1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 Intel Corporation */
3
4 #include "igc.h"
5
6 #include <linux/module.h>
7 #include <linux/device.h>
8 #include <linux/pci.h>
9 #include <linux/ptp_classify.h>
10 #include <linux/clocksource.h>
11 #include <linux/ktime.h>
12 #include <linux/delay.h>
13 #include <linux/iopoll.h>
14
15 #define INCVALUE_MASK 0x7fffffff
16 #define ISGN 0x80000000
17
18 #define IGC_PTP_TX_TIMEOUT (HZ * 15)
19
20 #define IGC_PTM_STAT_SLEEP 2
21 #define IGC_PTM_STAT_TIMEOUT 100
22
23 /* SYSTIM read access for I225 */
igc_ptp_read(struct igc_adapter * adapter,struct timespec64 * ts)24 void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
25 {
26 struct igc_hw *hw = &adapter->hw;
27 u32 sec, nsec;
28
29 /* The timestamp is latched when SYSTIML is read. */
30 nsec = rd32(IGC_SYSTIML);
31 sec = rd32(IGC_SYSTIMH);
32
33 ts->tv_sec = sec;
34 ts->tv_nsec = nsec;
35 }
36
igc_ptp_write_i225(struct igc_adapter * adapter,const struct timespec64 * ts)37 static void igc_ptp_write_i225(struct igc_adapter *adapter,
38 const struct timespec64 *ts)
39 {
40 struct igc_hw *hw = &adapter->hw;
41
42 wr32(IGC_SYSTIML, ts->tv_nsec);
43 wr32(IGC_SYSTIMH, ts->tv_sec);
44 }
45
igc_ptp_adjfine_i225(struct ptp_clock_info * ptp,long scaled_ppm)46 static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
47 {
48 struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
49 ptp_caps);
50 struct igc_hw *hw = &igc->hw;
51 int neg_adj = 0;
52 u64 rate;
53 u32 inca;
54
55 if (scaled_ppm < 0) {
56 neg_adj = 1;
57 scaled_ppm = -scaled_ppm;
58 }
59 rate = scaled_ppm;
60 rate <<= 14;
61 rate = div_u64(rate, 78125);
62
63 inca = rate & INCVALUE_MASK;
64 if (neg_adj)
65 inca |= ISGN;
66
67 wr32(IGC_TIMINCA, inca);
68
69 return 0;
70 }
71
igc_ptp_adjtime_i225(struct ptp_clock_info * ptp,s64 delta)72 static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
73 {
74 struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
75 ptp_caps);
76 struct timespec64 now, then = ns_to_timespec64(delta);
77 unsigned long flags;
78
79 spin_lock_irqsave(&igc->tmreg_lock, flags);
80
81 igc_ptp_read(igc, &now);
82 now = timespec64_add(now, then);
83 igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
84
85 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
86
87 return 0;
88 }
89
igc_ptp_gettimex64_i225(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)90 static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
91 struct timespec64 *ts,
92 struct ptp_system_timestamp *sts)
93 {
94 struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
95 ptp_caps);
96 struct igc_hw *hw = &igc->hw;
97 unsigned long flags;
98
99 spin_lock_irqsave(&igc->tmreg_lock, flags);
100
101 ptp_read_system_prets(sts);
102 ts->tv_nsec = rd32(IGC_SYSTIML);
103 ts->tv_sec = rd32(IGC_SYSTIMH);
104 ptp_read_system_postts(sts);
105
106 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
107
108 return 0;
109 }
110
igc_ptp_settime_i225(struct ptp_clock_info * ptp,const struct timespec64 * ts)111 static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
112 const struct timespec64 *ts)
113 {
114 struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
115 ptp_caps);
116 unsigned long flags;
117
118 spin_lock_irqsave(&igc->tmreg_lock, flags);
119
120 igc_ptp_write_i225(igc, ts);
121
122 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
123
124 return 0;
125 }
126
igc_pin_direction(int pin,int input,u32 * ctrl,u32 * ctrl_ext)127 static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
128 {
129 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
130 static const u32 mask[IGC_N_SDP] = {
131 IGC_CTRL_SDP0_DIR,
132 IGC_CTRL_SDP1_DIR,
133 IGC_CTRL_EXT_SDP2_DIR,
134 IGC_CTRL_EXT_SDP3_DIR,
135 };
136
137 if (input)
138 *ptr &= ~mask[pin];
139 else
140 *ptr |= mask[pin];
141 }
142
igc_pin_perout(struct igc_adapter * igc,int chan,int pin,int freq)143 static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
144 {
145 static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
146 IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
147 };
148 static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
149 IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
150 };
151 static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
152 IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
153 };
154 static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
155 IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
156 IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
157 };
158 static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
159 IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
160 IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
161 };
162 static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
163 IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
164 IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
165 };
166 static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
167 IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
168 IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
169 };
170 static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
171 IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
172 IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
173 };
174 struct igc_hw *hw = &igc->hw;
175 u32 ctrl, ctrl_ext, tssdp = 0;
176
177 ctrl = rd32(IGC_CTRL);
178 ctrl_ext = rd32(IGC_CTRL_EXT);
179 tssdp = rd32(IGC_TSSDP);
180
181 igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
182
183 /* Make sure this pin is not enabled as an input. */
184 if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
185 tssdp &= ~IGC_AUX0_TS_SDP_EN;
186
187 if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
188 tssdp &= ~IGC_AUX1_TS_SDP_EN;
189
190 tssdp &= ~igc_ts_sdp_sel_clr[pin];
191 if (freq) {
192 if (chan == 1)
193 tssdp |= igc_ts_sdp_sel_fc1[pin];
194 else
195 tssdp |= igc_ts_sdp_sel_fc0[pin];
196 } else {
197 if (chan == 1)
198 tssdp |= igc_ts_sdp_sel_tt1[pin];
199 else
200 tssdp |= igc_ts_sdp_sel_tt0[pin];
201 }
202 tssdp |= igc_ts_sdp_en[pin];
203
204 wr32(IGC_TSSDP, tssdp);
205 wr32(IGC_CTRL, ctrl);
206 wr32(IGC_CTRL_EXT, ctrl_ext);
207 }
208
igc_pin_extts(struct igc_adapter * igc,int chan,int pin)209 static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
210 {
211 static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
212 IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
213 };
214 static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
215 IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
216 };
217 static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
218 IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
219 };
220 struct igc_hw *hw = &igc->hw;
221 u32 ctrl, ctrl_ext, tssdp = 0;
222
223 ctrl = rd32(IGC_CTRL);
224 ctrl_ext = rd32(IGC_CTRL_EXT);
225 tssdp = rd32(IGC_TSSDP);
226
227 igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
228
229 /* Make sure this pin is not enabled as an output. */
230 tssdp &= ~igc_ts_sdp_en[pin];
231
232 if (chan == 1) {
233 tssdp &= ~IGC_AUX1_SEL_SDP3;
234 tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
235 } else {
236 tssdp &= ~IGC_AUX0_SEL_SDP3;
237 tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
238 }
239
240 wr32(IGC_TSSDP, tssdp);
241 wr32(IGC_CTRL, ctrl);
242 wr32(IGC_CTRL_EXT, ctrl_ext);
243 }
244
igc_ptp_feature_enable_i225(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)245 static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
246 struct ptp_clock_request *rq, int on)
247 {
248 struct igc_adapter *igc =
249 container_of(ptp, struct igc_adapter, ptp_caps);
250 struct igc_hw *hw = &igc->hw;
251 unsigned long flags;
252 struct timespec64 ts;
253 int use_freq = 0, pin = -1;
254 u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
255 s64 ns;
256
257 switch (rq->type) {
258 case PTP_CLK_REQ_EXTTS:
259 /* Reject requests with unsupported flags */
260 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
261 PTP_RISING_EDGE |
262 PTP_FALLING_EDGE |
263 PTP_STRICT_FLAGS))
264 return -EOPNOTSUPP;
265
266 /* Reject requests failing to enable both edges. */
267 if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
268 (rq->extts.flags & PTP_ENABLE_FEATURE) &&
269 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
270 return -EOPNOTSUPP;
271
272 if (on) {
273 pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
274 rq->extts.index);
275 if (pin < 0)
276 return -EBUSY;
277 }
278 if (rq->extts.index == 1) {
279 tsauxc_mask = IGC_TSAUXC_EN_TS1;
280 tsim_mask = IGC_TSICR_AUTT1;
281 } else {
282 tsauxc_mask = IGC_TSAUXC_EN_TS0;
283 tsim_mask = IGC_TSICR_AUTT0;
284 }
285 spin_lock_irqsave(&igc->tmreg_lock, flags);
286 tsauxc = rd32(IGC_TSAUXC);
287 tsim = rd32(IGC_TSIM);
288 if (on) {
289 igc_pin_extts(igc, rq->extts.index, pin);
290 tsauxc |= tsauxc_mask;
291 tsim |= tsim_mask;
292 } else {
293 tsauxc &= ~tsauxc_mask;
294 tsim &= ~tsim_mask;
295 }
296 wr32(IGC_TSAUXC, tsauxc);
297 wr32(IGC_TSIM, tsim);
298 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
299 return 0;
300
301 case PTP_CLK_REQ_PEROUT:
302 /* Reject requests with unsupported flags */
303 if (rq->perout.flags)
304 return -EOPNOTSUPP;
305
306 if (on) {
307 pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
308 rq->perout.index);
309 if (pin < 0)
310 return -EBUSY;
311 }
312 ts.tv_sec = rq->perout.period.sec;
313 ts.tv_nsec = rq->perout.period.nsec;
314 ns = timespec64_to_ns(&ts);
315 ns = ns >> 1;
316 if (on && (ns <= 70000000LL || ns == 125000000LL ||
317 ns == 250000000LL || ns == 500000000LL)) {
318 if (ns < 8LL)
319 return -EINVAL;
320 use_freq = 1;
321 }
322 ts = ns_to_timespec64(ns);
323 if (rq->perout.index == 1) {
324 if (use_freq) {
325 tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1;
326 tsim_mask = 0;
327 } else {
328 tsauxc_mask = IGC_TSAUXC_EN_TT1;
329 tsim_mask = IGC_TSICR_TT1;
330 }
331 trgttiml = IGC_TRGTTIML1;
332 trgttimh = IGC_TRGTTIMH1;
333 freqout = IGC_FREQOUT1;
334 } else {
335 if (use_freq) {
336 tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0;
337 tsim_mask = 0;
338 } else {
339 tsauxc_mask = IGC_TSAUXC_EN_TT0;
340 tsim_mask = IGC_TSICR_TT0;
341 }
342 trgttiml = IGC_TRGTTIML0;
343 trgttimh = IGC_TRGTTIMH0;
344 freqout = IGC_FREQOUT0;
345 }
346 spin_lock_irqsave(&igc->tmreg_lock, flags);
347 tsauxc = rd32(IGC_TSAUXC);
348 tsim = rd32(IGC_TSIM);
349 if (rq->perout.index == 1) {
350 tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 |
351 IGC_TSAUXC_ST1);
352 tsim &= ~IGC_TSICR_TT1;
353 } else {
354 tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 |
355 IGC_TSAUXC_ST0);
356 tsim &= ~IGC_TSICR_TT0;
357 }
358 if (on) {
359 int i = rq->perout.index;
360
361 igc_pin_perout(igc, i, pin, use_freq);
362 igc->perout[i].start.tv_sec = rq->perout.start.sec;
363 igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
364 igc->perout[i].period.tv_sec = ts.tv_sec;
365 igc->perout[i].period.tv_nsec = ts.tv_nsec;
366 wr32(trgttimh, rq->perout.start.sec);
367 /* For now, always select timer 0 as source. */
368 wr32(trgttiml, rq->perout.start.nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
369 if (use_freq)
370 wr32(freqout, ns);
371 tsauxc |= tsauxc_mask;
372 tsim |= tsim_mask;
373 }
374 wr32(IGC_TSAUXC, tsauxc);
375 wr32(IGC_TSIM, tsim);
376 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
377 return 0;
378
379 case PTP_CLK_REQ_PPS:
380 spin_lock_irqsave(&igc->tmreg_lock, flags);
381 tsim = rd32(IGC_TSIM);
382 if (on)
383 tsim |= IGC_TSICR_SYS_WRAP;
384 else
385 tsim &= ~IGC_TSICR_SYS_WRAP;
386 igc->pps_sys_wrap_on = on;
387 wr32(IGC_TSIM, tsim);
388 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
389 return 0;
390
391 default:
392 break;
393 }
394
395 return -EOPNOTSUPP;
396 }
397
igc_ptp_verify_pin(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)398 static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
399 enum ptp_pin_function func, unsigned int chan)
400 {
401 switch (func) {
402 case PTP_PF_NONE:
403 case PTP_PF_EXTTS:
404 case PTP_PF_PEROUT:
405 break;
406 case PTP_PF_PHYSYNC:
407 return -1;
408 }
409 return 0;
410 }
411
412 /**
413 * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
414 * @adapter: board private structure
415 * @hwtstamps: timestamp structure to update
416 * @systim: unsigned 64bit system time value
417 *
418 * We need to convert the system time value stored in the RX/TXSTMP registers
419 * into a hwtstamp which can be used by the upper level timestamping functions.
420 *
421 * Returns 0 on success.
422 **/
igc_ptp_systim_to_hwtstamp(struct igc_adapter * adapter,struct skb_shared_hwtstamps * hwtstamps,u64 systim)423 static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
424 struct skb_shared_hwtstamps *hwtstamps,
425 u64 systim)
426 {
427 switch (adapter->hw.mac.type) {
428 case igc_i225:
429 memset(hwtstamps, 0, sizeof(*hwtstamps));
430 /* Upper 32 bits contain s, lower 32 bits contain ns. */
431 hwtstamps->hwtstamp = ktime_set(systim >> 32,
432 systim & 0xFFFFFFFF);
433 break;
434 default:
435 return -EINVAL;
436 }
437 return 0;
438 }
439
440 /**
441 * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
442 * @adapter: Pointer to adapter the packet buffer belongs to
443 * @buf: Pointer to packet buffer
444 *
445 * This function retrieves the timestamp saved in the beginning of packet
446 * buffer. While two timestamps are available, one in timer0 reference and the
447 * other in timer1 reference, this function considers only the timestamp in
448 * timer0 reference.
449 *
450 * Returns timestamp value.
451 */
igc_ptp_rx_pktstamp(struct igc_adapter * adapter,__le32 * buf)452 ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
453 {
454 ktime_t timestamp;
455 u32 secs, nsecs;
456 int adjust;
457
458 /* Timestamps are saved in little endian at the beginning of the packet
459 * buffer following the layout:
460 *
461 * DWORD: | 0 | 1 | 2 | 3 |
462 * Field: | Timer1 SYSTIML | Timer1 SYSTIMH | Timer0 SYSTIML | Timer0 SYSTIMH |
463 *
464 * SYSTIML holds the nanoseconds part while SYSTIMH holds the seconds
465 * part of the timestamp.
466 */
467 nsecs = le32_to_cpu(buf[2]);
468 secs = le32_to_cpu(buf[3]);
469
470 timestamp = ktime_set(secs, nsecs);
471
472 /* Adjust timestamp for the RX latency based on link speed */
473 switch (adapter->link_speed) {
474 case SPEED_10:
475 adjust = IGC_I225_RX_LATENCY_10;
476 break;
477 case SPEED_100:
478 adjust = IGC_I225_RX_LATENCY_100;
479 break;
480 case SPEED_1000:
481 adjust = IGC_I225_RX_LATENCY_1000;
482 break;
483 case SPEED_2500:
484 adjust = IGC_I225_RX_LATENCY_2500;
485 break;
486 default:
487 adjust = 0;
488 netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
489 break;
490 }
491
492 return ktime_sub_ns(timestamp, adjust);
493 }
494
igc_ptp_disable_rx_timestamp(struct igc_adapter * adapter)495 static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
496 {
497 struct igc_hw *hw = &adapter->hw;
498 u32 val;
499 int i;
500
501 wr32(IGC_TSYNCRXCTL, 0);
502
503 for (i = 0; i < adapter->num_rx_queues; i++) {
504 val = rd32(IGC_SRRCTL(i));
505 val &= ~IGC_SRRCTL_TIMESTAMP;
506 wr32(IGC_SRRCTL(i), val);
507 }
508
509 val = rd32(IGC_RXPBS);
510 val &= ~IGC_RXPBS_CFG_TS_EN;
511 wr32(IGC_RXPBS, val);
512 }
513
igc_ptp_enable_rx_timestamp(struct igc_adapter * adapter)514 static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
515 {
516 struct igc_hw *hw = &adapter->hw;
517 u32 val;
518 int i;
519
520 val = rd32(IGC_RXPBS);
521 val |= IGC_RXPBS_CFG_TS_EN;
522 wr32(IGC_RXPBS, val);
523
524 for (i = 0; i < adapter->num_rx_queues; i++) {
525 val = rd32(IGC_SRRCTL(i));
526 /* FIXME: For now, only support retrieving RX timestamps from
527 * timer 0.
528 */
529 val |= IGC_SRRCTL_TIMER1SEL(0) | IGC_SRRCTL_TIMER0SEL(0) |
530 IGC_SRRCTL_TIMESTAMP;
531 wr32(IGC_SRRCTL(i), val);
532 }
533
534 val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
535 IGC_TSYNCRXCTL_RXSYNSIG;
536 wr32(IGC_TSYNCRXCTL, val);
537 }
538
igc_ptp_disable_tx_timestamp(struct igc_adapter * adapter)539 static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
540 {
541 struct igc_hw *hw = &adapter->hw;
542
543 wr32(IGC_TSYNCTXCTL, 0);
544 }
545
igc_ptp_enable_tx_timestamp(struct igc_adapter * adapter)546 static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
547 {
548 struct igc_hw *hw = &adapter->hw;
549
550 wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
551
552 /* Read TXSTMP registers to discard any timestamp previously stored. */
553 rd32(IGC_TXSTMPL);
554 rd32(IGC_TXSTMPH);
555 }
556
557 /**
558 * igc_ptp_set_timestamp_mode - setup hardware for timestamping
559 * @adapter: networking device structure
560 * @config: hwtstamp configuration
561 *
562 * Return: 0 in case of success, negative errno code otherwise.
563 */
igc_ptp_set_timestamp_mode(struct igc_adapter * adapter,struct hwtstamp_config * config)564 static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
565 struct hwtstamp_config *config)
566 {
567 switch (config->tx_type) {
568 case HWTSTAMP_TX_OFF:
569 igc_ptp_disable_tx_timestamp(adapter);
570 break;
571 case HWTSTAMP_TX_ON:
572 igc_ptp_enable_tx_timestamp(adapter);
573 break;
574 default:
575 return -ERANGE;
576 }
577
578 switch (config->rx_filter) {
579 case HWTSTAMP_FILTER_NONE:
580 igc_ptp_disable_rx_timestamp(adapter);
581 break;
582 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
583 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
584 case HWTSTAMP_FILTER_PTP_V2_EVENT:
585 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
586 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
587 case HWTSTAMP_FILTER_PTP_V2_SYNC:
588 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
589 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
590 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
591 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
592 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
593 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
594 case HWTSTAMP_FILTER_NTP_ALL:
595 case HWTSTAMP_FILTER_ALL:
596 igc_ptp_enable_rx_timestamp(adapter);
597 config->rx_filter = HWTSTAMP_FILTER_ALL;
598 break;
599 default:
600 return -ERANGE;
601 }
602
603 return 0;
604 }
605
igc_ptp_tx_timeout(struct igc_adapter * adapter)606 static void igc_ptp_tx_timeout(struct igc_adapter *adapter)
607 {
608 struct igc_hw *hw = &adapter->hw;
609
610 dev_kfree_skb_any(adapter->ptp_tx_skb);
611 adapter->ptp_tx_skb = NULL;
612 adapter->tx_hwtstamp_timeouts++;
613 clear_bit_unlock(__IGC_PTP_TX_IN_PROGRESS, &adapter->state);
614 /* Clear the tx valid bit in TSYNCTXCTL register to enable interrupt. */
615 rd32(IGC_TXSTMPH);
616 netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
617 }
618
igc_ptp_tx_hang(struct igc_adapter * adapter)619 void igc_ptp_tx_hang(struct igc_adapter *adapter)
620 {
621 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
622 IGC_PTP_TX_TIMEOUT);
623
624 if (!test_bit(__IGC_PTP_TX_IN_PROGRESS, &adapter->state))
625 return;
626
627 /* If we haven't received a timestamp within the timeout, it is
628 * reasonable to assume that it will never occur, so we can unlock the
629 * timestamp bit when this occurs.
630 */
631 if (timeout) {
632 cancel_work_sync(&adapter->ptp_tx_work);
633 igc_ptp_tx_timeout(adapter);
634 }
635 }
636
637 /**
638 * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
639 * @adapter: Board private structure
640 *
641 * If we were asked to do hardware stamping and such a time stamp is
642 * available, then it must have been for this skb here because we only
643 * allow only one such packet into the queue.
644 */
igc_ptp_tx_hwtstamp(struct igc_adapter * adapter)645 static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
646 {
647 struct sk_buff *skb = adapter->ptp_tx_skb;
648 struct skb_shared_hwtstamps shhwtstamps;
649 struct igc_hw *hw = &adapter->hw;
650 int adjust = 0;
651 u64 regval;
652
653 if (WARN_ON_ONCE(!skb))
654 return;
655
656 regval = rd32(IGC_TXSTMPL);
657 regval |= (u64)rd32(IGC_TXSTMPH) << 32;
658 if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval))
659 return;
660
661 switch (adapter->link_speed) {
662 case SPEED_10:
663 adjust = IGC_I225_TX_LATENCY_10;
664 break;
665 case SPEED_100:
666 adjust = IGC_I225_TX_LATENCY_100;
667 break;
668 case SPEED_1000:
669 adjust = IGC_I225_TX_LATENCY_1000;
670 break;
671 case SPEED_2500:
672 adjust = IGC_I225_TX_LATENCY_2500;
673 break;
674 }
675
676 shhwtstamps.hwtstamp =
677 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
678
679 /* Clear the lock early before calling skb_tstamp_tx so that
680 * applications are not woken up before the lock bit is clear. We use
681 * a copy of the skb pointer to ensure other threads can't change it
682 * while we're notifying the stack.
683 */
684 adapter->ptp_tx_skb = NULL;
685 clear_bit_unlock(__IGC_PTP_TX_IN_PROGRESS, &adapter->state);
686
687 /* Notify the stack and free the skb after we've unlocked */
688 skb_tstamp_tx(skb, &shhwtstamps);
689 dev_kfree_skb_any(skb);
690 }
691
692 /**
693 * igc_ptp_tx_work
694 * @work: pointer to work struct
695 *
696 * This work function polls the TSYNCTXCTL valid bit to determine when a
697 * timestamp has been taken for the current stored skb.
698 */
igc_ptp_tx_work(struct work_struct * work)699 static void igc_ptp_tx_work(struct work_struct *work)
700 {
701 struct igc_adapter *adapter = container_of(work, struct igc_adapter,
702 ptp_tx_work);
703 struct igc_hw *hw = &adapter->hw;
704 u32 tsynctxctl;
705
706 if (!test_bit(__IGC_PTP_TX_IN_PROGRESS, &adapter->state))
707 return;
708
709 tsynctxctl = rd32(IGC_TSYNCTXCTL);
710 if (WARN_ON_ONCE(!(tsynctxctl & IGC_TSYNCTXCTL_TXTT_0)))
711 return;
712
713 igc_ptp_tx_hwtstamp(adapter);
714 }
715
716 /**
717 * igc_ptp_set_ts_config - set hardware time stamping config
718 * @netdev: network interface device structure
719 * @ifr: interface request data
720 *
721 **/
igc_ptp_set_ts_config(struct net_device * netdev,struct ifreq * ifr)722 int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
723 {
724 struct igc_adapter *adapter = netdev_priv(netdev);
725 struct hwtstamp_config config;
726 int err;
727
728 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
729 return -EFAULT;
730
731 err = igc_ptp_set_timestamp_mode(adapter, &config);
732 if (err)
733 return err;
734
735 /* save these settings for future reference */
736 memcpy(&adapter->tstamp_config, &config,
737 sizeof(adapter->tstamp_config));
738
739 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
740 -EFAULT : 0;
741 }
742
743 /**
744 * igc_ptp_get_ts_config - get hardware time stamping config
745 * @netdev: network interface device structure
746 * @ifr: interface request data
747 *
748 * Get the hwtstamp_config settings to return to the user. Rather than attempt
749 * to deconstruct the settings from the registers, just return a shadow copy
750 * of the last known settings.
751 **/
igc_ptp_get_ts_config(struct net_device * netdev,struct ifreq * ifr)752 int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
753 {
754 struct igc_adapter *adapter = netdev_priv(netdev);
755 struct hwtstamp_config *config = &adapter->tstamp_config;
756
757 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
758 -EFAULT : 0;
759 }
760
761 /* The two conditions below must be met for cross timestamping via
762 * PCIe PTM:
763 *
764 * 1. We have an way to convert the timestamps in the PTM messages
765 * to something related to the system clocks (right now, only
766 * X86 systems with support for the Always Running Timer allow that);
767 *
768 * 2. We have PTM enabled in the path from the device to the PCIe root port.
769 */
igc_is_crosststamp_supported(struct igc_adapter * adapter)770 static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
771 {
772 if (!IS_ENABLED(CONFIG_X86_TSC))
773 return false;
774
775 /* FIXME: it was noticed that enabling support for PCIe PTM in
776 * some i225-V models could cause lockups when bringing the
777 * interface up/down. There should be no downsides to
778 * disabling crosstimestamping support for i225-V, as it
779 * doesn't have any PTP support. That way we gain some time
780 * while root causing the issue.
781 */
782 if (adapter->pdev->device == IGC_DEV_ID_I225_V)
783 return false;
784
785 return pcie_ptm_enabled(adapter->pdev);
786 }
787
igc_device_tstamp_to_system(u64 tstamp)788 static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
789 {
790 #if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
791 return convert_art_ns_to_tsc(tstamp);
792 #else
793 return (struct system_counterval_t) { };
794 #endif
795 }
796
igc_ptm_log_error(struct igc_adapter * adapter,u32 ptm_stat)797 static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
798 {
799 struct net_device *netdev = adapter->netdev;
800
801 switch (ptm_stat) {
802 case IGC_PTM_STAT_RET_ERR:
803 netdev_err(netdev, "PTM Error: Root port timeout\n");
804 break;
805 case IGC_PTM_STAT_BAD_PTM_RES:
806 netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
807 break;
808 case IGC_PTM_STAT_T4M1_OVFL:
809 netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
810 break;
811 case IGC_PTM_STAT_ADJUST_1ST:
812 netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
813 break;
814 case IGC_PTM_STAT_ADJUST_CYC:
815 netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
816 break;
817 default:
818 netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
819 break;
820 }
821 }
822
igc_phc_get_syncdevicetime(ktime_t * device,struct system_counterval_t * system,void * ctx)823 static int igc_phc_get_syncdevicetime(ktime_t *device,
824 struct system_counterval_t *system,
825 void *ctx)
826 {
827 u32 stat, t2_curr_h, t2_curr_l, ctrl;
828 struct igc_adapter *adapter = ctx;
829 struct igc_hw *hw = &adapter->hw;
830 int err, count = 100;
831 ktime_t t1, t2_curr;
832
833 /* Get a snapshot of system clocks to use as historic value. */
834 ktime_get_snapshot(&adapter->snapshot);
835
836 do {
837 /* Doing this in a loop because in the event of a
838 * badly timed (ha!) system clock adjustment, we may
839 * get PTM errors from the PCI root, but these errors
840 * are transitory. Repeating the process returns valid
841 * data eventually.
842 */
843
844 /* To "manually" start the PTM cycle we need to clear and
845 * then set again the TRIG bit.
846 */
847 ctrl = rd32(IGC_PTM_CTRL);
848 ctrl &= ~IGC_PTM_CTRL_TRIG;
849 wr32(IGC_PTM_CTRL, ctrl);
850 ctrl |= IGC_PTM_CTRL_TRIG;
851 wr32(IGC_PTM_CTRL, ctrl);
852
853 /* The cycle only starts "for real" when software notifies
854 * that it has read the registers, this is done by setting
855 * VALID bit.
856 */
857 wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
858
859 err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
860 stat, IGC_PTM_STAT_SLEEP,
861 IGC_PTM_STAT_TIMEOUT);
862 if (err < 0) {
863 netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
864 return err;
865 }
866
867 if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
868 break;
869
870 if (stat & ~IGC_PTM_STAT_VALID) {
871 /* An error occurred, log it. */
872 igc_ptm_log_error(adapter, stat);
873 /* The STAT register is write-1-to-clear (W1C),
874 * so write the previous error status to clear it.
875 */
876 wr32(IGC_PTM_STAT, stat);
877 continue;
878 }
879 } while (--count);
880
881 if (!count) {
882 netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
883 return -ETIMEDOUT;
884 }
885
886 t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
887
888 t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
889 t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
890
891 /* FIXME: When the register that tells the endianness of the
892 * PTM registers are implemented, check them here and add the
893 * appropriate conversion.
894 */
895 t2_curr_h = swab32(t2_curr_h);
896
897 t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
898
899 *device = t1;
900 *system = igc_device_tstamp_to_system(t2_curr);
901
902 return 0;
903 }
904
igc_ptp_getcrosststamp(struct ptp_clock_info * ptp,struct system_device_crosststamp * cts)905 static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
906 struct system_device_crosststamp *cts)
907 {
908 struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
909 ptp_caps);
910
911 return get_device_system_crosststamp(igc_phc_get_syncdevicetime,
912 adapter, &adapter->snapshot, cts);
913 }
914
915 /**
916 * igc_ptp_init - Initialize PTP functionality
917 * @adapter: Board private structure
918 *
919 * This function is called at device probe to initialize the PTP
920 * functionality.
921 */
igc_ptp_init(struct igc_adapter * adapter)922 void igc_ptp_init(struct igc_adapter *adapter)
923 {
924 struct net_device *netdev = adapter->netdev;
925 struct igc_hw *hw = &adapter->hw;
926 int i;
927
928 switch (hw->mac.type) {
929 case igc_i225:
930 for (i = 0; i < IGC_N_SDP; i++) {
931 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
932
933 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
934 ppd->index = i;
935 ppd->func = PTP_PF_NONE;
936 }
937 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
938 adapter->ptp_caps.owner = THIS_MODULE;
939 adapter->ptp_caps.max_adj = 62499999;
940 adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
941 adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
942 adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
943 adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
944 adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
945 adapter->ptp_caps.pps = 1;
946 adapter->ptp_caps.pin_config = adapter->sdp_config;
947 adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
948 adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
949 adapter->ptp_caps.n_pins = IGC_N_SDP;
950 adapter->ptp_caps.verify = igc_ptp_verify_pin;
951
952 if (!igc_is_crosststamp_supported(adapter))
953 break;
954
955 adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
956 break;
957 default:
958 adapter->ptp_clock = NULL;
959 return;
960 }
961
962 spin_lock_init(&adapter->tmreg_lock);
963 INIT_WORK(&adapter->ptp_tx_work, igc_ptp_tx_work);
964
965 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
966 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
967
968 adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
969 adapter->ptp_reset_start = ktime_get();
970
971 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
972 &adapter->pdev->dev);
973 if (IS_ERR(adapter->ptp_clock)) {
974 adapter->ptp_clock = NULL;
975 netdev_err(netdev, "ptp_clock_register failed\n");
976 } else if (adapter->ptp_clock) {
977 netdev_info(netdev, "PHC added\n");
978 adapter->ptp_flags |= IGC_PTP_ENABLED;
979 }
980 }
981
igc_ptp_time_save(struct igc_adapter * adapter)982 static void igc_ptp_time_save(struct igc_adapter *adapter)
983 {
984 igc_ptp_read(adapter, &adapter->prev_ptp_time);
985 adapter->ptp_reset_start = ktime_get();
986 }
987
igc_ptp_time_restore(struct igc_adapter * adapter)988 static void igc_ptp_time_restore(struct igc_adapter *adapter)
989 {
990 struct timespec64 ts = adapter->prev_ptp_time;
991 ktime_t delta;
992
993 delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
994
995 timespec64_add_ns(&ts, ktime_to_ns(delta));
996
997 igc_ptp_write_i225(adapter, &ts);
998 }
999
igc_ptm_stop(struct igc_adapter * adapter)1000 static void igc_ptm_stop(struct igc_adapter *adapter)
1001 {
1002 struct igc_hw *hw = &adapter->hw;
1003 u32 ctrl;
1004
1005 ctrl = rd32(IGC_PTM_CTRL);
1006 ctrl &= ~IGC_PTM_CTRL_EN;
1007
1008 wr32(IGC_PTM_CTRL, ctrl);
1009 }
1010
1011 /**
1012 * igc_ptp_suspend - Disable PTP work items and prepare for suspend
1013 * @adapter: Board private structure
1014 *
1015 * This function stops the overflow check work and PTP Tx timestamp work, and
1016 * will prepare the device for OS suspend.
1017 */
igc_ptp_suspend(struct igc_adapter * adapter)1018 void igc_ptp_suspend(struct igc_adapter *adapter)
1019 {
1020 if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1021 return;
1022
1023 cancel_work_sync(&adapter->ptp_tx_work);
1024 dev_kfree_skb_any(adapter->ptp_tx_skb);
1025 adapter->ptp_tx_skb = NULL;
1026 clear_bit_unlock(__IGC_PTP_TX_IN_PROGRESS, &adapter->state);
1027
1028 if (pci_device_is_present(adapter->pdev)) {
1029 igc_ptp_time_save(adapter);
1030 igc_ptm_stop(adapter);
1031 }
1032 }
1033
1034 /**
1035 * igc_ptp_stop - Disable PTP device and stop the overflow check.
1036 * @adapter: Board private structure.
1037 *
1038 * This function stops the PTP support and cancels the delayed work.
1039 **/
igc_ptp_stop(struct igc_adapter * adapter)1040 void igc_ptp_stop(struct igc_adapter *adapter)
1041 {
1042 igc_ptp_suspend(adapter);
1043
1044 if (adapter->ptp_clock) {
1045 ptp_clock_unregister(adapter->ptp_clock);
1046 netdev_info(adapter->netdev, "PHC removed\n");
1047 adapter->ptp_flags &= ~IGC_PTP_ENABLED;
1048 }
1049 }
1050
1051 /**
1052 * igc_ptp_reset - Re-enable the adapter for PTP following a reset.
1053 * @adapter: Board private structure.
1054 *
1055 * This function handles the reset work required to re-enable the PTP device.
1056 **/
igc_ptp_reset(struct igc_adapter * adapter)1057 void igc_ptp_reset(struct igc_adapter *adapter)
1058 {
1059 struct igc_hw *hw = &adapter->hw;
1060 u32 cycle_ctrl, ctrl;
1061 unsigned long flags;
1062 u32 timadj;
1063
1064 /* reset the tstamp_config */
1065 igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1066
1067 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1068
1069 switch (adapter->hw.mac.type) {
1070 case igc_i225:
1071 timadj = rd32(IGC_TIMADJ);
1072 timadj |= IGC_TIMADJ_ADJUST_METH;
1073 wr32(IGC_TIMADJ, timadj);
1074
1075 wr32(IGC_TSAUXC, 0x0);
1076 wr32(IGC_TSSDP, 0x0);
1077 wr32(IGC_TSIM,
1078 IGC_TSICR_INTERRUPTS |
1079 (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
1080 wr32(IGC_IMS, IGC_IMS_TS);
1081
1082 if (!igc_is_crosststamp_supported(adapter))
1083 break;
1084
1085 wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
1086 wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
1087
1088 cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
1089
1090 wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
1091
1092 ctrl = IGC_PTM_CTRL_EN |
1093 IGC_PTM_CTRL_START_NOW |
1094 IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
1095 IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) |
1096 IGC_PTM_CTRL_TRIG;
1097
1098 wr32(IGC_PTM_CTRL, ctrl);
1099
1100 /* Force the first cycle to run. */
1101 wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1102
1103 break;
1104 default:
1105 /* No work to do. */
1106 goto out;
1107 }
1108
1109 /* Re-initialize the timer. */
1110 if (hw->mac.type == igc_i225) {
1111 igc_ptp_time_restore(adapter);
1112 } else {
1113 timecounter_init(&adapter->tc, &adapter->cc,
1114 ktime_to_ns(ktime_get_real()));
1115 }
1116 out:
1117 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1118
1119 wrfl();
1120 }
1121