1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * PF_INET protocol family socket handler.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Florian La Roche, <flla@stud.uni-sb.de>
12 * Alan Cox, <A.Cox@swansea.ac.uk>
13 *
14 * Changes (see also sock.c)
15 *
16 * piggy,
17 * Karl Knutson : Socket protocol table
18 * A.N.Kuznetsov : Socket death error in accept().
19 * John Richardson : Fix non blocking error in connect()
20 * so sockets that fail to connect
21 * don't return -EINPROGRESS.
22 * Alan Cox : Asynchronous I/O support
23 * Alan Cox : Keep correct socket pointer on sock
24 * structures
25 * when accept() ed
26 * Alan Cox : Semantics of SO_LINGER aren't state
27 * moved to close when you look carefully.
28 * With this fixed and the accept bug fixed
29 * some RPC stuff seems happier.
30 * Niibe Yutaka : 4.4BSD style write async I/O
31 * Alan Cox,
32 * Tony Gale : Fixed reuse semantics.
33 * Alan Cox : bind() shouldn't abort existing but dead
34 * sockets. Stops FTP netin:.. I hope.
35 * Alan Cox : bind() works correctly for RAW sockets.
36 * Note that FreeBSD at least was broken
37 * in this respect so be careful with
38 * compatibility tests...
39 * Alan Cox : routing cache support
40 * Alan Cox : memzero the socket structure for
41 * compactness.
42 * Matt Day : nonblock connect error handler
43 * Alan Cox : Allow large numbers of pending sockets
44 * (eg for big web sites), but only if
45 * specifically application requested.
46 * Alan Cox : New buffering throughout IP. Used
47 * dumbly.
48 * Alan Cox : New buffering now used smartly.
49 * Alan Cox : BSD rather than common sense
50 * interpretation of listen.
51 * Germano Caronni : Assorted small races.
52 * Alan Cox : sendmsg/recvmsg basic support.
53 * Alan Cox : Only sendmsg/recvmsg now supported.
54 * Alan Cox : Locked down bind (see security list).
55 * Alan Cox : Loosened bind a little.
56 * Mike McLagan : ADD/DEL DLCI Ioctls
57 * Willy Konynenberg : Transparent proxying support.
58 * David S. Miller : New socket lookup architecture.
59 * Some other random speedups.
60 * Cyrus Durgin : Cleaned up file for kmod hacks.
61 * Andi Kleen : Fix inet_stream_connect TCP race.
62 */
63
64 #define pr_fmt(fmt) "IPv4: " fmt
65
66 #include <linux/err.h>
67 #include <linux/errno.h>
68 #include <linux/types.h>
69 #include <linux/socket.h>
70 #include <linux/in.h>
71 #include <linux/kernel.h>
72 #include <linux/kmod.h>
73 #include <linux/sched.h>
74 #include <linux/timer.h>
75 #include <linux/string.h>
76 #include <linux/sockios.h>
77 #include <linux/net.h>
78 #include <linux/capability.h>
79 #include <linux/fcntl.h>
80 #include <linux/mm.h>
81 #include <linux/interrupt.h>
82 #include <linux/stat.h>
83 #include <linux/init.h>
84 #include <linux/poll.h>
85 #include <linux/netfilter_ipv4.h>
86 #include <linux/random.h>
87 #include <linux/slab.h>
88
89 #include <linux/uaccess.h>
90
91 #include <linux/inet.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/netdevice.h>
95 #include <net/checksum.h>
96 #include <net/ip.h>
97 #include <net/protocol.h>
98 #include <net/arp.h>
99 #include <net/route.h>
100 #include <net/ip_fib.h>
101 #include <net/inet_connection_sock.h>
102 #include <net/gro.h>
103 #include <net/tcp.h>
104 #include <net/udp.h>
105 #include <net/udplite.h>
106 #include <net/ping.h>
107 #include <linux/skbuff.h>
108 #include <net/sock.h>
109 #include <net/raw.h>
110 #include <net/icmp.h>
111 #include <net/inet_common.h>
112 #include <net/ip_tunnels.h>
113 #include <net/xfrm.h>
114 #include <net/net_namespace.h>
115 #include <net/secure_seq.h>
116 #ifdef CONFIG_IP_MROUTE
117 #include <linux/mroute.h>
118 #endif
119 #include <net/l3mdev.h>
120 #include <net/compat.h>
121
122 #include <trace/events/sock.h>
123
124 /* The inetsw table contains everything that inet_create needs to
125 * build a new socket.
126 */
127 static struct list_head inetsw[SOCK_MAX];
128 static DEFINE_SPINLOCK(inetsw_lock);
129
130 /* New destruction routine */
131
inet_sock_destruct(struct sock * sk)132 void inet_sock_destruct(struct sock *sk)
133 {
134 struct inet_sock *inet = inet_sk(sk);
135
136 __skb_queue_purge(&sk->sk_receive_queue);
137 __skb_queue_purge(&sk->sk_error_queue);
138
139 sk_mem_reclaim_final(sk);
140
141 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) {
142 pr_err("Attempt to release TCP socket in state %d %p\n",
143 sk->sk_state, sk);
144 return;
145 }
146 if (!sock_flag(sk, SOCK_DEAD)) {
147 pr_err("Attempt to release alive inet socket %p\n", sk);
148 return;
149 }
150
151 WARN_ON_ONCE(atomic_read(&sk->sk_rmem_alloc));
152 WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc));
153 WARN_ON_ONCE(sk->sk_wmem_queued);
154 WARN_ON_ONCE(sk_forward_alloc_get(sk));
155
156 kfree(rcu_dereference_protected(inet->inet_opt, 1));
157 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1));
158 dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1));
159 }
160 EXPORT_SYMBOL(inet_sock_destruct);
161
162 /*
163 * The routines beyond this point handle the behaviour of an AF_INET
164 * socket object. Mostly it punts to the subprotocols of IP to do
165 * the work.
166 */
167
168 /*
169 * Automatically bind an unbound socket.
170 */
171
inet_autobind(struct sock * sk)172 static int inet_autobind(struct sock *sk)
173 {
174 struct inet_sock *inet;
175 /* We may need to bind the socket. */
176 lock_sock(sk);
177 inet = inet_sk(sk);
178 if (!inet->inet_num) {
179 if (sk->sk_prot->get_port(sk, 0)) {
180 release_sock(sk);
181 return -EAGAIN;
182 }
183 inet->inet_sport = htons(inet->inet_num);
184 }
185 release_sock(sk);
186 return 0;
187 }
188
189 /*
190 * Move a socket into listening state.
191 */
inet_listen(struct socket * sock,int backlog)192 int inet_listen(struct socket *sock, int backlog)
193 {
194 struct sock *sk = sock->sk;
195 unsigned char old_state;
196 int err, tcp_fastopen;
197
198 lock_sock(sk);
199
200 err = -EINVAL;
201 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
202 goto out;
203
204 old_state = sk->sk_state;
205 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN)))
206 goto out;
207
208 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
209 /* Really, if the socket is already in listen state
210 * we can only allow the backlog to be adjusted.
211 */
212 if (old_state != TCP_LISTEN) {
213 /* Enable TFO w/o requiring TCP_FASTOPEN socket option.
214 * Note that only TCP sockets (SOCK_STREAM) will reach here.
215 * Also fastopen backlog may already been set via the option
216 * because the socket was in TCP_LISTEN state previously but
217 * was shutdown() rather than close().
218 */
219 tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen);
220 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) &&
221 (tcp_fastopen & TFO_SERVER_ENABLE) &&
222 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) {
223 fastopen_queue_tune(sk, backlog);
224 tcp_fastopen_init_key_once(sock_net(sk));
225 }
226
227 err = inet_csk_listen_start(sk);
228 if (err)
229 goto out;
230 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL);
231 }
232 err = 0;
233
234 out:
235 release_sock(sk);
236 return err;
237 }
238 EXPORT_SYMBOL(inet_listen);
239
240 /*
241 * Create an inet socket.
242 */
243
inet_create(struct net * net,struct socket * sock,int protocol,int kern)244 static int inet_create(struct net *net, struct socket *sock, int protocol,
245 int kern)
246 {
247 struct sock *sk;
248 struct inet_protosw *answer;
249 struct inet_sock *inet;
250 struct proto *answer_prot;
251 unsigned char answer_flags;
252 int try_loading_module = 0;
253 int err;
254
255 if (protocol < 0 || protocol >= IPPROTO_MAX)
256 return -EINVAL;
257
258 sock->state = SS_UNCONNECTED;
259
260 /* Look for the requested type/protocol pair. */
261 lookup_protocol:
262 err = -ESOCKTNOSUPPORT;
263 rcu_read_lock();
264 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) {
265
266 err = 0;
267 /* Check the non-wild match. */
268 if (protocol == answer->protocol) {
269 if (protocol != IPPROTO_IP)
270 break;
271 } else {
272 /* Check for the two wild cases. */
273 if (IPPROTO_IP == protocol) {
274 protocol = answer->protocol;
275 break;
276 }
277 if (IPPROTO_IP == answer->protocol)
278 break;
279 }
280 err = -EPROTONOSUPPORT;
281 }
282
283 if (unlikely(err)) {
284 if (try_loading_module < 2) {
285 rcu_read_unlock();
286 /*
287 * Be more specific, e.g. net-pf-2-proto-132-type-1
288 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM)
289 */
290 if (++try_loading_module == 1)
291 request_module("net-pf-%d-proto-%d-type-%d",
292 PF_INET, protocol, sock->type);
293 /*
294 * Fall back to generic, e.g. net-pf-2-proto-132
295 * (net-pf-PF_INET-proto-IPPROTO_SCTP)
296 */
297 else
298 request_module("net-pf-%d-proto-%d",
299 PF_INET, protocol);
300 goto lookup_protocol;
301 } else
302 goto out_rcu_unlock;
303 }
304
305 err = -EPERM;
306 if (sock->type == SOCK_RAW && !kern &&
307 !ns_capable(net->user_ns, CAP_NET_RAW))
308 goto out_rcu_unlock;
309
310 sock->ops = answer->ops;
311 answer_prot = answer->prot;
312 answer_flags = answer->flags;
313 rcu_read_unlock();
314
315 WARN_ON(!answer_prot->slab);
316
317 err = -ENOMEM;
318 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern);
319 if (!sk)
320 goto out;
321
322 err = 0;
323 if (INET_PROTOSW_REUSE & answer_flags)
324 sk->sk_reuse = SK_CAN_REUSE;
325
326 inet = inet_sk(sk);
327 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0;
328
329 inet->nodefrag = 0;
330
331 if (SOCK_RAW == sock->type) {
332 inet->inet_num = protocol;
333 if (IPPROTO_RAW == protocol)
334 inet->hdrincl = 1;
335 }
336
337 if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc))
338 inet->pmtudisc = IP_PMTUDISC_DONT;
339 else
340 inet->pmtudisc = IP_PMTUDISC_WANT;
341
342 inet->inet_id = 0;
343
344 sock_init_data(sock, sk);
345
346 sk->sk_destruct = inet_sock_destruct;
347 sk->sk_protocol = protocol;
348 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
349 sk->sk_txrehash = READ_ONCE(net->core.sysctl_txrehash);
350
351 inet->uc_ttl = -1;
352 inet->mc_loop = 1;
353 inet->mc_ttl = 1;
354 inet->mc_all = 1;
355 inet->mc_index = 0;
356 inet->mc_list = NULL;
357 inet->rcv_tos = 0;
358
359 if (inet->inet_num) {
360 /* It assumes that any protocol which allows
361 * the user to assign a number at socket
362 * creation time automatically
363 * shares.
364 */
365 inet->inet_sport = htons(inet->inet_num);
366 /* Add to protocol hash chains. */
367 err = sk->sk_prot->hash(sk);
368 if (err) {
369 sk_common_release(sk);
370 goto out;
371 }
372 }
373
374 if (sk->sk_prot->init) {
375 err = sk->sk_prot->init(sk);
376 if (err) {
377 sk_common_release(sk);
378 goto out;
379 }
380 }
381
382 if (!kern) {
383 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk);
384 if (err) {
385 sk_common_release(sk);
386 goto out;
387 }
388 }
389 out:
390 return err;
391 out_rcu_unlock:
392 rcu_read_unlock();
393 goto out;
394 }
395
396
397 /*
398 * The peer socket should always be NULL (or else). When we call this
399 * function we are destroying the object and from then on nobody
400 * should refer to it.
401 */
inet_release(struct socket * sock)402 int inet_release(struct socket *sock)
403 {
404 struct sock *sk = sock->sk;
405
406 if (sk) {
407 long timeout;
408
409 if (!sk->sk_kern_sock)
410 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk);
411
412 /* Applications forget to leave groups before exiting */
413 ip_mc_drop_socket(sk);
414
415 /* If linger is set, we don't return until the close
416 * is complete. Otherwise we return immediately. The
417 * actually closing is done the same either way.
418 *
419 * If the close is due to the process exiting, we never
420 * linger..
421 */
422 timeout = 0;
423 if (sock_flag(sk, SOCK_LINGER) &&
424 !(current->flags & PF_EXITING))
425 timeout = sk->sk_lingertime;
426 sk->sk_prot->close(sk, timeout);
427 sock->sk = NULL;
428 }
429 return 0;
430 }
431 EXPORT_SYMBOL(inet_release);
432
inet_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)433 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
434 {
435 struct sock *sk = sock->sk;
436 u32 flags = BIND_WITH_LOCK;
437 int err;
438
439 /* If the socket has its own bind function then use it. (RAW) */
440 if (sk->sk_prot->bind) {
441 return sk->sk_prot->bind(sk, uaddr, addr_len);
442 }
443 if (addr_len < sizeof(struct sockaddr_in))
444 return -EINVAL;
445
446 /* BPF prog is run before any checks are done so that if the prog
447 * changes context in a wrong way it will be caught.
448 */
449 err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr,
450 CGROUP_INET4_BIND, &flags);
451 if (err)
452 return err;
453
454 return __inet_bind(sk, uaddr, addr_len, flags);
455 }
456 EXPORT_SYMBOL(inet_bind);
457
__inet_bind(struct sock * sk,struct sockaddr * uaddr,int addr_len,u32 flags)458 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len,
459 u32 flags)
460 {
461 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr;
462 struct inet_sock *inet = inet_sk(sk);
463 struct net *net = sock_net(sk);
464 unsigned short snum;
465 int chk_addr_ret;
466 u32 tb_id = RT_TABLE_LOCAL;
467 int err;
468
469 if (addr->sin_family != AF_INET) {
470 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET)
471 * only if s_addr is INADDR_ANY.
472 */
473 err = -EAFNOSUPPORT;
474 if (addr->sin_family != AF_UNSPEC ||
475 addr->sin_addr.s_addr != htonl(INADDR_ANY))
476 goto out;
477 }
478
479 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id;
480 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id);
481
482 /* Not specified by any standard per-se, however it breaks too
483 * many applications when removed. It is unfortunate since
484 * allowing applications to make a non-local bind solves
485 * several problems with systems using dynamic addressing.
486 * (ie. your servers still start up even if your ISDN link
487 * is temporarily down)
488 */
489 err = -EADDRNOTAVAIL;
490 if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr,
491 chk_addr_ret))
492 goto out;
493
494 snum = ntohs(addr->sin_port);
495 err = -EACCES;
496 if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) &&
497 snum && inet_port_requires_bind_service(net, snum) &&
498 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
499 goto out;
500
501 /* We keep a pair of addresses. rcv_saddr is the one
502 * used by hash lookups, and saddr is used for transmit.
503 *
504 * In the BSD API these are the same except where it
505 * would be illegal to use them (multicast/broadcast) in
506 * which case the sending device address is used.
507 */
508 if (flags & BIND_WITH_LOCK)
509 lock_sock(sk);
510
511 /* Check these errors (active socket, double bind). */
512 err = -EINVAL;
513 if (sk->sk_state != TCP_CLOSE || inet->inet_num)
514 goto out_release_sock;
515
516 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr;
517 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST)
518 inet->inet_saddr = 0; /* Use device */
519
520 /* Make sure we are allowed to bind here. */
521 if (snum || !(inet->bind_address_no_port ||
522 (flags & BIND_FORCE_ADDRESS_NO_PORT))) {
523 err = sk->sk_prot->get_port(sk, snum);
524 if (err) {
525 inet->inet_saddr = inet->inet_rcv_saddr = 0;
526 goto out_release_sock;
527 }
528 if (!(flags & BIND_FROM_BPF)) {
529 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk);
530 if (err) {
531 inet->inet_saddr = inet->inet_rcv_saddr = 0;
532 if (sk->sk_prot->put_port)
533 sk->sk_prot->put_port(sk);
534 goto out_release_sock;
535 }
536 }
537 }
538
539 if (inet->inet_rcv_saddr)
540 sk->sk_userlocks |= SOCK_BINDADDR_LOCK;
541 if (snum)
542 sk->sk_userlocks |= SOCK_BINDPORT_LOCK;
543 inet->inet_sport = htons(inet->inet_num);
544 inet->inet_daddr = 0;
545 inet->inet_dport = 0;
546 sk_dst_reset(sk);
547 err = 0;
548 out_release_sock:
549 if (flags & BIND_WITH_LOCK)
550 release_sock(sk);
551 out:
552 return err;
553 }
554
inet_dgram_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)555 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr,
556 int addr_len, int flags)
557 {
558 struct sock *sk = sock->sk;
559 const struct proto *prot;
560 int err;
561
562 if (addr_len < sizeof(uaddr->sa_family))
563 return -EINVAL;
564
565 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
566 prot = READ_ONCE(sk->sk_prot);
567
568 if (uaddr->sa_family == AF_UNSPEC)
569 return prot->disconnect(sk, flags);
570
571 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) {
572 err = prot->pre_connect(sk, uaddr, addr_len);
573 if (err)
574 return err;
575 }
576
577 if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk))
578 return -EAGAIN;
579 return prot->connect(sk, uaddr, addr_len);
580 }
581 EXPORT_SYMBOL(inet_dgram_connect);
582
inet_wait_for_connect(struct sock * sk,long timeo,int writebias)583 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias)
584 {
585 DEFINE_WAIT_FUNC(wait, woken_wake_function);
586
587 add_wait_queue(sk_sleep(sk), &wait);
588 sk->sk_write_pending += writebias;
589
590 /* Basic assumption: if someone sets sk->sk_err, he _must_
591 * change state of the socket from TCP_SYN_*.
592 * Connect() does not allow to get error notifications
593 * without closing the socket.
594 */
595 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
596 release_sock(sk);
597 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo);
598 lock_sock(sk);
599 if (signal_pending(current) || !timeo)
600 break;
601 }
602 remove_wait_queue(sk_sleep(sk), &wait);
603 sk->sk_write_pending -= writebias;
604 return timeo;
605 }
606
607 /*
608 * Connect to a remote host. There is regrettably still a little
609 * TCP 'magic' in here.
610 */
__inet_stream_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags,int is_sendmsg)611 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
612 int addr_len, int flags, int is_sendmsg)
613 {
614 struct sock *sk = sock->sk;
615 int err;
616 long timeo;
617
618 /*
619 * uaddr can be NULL and addr_len can be 0 if:
620 * sk is a TCP fastopen active socket and
621 * TCP_FASTOPEN_CONNECT sockopt is set and
622 * we already have a valid cookie for this socket.
623 * In this case, user can call write() after connect().
624 * write() will invoke tcp_sendmsg_fastopen() which calls
625 * __inet_stream_connect().
626 */
627 if (uaddr) {
628 if (addr_len < sizeof(uaddr->sa_family))
629 return -EINVAL;
630
631 if (uaddr->sa_family == AF_UNSPEC) {
632 err = sk->sk_prot->disconnect(sk, flags);
633 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
634 goto out;
635 }
636 }
637
638 switch (sock->state) {
639 default:
640 err = -EINVAL;
641 goto out;
642 case SS_CONNECTED:
643 err = -EISCONN;
644 goto out;
645 case SS_CONNECTING:
646 if (inet_sk(sk)->defer_connect)
647 err = is_sendmsg ? -EINPROGRESS : -EISCONN;
648 else
649 err = -EALREADY;
650 /* Fall out of switch with err, set for this state */
651 break;
652 case SS_UNCONNECTED:
653 err = -EISCONN;
654 if (sk->sk_state != TCP_CLOSE)
655 goto out;
656
657 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) {
658 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len);
659 if (err)
660 goto out;
661 }
662
663 err = sk->sk_prot->connect(sk, uaddr, addr_len);
664 if (err < 0)
665 goto out;
666
667 sock->state = SS_CONNECTING;
668
669 if (!err && inet_sk(sk)->defer_connect)
670 goto out;
671
672 /* Just entered SS_CONNECTING state; the only
673 * difference is that return value in non-blocking
674 * case is EINPROGRESS, rather than EALREADY.
675 */
676 err = -EINPROGRESS;
677 break;
678 }
679
680 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
681
682 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
683 int writebias = (sk->sk_protocol == IPPROTO_TCP) &&
684 tcp_sk(sk)->fastopen_req &&
685 tcp_sk(sk)->fastopen_req->data ? 1 : 0;
686
687 /* Error code is set above */
688 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias))
689 goto out;
690
691 err = sock_intr_errno(timeo);
692 if (signal_pending(current))
693 goto out;
694 }
695
696 /* Connection was closed by RST, timeout, ICMP error
697 * or another process disconnected us.
698 */
699 if (sk->sk_state == TCP_CLOSE)
700 goto sock_error;
701
702 /* sk->sk_err may be not zero now, if RECVERR was ordered by user
703 * and error was received after socket entered established state.
704 * Hence, it is handled normally after connect() return successfully.
705 */
706
707 sock->state = SS_CONNECTED;
708 err = 0;
709 out:
710 return err;
711
712 sock_error:
713 err = sock_error(sk) ? : -ECONNABORTED;
714 sock->state = SS_UNCONNECTED;
715 if (sk->sk_prot->disconnect(sk, flags))
716 sock->state = SS_DISCONNECTING;
717 goto out;
718 }
719 EXPORT_SYMBOL(__inet_stream_connect);
720
inet_stream_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)721 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
722 int addr_len, int flags)
723 {
724 int err;
725
726 lock_sock(sock->sk);
727 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0);
728 release_sock(sock->sk);
729 return err;
730 }
731 EXPORT_SYMBOL(inet_stream_connect);
732
733 /*
734 * Accept a pending connection. The TCP layer now gives BSD semantics.
735 */
736
inet_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)737 int inet_accept(struct socket *sock, struct socket *newsock, int flags,
738 bool kern)
739 {
740 struct sock *sk1 = sock->sk, *sk2;
741 int err = -EINVAL;
742
743 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
744 sk2 = READ_ONCE(sk1->sk_prot)->accept(sk1, flags, &err, kern);
745 if (!sk2)
746 goto do_err;
747
748 lock_sock(sk2);
749
750 sock_rps_record_flow(sk2);
751 WARN_ON(!((1 << sk2->sk_state) &
752 (TCPF_ESTABLISHED | TCPF_SYN_RECV |
753 TCPF_CLOSE_WAIT | TCPF_CLOSE)));
754
755 if (test_bit(SOCK_SUPPORT_ZC, &sock->flags))
756 set_bit(SOCK_SUPPORT_ZC, &newsock->flags);
757 sock_graft(sk2, newsock);
758
759 newsock->state = SS_CONNECTED;
760 err = 0;
761 release_sock(sk2);
762 do_err:
763 return err;
764 }
765 EXPORT_SYMBOL(inet_accept);
766
767 /*
768 * This does both peername and sockname.
769 */
inet_getname(struct socket * sock,struct sockaddr * uaddr,int peer)770 int inet_getname(struct socket *sock, struct sockaddr *uaddr,
771 int peer)
772 {
773 struct sock *sk = sock->sk;
774 struct inet_sock *inet = inet_sk(sk);
775 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr);
776
777 sin->sin_family = AF_INET;
778 lock_sock(sk);
779 if (peer) {
780 if (!inet->inet_dport ||
781 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) &&
782 peer == 1)) {
783 release_sock(sk);
784 return -ENOTCONN;
785 }
786 sin->sin_port = inet->inet_dport;
787 sin->sin_addr.s_addr = inet->inet_daddr;
788 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin,
789 CGROUP_INET4_GETPEERNAME);
790 } else {
791 __be32 addr = inet->inet_rcv_saddr;
792 if (!addr)
793 addr = inet->inet_saddr;
794 sin->sin_port = inet->inet_sport;
795 sin->sin_addr.s_addr = addr;
796 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin,
797 CGROUP_INET4_GETSOCKNAME);
798 }
799 release_sock(sk);
800 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
801 return sizeof(*sin);
802 }
803 EXPORT_SYMBOL(inet_getname);
804
inet_send_prepare(struct sock * sk)805 int inet_send_prepare(struct sock *sk)
806 {
807 sock_rps_record_flow(sk);
808
809 /* We may need to bind the socket. */
810 if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind &&
811 inet_autobind(sk))
812 return -EAGAIN;
813
814 return 0;
815 }
816 EXPORT_SYMBOL_GPL(inet_send_prepare);
817
inet_sendmsg(struct socket * sock,struct msghdr * msg,size_t size)818 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
819 {
820 struct sock *sk = sock->sk;
821
822 if (unlikely(inet_send_prepare(sk)))
823 return -EAGAIN;
824
825 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg,
826 sk, msg, size);
827 }
828 EXPORT_SYMBOL(inet_sendmsg);
829
inet_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)830 ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset,
831 size_t size, int flags)
832 {
833 struct sock *sk = sock->sk;
834 const struct proto *prot;
835
836 if (unlikely(inet_send_prepare(sk)))
837 return -EAGAIN;
838
839 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
840 prot = READ_ONCE(sk->sk_prot);
841 if (prot->sendpage)
842 return prot->sendpage(sk, page, offset, size, flags);
843 return sock_no_sendpage(sock, page, offset, size, flags);
844 }
845 EXPORT_SYMBOL(inet_sendpage);
846
847 INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *,
848 size_t, int, int *));
inet_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)849 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
850 int flags)
851 {
852 struct sock *sk = sock->sk;
853 int addr_len = 0;
854 int err;
855
856 if (likely(!(flags & MSG_ERRQUEUE)))
857 sock_rps_record_flow(sk);
858
859 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg,
860 sk, msg, size, flags, &addr_len);
861 if (err >= 0)
862 msg->msg_namelen = addr_len;
863 return err;
864 }
865 EXPORT_SYMBOL(inet_recvmsg);
866
inet_shutdown(struct socket * sock,int how)867 int inet_shutdown(struct socket *sock, int how)
868 {
869 struct sock *sk = sock->sk;
870 int err = 0;
871
872 /* This should really check to make sure
873 * the socket is a TCP socket. (WHY AC...)
874 */
875 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and
876 1->2 bit 2 snds.
877 2->3 */
878 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */
879 return -EINVAL;
880
881 lock_sock(sk);
882 if (sock->state == SS_CONNECTING) {
883 if ((1 << sk->sk_state) &
884 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))
885 sock->state = SS_DISCONNECTING;
886 else
887 sock->state = SS_CONNECTED;
888 }
889
890 switch (sk->sk_state) {
891 case TCP_CLOSE:
892 err = -ENOTCONN;
893 /* Hack to wake up other listeners, who can poll for
894 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */
895 fallthrough;
896 default:
897 sk->sk_shutdown |= how;
898 if (sk->sk_prot->shutdown)
899 sk->sk_prot->shutdown(sk, how);
900 break;
901
902 /* Remaining two branches are temporary solution for missing
903 * close() in multithreaded environment. It is _not_ a good idea,
904 * but we have no choice until close() is repaired at VFS level.
905 */
906 case TCP_LISTEN:
907 if (!(how & RCV_SHUTDOWN))
908 break;
909 fallthrough;
910 case TCP_SYN_SENT:
911 err = sk->sk_prot->disconnect(sk, O_NONBLOCK);
912 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
913 break;
914 }
915
916 /* Wake up anyone sleeping in poll. */
917 sk->sk_state_change(sk);
918 release_sock(sk);
919 return err;
920 }
921 EXPORT_SYMBOL(inet_shutdown);
922
923 /*
924 * ioctl() calls you can issue on an INET socket. Most of these are
925 * device configuration and stuff and very rarely used. Some ioctls
926 * pass on to the socket itself.
927 *
928 * NOTE: I like the idea of a module for the config stuff. ie ifconfig
929 * loads the devconfigure module does its configuring and unloads it.
930 * There's a good 20K of config code hanging around the kernel.
931 */
932
inet_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)933 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
934 {
935 struct sock *sk = sock->sk;
936 int err = 0;
937 struct net *net = sock_net(sk);
938 void __user *p = (void __user *)arg;
939 struct ifreq ifr;
940 struct rtentry rt;
941
942 switch (cmd) {
943 case SIOCADDRT:
944 case SIOCDELRT:
945 if (copy_from_user(&rt, p, sizeof(struct rtentry)))
946 return -EFAULT;
947 err = ip_rt_ioctl(net, cmd, &rt);
948 break;
949 case SIOCRTMSG:
950 err = -EINVAL;
951 break;
952 case SIOCDARP:
953 case SIOCGARP:
954 case SIOCSARP:
955 err = arp_ioctl(net, cmd, (void __user *)arg);
956 break;
957 case SIOCGIFADDR:
958 case SIOCGIFBRDADDR:
959 case SIOCGIFNETMASK:
960 case SIOCGIFDSTADDR:
961 case SIOCGIFPFLAGS:
962 if (get_user_ifreq(&ifr, NULL, p))
963 return -EFAULT;
964 err = devinet_ioctl(net, cmd, &ifr);
965 if (!err && put_user_ifreq(&ifr, p))
966 err = -EFAULT;
967 break;
968
969 case SIOCSIFADDR:
970 case SIOCSIFBRDADDR:
971 case SIOCSIFNETMASK:
972 case SIOCSIFDSTADDR:
973 case SIOCSIFPFLAGS:
974 case SIOCSIFFLAGS:
975 if (get_user_ifreq(&ifr, NULL, p))
976 return -EFAULT;
977 err = devinet_ioctl(net, cmd, &ifr);
978 break;
979 default:
980 if (sk->sk_prot->ioctl)
981 err = sk->sk_prot->ioctl(sk, cmd, arg);
982 else
983 err = -ENOIOCTLCMD;
984 break;
985 }
986 return err;
987 }
988 EXPORT_SYMBOL(inet_ioctl);
989
990 #ifdef CONFIG_COMPAT
inet_compat_routing_ioctl(struct sock * sk,unsigned int cmd,struct compat_rtentry __user * ur)991 static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd,
992 struct compat_rtentry __user *ur)
993 {
994 compat_uptr_t rtdev;
995 struct rtentry rt;
996
997 if (copy_from_user(&rt.rt_dst, &ur->rt_dst,
998 3 * sizeof(struct sockaddr)) ||
999 get_user(rt.rt_flags, &ur->rt_flags) ||
1000 get_user(rt.rt_metric, &ur->rt_metric) ||
1001 get_user(rt.rt_mtu, &ur->rt_mtu) ||
1002 get_user(rt.rt_window, &ur->rt_window) ||
1003 get_user(rt.rt_irtt, &ur->rt_irtt) ||
1004 get_user(rtdev, &ur->rt_dev))
1005 return -EFAULT;
1006
1007 rt.rt_dev = compat_ptr(rtdev);
1008 return ip_rt_ioctl(sock_net(sk), cmd, &rt);
1009 }
1010
inet_compat_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1011 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1012 {
1013 void __user *argp = compat_ptr(arg);
1014 struct sock *sk = sock->sk;
1015
1016 switch (cmd) {
1017 case SIOCADDRT:
1018 case SIOCDELRT:
1019 return inet_compat_routing_ioctl(sk, cmd, argp);
1020 default:
1021 if (!sk->sk_prot->compat_ioctl)
1022 return -ENOIOCTLCMD;
1023 return sk->sk_prot->compat_ioctl(sk, cmd, arg);
1024 }
1025 }
1026 #endif /* CONFIG_COMPAT */
1027
1028 const struct proto_ops inet_stream_ops = {
1029 .family = PF_INET,
1030 .owner = THIS_MODULE,
1031 .release = inet_release,
1032 .bind = inet_bind,
1033 .connect = inet_stream_connect,
1034 .socketpair = sock_no_socketpair,
1035 .accept = inet_accept,
1036 .getname = inet_getname,
1037 .poll = tcp_poll,
1038 .ioctl = inet_ioctl,
1039 .gettstamp = sock_gettstamp,
1040 .listen = inet_listen,
1041 .shutdown = inet_shutdown,
1042 .setsockopt = sock_common_setsockopt,
1043 .getsockopt = sock_common_getsockopt,
1044 .sendmsg = inet_sendmsg,
1045 .recvmsg = inet_recvmsg,
1046 #ifdef CONFIG_MMU
1047 .mmap = tcp_mmap,
1048 #endif
1049 .sendpage = inet_sendpage,
1050 .splice_read = tcp_splice_read,
1051 .read_sock = tcp_read_sock,
1052 .read_skb = tcp_read_skb,
1053 .sendmsg_locked = tcp_sendmsg_locked,
1054 .sendpage_locked = tcp_sendpage_locked,
1055 .peek_len = tcp_peek_len,
1056 #ifdef CONFIG_COMPAT
1057 .compat_ioctl = inet_compat_ioctl,
1058 #endif
1059 .set_rcvlowat = tcp_set_rcvlowat,
1060 };
1061 EXPORT_SYMBOL(inet_stream_ops);
1062
1063 const struct proto_ops inet_dgram_ops = {
1064 .family = PF_INET,
1065 .owner = THIS_MODULE,
1066 .release = inet_release,
1067 .bind = inet_bind,
1068 .connect = inet_dgram_connect,
1069 .socketpair = sock_no_socketpair,
1070 .accept = sock_no_accept,
1071 .getname = inet_getname,
1072 .poll = udp_poll,
1073 .ioctl = inet_ioctl,
1074 .gettstamp = sock_gettstamp,
1075 .listen = sock_no_listen,
1076 .shutdown = inet_shutdown,
1077 .setsockopt = sock_common_setsockopt,
1078 .getsockopt = sock_common_getsockopt,
1079 .sendmsg = inet_sendmsg,
1080 .read_skb = udp_read_skb,
1081 .recvmsg = inet_recvmsg,
1082 .mmap = sock_no_mmap,
1083 .sendpage = inet_sendpage,
1084 .set_peek_off = sk_set_peek_off,
1085 #ifdef CONFIG_COMPAT
1086 .compat_ioctl = inet_compat_ioctl,
1087 #endif
1088 };
1089 EXPORT_SYMBOL(inet_dgram_ops);
1090
1091 /*
1092 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without
1093 * udp_poll
1094 */
1095 static const struct proto_ops inet_sockraw_ops = {
1096 .family = PF_INET,
1097 .owner = THIS_MODULE,
1098 .release = inet_release,
1099 .bind = inet_bind,
1100 .connect = inet_dgram_connect,
1101 .socketpair = sock_no_socketpair,
1102 .accept = sock_no_accept,
1103 .getname = inet_getname,
1104 .poll = datagram_poll,
1105 .ioctl = inet_ioctl,
1106 .gettstamp = sock_gettstamp,
1107 .listen = sock_no_listen,
1108 .shutdown = inet_shutdown,
1109 .setsockopt = sock_common_setsockopt,
1110 .getsockopt = sock_common_getsockopt,
1111 .sendmsg = inet_sendmsg,
1112 .recvmsg = inet_recvmsg,
1113 .mmap = sock_no_mmap,
1114 .sendpage = inet_sendpage,
1115 #ifdef CONFIG_COMPAT
1116 .compat_ioctl = inet_compat_ioctl,
1117 #endif
1118 };
1119
1120 static const struct net_proto_family inet_family_ops = {
1121 .family = PF_INET,
1122 .create = inet_create,
1123 .owner = THIS_MODULE,
1124 };
1125
1126 /* Upon startup we insert all the elements in inetsw_array[] into
1127 * the linked list inetsw.
1128 */
1129 static struct inet_protosw inetsw_array[] =
1130 {
1131 {
1132 .type = SOCK_STREAM,
1133 .protocol = IPPROTO_TCP,
1134 .prot = &tcp_prot,
1135 .ops = &inet_stream_ops,
1136 .flags = INET_PROTOSW_PERMANENT |
1137 INET_PROTOSW_ICSK,
1138 },
1139
1140 {
1141 .type = SOCK_DGRAM,
1142 .protocol = IPPROTO_UDP,
1143 .prot = &udp_prot,
1144 .ops = &inet_dgram_ops,
1145 .flags = INET_PROTOSW_PERMANENT,
1146 },
1147
1148 {
1149 .type = SOCK_DGRAM,
1150 .protocol = IPPROTO_ICMP,
1151 .prot = &ping_prot,
1152 .ops = &inet_sockraw_ops,
1153 .flags = INET_PROTOSW_REUSE,
1154 },
1155
1156 {
1157 .type = SOCK_RAW,
1158 .protocol = IPPROTO_IP, /* wild card */
1159 .prot = &raw_prot,
1160 .ops = &inet_sockraw_ops,
1161 .flags = INET_PROTOSW_REUSE,
1162 }
1163 };
1164
1165 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array)
1166
inet_register_protosw(struct inet_protosw * p)1167 void inet_register_protosw(struct inet_protosw *p)
1168 {
1169 struct list_head *lh;
1170 struct inet_protosw *answer;
1171 int protocol = p->protocol;
1172 struct list_head *last_perm;
1173
1174 spin_lock_bh(&inetsw_lock);
1175
1176 if (p->type >= SOCK_MAX)
1177 goto out_illegal;
1178
1179 /* If we are trying to override a permanent protocol, bail. */
1180 last_perm = &inetsw[p->type];
1181 list_for_each(lh, &inetsw[p->type]) {
1182 answer = list_entry(lh, struct inet_protosw, list);
1183 /* Check only the non-wild match. */
1184 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0)
1185 break;
1186 if (protocol == answer->protocol)
1187 goto out_permanent;
1188 last_perm = lh;
1189 }
1190
1191 /* Add the new entry after the last permanent entry if any, so that
1192 * the new entry does not override a permanent entry when matched with
1193 * a wild-card protocol. But it is allowed to override any existing
1194 * non-permanent entry. This means that when we remove this entry, the
1195 * system automatically returns to the old behavior.
1196 */
1197 list_add_rcu(&p->list, last_perm);
1198 out:
1199 spin_unlock_bh(&inetsw_lock);
1200
1201 return;
1202
1203 out_permanent:
1204 pr_err("Attempt to override permanent protocol %d\n", protocol);
1205 goto out;
1206
1207 out_illegal:
1208 pr_err("Ignoring attempt to register invalid socket type %d\n",
1209 p->type);
1210 goto out;
1211 }
1212 EXPORT_SYMBOL(inet_register_protosw);
1213
inet_unregister_protosw(struct inet_protosw * p)1214 void inet_unregister_protosw(struct inet_protosw *p)
1215 {
1216 if (INET_PROTOSW_PERMANENT & p->flags) {
1217 pr_err("Attempt to unregister permanent protocol %d\n",
1218 p->protocol);
1219 } else {
1220 spin_lock_bh(&inetsw_lock);
1221 list_del_rcu(&p->list);
1222 spin_unlock_bh(&inetsw_lock);
1223
1224 synchronize_net();
1225 }
1226 }
1227 EXPORT_SYMBOL(inet_unregister_protosw);
1228
inet_sk_reselect_saddr(struct sock * sk)1229 static int inet_sk_reselect_saddr(struct sock *sk)
1230 {
1231 struct inet_sock *inet = inet_sk(sk);
1232 __be32 old_saddr = inet->inet_saddr;
1233 __be32 daddr = inet->inet_daddr;
1234 struct flowi4 *fl4;
1235 struct rtable *rt;
1236 __be32 new_saddr;
1237 struct ip_options_rcu *inet_opt;
1238 int err;
1239
1240 inet_opt = rcu_dereference_protected(inet->inet_opt,
1241 lockdep_sock_is_held(sk));
1242 if (inet_opt && inet_opt->opt.srr)
1243 daddr = inet_opt->opt.faddr;
1244
1245 /* Query new route. */
1246 fl4 = &inet->cork.fl.u.ip4;
1247 rt = ip_route_connect(fl4, daddr, 0, sk->sk_bound_dev_if,
1248 sk->sk_protocol, inet->inet_sport,
1249 inet->inet_dport, sk);
1250 if (IS_ERR(rt))
1251 return PTR_ERR(rt);
1252
1253 new_saddr = fl4->saddr;
1254
1255 if (new_saddr == old_saddr) {
1256 sk_setup_caps(sk, &rt->dst);
1257 return 0;
1258 }
1259
1260 err = inet_bhash2_update_saddr(sk, &new_saddr, AF_INET);
1261 if (err) {
1262 ip_rt_put(rt);
1263 return err;
1264 }
1265
1266 sk_setup_caps(sk, &rt->dst);
1267
1268 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) {
1269 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n",
1270 __func__, &old_saddr, &new_saddr);
1271 }
1272
1273 /*
1274 * XXX The only one ugly spot where we need to
1275 * XXX really change the sockets identity after
1276 * XXX it has entered the hashes. -DaveM
1277 *
1278 * Besides that, it does not check for connection
1279 * uniqueness. Wait for troubles.
1280 */
1281 return __sk_prot_rehash(sk);
1282 }
1283
inet_sk_rebuild_header(struct sock * sk)1284 int inet_sk_rebuild_header(struct sock *sk)
1285 {
1286 struct inet_sock *inet = inet_sk(sk);
1287 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0);
1288 __be32 daddr;
1289 struct ip_options_rcu *inet_opt;
1290 struct flowi4 *fl4;
1291 int err;
1292
1293 /* Route is OK, nothing to do. */
1294 if (rt)
1295 return 0;
1296
1297 /* Reroute. */
1298 rcu_read_lock();
1299 inet_opt = rcu_dereference(inet->inet_opt);
1300 daddr = inet->inet_daddr;
1301 if (inet_opt && inet_opt->opt.srr)
1302 daddr = inet_opt->opt.faddr;
1303 rcu_read_unlock();
1304 fl4 = &inet->cork.fl.u.ip4;
1305 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr,
1306 inet->inet_dport, inet->inet_sport,
1307 sk->sk_protocol, RT_CONN_FLAGS(sk),
1308 sk->sk_bound_dev_if);
1309 if (!IS_ERR(rt)) {
1310 err = 0;
1311 sk_setup_caps(sk, &rt->dst);
1312 } else {
1313 err = PTR_ERR(rt);
1314
1315 /* Routing failed... */
1316 sk->sk_route_caps = 0;
1317 /*
1318 * Other protocols have to map its equivalent state to TCP_SYN_SENT.
1319 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme
1320 */
1321 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) ||
1322 sk->sk_state != TCP_SYN_SENT ||
1323 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) ||
1324 (err = inet_sk_reselect_saddr(sk)) != 0)
1325 sk->sk_err_soft = -err;
1326 }
1327
1328 return err;
1329 }
1330 EXPORT_SYMBOL(inet_sk_rebuild_header);
1331
inet_sk_set_state(struct sock * sk,int state)1332 void inet_sk_set_state(struct sock *sk, int state)
1333 {
1334 trace_inet_sock_set_state(sk, sk->sk_state, state);
1335 sk->sk_state = state;
1336 }
1337 EXPORT_SYMBOL(inet_sk_set_state);
1338
inet_sk_state_store(struct sock * sk,int newstate)1339 void inet_sk_state_store(struct sock *sk, int newstate)
1340 {
1341 trace_inet_sock_set_state(sk, sk->sk_state, newstate);
1342 smp_store_release(&sk->sk_state, newstate);
1343 }
1344
inet_gso_segment(struct sk_buff * skb,netdev_features_t features)1345 struct sk_buff *inet_gso_segment(struct sk_buff *skb,
1346 netdev_features_t features)
1347 {
1348 bool udpfrag = false, fixedid = false, gso_partial, encap;
1349 struct sk_buff *segs = ERR_PTR(-EINVAL);
1350 const struct net_offload *ops;
1351 unsigned int offset = 0;
1352 struct iphdr *iph;
1353 int proto, tot_len;
1354 int nhoff;
1355 int ihl;
1356 int id;
1357
1358 skb_reset_network_header(skb);
1359 nhoff = skb_network_header(skb) - skb_mac_header(skb);
1360 if (unlikely(!pskb_may_pull(skb, sizeof(*iph))))
1361 goto out;
1362
1363 iph = ip_hdr(skb);
1364 ihl = iph->ihl * 4;
1365 if (ihl < sizeof(*iph))
1366 goto out;
1367
1368 id = ntohs(iph->id);
1369 proto = iph->protocol;
1370
1371 /* Warning: after this point, iph might be no longer valid */
1372 if (unlikely(!pskb_may_pull(skb, ihl)))
1373 goto out;
1374 __skb_pull(skb, ihl);
1375
1376 encap = SKB_GSO_CB(skb)->encap_level > 0;
1377 if (encap)
1378 features &= skb->dev->hw_enc_features;
1379 SKB_GSO_CB(skb)->encap_level += ihl;
1380
1381 skb_reset_transport_header(skb);
1382
1383 segs = ERR_PTR(-EPROTONOSUPPORT);
1384
1385 if (!skb->encapsulation || encap) {
1386 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP);
1387 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID);
1388
1389 /* fixed ID is invalid if DF bit is not set */
1390 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF)))
1391 goto out;
1392 }
1393
1394 ops = rcu_dereference(inet_offloads[proto]);
1395 if (likely(ops && ops->callbacks.gso_segment)) {
1396 segs = ops->callbacks.gso_segment(skb, features);
1397 if (!segs)
1398 skb->network_header = skb_mac_header(skb) + nhoff - skb->head;
1399 }
1400
1401 if (IS_ERR_OR_NULL(segs))
1402 goto out;
1403
1404 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL);
1405
1406 skb = segs;
1407 do {
1408 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff);
1409 if (udpfrag) {
1410 iph->frag_off = htons(offset >> 3);
1411 if (skb->next)
1412 iph->frag_off |= htons(IP_MF);
1413 offset += skb->len - nhoff - ihl;
1414 tot_len = skb->len - nhoff;
1415 } else if (skb_is_gso(skb)) {
1416 if (!fixedid) {
1417 iph->id = htons(id);
1418 id += skb_shinfo(skb)->gso_segs;
1419 }
1420
1421 if (gso_partial)
1422 tot_len = skb_shinfo(skb)->gso_size +
1423 SKB_GSO_CB(skb)->data_offset +
1424 skb->head - (unsigned char *)iph;
1425 else
1426 tot_len = skb->len - nhoff;
1427 } else {
1428 if (!fixedid)
1429 iph->id = htons(id++);
1430 tot_len = skb->len - nhoff;
1431 }
1432 iph->tot_len = htons(tot_len);
1433 ip_send_check(iph);
1434 if (encap)
1435 skb_reset_inner_headers(skb);
1436 skb->network_header = (u8 *)iph - skb->head;
1437 skb_reset_mac_len(skb);
1438 } while ((skb = skb->next));
1439
1440 out:
1441 return segs;
1442 }
1443
ipip_gso_segment(struct sk_buff * skb,netdev_features_t features)1444 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb,
1445 netdev_features_t features)
1446 {
1447 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4))
1448 return ERR_PTR(-EINVAL);
1449
1450 return inet_gso_segment(skb, features);
1451 }
1452
inet_gro_receive(struct list_head * head,struct sk_buff * skb)1453 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb)
1454 {
1455 const struct net_offload *ops;
1456 struct sk_buff *pp = NULL;
1457 const struct iphdr *iph;
1458 struct sk_buff *p;
1459 unsigned int hlen;
1460 unsigned int off;
1461 unsigned int id;
1462 int flush = 1;
1463 int proto;
1464
1465 off = skb_gro_offset(skb);
1466 hlen = off + sizeof(*iph);
1467 iph = skb_gro_header(skb, hlen, off);
1468 if (unlikely(!iph))
1469 goto out;
1470
1471 proto = iph->protocol;
1472
1473 ops = rcu_dereference(inet_offloads[proto]);
1474 if (!ops || !ops->callbacks.gro_receive)
1475 goto out;
1476
1477 if (*(u8 *)iph != 0x45)
1478 goto out;
1479
1480 if (ip_is_fragment(iph))
1481 goto out;
1482
1483 if (unlikely(ip_fast_csum((u8 *)iph, 5)))
1484 goto out;
1485
1486 NAPI_GRO_CB(skb)->proto = proto;
1487 id = ntohl(*(__be32 *)&iph->id);
1488 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF));
1489 id >>= 16;
1490
1491 list_for_each_entry(p, head, list) {
1492 struct iphdr *iph2;
1493 u16 flush_id;
1494
1495 if (!NAPI_GRO_CB(p)->same_flow)
1496 continue;
1497
1498 iph2 = (struct iphdr *)(p->data + off);
1499 /* The above works because, with the exception of the top
1500 * (inner most) layer, we only aggregate pkts with the same
1501 * hdr length so all the hdrs we'll need to verify will start
1502 * at the same offset.
1503 */
1504 if ((iph->protocol ^ iph2->protocol) |
1505 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) |
1506 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) {
1507 NAPI_GRO_CB(p)->same_flow = 0;
1508 continue;
1509 }
1510
1511 /* All fields must match except length and checksum. */
1512 NAPI_GRO_CB(p)->flush |=
1513 (iph->ttl ^ iph2->ttl) |
1514 (iph->tos ^ iph2->tos) |
1515 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF));
1516
1517 NAPI_GRO_CB(p)->flush |= flush;
1518
1519 /* We need to store of the IP ID check to be included later
1520 * when we can verify that this packet does in fact belong
1521 * to a given flow.
1522 */
1523 flush_id = (u16)(id - ntohs(iph2->id));
1524
1525 /* This bit of code makes it much easier for us to identify
1526 * the cases where we are doing atomic vs non-atomic IP ID
1527 * checks. Specifically an atomic check can return IP ID
1528 * values 0 - 0xFFFF, while a non-atomic check can only
1529 * return 0 or 0xFFFF.
1530 */
1531 if (!NAPI_GRO_CB(p)->is_atomic ||
1532 !(iph->frag_off & htons(IP_DF))) {
1533 flush_id ^= NAPI_GRO_CB(p)->count;
1534 flush_id = flush_id ? 0xFFFF : 0;
1535 }
1536
1537 /* If the previous IP ID value was based on an atomic
1538 * datagram we can overwrite the value and ignore it.
1539 */
1540 if (NAPI_GRO_CB(skb)->is_atomic)
1541 NAPI_GRO_CB(p)->flush_id = flush_id;
1542 else
1543 NAPI_GRO_CB(p)->flush_id |= flush_id;
1544 }
1545
1546 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF));
1547 NAPI_GRO_CB(skb)->flush |= flush;
1548 skb_set_network_header(skb, off);
1549 /* The above will be needed by the transport layer if there is one
1550 * immediately following this IP hdr.
1551 */
1552
1553 /* Note : No need to call skb_gro_postpull_rcsum() here,
1554 * as we already checked checksum over ipv4 header was 0
1555 */
1556 skb_gro_pull(skb, sizeof(*iph));
1557 skb_set_transport_header(skb, skb_gro_offset(skb));
1558
1559 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive,
1560 ops->callbacks.gro_receive, head, skb);
1561
1562 out:
1563 skb_gro_flush_final(skb, pp, flush);
1564
1565 return pp;
1566 }
1567
ipip_gro_receive(struct list_head * head,struct sk_buff * skb)1568 static struct sk_buff *ipip_gro_receive(struct list_head *head,
1569 struct sk_buff *skb)
1570 {
1571 if (NAPI_GRO_CB(skb)->encap_mark) {
1572 NAPI_GRO_CB(skb)->flush = 1;
1573 return NULL;
1574 }
1575
1576 NAPI_GRO_CB(skb)->encap_mark = 1;
1577
1578 return inet_gro_receive(head, skb);
1579 }
1580
1581 #define SECONDS_PER_DAY 86400
1582
1583 /* inet_current_timestamp - Return IP network timestamp
1584 *
1585 * Return milliseconds since midnight in network byte order.
1586 */
inet_current_timestamp(void)1587 __be32 inet_current_timestamp(void)
1588 {
1589 u32 secs;
1590 u32 msecs;
1591 struct timespec64 ts;
1592
1593 ktime_get_real_ts64(&ts);
1594
1595 /* Get secs since midnight. */
1596 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs);
1597 /* Convert to msecs. */
1598 msecs = secs * MSEC_PER_SEC;
1599 /* Convert nsec to msec. */
1600 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC;
1601
1602 /* Convert to network byte order. */
1603 return htonl(msecs);
1604 }
1605 EXPORT_SYMBOL(inet_current_timestamp);
1606
inet_recv_error(struct sock * sk,struct msghdr * msg,int len,int * addr_len)1607 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len)
1608 {
1609 if (sk->sk_family == AF_INET)
1610 return ip_recv_error(sk, msg, len, addr_len);
1611 #if IS_ENABLED(CONFIG_IPV6)
1612 if (sk->sk_family == AF_INET6)
1613 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len);
1614 #endif
1615 return -EINVAL;
1616 }
1617
inet_gro_complete(struct sk_buff * skb,int nhoff)1618 int inet_gro_complete(struct sk_buff *skb, int nhoff)
1619 {
1620 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff);
1621 const struct net_offload *ops;
1622 __be16 totlen = iph->tot_len;
1623 int proto = iph->protocol;
1624 int err = -ENOSYS;
1625
1626 if (skb->encapsulation) {
1627 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP));
1628 skb_set_inner_network_header(skb, nhoff);
1629 }
1630
1631 iph_set_totlen(iph, skb->len - nhoff);
1632 csum_replace2(&iph->check, totlen, iph->tot_len);
1633
1634 ops = rcu_dereference(inet_offloads[proto]);
1635 if (WARN_ON(!ops || !ops->callbacks.gro_complete))
1636 goto out;
1637
1638 /* Only need to add sizeof(*iph) to get to the next hdr below
1639 * because any hdr with option will have been flushed in
1640 * inet_gro_receive().
1641 */
1642 err = INDIRECT_CALL_2(ops->callbacks.gro_complete,
1643 tcp4_gro_complete, udp4_gro_complete,
1644 skb, nhoff + sizeof(*iph));
1645
1646 out:
1647 return err;
1648 }
1649
ipip_gro_complete(struct sk_buff * skb,int nhoff)1650 static int ipip_gro_complete(struct sk_buff *skb, int nhoff)
1651 {
1652 skb->encapsulation = 1;
1653 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4;
1654 return inet_gro_complete(skb, nhoff);
1655 }
1656
inet_ctl_sock_create(struct sock ** sk,unsigned short family,unsigned short type,unsigned char protocol,struct net * net)1657 int inet_ctl_sock_create(struct sock **sk, unsigned short family,
1658 unsigned short type, unsigned char protocol,
1659 struct net *net)
1660 {
1661 struct socket *sock;
1662 int rc = sock_create_kern(net, family, type, protocol, &sock);
1663
1664 if (rc == 0) {
1665 *sk = sock->sk;
1666 (*sk)->sk_allocation = GFP_ATOMIC;
1667 (*sk)->sk_use_task_frag = false;
1668 /*
1669 * Unhash it so that IP input processing does not even see it,
1670 * we do not wish this socket to see incoming packets.
1671 */
1672 (*sk)->sk_prot->unhash(*sk);
1673 }
1674 return rc;
1675 }
1676 EXPORT_SYMBOL_GPL(inet_ctl_sock_create);
1677
snmp_fold_field(void __percpu * mib,int offt)1678 unsigned long snmp_fold_field(void __percpu *mib, int offt)
1679 {
1680 unsigned long res = 0;
1681 int i;
1682
1683 for_each_possible_cpu(i)
1684 res += snmp_get_cpu_field(mib, i, offt);
1685 return res;
1686 }
1687 EXPORT_SYMBOL_GPL(snmp_fold_field);
1688
1689 #if BITS_PER_LONG==32
1690
snmp_get_cpu_field64(void __percpu * mib,int cpu,int offt,size_t syncp_offset)1691 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt,
1692 size_t syncp_offset)
1693 {
1694 void *bhptr;
1695 struct u64_stats_sync *syncp;
1696 u64 v;
1697 unsigned int start;
1698
1699 bhptr = per_cpu_ptr(mib, cpu);
1700 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset);
1701 do {
1702 start = u64_stats_fetch_begin(syncp);
1703 v = *(((u64 *)bhptr) + offt);
1704 } while (u64_stats_fetch_retry(syncp, start));
1705
1706 return v;
1707 }
1708 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64);
1709
snmp_fold_field64(void __percpu * mib,int offt,size_t syncp_offset)1710 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset)
1711 {
1712 u64 res = 0;
1713 int cpu;
1714
1715 for_each_possible_cpu(cpu) {
1716 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset);
1717 }
1718 return res;
1719 }
1720 EXPORT_SYMBOL_GPL(snmp_fold_field64);
1721 #endif
1722
1723 #ifdef CONFIG_IP_MULTICAST
1724 static const struct net_protocol igmp_protocol = {
1725 .handler = igmp_rcv,
1726 };
1727 #endif
1728
1729 static const struct net_protocol tcp_protocol = {
1730 .handler = tcp_v4_rcv,
1731 .err_handler = tcp_v4_err,
1732 .no_policy = 1,
1733 .icmp_strict_tag_validation = 1,
1734 };
1735
1736 static const struct net_protocol udp_protocol = {
1737 .handler = udp_rcv,
1738 .err_handler = udp_err,
1739 .no_policy = 1,
1740 };
1741
1742 static const struct net_protocol icmp_protocol = {
1743 .handler = icmp_rcv,
1744 .err_handler = icmp_err,
1745 .no_policy = 1,
1746 };
1747
ipv4_mib_init_net(struct net * net)1748 static __net_init int ipv4_mib_init_net(struct net *net)
1749 {
1750 int i;
1751
1752 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib);
1753 if (!net->mib.tcp_statistics)
1754 goto err_tcp_mib;
1755 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib);
1756 if (!net->mib.ip_statistics)
1757 goto err_ip_mib;
1758
1759 for_each_possible_cpu(i) {
1760 struct ipstats_mib *af_inet_stats;
1761 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i);
1762 u64_stats_init(&af_inet_stats->syncp);
1763 }
1764
1765 net->mib.net_statistics = alloc_percpu(struct linux_mib);
1766 if (!net->mib.net_statistics)
1767 goto err_net_mib;
1768 net->mib.udp_statistics = alloc_percpu(struct udp_mib);
1769 if (!net->mib.udp_statistics)
1770 goto err_udp_mib;
1771 net->mib.udplite_statistics = alloc_percpu(struct udp_mib);
1772 if (!net->mib.udplite_statistics)
1773 goto err_udplite_mib;
1774 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib);
1775 if (!net->mib.icmp_statistics)
1776 goto err_icmp_mib;
1777 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib),
1778 GFP_KERNEL);
1779 if (!net->mib.icmpmsg_statistics)
1780 goto err_icmpmsg_mib;
1781
1782 tcp_mib_init(net);
1783 return 0;
1784
1785 err_icmpmsg_mib:
1786 free_percpu(net->mib.icmp_statistics);
1787 err_icmp_mib:
1788 free_percpu(net->mib.udplite_statistics);
1789 err_udplite_mib:
1790 free_percpu(net->mib.udp_statistics);
1791 err_udp_mib:
1792 free_percpu(net->mib.net_statistics);
1793 err_net_mib:
1794 free_percpu(net->mib.ip_statistics);
1795 err_ip_mib:
1796 free_percpu(net->mib.tcp_statistics);
1797 err_tcp_mib:
1798 return -ENOMEM;
1799 }
1800
ipv4_mib_exit_net(struct net * net)1801 static __net_exit void ipv4_mib_exit_net(struct net *net)
1802 {
1803 kfree(net->mib.icmpmsg_statistics);
1804 free_percpu(net->mib.icmp_statistics);
1805 free_percpu(net->mib.udplite_statistics);
1806 free_percpu(net->mib.udp_statistics);
1807 free_percpu(net->mib.net_statistics);
1808 free_percpu(net->mib.ip_statistics);
1809 free_percpu(net->mib.tcp_statistics);
1810 #ifdef CONFIG_MPTCP
1811 /* allocated on demand, see mptcp_init_sock() */
1812 free_percpu(net->mib.mptcp_statistics);
1813 #endif
1814 }
1815
1816 static __net_initdata struct pernet_operations ipv4_mib_ops = {
1817 .init = ipv4_mib_init_net,
1818 .exit = ipv4_mib_exit_net,
1819 };
1820
init_ipv4_mibs(void)1821 static int __init init_ipv4_mibs(void)
1822 {
1823 return register_pernet_subsys(&ipv4_mib_ops);
1824 }
1825
inet_init_net(struct net * net)1826 static __net_init int inet_init_net(struct net *net)
1827 {
1828 /*
1829 * Set defaults for local port range
1830 */
1831 seqlock_init(&net->ipv4.ip_local_ports.lock);
1832 net->ipv4.ip_local_ports.range[0] = 32768;
1833 net->ipv4.ip_local_ports.range[1] = 60999;
1834
1835 seqlock_init(&net->ipv4.ping_group_range.lock);
1836 /*
1837 * Sane defaults - nobody may create ping sockets.
1838 * Boot scripts should set this to distro-specific group.
1839 */
1840 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1);
1841 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0);
1842
1843 /* Default values for sysctl-controlled parameters.
1844 * We set them here, in case sysctl is not compiled.
1845 */
1846 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL;
1847 net->ipv4.sysctl_ip_fwd_update_priority = 1;
1848 net->ipv4.sysctl_ip_dynaddr = 0;
1849 net->ipv4.sysctl_ip_early_demux = 1;
1850 net->ipv4.sysctl_udp_early_demux = 1;
1851 net->ipv4.sysctl_tcp_early_demux = 1;
1852 net->ipv4.sysctl_nexthop_compat_mode = 1;
1853 #ifdef CONFIG_SYSCTL
1854 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK;
1855 #endif
1856
1857 /* Some igmp sysctl, whose values are always used */
1858 net->ipv4.sysctl_igmp_max_memberships = 20;
1859 net->ipv4.sysctl_igmp_max_msf = 10;
1860 /* IGMP reports for link-local multicast groups are enabled by default */
1861 net->ipv4.sysctl_igmp_llm_reports = 1;
1862 net->ipv4.sysctl_igmp_qrv = 2;
1863
1864 net->ipv4.sysctl_fib_notify_on_flag_change = 0;
1865
1866 return 0;
1867 }
1868
1869 static __net_initdata struct pernet_operations af_inet_ops = {
1870 .init = inet_init_net,
1871 };
1872
init_inet_pernet_ops(void)1873 static int __init init_inet_pernet_ops(void)
1874 {
1875 return register_pernet_subsys(&af_inet_ops);
1876 }
1877
1878 static int ipv4_proc_init(void);
1879
1880 /*
1881 * IP protocol layer initialiser
1882 */
1883
1884 static struct packet_offload ip_packet_offload __read_mostly = {
1885 .type = cpu_to_be16(ETH_P_IP),
1886 .callbacks = {
1887 .gso_segment = inet_gso_segment,
1888 .gro_receive = inet_gro_receive,
1889 .gro_complete = inet_gro_complete,
1890 },
1891 };
1892
1893 static const struct net_offload ipip_offload = {
1894 .callbacks = {
1895 .gso_segment = ipip_gso_segment,
1896 .gro_receive = ipip_gro_receive,
1897 .gro_complete = ipip_gro_complete,
1898 },
1899 };
1900
ipip_offload_init(void)1901 static int __init ipip_offload_init(void)
1902 {
1903 return inet_add_offload(&ipip_offload, IPPROTO_IPIP);
1904 }
1905
ipv4_offload_init(void)1906 static int __init ipv4_offload_init(void)
1907 {
1908 /*
1909 * Add offloads
1910 */
1911 if (udpv4_offload_init() < 0)
1912 pr_crit("%s: Cannot add UDP protocol offload\n", __func__);
1913 if (tcpv4_offload_init() < 0)
1914 pr_crit("%s: Cannot add TCP protocol offload\n", __func__);
1915 if (ipip_offload_init() < 0)
1916 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__);
1917
1918 dev_add_offload(&ip_packet_offload);
1919 return 0;
1920 }
1921
1922 fs_initcall(ipv4_offload_init);
1923
1924 static struct packet_type ip_packet_type __read_mostly = {
1925 .type = cpu_to_be16(ETH_P_IP),
1926 .func = ip_rcv,
1927 .list_func = ip_list_rcv,
1928 };
1929
inet_init(void)1930 static int __init inet_init(void)
1931 {
1932 struct inet_protosw *q;
1933 struct list_head *r;
1934 int rc;
1935
1936 sock_skb_cb_check_size(sizeof(struct inet_skb_parm));
1937
1938 raw_hashinfo_init(&raw_v4_hashinfo);
1939
1940 rc = proto_register(&tcp_prot, 1);
1941 if (rc)
1942 goto out;
1943
1944 rc = proto_register(&udp_prot, 1);
1945 if (rc)
1946 goto out_unregister_tcp_proto;
1947
1948 rc = proto_register(&raw_prot, 1);
1949 if (rc)
1950 goto out_unregister_udp_proto;
1951
1952 rc = proto_register(&ping_prot, 1);
1953 if (rc)
1954 goto out_unregister_raw_proto;
1955
1956 /*
1957 * Tell SOCKET that we are alive...
1958 */
1959
1960 (void)sock_register(&inet_family_ops);
1961
1962 #ifdef CONFIG_SYSCTL
1963 ip_static_sysctl_init();
1964 #endif
1965
1966 /*
1967 * Add all the base protocols.
1968 */
1969
1970 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0)
1971 pr_crit("%s: Cannot add ICMP protocol\n", __func__);
1972 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0)
1973 pr_crit("%s: Cannot add UDP protocol\n", __func__);
1974 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0)
1975 pr_crit("%s: Cannot add TCP protocol\n", __func__);
1976 #ifdef CONFIG_IP_MULTICAST
1977 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0)
1978 pr_crit("%s: Cannot add IGMP protocol\n", __func__);
1979 #endif
1980
1981 /* Register the socket-side information for inet_create. */
1982 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r)
1983 INIT_LIST_HEAD(r);
1984
1985 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q)
1986 inet_register_protosw(q);
1987
1988 /*
1989 * Set the ARP module up
1990 */
1991
1992 arp_init();
1993
1994 /*
1995 * Set the IP module up
1996 */
1997
1998 ip_init();
1999
2000 /* Initialise per-cpu ipv4 mibs */
2001 if (init_ipv4_mibs())
2002 panic("%s: Cannot init ipv4 mibs\n", __func__);
2003
2004 /* Setup TCP slab cache for open requests. */
2005 tcp_init();
2006
2007 /* Setup UDP memory threshold */
2008 udp_init();
2009
2010 /* Add UDP-Lite (RFC 3828) */
2011 udplite4_register();
2012
2013 raw_init();
2014
2015 ping_init();
2016
2017 /*
2018 * Set the ICMP layer up
2019 */
2020
2021 if (icmp_init() < 0)
2022 panic("Failed to create the ICMP control socket.\n");
2023
2024 /*
2025 * Initialise the multicast router
2026 */
2027 #if defined(CONFIG_IP_MROUTE)
2028 if (ip_mr_init())
2029 pr_crit("%s: Cannot init ipv4 mroute\n", __func__);
2030 #endif
2031
2032 if (init_inet_pernet_ops())
2033 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__);
2034
2035 ipv4_proc_init();
2036
2037 ipfrag_init();
2038
2039 dev_add_pack(&ip_packet_type);
2040
2041 ip_tunnel_core_init();
2042
2043 rc = 0;
2044 out:
2045 return rc;
2046 out_unregister_raw_proto:
2047 proto_unregister(&raw_prot);
2048 out_unregister_udp_proto:
2049 proto_unregister(&udp_prot);
2050 out_unregister_tcp_proto:
2051 proto_unregister(&tcp_prot);
2052 goto out;
2053 }
2054
2055 fs_initcall(inet_init);
2056
2057 /* ------------------------------------------------------------------------ */
2058
2059 #ifdef CONFIG_PROC_FS
ipv4_proc_init(void)2060 static int __init ipv4_proc_init(void)
2061 {
2062 int rc = 0;
2063
2064 if (raw_proc_init())
2065 goto out_raw;
2066 if (tcp4_proc_init())
2067 goto out_tcp;
2068 if (udp4_proc_init())
2069 goto out_udp;
2070 if (ping_proc_init())
2071 goto out_ping;
2072 if (ip_misc_proc_init())
2073 goto out_misc;
2074 out:
2075 return rc;
2076 out_misc:
2077 ping_proc_exit();
2078 out_ping:
2079 udp4_proc_exit();
2080 out_udp:
2081 tcp4_proc_exit();
2082 out_tcp:
2083 raw_proc_exit();
2084 out_raw:
2085 rc = -ENOMEM;
2086 goto out;
2087 }
2088
2089 #else /* CONFIG_PROC_FS */
ipv4_proc_init(void)2090 static int __init ipv4_proc_init(void)
2091 {
2092 return 0;
2093 }
2094 #endif /* CONFIG_PROC_FS */
2095