporting
344 * Extended Key ID - 1 as index for pairwise keys.
345 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346 * the driver supports Extended Key ID.
347 * @NL80211_KEY_SET_TX can't be set when installing and
348 * validating a key.
349 */
350 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351 params->mode == NL80211_KEY_SET_TX)
352 return -EINVAL;
353 if (wiphy_ext_feature_isset(&rdev->wiphy,
354 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355 if (pairwise && (key_idx < 0 || key_idx > 1))
356 return -EINVAL;
357 } else if (pairwise && key_idx) {
358 return -EINVAL;
359 }
360 break;
361 case WLAN_CIPHER_SUITE_AES_CMAC:
362 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365 /* Disallow BIP (group-only) cipher as pairwise cipher */
366 if (pairwise)
367 return -EINVAL;
368 if (key_idx < 4)
369 return -EINVAL;
370 break;
371 case WLAN_CIPHER_SUITE_WEP40:
372 case WLAN_CIPHER_SUITE_WEP104:
373 if (key_idx > 3)
374 return -EINVAL;
375 break;
376 default:
377 break;
378 }
379
380 switch (params->cipher) {
381 case WLAN_CIPHER_SUITE_WEP40:
382 if (params->key_len != WLAN_KEY_LEN_WEP40)
383 return -EINVAL;
384 break;
385 case WLAN_CIPHER_SUITE_TKIP:
386 if (params->key_len != WLAN_KEY_LEN_TKIP)
387 return -EINVAL;
388 break;
389 case WLAN_CIPHER_SUITE_CCMP:
390 if (params->key_len != WLAN_KEY_LEN_CCMP)
391 return -EINVAL;
392 break;
393 case WLAN_CIPHER_SUITE_CCMP_256:
394 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395 return -EINVAL;
396 break;
397 case WLAN_CIPHER_SUITE_GCMP:
398 if (params->key_len != WLAN_KEY_LEN_GCMP)
399 return -EINVAL;
400 break;
401 case WLAN_CIPHER_SUITE_GCMP_256:
402 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403 return -EINVAL;
404 break;
405 case WLAN_CIPHER_SUITE_WEP104:
406 if (params->key_len != WLAN_KEY_LEN_WEP104)
407 return -EINVAL;
408 break;
409 case WLAN_CIPHER_SUITE_AES_CMAC:
410 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411 return -EINVAL;
412 break;
413 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415 return -EINVAL;
416 break;
417 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419 return -EINVAL;
420 break;
421 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423 return -EINVAL;
424 break;
425 default:
426 /*
427 * We don't know anything about this algorithm,
428 * allow using it -- but the driver must check
429 * all parameters! We still check below whether
430 * or not the driver supports this algorithm,
431 * of course.
432 */
433 break;
434 }
435
436 if (params->seq) {
437 switch (params->cipher) {
438 case WLAN_CIPHER_SUITE_WEP40:
439 case WLAN_CIPHER_SUITE_WEP104:
440 /* These ciphers do not use key sequence */
441 return -EINVAL;
442 case WLAN_CIPHER_SUITE_TKIP:
443 case WLAN_CIPHER_SUITE_CCMP:
444 case WLAN_CIPHER_SUITE_CCMP_256:
445 case WLAN_CIPHER_SUITE_GCMP:
446 case WLAN_CIPHER_SUITE_GCMP_256:
447 case WLAN_CIPHER_SUITE_AES_CMAC:
448 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451 if (params->seq_len != 6)
452 return -EINVAL;
453 break;
454 }
455 }
456
457 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458 return -EINVAL;
459
460 return 0;
461 }
462
ieee80211_hdrlen(__le16 fc)463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464 {
465 unsigned int hdrlen = 24;
466
467 if (ieee80211_is_ext(fc)) {
468 hdrlen = 4;
469 goto out;
470 }
471
472 if (ieee80211_is_data(fc)) {
473 if (ieee80211_has_a4(fc))
474 hdrlen = 30;
475 if (ieee80211_is_data_qos(fc)) {
476 hdrlen += IEEE80211_QOS_CTL_LEN;
477 if (ieee80211_has_order(fc))
478 hdrlen += IEEE80211_HT_CTL_LEN;
479 }
480 goto out;
481 }
482
483 if (ieee80211_is_mgmt(fc)) {
484 if (ieee80211_has_order(fc))
485 hdrlen += IEEE80211_HT_CTL_LEN;
486 goto out;
487 }
488
489 if (ieee80211_is_ctl(fc)) {
490 /*
491 * ACK and CTS are 10 bytes, all others 16. To see how
492 * to get this condition consider
493 * subtype mask: 0b0000000011110000 (0x00F0)
494 * ACK subtype: 0b0000000011010000 (0x00D0)
495 * CTS subtype: 0b0000000011000000 (0x00C0)
496 * bits that matter: ^^^ (0x00E0)
497 * value of those: 0b0000000011000000 (0x00C0)
498 */
499 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500 hdrlen = 10;
501 else
502 hdrlen = 16;
503 }
504 out:
505 return hdrlen;
506 }
507 EXPORT_SYMBOL(ieee80211_hdrlen);
508
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510 {
511 const struct ieee80211_hdr *hdr =
512 (const struct ieee80211_hdr *)skb->data;
513 unsigned int hdrlen;
514
515 if (unlikely(skb->len < 10))
516 return 0;
517 hdrlen = ieee80211_hdrlen(hdr->frame_control);
518 if (unlikely(hdrlen > skb->len))
519 return 0;
520 return hdrlen;
521 }
522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523
__ieee80211_get_mesh_hdrlen(u8 flags)524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525 {
526 int ae = flags & MESH_FLAGS_AE;
527 /* 802.11-2012, 8.2.4.7.3 */
528 switch (ae) {
529 default:
530 case 0:
531 return 6;
532 case MESH_FLAGS_AE_A4:
533 return 12;
534 case MESH_FLAGS_AE_A5_A6:
535 return 18;
536 }
537 }
538
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540 {
541 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542 }
543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544
ieee80211_get_8023_tunnel_proto(const void * hdr,__be16 * proto)545 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
546 {
547 const __be16 *hdr_proto = hdr + ETH_ALEN;
548
549 if (!(ether_addr_equal(hdr, rfc1042_header) &&
550 *hdr_proto != htons(ETH_P_AARP) &&
551 *hdr_proto != htons(ETH_P_IPX)) &&
552 !ether_addr_equal(hdr, bridge_tunnel_header))
553 return false;
554
555 *proto = *hdr_proto;
556
557 return true;
558 }
559 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
560
ieee80211_strip_8023_mesh_hdr(struct sk_buff * skb)561 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
562 {
563 const void *mesh_addr;
564 struct {
565 struct ethhdr eth;
566 u8 flags;
567 } payload;
568 int hdrlen;
569 int ret;
570
571 ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
572 if (ret)
573 return ret;
574
575 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
576
577 if (likely(pskb_may_pull(skb, hdrlen + 8) &&
578 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
579 &payload.eth.h_proto)))
580 hdrlen += ETH_ALEN + 2;
581 else if (!pskb_may_pull(skb, hdrlen))
582 return -EINVAL;
583
584 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
585 switch (payload.flags & MESH_FLAGS_AE) {
586 case MESH_FLAGS_AE_A4:
587 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
588 break;
589 case MESH_FLAGS_AE_A5_A6:
590 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
591 break;
592 default:
593 break;
594 }
595
596 pskb_pull(skb, hdrlen - sizeof(payload.eth));
597 memcpy(skb->data, &payload.eth, sizeof(payload.eth));
598
599 return 0;
600 }
601 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
602
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)603 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
604 const u8 *addr, enum nl80211_iftype iftype,
605 u8 data_offset, bool is_amsdu)
606 {
607 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
608 struct {
609 u8 hdr[ETH_ALEN] __aligned(2);
610 __be16 proto;
611 } payload;
612 struct ethhdr tmp;
613 u16 hdrlen;
614
615 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
616 return -1;
617
618 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
619 if (skb->len < hdrlen)
620 return -1;
621
622 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
623 * header
624 * IEEE 802.11 address fields:
625 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
626 * 0 0 DA SA BSSID n/a
627 * 0 1 DA BSSID SA n/a
628 * 1 0 BSSID SA DA n/a
629 * 1 1 RA TA DA SA
630 */
631 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
632 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
633
634 switch (hdr->frame_control &
635 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
636 case cpu_to_le16(IEEE80211_FCTL_TODS):
637 if (unlikely(iftype != NL80211_IFTYPE_AP &&
638 iftype != NL80211_IFTYPE_AP_VLAN &&
639 iftype != NL80211_IFTYPE_P2P_GO))
640 return -1;
641 break;
642 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
643 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
644 iftype != NL80211_IFTYPE_AP_VLAN &&
645 iftype != NL80211_IFTYPE_STATION))
646 return -1;
647 break;
648 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
649 if ((iftype != NL80211_IFTYPE_STATION &&
650 iftype != NL80211_IFTYPE_P2P_CLIENT &&
651 iftype != NL80211_IFTYPE_MESH_POINT) ||
652 (is_multicast_ether_addr(tmp.h_dest) &&
653 ether_addr_equal(tmp.h_source, addr)))
654 return -1;
655 break;
656 case cpu_to_le16(0):
657 if (iftype != NL80211_IFTYPE_ADHOC &&
658 iftype != NL80211_IFTYPE_STATION &&
659 iftype != NL80211_IFTYPE_OCB)
660 return -1;
661 break;
662 }
663
664 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
665 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
666 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
667 /* remove RFC1042 or Bridge-Tunnel encapsulation */
668 hdrlen += ETH_ALEN + 2;
669 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
670 } else {
671 tmp.h_proto = htons(skb->len - hdrlen);
672 }
673
674 pskb_pull(skb, hdrlen);
675
676 if (!ehdr)
677 ehdr = skb_push(skb, sizeof(struct ethhdr));
678 memcpy(ehdr, &tmp, sizeof(tmp));
679
680 return 0;
681 }
682 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
683
684 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)685 __frame_add_frag(struct sk_buff *skb, struct page *page,
686 void *ptr, int len, int size)
687 {
688 struct skb_shared_info *sh = skb_shinfo(skb);
689 int page_offset;
690
691 get_page(page);
692 page_offset = ptr - page_address(page);
693 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
694 }
695
696 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)697 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
698 int offset, int len)
699 {
700 struct skb_shared_info *sh = skb_shinfo(skb);
701 const skb_frag_t *frag = &sh->frags[0];
702 struct page *frag_page;
703 void *frag_ptr;
704 int frag_len, frag_size;
705 int head_size = skb->len - skb->data_len;
706 int cur_len;
707
708 frag_page = virt_to_head_page(skb->head);
709 frag_ptr = skb->data;
710 frag_size = head_size;
711
712 while (offset >= frag_size) {
713 offset -= frag_size;
714 frag_page = skb_frag_page(frag);
715 frag_ptr = skb_frag_address(frag);
716 frag_size = skb_frag_size(frag);
717 frag++;
718 }
719
720 frag_ptr += offset;
721 frag_len = frag_size - offset;
722
723 cur_len = min(len, frag_len);
724
725 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
726 len -= cur_len;
727
728 while (len > 0) {
729 frag_len = skb_frag_size(frag);
730 cur_len = min(len, frag_len);
731 __frame_add_frag(frame, skb_frag_page(frag),
732 skb_frag_address(frag), cur_len, frag_len);
733 len -= cur_len;
734 frag++;
735 }
736 }
737
738 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag,int min_len)739 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
740 int offset, int len, bool reuse_frag,
741 int min_len)
742 {
743 struct sk_buff *frame;
744 int cur_len = len;
745
746 if (skb->len - offset < len)
747 return NULL;
748
749 /*
750 * When reusing framents, copy some data to the head to simplify
751 * ethernet header handling and speed up protocol header processing
752 * in the stack later.
753 */
754 if (reuse_frag)
755 cur_len = min_t(int, len, min_len);
756
757 /*
758 * Allocate and reserve two bytes more for payload
759 * alignment since sizeof(struct ethhdr) is 14.
760 */
761 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
762 if (!frame)
763 return NULL;
764
765 frame->priority = skb->priority;
766 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
767 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
768
769 len -= cur_len;
770 if (!len)
771 return frame;
772
773 offset += cur_len;
774 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
775
776 return frame;
777 }
778
ieee80211_is_valid_amsdu(struct sk_buff * skb,bool mesh_hdr)779 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, bool mesh_hdr)
780 {
781 int offset = 0, remaining, subframe_len, padding;
782
783 for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
784 struct {
785 __be16 len;
786 u8 mesh_flags;
787 } hdr;
788 u16 len;
789
790 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
791 return false;
792
793 if (mesh_hdr)
794 len = le16_to_cpu(*(__le16 *)&hdr.len) +
795 __ieee80211_get_mesh_hdrlen(hdr.mesh_flags);
796 else
797 len = ntohs(hdr.len);
798
799 subframe_len = sizeof(struct ethhdr) + len;
800 padding = (4 - subframe_len) & 0x3;
801 remaining = skb->len - offset;
802
803 if (subframe_len > remaining)
804 return false;
805 }
806
807 return true;
808 }
809 EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
810
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa,bool mesh_control)811 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
812 const u8 *addr, enum nl80211_iftype iftype,
813 const unsigned int extra_headroom,
814 const u8 *check_da, const u8 *check_sa,
815 bool mesh_control)
816 {
817 unsigned int hlen = ALIGN(extra_headroom, 4);
818 struct sk_buff *frame = NULL;
819 int offset = 0, remaining;
820 struct {
821 struct ethhdr eth;
822 uint8_t flags;
823 } hdr;
824 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
825 bool reuse_skb = false;
826 bool last = false;
827 int copy_len = sizeof(hdr.eth);
828
829 if (iftype == NL80211_IFTYPE_MESH_POINT)
830 copy_len = sizeof(hdr);
831
832 while (!last) {
833 unsigned int subframe_len;
834 int len, mesh_len = 0;
835 u8 padding;
836
837 skb_copy_bits(skb, offset, &hdr, copy_len);
838 if (iftype == NL80211_IFTYPE_MESH_POINT)
839 mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
840 if (mesh_control)
841 len = le16_to_cpu(*(__le16 *)&hdr.eth.h_proto) + mesh_len;
842 else
843 len = ntohs(hdr.eth.h_proto);
844
845 subframe_len = sizeof(struct ethhdr) + len;
846 padding = (4 - subframe_len) & 0x3;
847
848 /* the last MSDU has no padding */
849 remaining = skb->len - offset;
850 if (subframe_len > remaining)
851 goto purge;
852 /* mitigate A-MSDU aggregation injection attacks */
853 if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
854 goto purge;
855
856 offset += sizeof(struct ethhdr);
857 last = remaining <= subframe_len + padding;
858
859 /* FIXME: should we really accept multicast DA? */
860 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
861 !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
862 (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
863 offset += len + padding;
864 continue;
865 }
866
867 /* reuse skb for the last subframe */
868 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
869 skb_pull(skb, offset);
870 frame = skb;
871 reuse_skb = true;
872 } else {
873 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
874 reuse_frag, 32 + mesh_len);
875 if (!frame)
876 goto purge;
877
878 offset += len + padding;
879 }
880
881 skb_reset_network_header(frame);
882 frame->dev = skb->dev;
883 frame->priority = skb->priority;
884
885 if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
886 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
887 skb_pull(frame, ETH_ALEN + 2);
888
889 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
890 __skb_queue_tail(list, frame);
891 }
892
893 if (!reuse_skb)
894 dev_kfree_skb(skb);
895
896 return;
897
898 purge:
899 __skb_queue_purge(list);
900 dev_kfree_skb(skb);
901 }
902 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
903
904 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)905 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
906 struct cfg80211_qos_map *qos_map)
907 {
908 unsigned int dscp;
909 unsigned char vlan_priority;
910 unsigned int ret;
911
912 /* skb->priority values from 256->263 are magic values to
913 * directly indicate a specific 802.1d priority. This is used
914 * to allow 802.1d priority to be passed directly in from VLAN
915 * tags, etc.
916 */
917 if (skb->priority >= 256 && skb->priority <= 263) {
918 ret = skb->priority - 256;
919 goto out;
920 }
921
922 if (skb_vlan_tag_present(skb)) {
923 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
924 >> VLAN_PRIO_SHIFT;
925 if (vlan_priority > 0) {
926 ret = vlan_priority;
927 goto out;
928 }
929 }
930
931 switch (skb->protocol) {
932 case htons(ETH_P_IP):
933 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
934 break;
935 case htons(ETH_P_IPV6):
936 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
937 break;
938 case htons(ETH_P_MPLS_UC):
939 case htons(ETH_P_MPLS_MC): {
940 struct mpls_label mpls_tmp, *mpls;
941
942 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
943 sizeof(*mpls), &mpls_tmp);
944 if (!mpls)
945 return 0;
946
947 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
948 >> MPLS_LS_TC_SHIFT;
949 goto out;
950 }
951 case htons(ETH_P_80221):
952 /* 802.21 is always network control traffic */
953 return 7;
954 default:
955 return 0;
956 }
957
958 if (qos_map) {
959 unsigned int i, tmp_dscp = dscp >> 2;
960
961 for (i = 0; i < qos_map->num_des; i++) {
962 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
963 ret = qos_map->dscp_exception[i].up;
964 goto out;
965 }
966 }
967
968 for (i = 0; i < 8; i++) {
969 if (tmp_dscp >= qos_map->up[i].low &&
970 tmp_dscp <= qos_map->up[i].high) {
971 ret = i;
972 goto out;
973 }
974 }
975 }
976
977 ret = dscp >> 5;
978 out:
979 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
980 }
981 EXPORT_SYMBOL(cfg80211_classify8021d);
982
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)983 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
984 {
985 const struct cfg80211_bss_ies *ies;
986
987 ies = rcu_dereference(bss->ies);
988 if (!ies)
989 return NULL;
990
991 return cfg80211_find_elem(id, ies->data, ies->len);
992 }
993 EXPORT_SYMBOL(ieee80211_bss_get_elem);
994
cfg80211_upload_connect_keys(struct wireless_dev * wdev)995 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
996 {
997 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
998 struct net_device *dev = wdev->netdev;
999 int i;
1000
1001 if (!wdev->connect_keys)
1002 return;
1003
1004 for (i = 0; i < 4; i++) {
1005 if (!wdev->connect_keys->params[i].cipher)
1006 continue;
1007 if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1008 &wdev->connect_keys->params[i])) {
1009 netdev_err(dev, "failed to set key %d\n", i);
1010 continue;
1011 }
1012 if (wdev->connect_keys->def == i &&
1013 rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1014 netdev_err(dev, "failed to set defkey %d\n", i);
1015 continue;
1016 }
1017 }
1018
1019 kfree_sensitive(wdev->connect_keys);
1020 wdev->connect_keys = NULL;
1021 }
1022
cfg80211_process_wdev_events(struct wireless_dev * wdev)1023 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1024 {
1025 struct cfg80211_event *ev;
1026 unsigned long flags;
1027
1028 spin_lock_irqsave(&wdev->event_lock, flags);
1029 while (!list_empty(&wdev->event_list)) {
1030 ev = list_first_entry(&wdev->event_list,
1031 struct cfg80211_event, list);
1032 list_del(&ev->list);
1033 spin_unlock_irqrestore(&wdev->event_lock, flags);
1034
1035 wdev_lock(wdev);
1036 switch (ev->type) {
1037 case EVENT_CONNECT_RESULT:
1038 __cfg80211_connect_result(
1039 wdev->netdev,
1040 &ev->cr,
1041 ev->cr.status == WLAN_STATUS_SUCCESS);
1042 break;
1043 case EVENT_ROAMED:
1044 __cfg80211_roamed(wdev, &ev->rm);
1045 break;
1046 case EVENT_DISCONNECTED:
1047 __cfg80211_disconnected(wdev->netdev,
1048 ev->dc.ie, ev->dc.ie_len,
1049 ev->dc.reason,
1050 !ev->dc.locally_generated);
1051 break;
1052 case EVENT_IBSS_JOINED:
1053 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1054 ev->ij.channel);
1055 break;
1056 case EVENT_STOPPED:
1057 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1058 break;
1059 case EVENT_PORT_AUTHORIZED:
1060 __cfg80211_port_authorized(wdev, ev->pa.bssid,
1061 ev->pa.td_bitmap,
1062 ev->pa.td_bitmap_len);
1063 break;
1064 }
1065 wdev_unlock(wdev);
1066
1067 kfree(ev);
1068
1069 spin_lock_irqsave(&wdev->event_lock, flags);
1070 }
1071 spin_unlock_irqrestore(&wdev->event_lock, flags);
1072 }
1073
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)1074 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1075 {
1076 struct wireless_dev *wdev;
1077
1078 lockdep_assert_held(&rdev->wiphy.mtx);
1079
1080 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1081 cfg80211_process_wdev_events(wdev);
1082 }
1083
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1084 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1085 struct net_device *dev, enum nl80211_iftype ntype,
1086 struct vif_params *params)
1087 {
1088 int err;
1089 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1090
1091 lockdep_assert_held(&rdev->wiphy.mtx);
1092
1093 /* don't support changing VLANs, you just re-create them */
1094 if (otype == NL80211_IFTYPE_AP_VLAN)
1095 return -EOPNOTSUPP;
1096
1097 /* cannot change into P2P device or NAN */
1098 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1099 ntype == NL80211_IFTYPE_NAN)
1100 return -EOPNOTSUPP;
1101
1102 if (!rdev->ops->change_virtual_intf ||
1103 !(rdev->wiphy.interface_modes & (1 << ntype)))
1104 return -EOPNOTSUPP;
1105
1106 if (ntype != otype) {
1107 /* if it's part of a bridge, reject changing type to station/ibss */
1108 if (netif_is_bridge_port(dev) &&
1109 (ntype == NL80211_IFTYPE_ADHOC ||
1110 ntype == NL80211_IFTYPE_STATION ||
1111 ntype == NL80211_IFTYPE_P2P_CLIENT))
1112 return -EBUSY;
1113
1114 dev->ieee80211_ptr->use_4addr = false;
1115 wdev_lock(dev->ieee80211_ptr);
1116 rdev_set_qos_map(rdev, dev, NULL);
1117 wdev_unlock(dev->ieee80211_ptr);
1118
1119 switch (otype) {
1120 case NL80211_IFTYPE_AP:
1121 case NL80211_IFTYPE_P2P_GO:
1122 cfg80211_stop_ap(rdev, dev, -1, true);
1123 break;
1124 case NL80211_IFTYPE_ADHOC:
1125 cfg80211_leave_ibss(rdev, dev, false);
1126 break;
1127 case NL80211_IFTYPE_STATION:
1128 case NL80211_IFTYPE_P2P_CLIENT:
1129 wdev_lock(dev->ieee80211_ptr);
1130 cfg80211_disconnect(rdev, dev,
1131 WLAN_REASON_DEAUTH_LEAVING, true);
1132 wdev_unlock(dev->ieee80211_ptr);
1133 break;
1134 case NL80211_IFTYPE_MESH_POINT:
1135 /* mesh should be handled? */
1136 break;
1137 case NL80211_IFTYPE_OCB:
1138 cfg80211_leave_ocb(rdev, dev);
1139 break;
1140 default:
1141 break;
1142 }
1143
1144 cfg80211_process_rdev_events(rdev);
1145 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1146
1147 memset(&dev->ieee80211_ptr->u, 0,
1148 sizeof(dev->ieee80211_ptr->u));
1149 memset(&dev->ieee80211_ptr->links, 0,
1150 sizeof(dev->ieee80211_ptr->links));
1151 }
1152
1153 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1154
1155 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1156
1157 if (!err && params && params->use_4addr != -1)
1158 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1159
1160 if (!err) {
1161 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1162 switch (ntype) {
1163 case NL80211_IFTYPE_STATION:
1164 if (dev->ieee80211_ptr->use_4addr)
1165 break;
1166 fallthrough;
1167 case NL80211_IFTYPE_OCB:
1168 case NL80211_IFTYPE_P2P_CLIENT:
1169 case NL80211_IFTYPE_ADHOC:
1170 dev->priv_flags |= IFF_DONT_BRIDGE;
1171 break;
1172 case NL80211_IFTYPE_P2P_GO:
1173 case NL80211_IFTYPE_AP:
1174 case NL80211_IFTYPE_AP_VLAN:
1175 case NL80211_IFTYPE_MESH_POINT:
1176 /* bridging OK */
1177 break;
1178 case NL80211_IFTYPE_MONITOR:
1179 /* monitor can't bridge anyway */
1180 break;
1181 case NL80211_IFTYPE_UNSPECIFIED:
1182 case NUM_NL80211_IFTYPES:
1183 /* not happening */
1184 break;
1185 case NL80211_IFTYPE_P2P_DEVICE:
1186 case NL80211_IFTYPE_WDS:
1187 case NL80211_IFTYPE_NAN:
1188 WARN_ON(1);
1189 break;
1190 }
1191 }
1192
1193 if (!err && ntype != otype && netif_running(dev)) {
1194 cfg80211_update_iface_num(rdev, ntype, 1);
1195 cfg80211_update_iface_num(rdev, otype, -1);
1196 }
1197
1198 return err;
1199 }
1200
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1201 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1202 {
1203 int modulation, streams, bitrate;
1204
1205 /* the formula below does only work for MCS values smaller than 32 */
1206 if (WARN_ON_ONCE(rate->mcs >= 32))
1207 return 0;
1208
1209 modulation = rate->mcs & 7;
1210 streams = (rate->mcs >> 3) + 1;
1211
1212 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1213
1214 if (modulation < 4)
1215 bitrate *= (modulation + 1);
1216 else if (modulation == 4)
1217 bitrate *= (modulation + 2);
1218 else
1219 bitrate *= (modulation + 3);
1220
1221 bitrate *= streams;
1222
1223 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1224 bitrate = (bitrate / 9) * 10;
1225
1226 /* do NOT round down here */
1227 return (bitrate + 50000) / 100000;
1228 }
1229
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1230 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1231 {
1232 static const u32 __mcs2bitrate[] = {
1233 /* control PHY */
1234 [0] = 275,
1235 /* SC PHY */
1236 [1] = 3850,
1237 [2] = 7700,
1238 [3] = 9625,
1239 [4] = 11550,
1240 [5] = 12512, /* 1251.25 mbps */
1241 [6] = 15400,
1242 [7] = 19250,
1243 [8] = 23100,
1244 [9] = 25025,
1245 [10] = 30800,
1246 [11] = 38500,
1247 [12] = 46200,
1248 /* OFDM PHY */
1249 [13] = 6930,
1250 [14] = 8662, /* 866.25 mbps */
1251 [15] = 13860,
1252 [16] = 17325,
1253 [17] = 20790,
1254 [18] = 27720,
1255 [19] = 34650,
1256 [20] = 41580,
1257 [21] = 45045,
1258 [22] = 51975,
1259 [23] = 62370,
1260 [24] = 67568, /* 6756.75 mbps */
1261 /* LP-SC PHY */
1262 [25] = 6260,
1263 [26] = 8340,
1264 [27] = 11120,
1265 [28] = 12510,
1266 [29] = 16680,
1267 [30] = 22240,
1268 [31] = 25030,
1269 };
1270
1271 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1272 return 0;
1273
1274 return __mcs2bitrate[rate->mcs];
1275 }
1276
cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info * rate)1277 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1278 {
1279 static const u32 __mcs2bitrate[] = {
1280 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1281 [7 - 6] = 50050, /* MCS 12.1 */
1282 [8 - 6] = 53900,
1283 [9 - 6] = 57750,
1284 [10 - 6] = 63900,
1285 [11 - 6] = 75075,
1286 [12 - 6] = 80850,
1287 };
1288
1289 /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1290 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1291 return 0;
1292
1293 return __mcs2bitrate[rate->mcs - 6];
1294 }
1295
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1296 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1297 {
1298 static const u32 __mcs2bitrate[] = {
1299 /* control PHY */
1300 [0] = 275,
1301 /* SC PHY */
1302 [1] = 3850,
1303 [2] = 7700,
1304 [3] = 9625,
1305 [4] = 11550,
1306 [5] = 12512, /* 1251.25 mbps */
1307 [6] = 13475,
1308 [7] = 15400,
1309 [8] = 19250,
1310 [9] = 23100,
1311 [10] = 25025,
1312 [11] = 26950,
1313 [12] = 30800,
1314 [13] = 38500,
1315 [14] = 46200,
1316 [15] = 50050,
1317 [16] = 53900,
1318 [17] = 57750,
1319 [18] = 69300,
1320 [19] = 75075,
1321 [20] = 80850,
1322 };
1323
1324 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1325 return 0;
1326
1327 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1328 }
1329
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1330 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1331 {
1332 static const u32 base[4][12] = {
1333 { 6500000,
1334 13000000,
1335 19500000,
1336 26000000,
1337 39000000,
1338 52000000,
1339 58500000,
1340 65000000,
1341 78000000,
1342 /* not in the spec, but some devices use this: */
1343 86700000,
1344 97500000,
1345 108300000,
1346 },
1347 { 13500000,
1348 27000000,
1349 40500000,
1350 54000000,
1351 81000000,
1352 108000000,
1353 121500000,
1354 135000000,
1355 162000000,
1356 180000000,
1357 202500000,
1358 225000000,
1359 },
1360 { 29300000,
1361 58500000,
1362 87800000,
1363 117000000,
1364 175500000,
1365 234000000,
1366 263300000,
1367 292500000,
1368 351000000,
1369 390000000,
1370 438800000,
1371 487500000,
1372 },
1373 { 58500000,
1374 117000000,
1375 175500000,
1376 234000000,
1377 351000000,
1378 468000000,
1379 526500000,
1380 585000000,
1381 702000000,
1382 780000000,
1383 877500000,
1384 975000000,
1385 },
1386 };
1387 u32 bitrate;
1388 int idx;
1389
1390 if (rate->mcs > 11)
1391 goto warn;
1392
1393 switch (rate->bw) {
1394 case RATE_INFO_BW_160:
1395 idx = 3;
1396 break;
1397 case RATE_INFO_BW_80:
1398 idx = 2;
1399 break;
1400 case RATE_INFO_BW_40:
1401 idx = 1;
1402 break;
1403 case RATE_INFO_BW_5:
1404 case RATE_INFO_BW_10:
1405 default:
1406 goto warn;
1407 case RATE_INFO_BW_20:
1408 idx = 0;
1409 }
1410
1411 bitrate = base[idx][rate->mcs];
1412 bitrate *= rate->nss;
1413
1414 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1415 bitrate = (bitrate / 9) * 10;
1416
1417 /* do NOT round down here */
1418 return (bitrate + 50000) / 100000;
1419 warn:
1420 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1421 rate->bw, rate->mcs, rate->nss);
1422 return 0;
1423 }
1424
cfg80211_calculate_bitrate_he(struct rate_info * rate)1425 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1426 {
1427 #define SCALE 6144
1428 u32 mcs_divisors[14] = {
1429 102399, /* 16.666666... */
1430 51201, /* 8.333333... */
1431 34134, /* 5.555555... */
1432 25599, /* 4.166666... */
1433 17067, /* 2.777777... */
1434 12801, /* 2.083333... */
1435 11377, /* 1.851725... */
1436 10239, /* 1.666666... */
1437 8532, /* 1.388888... */
1438 7680, /* 1.250000... */
1439 6828, /* 1.111111... */
1440 6144, /* 1.000000... */
1441 5690, /* 0.926106... */
1442 5120, /* 0.833333... */
1443 };
1444 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1445 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1446 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1447 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1448 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1449 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1450 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1451 u64 tmp;
1452 u32 result;
1453
1454 if (WARN_ON_ONCE(rate->mcs > 13))
1455 return 0;
1456
1457 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1458 return 0;
1459 if (WARN_ON_ONCE(rate->he_ru_alloc >
1460 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1461 return 0;
1462 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1463 return 0;
1464
1465 if (rate->bw == RATE_INFO_BW_160)
1466 result = rates_160M[rate->he_gi];
1467 else if (rate->bw == RATE_INFO_BW_80 ||
1468 (rate->bw == RATE_INFO_BW_HE_RU &&
1469 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1470 result = rates_969[rate->he_gi];
1471 else if (rate->bw == RATE_INFO_BW_40 ||
1472 (rate->bw == RATE_INFO_BW_HE_RU &&
1473 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1474 result = rates_484[rate->he_gi];
1475 else if (rate->bw == RATE_INFO_BW_20 ||
1476 (rate->bw == RATE_INFO_BW_HE_RU &&
1477 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1478 result = rates_242[rate->he_gi];
1479 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1480 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1481 result = rates_106[rate->he_gi];
1482 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1483 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1484 result = rates_52[rate->he_gi];
1485 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1486 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1487 result = rates_26[rate->he_gi];
1488 else {
1489 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1490 rate->bw, rate->he_ru_alloc);
1491 return 0;
1492 }
1493
1494 /* now scale to the appropriate MCS */
1495 tmp = result;
1496 tmp *= SCALE;
1497 do_div(tmp, mcs_divisors[rate->mcs]);
1498 result = tmp;
1499
1500 /* and take NSS, DCM into account */
1501 result = (result * rate->nss) / 8;
1502 if (rate->he_dcm)
1503 result /= 2;
1504
1505 return result / 10000;
1506 }
1507
cfg80211_calculate_bitrate_eht(struct rate_info * rate)1508 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1509 {
1510 #define SCALE 6144
1511 static const u32 mcs_divisors[16] = {
1512 102399, /* 16.666666... */
1513 51201, /* 8.333333... */
1514 34134, /* 5.555555... */
1515 25599, /* 4.166666... */
1516 17067, /* 2.777777... */
1517 12801, /* 2.083333... */
1518 11377, /* 1.851725... */
1519 10239, /* 1.666666... */
1520 8532, /* 1.388888... */
1521 7680, /* 1.250000... */
1522 6828, /* 1.111111... */
1523 6144, /* 1.000000... */
1524 5690, /* 0.926106... */
1525 5120, /* 0.833333... */
1526 409600, /* 66.666666... */
1527 204800, /* 33.333333... */
1528 };
1529 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 };
1530 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1531 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1532 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1533 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1534 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1535 u64 tmp;
1536 u32 result;
1537
1538 if (WARN_ON_ONCE(rate->mcs > 15))
1539 return 0;
1540 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1541 return 0;
1542 if (WARN_ON_ONCE(rate->eht_ru_alloc >
1543 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1544 return 0;
1545 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1546 return 0;
1547
1548 /* Bandwidth checks for MCS 14 */
1549 if (rate->mcs == 14) {
1550 if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1551 rate->bw != RATE_INFO_BW_80 &&
1552 rate->bw != RATE_INFO_BW_160 &&
1553 rate->bw != RATE_INFO_BW_320) ||
1554 (rate->bw == RATE_INFO_BW_EHT_RU &&
1555 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1556 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1557 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1558 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1559 rate->bw, rate->eht_ru_alloc);
1560 return 0;
1561 }
1562 }
1563
1564 if (rate->bw == RATE_INFO_BW_320 ||
1565 (rate->bw == RATE_INFO_BW_EHT_RU &&
1566 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1567 result = 4 * rates_996[rate->eht_gi];
1568 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1569 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1570 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1571 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1572 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1573 result = 3 * rates_996[rate->eht_gi];
1574 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1575 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1576 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1577 else if (rate->bw == RATE_INFO_BW_160 ||
1578 (rate->bw == RATE_INFO_BW_EHT_RU &&
1579 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1580 result = 2 * rates_996[rate->eht_gi];
1581 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1582 rate->eht_ru_alloc ==
1583 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1584 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1585 + rates_242[rate->eht_gi];
1586 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1587 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1588 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1589 else if (rate->bw == RATE_INFO_BW_80 ||
1590 (rate->bw == RATE_INFO_BW_EHT_RU &&
1591 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1592 result = rates_996[rate->eht_gi];
1593 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1594 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1595 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1596 else if (rate->bw == RATE_INFO_BW_40 ||
1597 (rate->bw == RATE_INFO_BW_EHT_RU &&
1598 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1599 result = rates_484[rate->eht_gi];
1600 else if (rate->bw == RATE_INFO_BW_20 ||
1601 (rate->bw == RATE_INFO_BW_EHT_RU &&
1602 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1603 result = rates_242[rate->eht_gi];
1604 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1605 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1606 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1607 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1608 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1609 result = rates_106[rate->eht_gi];
1610 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1611 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1612 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1613 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1614 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1615 result = rates_52[rate->eht_gi];
1616 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1617 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1618 result = rates_26[rate->eht_gi];
1619 else {
1620 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1621 rate->bw, rate->eht_ru_alloc);
1622 return 0;
1623 }
1624
1625 /* now scale to the appropriate MCS */
1626 tmp = result;
1627 tmp *= SCALE;
1628 do_div(tmp, mcs_divisors[rate->mcs]);
1629
1630 /* and take NSS */
1631 tmp *= rate->nss;
1632 do_div(tmp, 8);
1633
1634 result = tmp;
1635
1636 return result / 10000;
1637 }
1638
cfg80211_calculate_bitrate(struct rate_info * rate)1639 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1640 {
1641 if (rate->flags & RATE_INFO_FLAGS_MCS)
1642 return cfg80211_calculate_bitrate_ht(rate);
1643 if (rate->flags & RATE_INFO_FLAGS_DMG)
1644 return cfg80211_calculate_bitrate_dmg(rate);
1645 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1646 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1647 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1648 return cfg80211_calculate_bitrate_edmg(rate);
1649 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1650 return cfg80211_calculate_bitrate_vht(rate);
1651 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1652 return cfg80211_calculate_bitrate_he(rate);
1653 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1654 return cfg80211_calculate_bitrate_eht(rate);
1655
1656 return rate->legacy;
1657 }
1658 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1659
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1660 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1661 enum ieee80211_p2p_attr_id attr,
1662 u8 *buf, unsigned int bufsize)
1663 {
1664 u8 *out = buf;
1665 u16 attr_remaining = 0;
1666 bool desired_attr = false;
1667 u16 desired_len = 0;
1668
1669 while (len > 0) {
1670 unsigned int iedatalen;
1671 unsigned int copy;
1672 const u8 *iedata;
1673
1674 if (len < 2)
1675 return -EILSEQ;
1676 iedatalen = ies[1];
1677 if (iedatalen + 2 > len)
1678 return -EILSEQ;
1679
1680 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1681 goto cont;
1682
1683 if (iedatalen < 4)
1684 goto cont;
1685
1686 iedata = ies + 2;
1687
1688 /* check WFA OUI, P2P subtype */
1689 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1690 iedata[2] != 0x9a || iedata[3] != 0x09)
1691 goto cont;
1692
1693 iedatalen -= 4;
1694 iedata += 4;
1695
1696 /* check attribute continuation into this IE */
1697 copy = min_t(unsigned int, attr_remaining, iedatalen);
1698 if (copy && desired_attr) {
1699 desired_len += copy;
1700 if (out) {
1701 memcpy(out, iedata, min(bufsize, copy));
1702 out += min(bufsize, copy);
1703 bufsize -= min(bufsize, copy);
1704 }
1705
1706
1707 if (copy == attr_remaining)
1708 return desired_len;
1709 }
1710
1711 attr_remaining -= copy;
1712 if (attr_remaining)
1713 goto cont;
1714
1715 iedatalen -= copy;
1716 iedata += copy;
1717
1718 while (iedatalen > 0) {
1719 u16 attr_len;
1720
1721 /* P2P attribute ID & size must fit */
1722 if (iedatalen < 3)
1723 return -EILSEQ;
1724 desired_attr = iedata[0] == attr;
1725 attr_len = get_unaligned_le16(iedata + 1);
1726 iedatalen -= 3;
1727 iedata += 3;
1728
1729 copy = min_t(unsigned int, attr_len, iedatalen);
1730
1731 if (desired_attr) {
1732 desired_len += copy;
1733 if (out) {
1734 memcpy(out, iedata, min(bufsize, copy));
1735 out += min(bufsize, copy);
1736 bufsize -= min(bufsize, copy);
1737 }
1738
1739 if (copy == attr_len)
1740 return desired_len;
1741 }
1742
1743 iedata += copy;
1744 iedatalen -= copy;
1745 attr_remaining = attr_len - copy;
1746 }
1747
1748 cont:
1749 len -= ies[1] + 2;
1750 ies += ies[1] + 2;
1751 }
1752
1753 if (attr_remaining && desired_attr)
1754 return -EILSEQ;
1755
1756 return -ENOENT;
1757 }
1758 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1759
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1760 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1761 {
1762 int i;
1763
1764 /* Make sure array values are legal */
1765 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1766 return false;
1767
1768 i = 0;
1769 while (i < n_ids) {
1770 if (ids[i] == WLAN_EID_EXTENSION) {
1771 if (id_ext && (ids[i + 1] == id))
1772 return true;
1773
1774 i += 2;
1775 continue;
1776 }
1777
1778 if (ids[i] == id && !id_ext)
1779 return true;
1780
1781 i++;
1782 }
1783 return false;
1784 }
1785
skip_ie(const u8 * ies,size_t ielen,size_t pos)1786 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1787 {
1788 /* we assume a validly formed IEs buffer */
1789 u8 len = ies[pos + 1];
1790
1791 pos += 2 + len;
1792
1793 /* the IE itself must have 255 bytes for fragments to follow */
1794 if (len < 255)
1795 return pos;
1796
1797 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1798 len = ies[pos + 1];
1799 pos += 2 + len;
1800 }
1801
1802 return pos;
1803 }
1804
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1805 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1806 const u8 *ids, int n_ids,
1807 const u8 *after_ric, int n_after_ric,
1808 size_t offset)
1809 {
1810 size_t pos = offset;
1811
1812 while (pos < ielen) {
1813 u8 ext = 0;
1814
1815 if (ies[pos] == WLAN_EID_EXTENSION)
1816 ext = 2;
1817 if ((pos + ext) >= ielen)
1818 break;
1819
1820 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1821 ies[pos] == WLAN_EID_EXTENSION))
1822 break;
1823
1824 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1825 pos = skip_ie(ies, ielen, pos);
1826
1827 while (pos < ielen) {
1828 if (ies[pos] == WLAN_EID_EXTENSION)
1829 ext = 2;
1830 else
1831 ext = 0;
1832
1833 if ((pos + ext) >= ielen)
1834 break;
1835
1836 if (!ieee80211_id_in_list(after_ric,
1837 n_after_ric,
1838 ies[pos + ext],
1839 ext == 2))
1840 pos = skip_ie(ies, ielen, pos);
1841 else
1842 break;
1843 }
1844 } else {
1845 pos = skip_ie(ies, ielen, pos);
1846 }
1847 }
1848
1849 return pos;
1850 }
1851 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1852
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1853 bool ieee80211_operating_class_to_band(u8 operating_class,
1854 enum nl80211_band *band)
1855 {
1856 switch (operating_class) {
1857 case 112:
1858 case 115 ... 127:
1859 case 128 ... 130:
1860 *band = NL80211_BAND_5GHZ;
1861 return true;
1862 case 131 ... 135:
1863 *band = NL80211_BAND_6GHZ;
1864 return true;
1865 case 81:
1866 case 82:
1867 case 83:
1868 case 84:
1869 *band = NL80211_BAND_2GHZ;
1870 return true;
1871 case 180:
1872 *band = NL80211_BAND_60GHZ;
1873 return true;
1874 }
1875
1876 return false;
1877 }
1878 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1879
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)1880 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1881 u8 *op_class)
1882 {
1883 u8 vht_opclass;
1884 u32 freq = chandef->center_freq1;
1885
1886 if (freq >= 2412 && freq <= 2472) {
1887 if (chandef->width > NL80211_CHAN_WIDTH_40)
1888 return false;
1889
1890 /* 2.407 GHz, channels 1..13 */
1891 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1892 if (freq > chandef->chan->center_freq)
1893 *op_class = 83; /* HT40+ */
1894 else
1895 *op_class = 84; /* HT40- */
1896 } else {
1897 *op_class = 81;
1898 }
1899
1900 return true;
1901 }
1902
1903 if (freq == 2484) {
1904 /* channel 14 is only for IEEE 802.11b */
1905 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1906 return false;
1907
1908 *op_class = 82; /* channel 14 */
1909 return true;
1910 }
1911
1912 switch (chandef->width) {
1913 case NL80211_CHAN_WIDTH_80:
1914 vht_opclass = 128;
1915 break;
1916 case NL80211_CHAN_WIDTH_160:
1917 vht_opclass = 129;
1918 break;
1919 case NL80211_CHAN_WIDTH_80P80:
1920 vht_opclass = 130;
1921 break;
1922 case NL80211_CHAN_WIDTH_10:
1923 case NL80211_CHAN_WIDTH_5:
1924 return false; /* unsupported for now */
1925 default:
1926 vht_opclass = 0;
1927 break;
1928 }
1929
1930 /* 5 GHz, channels 36..48 */
1931 if (freq >= 5180 && freq <= 5240) {
1932 if (vht_opclass) {
1933 *op_class = vht_opclass;
1934 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1935 if (freq > chandef->chan->center_freq)
1936 *op_class = 116;
1937 else
1938 *op_class = 117;
1939 } else {
1940 *op_class = 115;
1941 }
1942
1943 return true;
1944 }
1945
1946 /* 5 GHz, channels 52..64 */
1947 if (freq >= 5260 && freq <= 5320) {
1948 if (vht_opclass) {
1949 *op_class = vht_opclass;
1950 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1951 if (freq > chandef->chan->center_freq)
1952 *op_class = 119;
1953 else
1954 *op_class = 120;
1955 } else {
1956 *op_class = 118;
1957 }
1958
1959 return true;
1960 }
1961
1962 /* 5 GHz, channels 100..144 */
1963 if (freq >= 5500 && freq <= 5720) {
1964 if (vht_opclass) {
1965 *op_class = vht_opclass;
1966 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1967 if (freq > chandef->chan->center_freq)
1968 *op_class = 122;
1969 else
1970 *op_class = 123;
1971 } else {
1972 *op_class = 121;
1973 }
1974
1975 return true;
1976 }
1977
1978 /* 5 GHz, channels 149..169 */
1979 if (freq >= 5745 && freq <= 5845) {
1980 if (vht_opclass) {
1981 *op_class = vht_opclass;
1982 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1983 if (freq > chandef->chan->center_freq)
1984 *op_class = 126;
1985 else
1986 *op_class = 127;
1987 } else if (freq <= 5805) {
1988 *op_class = 124;
1989 } else {
1990 *op_class = 125;
1991 }
1992
1993 return true;
1994 }
1995
1996 /* 56.16 GHz, channel 1..4 */
1997 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1998 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1999 return false;
2000
2001 *op_class = 180;
2002 return true;
2003 }
2004
2005 /* not supported yet */
2006 return false;
2007 }
2008 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2009
cfg80211_wdev_bi(struct wireless_dev * wdev)2010 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2011 {
2012 switch (wdev->iftype) {
2013 case NL80211_IFTYPE_AP:
2014 case NL80211_IFTYPE_P2P_GO:
2015 WARN_ON(wdev->valid_links);
2016 return wdev->links[0].ap.beacon_interval;
2017 case NL80211_IFTYPE_MESH_POINT:
2018 return wdev->u.mesh.beacon_interval;
2019 case NL80211_IFTYPE_ADHOC:
2020 return wdev->u.ibss.beacon_interval;
2021 default:
2022 break;
2023 }
2024
2025 return 0;
2026 }
2027
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)2028 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2029 u32 *beacon_int_gcd,
2030 bool *beacon_int_different)
2031 {
2032 struct wireless_dev *wdev;
2033
2034 *beacon_int_gcd = 0;
2035 *beacon_int_different = false;
2036
2037 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2038 int wdev_bi;
2039
2040 /* this feature isn't supported with MLO */
2041 if (wdev->valid_links)
2042 continue;
2043
2044 wdev_bi = cfg80211_wdev_bi(wdev);
2045
2046 if (!wdev_bi)
2047 continue;
2048
2049 if (!*beacon_int_gcd) {
2050 *beacon_int_gcd = wdev_bi;
2051 continue;
2052 }
2053
2054 if (wdev_bi == *beacon_int_gcd)
2055 continue;
2056
2057 *beacon_int_different = true;
2058 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2059 }
2060
2061 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2062 if (*beacon_int_gcd)
2063 *beacon_int_different = true;
2064 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2065 }
2066 }
2067
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)2068 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2069 enum nl80211_iftype iftype, u32 beacon_int)
2070 {
2071 /*
2072 * This is just a basic pre-condition check; if interface combinations
2073 * are possible the driver must already be checking those with a call
2074 * to cfg80211_check_combinations(), in which case we'll validate more
2075 * through the cfg80211_calculate_bi_data() call and code in
2076 * cfg80211_iter_combinations().
2077 */
2078
2079 if (beacon_int < 10 || beacon_int > 10000)
2080 return -EINVAL;
2081
2082 return 0;
2083 }
2084
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)2085 int cfg80211_iter_combinations(struct wiphy *wiphy,
2086 struct iface_combination_params *params,
2087 void (*iter)(const struct ieee80211_iface_combination *c,
2088 void *data),
2089 void *data)
2090 {
2091 const struct ieee80211_regdomain *regdom;
2092 enum nl80211_dfs_regions region = 0;
2093 int i, j, iftype;
2094 int num_interfaces = 0;
2095 u32 used_iftypes = 0;
2096 u32 beacon_int_gcd;
2097 bool beacon_int_different;
2098
2099 /*
2100 * This is a bit strange, since the iteration used to rely only on
2101 * the data given by the driver, but here it now relies on context,
2102 * in form of the currently operating interfaces.
2103 * This is OK for all current users, and saves us from having to
2104 * push the GCD calculations into all the drivers.
2105 * In the future, this should probably rely more on data that's in
2106 * cfg80211 already - the only thing not would appear to be any new
2107 * interfaces (while being brought up) and channel/radar data.
2108 */
2109 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2110 &beacon_int_gcd, &beacon_int_different);
2111
2112 if (params->radar_detect) {
2113 rcu_read_lock();
2114 regdom = rcu_dereference(cfg80211_regdomain);
2115 if (regdom)
2116 region = regdom->dfs_region;
2117 rcu_read_unlock();
2118 }
2119
2120 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2121 num_interfaces += params->iftype_num[iftype];
2122 if (params->iftype_num[iftype] > 0 &&
2123 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2124 used_iftypes |= BIT(iftype);
2125 }
2126
2127 for (i = 0; i < wiphy->n_iface_combinations; i++) {
2128 const struct ieee80211_iface_combination *c;
2129 struct ieee80211_iface_limit *limits;
2130 u32 all_iftypes = 0;
2131
2132 c = &wiphy->iface_combinations[i];
2133
2134 if (num_interfaces > c->max_interfaces)
2135 continue;
2136 if (params->num_different_channels > c->num_different_channels)
2137 continue;
2138
2139 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2140 GFP_KERNEL);
2141 if (!limits)
2142 return -ENOMEM;
2143
2144 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2145 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2146 continue;
2147 for (j = 0; j < c->n_limits; j++) {
2148 all_iftypes |= limits[j].types;
2149 if (!(limits[j].types & BIT(iftype)))
2150 continue;
2151 if (limits[j].max < params->iftype_num[iftype])
2152 goto cont;
2153 limits[j].max -= params->iftype_num[iftype];
2154 }
2155 }
2156
2157 if (params->radar_detect !=
2158 (c->radar_detect_widths & params->radar_detect))
2159 goto cont;
2160
2161 if (params->radar_detect && c->radar_detect_regions &&
2162 !(c->radar_detect_regions & BIT(region)))
2163 goto cont;
2164
2165 /* Finally check that all iftypes that we're currently
2166 * using are actually part of this combination. If they
2167 * aren't then we can't use this combination and have
2168 * to continue to the next.
2169 */
2170 if ((all_iftypes & used_iftypes) != used_iftypes)
2171 goto cont;
2172
2173 if (beacon_int_gcd) {
2174 if (c->beacon_int_min_gcd &&
2175 beacon_int_gcd < c->beacon_int_min_gcd)
2176 goto cont;
2177 if (!c->beacon_int_min_gcd && beacon_int_different)
2178 goto cont;
2179 }
2180
2181 /* This combination covered all interface types and
2182 * supported the requested numbers, so we're good.
2183 */
2184
2185 (*iter)(c, data);
2186 cont:
2187 kfree(limits);
2188 }
2189
2190 return 0;
2191 }
2192 EXPORT_SYMBOL(cfg80211_iter_combinations);
2193
2194 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)2195 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2196 void *data)
2197 {
2198 int *num = data;
2199 (*num)++;
2200 }
2201
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)2202 int cfg80211_check_combinations(struct wiphy *wiphy,
2203 struct iface_combination_params *params)
2204 {
2205 int err, num = 0;
2206
2207 err = cfg80211_iter_combinations(wiphy, params,
2208 cfg80211_iter_sum_ifcombs, &num);
2209 if (err)
2210 return err;
2211 if (num == 0)
2212 return -EBUSY;
2213
2214 return 0;
2215 }
2216 EXPORT_SYMBOL(cfg80211_check_combinations);
2217
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)2218 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2219 const u8 *rates, unsigned int n_rates,
2220 u32 *mask)
2221 {
2222 int i, j;
2223
2224 if (!sband)
2225 return -EINVAL;
2226
2227 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2228 return -EINVAL;
2229
2230 *mask = 0;
2231
2232 for (i = 0; i < n_rates; i++) {
2233 int rate = (rates[i] & 0x7f) * 5;
2234 bool found = false;
2235
2236 for (j = 0; j < sband->n_bitrates; j++) {
2237 if (sband->bitrates[j].bitrate == rate) {
2238 found = true;
2239 *mask |= BIT(j);
2240 break;
2241 }
2242 }
2243 if (!found)
2244 return -EINVAL;
2245 }
2246
2247 /*
2248 * mask must have at least one bit set here since we
2249 * didn't accept a 0-length rates array nor allowed
2250 * entries in the array that didn't exist
2251 */
2252
2253 return 0;
2254 }
2255
ieee80211_get_num_supported_channels(struct wiphy * wiphy)2256 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2257 {
2258 enum nl80211_band band;
2259 unsigned int n_channels = 0;
2260
2261 for (band = 0; band < NUM_NL80211_BANDS; band++)
2262 if (wiphy->bands[band])
2263 n_channels += wiphy->bands[band]->n_channels;
2264
2265 return n_channels;
2266 }
2267 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2268
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2269 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2270 struct station_info *sinfo)
2271 {
2272 struct cfg80211_registered_device *rdev;
2273 struct wireless_dev *wdev;
2274
2275 wdev = dev->ieee80211_ptr;
2276 if (!wdev)
2277 return -EOPNOTSUPP;
2278
2279 rdev = wiphy_to_rdev(wdev->wiphy);
2280 if (!rdev->ops->get_station)
2281 return -EOPNOTSUPP;
2282
2283 memset(sinfo, 0, sizeof(*sinfo));
2284
2285 return rdev_get_station(rdev, dev, mac_addr, sinfo);
2286 }
2287 EXPORT_SYMBOL(cfg80211_get_station);
2288
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2289 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2290 {
2291 int i;
2292
2293 if (!f)
2294 return;
2295
2296 kfree(f->serv_spec_info);
2297 kfree(f->srf_bf);
2298 kfree(f->srf_macs);
2299 for (i = 0; i < f->num_rx_filters; i++)
2300 kfree(f->rx_filters[i].filter);
2301
2302 for (i = 0; i < f->num_tx_filters; i++)
2303 kfree(f->tx_filters[i].filter);
2304
2305 kfree(f->rx_filters);
2306 kfree(f->tx_filters);
2307 kfree(f);
2308 }
2309 EXPORT_SYMBOL(cfg80211_free_nan_func);
2310
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2311 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2312 u32 center_freq_khz, u32 bw_khz)
2313 {
2314 u32 start_freq_khz, end_freq_khz;
2315
2316 start_freq_khz = center_freq_khz - (bw_khz / 2);
2317 end_freq_khz = center_freq_khz + (bw_khz / 2);
2318
2319 if (start_freq_khz >= freq_range->start_freq_khz &&
2320 end_freq_khz <= freq_range->end_freq_khz)
2321 return true;
2322
2323 return false;
2324 }
2325
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2326 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2327 {
2328 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2329 sizeof(*(sinfo->pertid)),
2330 gfp);
2331 if (!sinfo->pertid)
2332 return -ENOMEM;
2333
2334 return 0;
2335 }
2336 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2337
2338 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2339 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2340 const unsigned char rfc1042_header[] __aligned(2) =
2341 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2342 EXPORT_SYMBOL(rfc1042_header);
2343
2344 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2345 const unsigned char bridge_tunnel_header[] __aligned(2) =
2346 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2347 EXPORT_SYMBOL(bridge_tunnel_header);
2348
2349 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2350 struct iapp_layer2_update {
2351 u8 da[ETH_ALEN]; /* broadcast */
2352 u8 sa[ETH_ALEN]; /* STA addr */
2353 __be16 len; /* 6 */
2354 u8 dsap; /* 0 */
2355 u8 ssap; /* 0 */
2356 u8 control;
2357 u8 xid_info[3];
2358 } __packed;
2359
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2360 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2361 {
2362 struct iapp_layer2_update *msg;
2363 struct sk_buff *skb;
2364
2365 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2366 * bridge devices */
2367
2368 skb = dev_alloc_skb(sizeof(*msg));
2369 if (!skb)
2370 return;
2371 msg = skb_put(skb, sizeof(*msg));
2372
2373 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2374 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2375
2376 eth_broadcast_addr(msg->da);
2377 ether_addr_copy(msg->sa, addr);
2378 msg->len = htons(6);
2379 msg->dsap = 0;
2380 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2381 msg->control = 0xaf; /* XID response lsb.1111F101.
2382 * F=0 (no poll command; unsolicited frame) */
2383 msg->xid_info[0] = 0x81; /* XID format identifier */
2384 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2385 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2386
2387 skb->dev = dev;
2388 skb->protocol = eth_type_trans(skb, dev);
2389 memset(skb->cb, 0, sizeof(skb->cb));
2390 netif_rx(skb);
2391 }
2392 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2393
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2394 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2395 enum ieee80211_vht_chanwidth bw,
2396 int mcs, bool ext_nss_bw_capable,
2397 unsigned int max_vht_nss)
2398 {
2399 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2400 int ext_nss_bw;
2401 int supp_width;
2402 int i, mcs_encoding;
2403
2404 if (map == 0xffff)
2405 return 0;
2406
2407 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2408 return 0;
2409 if (mcs <= 7)
2410 mcs_encoding = 0;
2411 else if (mcs == 8)
2412 mcs_encoding = 1;
2413 else
2414 mcs_encoding = 2;
2415
2416 if (!max_vht_nss) {
2417 /* find max_vht_nss for the given MCS */
2418 for (i = 7; i >= 0; i--) {
2419 int supp = (map >> (2 * i)) & 3;
2420
2421 if (supp == 3)
2422 continue;
2423
2424 if (supp >= mcs_encoding) {
2425 max_vht_nss = i + 1;
2426 break;
2427 }
2428 }
2429 }
2430
2431 if (!(cap->supp_mcs.tx_mcs_map &
2432 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2433 return max_vht_nss;
2434
2435 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2436 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2437 supp_width = le32_get_bits(cap->vht_cap_info,
2438 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2439
2440 /* if not capable, treat ext_nss_bw as 0 */
2441 if (!ext_nss_bw_capable)
2442 ext_nss_bw = 0;
2443
2444 /* This is invalid */
2445 if (supp_width == 3)
2446 return 0;
2447
2448 /* This is an invalid combination so pretend nothing is supported */
2449 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2450 return 0;
2451
2452 /*
2453 * Cover all the special cases according to IEEE 802.11-2016
2454 * Table 9-250. All other cases are either factor of 1 or not
2455 * valid/supported.
2456 */
2457 switch (bw) {
2458 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2459 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2460 if ((supp_width == 1 || supp_width == 2) &&
2461 ext_nss_bw == 3)
2462 return 2 * max_vht_nss;
2463 break;
2464 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2465 if (supp_width == 0 &&
2466 (ext_nss_bw == 1 || ext_nss_bw == 2))
2467 return max_vht_nss / 2;
2468 if (supp_width == 0 &&
2469 ext_nss_bw == 3)
2470 return (3 * max_vht_nss) / 4;
2471 if (supp_width == 1 &&
2472 ext_nss_bw == 3)
2473 return 2 * max_vht_nss;
2474 break;
2475 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2476 if (supp_width == 0 && ext_nss_bw == 1)
2477 return 0; /* not possible */
2478 if (supp_width == 0 &&
2479 ext_nss_bw == 2)
2480 return max_vht_nss / 2;
2481 if (supp_width == 0 &&
2482 ext_nss_bw == 3)
2483 return (3 * max_vht_nss) / 4;
2484 if (supp_width == 1 &&
2485 ext_nss_bw == 0)
2486 return 0; /* not possible */
2487 if (supp_width == 1 &&
2488 ext_nss_bw == 1)
2489 return max_vht_nss / 2;
2490 if (supp_width == 1 &&
2491 ext_nss_bw == 2)
2492 return (3 * max_vht_nss) / 4;
2493 break;
2494 }
2495
2496 /* not covered or invalid combination received */
2497 return max_vht_nss;
2498 }
2499 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2500
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2501 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2502 bool is_4addr, u8 check_swif)
2503
2504 {
2505 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2506
2507 switch (check_swif) {
2508 case 0:
2509 if (is_vlan && is_4addr)
2510 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2511 return wiphy->interface_modes & BIT(iftype);
2512 case 1:
2513 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2514 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2515 return wiphy->software_iftypes & BIT(iftype);
2516 default:
2517 break;
2518 }
2519
2520 return false;
2521 }
2522 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2523
cfg80211_remove_link(struct wireless_dev * wdev,unsigned int link_id)2524 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2525 {
2526 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2527
2528 ASSERT_WDEV_LOCK(wdev);
2529
2530 switch (wdev->iftype) {
2531 case NL80211_IFTYPE_AP:
2532 case NL80211_IFTYPE_P2P_GO:
2533 __cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2534 break;
2535 default:
2536 /* per-link not relevant */
2537 break;
2538 }
2539
2540 wdev->valid_links &= ~BIT(link_id);
2541
2542 rdev_del_intf_link(rdev, wdev, link_id);
2543
2544 eth_zero_addr(wdev->links[link_id].addr);
2545 }
2546
cfg80211_remove_links(struct wireless_dev * wdev)2547 void cfg80211_remove_links(struct wireless_dev *wdev)
2548 {
2549 unsigned int link_id;
2550
2551 wdev_lock(wdev);
2552 if (wdev->valid_links) {
2553 for_each_valid_link(wdev, link_id)
2554 cfg80211_remove_link(wdev, link_id);
2555 }
2556 wdev_unlock(wdev);
2557 }
2558
cfg80211_remove_virtual_intf(struct cfg80211_registered_device * rdev,struct wireless_dev * wdev)2559 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2560 struct wireless_dev *wdev)
2561 {
2562 cfg80211_remove_links(wdev);
2563
2564 return rdev_del_virtual_intf(rdev, wdev);
2565 }
2566
2567 const struct wiphy_iftype_ext_capab *
cfg80211_get_iftype_ext_capa(struct wiphy * wiphy,enum nl80211_iftype type)2568 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2569 {
2570 int i;
2571
2572 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2573 if (wiphy->iftype_ext_capab[i].iftype == type)
2574 return &wiphy->iftype_ext_capab[i];
2575 }
2576
2577 return NULL;
2578 }
2579 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2580