1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2016 Intel Corporation
4 */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/drm_print.h>
9
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_regs.h"
13
14 #include "i915_cmd_parser.h"
15 #include "i915_drv.h"
16 #include "i915_irq.h"
17 #include "i915_reg.h"
18 #include "intel_breadcrumbs.h"
19 #include "intel_context.h"
20 #include "intel_engine.h"
21 #include "intel_engine_pm.h"
22 #include "intel_engine_regs.h"
23 #include "intel_engine_user.h"
24 #include "intel_execlists_submission.h"
25 #include "intel_gt.h"
26 #include "intel_gt_mcr.h"
27 #include "intel_gt_pm.h"
28 #include "intel_gt_requests.h"
29 #include "intel_lrc.h"
30 #include "intel_lrc_reg.h"
31 #include "intel_reset.h"
32 #include "intel_ring.h"
33 #include "uc/intel_guc_submission.h"
34
35 /* Haswell does have the CXT_SIZE register however it does not appear to be
36 * valid. Now, docs explain in dwords what is in the context object. The full
37 * size is 70720 bytes, however, the power context and execlist context will
38 * never be saved (power context is stored elsewhere, and execlists don't work
39 * on HSW) - so the final size, including the extra state required for the
40 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
41 */
42 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
43
44 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
45 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
46 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
47 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
48
49 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE)
50
51 #define MAX_MMIO_BASES 3
52 struct engine_info {
53 u8 class;
54 u8 instance;
55 /* mmio bases table *must* be sorted in reverse graphics_ver order */
56 struct engine_mmio_base {
57 u32 graphics_ver : 8;
58 u32 base : 24;
59 } mmio_bases[MAX_MMIO_BASES];
60 };
61
62 static const struct engine_info intel_engines[] = {
63 [RCS0] = {
64 .class = RENDER_CLASS,
65 .instance = 0,
66 .mmio_bases = {
67 { .graphics_ver = 1, .base = RENDER_RING_BASE }
68 },
69 },
70 [BCS0] = {
71 .class = COPY_ENGINE_CLASS,
72 .instance = 0,
73 .mmio_bases = {
74 { .graphics_ver = 6, .base = BLT_RING_BASE }
75 },
76 },
77 [BCS1] = {
78 .class = COPY_ENGINE_CLASS,
79 .instance = 1,
80 .mmio_bases = {
81 { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
82 },
83 },
84 [BCS2] = {
85 .class = COPY_ENGINE_CLASS,
86 .instance = 2,
87 .mmio_bases = {
88 { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
89 },
90 },
91 [BCS3] = {
92 .class = COPY_ENGINE_CLASS,
93 .instance = 3,
94 .mmio_bases = {
95 { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
96 },
97 },
98 [BCS4] = {
99 .class = COPY_ENGINE_CLASS,
100 .instance = 4,
101 .mmio_bases = {
102 { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
103 },
104 },
105 [BCS5] = {
106 .class = COPY_ENGINE_CLASS,
107 .instance = 5,
108 .mmio_bases = {
109 { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
110 },
111 },
112 [BCS6] = {
113 .class = COPY_ENGINE_CLASS,
114 .instance = 6,
115 .mmio_bases = {
116 { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
117 },
118 },
119 [BCS7] = {
120 .class = COPY_ENGINE_CLASS,
121 .instance = 7,
122 .mmio_bases = {
123 { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
124 },
125 },
126 [BCS8] = {
127 .class = COPY_ENGINE_CLASS,
128 .instance = 8,
129 .mmio_bases = {
130 { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
131 },
132 },
133 [VCS0] = {
134 .class = VIDEO_DECODE_CLASS,
135 .instance = 0,
136 .mmio_bases = {
137 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
138 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
139 { .graphics_ver = 4, .base = BSD_RING_BASE }
140 },
141 },
142 [VCS1] = {
143 .class = VIDEO_DECODE_CLASS,
144 .instance = 1,
145 .mmio_bases = {
146 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
147 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
148 },
149 },
150 [VCS2] = {
151 .class = VIDEO_DECODE_CLASS,
152 .instance = 2,
153 .mmio_bases = {
154 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
155 },
156 },
157 [VCS3] = {
158 .class = VIDEO_DECODE_CLASS,
159 .instance = 3,
160 .mmio_bases = {
161 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
162 },
163 },
164 [VCS4] = {
165 .class = VIDEO_DECODE_CLASS,
166 .instance = 4,
167 .mmio_bases = {
168 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
169 },
170 },
171 [VCS5] = {
172 .class = VIDEO_DECODE_CLASS,
173 .instance = 5,
174 .mmio_bases = {
175 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
176 },
177 },
178 [VCS6] = {
179 .class = VIDEO_DECODE_CLASS,
180 .instance = 6,
181 .mmio_bases = {
182 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
183 },
184 },
185 [VCS7] = {
186 .class = VIDEO_DECODE_CLASS,
187 .instance = 7,
188 .mmio_bases = {
189 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
190 },
191 },
192 [VECS0] = {
193 .class = VIDEO_ENHANCEMENT_CLASS,
194 .instance = 0,
195 .mmio_bases = {
196 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
197 { .graphics_ver = 7, .base = VEBOX_RING_BASE }
198 },
199 },
200 [VECS1] = {
201 .class = VIDEO_ENHANCEMENT_CLASS,
202 .instance = 1,
203 .mmio_bases = {
204 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
205 },
206 },
207 [VECS2] = {
208 .class = VIDEO_ENHANCEMENT_CLASS,
209 .instance = 2,
210 .mmio_bases = {
211 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
212 },
213 },
214 [VECS3] = {
215 .class = VIDEO_ENHANCEMENT_CLASS,
216 .instance = 3,
217 .mmio_bases = {
218 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
219 },
220 },
221 [CCS0] = {
222 .class = COMPUTE_CLASS,
223 .instance = 0,
224 .mmio_bases = {
225 { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
226 }
227 },
228 [CCS1] = {
229 .class = COMPUTE_CLASS,
230 .instance = 1,
231 .mmio_bases = {
232 { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
233 }
234 },
235 [CCS2] = {
236 .class = COMPUTE_CLASS,
237 .instance = 2,
238 .mmio_bases = {
239 { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
240 }
241 },
242 [CCS3] = {
243 .class = COMPUTE_CLASS,
244 .instance = 3,
245 .mmio_bases = {
246 { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
247 }
248 },
249 [GSC0] = {
250 .class = OTHER_CLASS,
251 .instance = OTHER_GSC_INSTANCE,
252 .mmio_bases = {
253 { .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
254 }
255 },
256 };
257
258 /**
259 * intel_engine_context_size() - return the size of the context for an engine
260 * @gt: the gt
261 * @class: engine class
262 *
263 * Each engine class may require a different amount of space for a context
264 * image.
265 *
266 * Return: size (in bytes) of an engine class specific context image
267 *
268 * Note: this size includes the HWSP, which is part of the context image
269 * in LRC mode, but does not include the "shared data page" used with
270 * GuC submission. The caller should account for this if using the GuC.
271 */
intel_engine_context_size(struct intel_gt * gt,u8 class)272 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
273 {
274 struct intel_uncore *uncore = gt->uncore;
275 u32 cxt_size;
276
277 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
278
279 switch (class) {
280 case COMPUTE_CLASS:
281 fallthrough;
282 case RENDER_CLASS:
283 switch (GRAPHICS_VER(gt->i915)) {
284 default:
285 MISSING_CASE(GRAPHICS_VER(gt->i915));
286 return DEFAULT_LR_CONTEXT_RENDER_SIZE;
287 case 12:
288 case 11:
289 return GEN11_LR_CONTEXT_RENDER_SIZE;
290 case 9:
291 return GEN9_LR_CONTEXT_RENDER_SIZE;
292 case 8:
293 return GEN8_LR_CONTEXT_RENDER_SIZE;
294 case 7:
295 if (IS_HASWELL(gt->i915))
296 return HSW_CXT_TOTAL_SIZE;
297
298 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
299 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
300 PAGE_SIZE);
301 case 6:
302 cxt_size = intel_uncore_read(uncore, CXT_SIZE);
303 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
304 PAGE_SIZE);
305 case 5:
306 case 4:
307 /*
308 * There is a discrepancy here between the size reported
309 * by the register and the size of the context layout
310 * in the docs. Both are described as authorative!
311 *
312 * The discrepancy is on the order of a few cachelines,
313 * but the total is under one page (4k), which is our
314 * minimum allocation anyway so it should all come
315 * out in the wash.
316 */
317 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
318 drm_dbg(>->i915->drm,
319 "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
320 GRAPHICS_VER(gt->i915), cxt_size * 64,
321 cxt_size - 1);
322 return round_up(cxt_size * 64, PAGE_SIZE);
323 case 3:
324 case 2:
325 /* For the special day when i810 gets merged. */
326 case 1:
327 return 0;
328 }
329 break;
330 default:
331 MISSING_CASE(class);
332 fallthrough;
333 case VIDEO_DECODE_CLASS:
334 case VIDEO_ENHANCEMENT_CLASS:
335 case COPY_ENGINE_CLASS:
336 case OTHER_CLASS:
337 if (GRAPHICS_VER(gt->i915) < 8)
338 return 0;
339 return GEN8_LR_CONTEXT_OTHER_SIZE;
340 }
341 }
342
__engine_mmio_base(struct drm_i915_private * i915,const struct engine_mmio_base * bases)343 static u32 __engine_mmio_base(struct drm_i915_private *i915,
344 const struct engine_mmio_base *bases)
345 {
346 int i;
347
348 for (i = 0; i < MAX_MMIO_BASES; i++)
349 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
350 break;
351
352 GEM_BUG_ON(i == MAX_MMIO_BASES);
353 GEM_BUG_ON(!bases[i].base);
354
355 return bases[i].base;
356 }
357
__sprint_engine_name(struct intel_engine_cs * engine)358 static void __sprint_engine_name(struct intel_engine_cs *engine)
359 {
360 /*
361 * Before we know what the uABI name for this engine will be,
362 * we still would like to keep track of this engine in the debug logs.
363 * We throw in a ' here as a reminder that this isn't its final name.
364 */
365 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
366 intel_engine_class_repr(engine->class),
367 engine->instance) >= sizeof(engine->name));
368 }
369
intel_engine_set_hwsp_writemask(struct intel_engine_cs * engine,u32 mask)370 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
371 {
372 /*
373 * Though they added more rings on g4x/ilk, they did not add
374 * per-engine HWSTAM until gen6.
375 */
376 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
377 return;
378
379 if (GRAPHICS_VER(engine->i915) >= 3)
380 ENGINE_WRITE(engine, RING_HWSTAM, mask);
381 else
382 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
383 }
384
intel_engine_sanitize_mmio(struct intel_engine_cs * engine)385 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
386 {
387 /* Mask off all writes into the unknown HWSP */
388 intel_engine_set_hwsp_writemask(engine, ~0u);
389 }
390
nop_irq_handler(struct intel_engine_cs * engine,u16 iir)391 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
392 {
393 GEM_DEBUG_WARN_ON(iir);
394 }
395
get_reset_domain(u8 ver,enum intel_engine_id id)396 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
397 {
398 u32 reset_domain;
399
400 if (ver >= 11) {
401 static const u32 engine_reset_domains[] = {
402 [RCS0] = GEN11_GRDOM_RENDER,
403 [BCS0] = GEN11_GRDOM_BLT,
404 [BCS1] = XEHPC_GRDOM_BLT1,
405 [BCS2] = XEHPC_GRDOM_BLT2,
406 [BCS3] = XEHPC_GRDOM_BLT3,
407 [BCS4] = XEHPC_GRDOM_BLT4,
408 [BCS5] = XEHPC_GRDOM_BLT5,
409 [BCS6] = XEHPC_GRDOM_BLT6,
410 [BCS7] = XEHPC_GRDOM_BLT7,
411 [BCS8] = XEHPC_GRDOM_BLT8,
412 [VCS0] = GEN11_GRDOM_MEDIA,
413 [VCS1] = GEN11_GRDOM_MEDIA2,
414 [VCS2] = GEN11_GRDOM_MEDIA3,
415 [VCS3] = GEN11_GRDOM_MEDIA4,
416 [VCS4] = GEN11_GRDOM_MEDIA5,
417 [VCS5] = GEN11_GRDOM_MEDIA6,
418 [VCS6] = GEN11_GRDOM_MEDIA7,
419 [VCS7] = GEN11_GRDOM_MEDIA8,
420 [VECS0] = GEN11_GRDOM_VECS,
421 [VECS1] = GEN11_GRDOM_VECS2,
422 [VECS2] = GEN11_GRDOM_VECS3,
423 [VECS3] = GEN11_GRDOM_VECS4,
424 [CCS0] = GEN11_GRDOM_RENDER,
425 [CCS1] = GEN11_GRDOM_RENDER,
426 [CCS2] = GEN11_GRDOM_RENDER,
427 [CCS3] = GEN11_GRDOM_RENDER,
428 [GSC0] = GEN12_GRDOM_GSC,
429 };
430 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431 !engine_reset_domains[id]);
432 reset_domain = engine_reset_domains[id];
433 } else {
434 static const u32 engine_reset_domains[] = {
435 [RCS0] = GEN6_GRDOM_RENDER,
436 [BCS0] = GEN6_GRDOM_BLT,
437 [VCS0] = GEN6_GRDOM_MEDIA,
438 [VCS1] = GEN8_GRDOM_MEDIA2,
439 [VECS0] = GEN6_GRDOM_VECS,
440 };
441 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
442 !engine_reset_domains[id]);
443 reset_domain = engine_reset_domains[id];
444 }
445
446 return reset_domain;
447 }
448
intel_engine_setup(struct intel_gt * gt,enum intel_engine_id id,u8 logical_instance)449 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
450 u8 logical_instance)
451 {
452 const struct engine_info *info = &intel_engines[id];
453 struct drm_i915_private *i915 = gt->i915;
454 struct intel_engine_cs *engine;
455 u8 guc_class;
456
457 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
458 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
459 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
460 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
461
462 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
463 return -EINVAL;
464
465 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
466 return -EINVAL;
467
468 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
469 return -EINVAL;
470
471 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
472 return -EINVAL;
473
474 engine = kzalloc(sizeof(*engine), GFP_KERNEL);
475 if (!engine)
476 return -ENOMEM;
477
478 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
479
480 INIT_LIST_HEAD(&engine->pinned_contexts_list);
481 engine->id = id;
482 engine->legacy_idx = INVALID_ENGINE;
483 engine->mask = BIT(id);
484 engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
485 id);
486 engine->i915 = i915;
487 engine->gt = gt;
488 engine->uncore = gt->uncore;
489 guc_class = engine_class_to_guc_class(info->class);
490 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
491 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
492
493 engine->irq_handler = nop_irq_handler;
494
495 engine->class = info->class;
496 engine->instance = info->instance;
497 engine->logical_mask = BIT(logical_instance);
498 __sprint_engine_name(engine);
499
500 if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
501 __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
502 engine->class == RENDER_CLASS)
503 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
504
505 /* features common between engines sharing EUs */
506 if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
507 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
508 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
509 }
510
511 engine->props.heartbeat_interval_ms =
512 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
513 engine->props.max_busywait_duration_ns =
514 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
515 engine->props.preempt_timeout_ms =
516 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
517 engine->props.stop_timeout_ms =
518 CONFIG_DRM_I915_STOP_TIMEOUT;
519 engine->props.timeslice_duration_ms =
520 CONFIG_DRM_I915_TIMESLICE_DURATION;
521
522 /*
523 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
524 * some compute workloads run quite long threads. That means they get
525 * reset due to not pre-empting in a timely manner. So, bump the
526 * pre-emption timeout value to be much higher for compute engines.
527 */
528 if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
529 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
530
531 /* Cap properties according to any system limits */
532 #define CLAMP_PROP(field) \
533 do { \
534 u64 clamp = intel_clamp_##field(engine, engine->props.field); \
535 if (clamp != engine->props.field) { \
536 drm_notice(&engine->i915->drm, \
537 "Warning, clamping %s to %lld to prevent overflow\n", \
538 #field, clamp); \
539 engine->props.field = clamp; \
540 } \
541 } while (0)
542
543 CLAMP_PROP(heartbeat_interval_ms);
544 CLAMP_PROP(max_busywait_duration_ns);
545 CLAMP_PROP(preempt_timeout_ms);
546 CLAMP_PROP(stop_timeout_ms);
547 CLAMP_PROP(timeslice_duration_ms);
548
549 #undef CLAMP_PROP
550
551 engine->defaults = engine->props; /* never to change again */
552
553 engine->context_size = intel_engine_context_size(gt, engine->class);
554 if (WARN_ON(engine->context_size > BIT(20)))
555 engine->context_size = 0;
556 if (engine->context_size)
557 DRIVER_CAPS(i915)->has_logical_contexts = true;
558
559 ewma__engine_latency_init(&engine->latency);
560 seqcount_init(&engine->stats.execlists.lock);
561
562 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
563
564 /* Scrub mmio state on takeover */
565 intel_engine_sanitize_mmio(engine);
566
567 gt->engine_class[info->class][info->instance] = engine;
568 gt->engine[id] = engine;
569
570 return 0;
571 }
572
intel_clamp_heartbeat_interval_ms(struct intel_engine_cs * engine,u64 value)573 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
574 {
575 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
576
577 return value;
578 }
579
intel_clamp_max_busywait_duration_ns(struct intel_engine_cs * engine,u64 value)580 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
581 {
582 value = min(value, jiffies_to_nsecs(2));
583
584 return value;
585 }
586
intel_clamp_preempt_timeout_ms(struct intel_engine_cs * engine,u64 value)587 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
588 {
589 /*
590 * NB: The GuC API only supports 32bit values. However, the limit is further
591 * reduced due to internal calculations which would otherwise overflow.
592 */
593 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
594 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
595
596 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
597
598 return value;
599 }
600
intel_clamp_stop_timeout_ms(struct intel_engine_cs * engine,u64 value)601 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
602 {
603 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
604
605 return value;
606 }
607
intel_clamp_timeslice_duration_ms(struct intel_engine_cs * engine,u64 value)608 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
609 {
610 /*
611 * NB: The GuC API only supports 32bit values. However, the limit is further
612 * reduced due to internal calculations which would otherwise overflow.
613 */
614 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
615 value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
616
617 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
618
619 return value;
620 }
621
__setup_engine_capabilities(struct intel_engine_cs * engine)622 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
623 {
624 struct drm_i915_private *i915 = engine->i915;
625
626 if (engine->class == VIDEO_DECODE_CLASS) {
627 /*
628 * HEVC support is present on first engine instance
629 * before Gen11 and on all instances afterwards.
630 */
631 if (GRAPHICS_VER(i915) >= 11 ||
632 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
633 engine->uabi_capabilities |=
634 I915_VIDEO_CLASS_CAPABILITY_HEVC;
635
636 /*
637 * SFC block is present only on even logical engine
638 * instances.
639 */
640 if ((GRAPHICS_VER(i915) >= 11 &&
641 (engine->gt->info.vdbox_sfc_access &
642 BIT(engine->instance))) ||
643 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
644 engine->uabi_capabilities |=
645 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
646 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
647 if (GRAPHICS_VER(i915) >= 9 &&
648 engine->gt->info.sfc_mask & BIT(engine->instance))
649 engine->uabi_capabilities |=
650 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
651 }
652 }
653
intel_setup_engine_capabilities(struct intel_gt * gt)654 static void intel_setup_engine_capabilities(struct intel_gt *gt)
655 {
656 struct intel_engine_cs *engine;
657 enum intel_engine_id id;
658
659 for_each_engine(engine, gt, id)
660 __setup_engine_capabilities(engine);
661 }
662
663 /**
664 * intel_engines_release() - free the resources allocated for Command Streamers
665 * @gt: pointer to struct intel_gt
666 */
intel_engines_release(struct intel_gt * gt)667 void intel_engines_release(struct intel_gt *gt)
668 {
669 struct intel_engine_cs *engine;
670 enum intel_engine_id id;
671
672 /*
673 * Before we release the resources held by engine, we must be certain
674 * that the HW is no longer accessing them -- having the GPU scribble
675 * to or read from a page being used for something else causes no end
676 * of fun.
677 *
678 * The GPU should be reset by this point, but assume the worst just
679 * in case we aborted before completely initialising the engines.
680 */
681 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
682 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
683 __intel_gt_reset(gt, ALL_ENGINES);
684
685 /* Decouple the backend; but keep the layout for late GPU resets */
686 for_each_engine(engine, gt, id) {
687 if (!engine->release)
688 continue;
689
690 intel_wakeref_wait_for_idle(&engine->wakeref);
691 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
692
693 engine->release(engine);
694 engine->release = NULL;
695
696 memset(&engine->reset, 0, sizeof(engine->reset));
697 }
698 }
699
intel_engine_free_request_pool(struct intel_engine_cs * engine)700 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
701 {
702 if (!engine->request_pool)
703 return;
704
705 kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
706 }
707
intel_engines_free(struct intel_gt * gt)708 void intel_engines_free(struct intel_gt *gt)
709 {
710 struct intel_engine_cs *engine;
711 enum intel_engine_id id;
712
713 /* Free the requests! dma-resv keeps fences around for an eternity */
714 rcu_barrier();
715
716 for_each_engine(engine, gt, id) {
717 intel_engine_free_request_pool(engine);
718 kfree(engine);
719 gt->engine[id] = NULL;
720 }
721 }
722
723 static
gen11_vdbox_has_sfc(struct intel_gt * gt,unsigned int physical_vdbox,unsigned int logical_vdbox,u16 vdbox_mask)724 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
725 unsigned int physical_vdbox,
726 unsigned int logical_vdbox, u16 vdbox_mask)
727 {
728 struct drm_i915_private *i915 = gt->i915;
729
730 /*
731 * In Gen11, only even numbered logical VDBOXes are hooked
732 * up to an SFC (Scaler & Format Converter) unit.
733 * In Gen12, Even numbered physical instance always are connected
734 * to an SFC. Odd numbered physical instances have SFC only if
735 * previous even instance is fused off.
736 *
737 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
738 * in the fuse register that tells us whether a specific SFC is present.
739 */
740 if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
741 return false;
742 else if (MEDIA_VER(i915) >= 12)
743 return (physical_vdbox % 2 == 0) ||
744 !(BIT(physical_vdbox - 1) & vdbox_mask);
745 else if (MEDIA_VER(i915) == 11)
746 return logical_vdbox % 2 == 0;
747
748 return false;
749 }
750
engine_mask_apply_media_fuses(struct intel_gt * gt)751 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
752 {
753 struct drm_i915_private *i915 = gt->i915;
754 unsigned int logical_vdbox = 0;
755 unsigned int i;
756 u32 media_fuse, fuse1;
757 u16 vdbox_mask;
758 u16 vebox_mask;
759
760 if (MEDIA_VER(gt->i915) < 11)
761 return;
762
763 /*
764 * On newer platforms the fusing register is called 'enable' and has
765 * enable semantics, while on older platforms it is called 'disable'
766 * and bits have disable semantices.
767 */
768 media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
769 if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
770 media_fuse = ~media_fuse;
771
772 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
773 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
774 GEN11_GT_VEBOX_DISABLE_SHIFT;
775
776 if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
777 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
778 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
779 } else {
780 gt->info.sfc_mask = ~0;
781 }
782
783 for (i = 0; i < I915_MAX_VCS; i++) {
784 if (!HAS_ENGINE(gt, _VCS(i))) {
785 vdbox_mask &= ~BIT(i);
786 continue;
787 }
788
789 if (!(BIT(i) & vdbox_mask)) {
790 gt->info.engine_mask &= ~BIT(_VCS(i));
791 drm_dbg(&i915->drm, "vcs%u fused off\n", i);
792 continue;
793 }
794
795 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
796 gt->info.vdbox_sfc_access |= BIT(i);
797 logical_vdbox++;
798 }
799 drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
800 vdbox_mask, VDBOX_MASK(gt));
801 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
802
803 for (i = 0; i < I915_MAX_VECS; i++) {
804 if (!HAS_ENGINE(gt, _VECS(i))) {
805 vebox_mask &= ~BIT(i);
806 continue;
807 }
808
809 if (!(BIT(i) & vebox_mask)) {
810 gt->info.engine_mask &= ~BIT(_VECS(i));
811 drm_dbg(&i915->drm, "vecs%u fused off\n", i);
812 }
813 }
814 drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
815 vebox_mask, VEBOX_MASK(gt));
816 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
817 }
818
engine_mask_apply_compute_fuses(struct intel_gt * gt)819 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
820 {
821 struct drm_i915_private *i915 = gt->i915;
822 struct intel_gt_info *info = >->info;
823 int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
824 unsigned long ccs_mask;
825 unsigned int i;
826
827 if (GRAPHICS_VER(i915) < 11)
828 return;
829
830 if (hweight32(CCS_MASK(gt)) <= 1)
831 return;
832
833 ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
834 ss_per_ccs);
835 /*
836 * If all DSS in a quadrant are fused off, the corresponding CCS
837 * engine is not available for use.
838 */
839 for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
840 info->engine_mask &= ~BIT(_CCS(i));
841 drm_dbg(&i915->drm, "ccs%u fused off\n", i);
842 }
843 }
844
engine_mask_apply_copy_fuses(struct intel_gt * gt)845 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
846 {
847 struct drm_i915_private *i915 = gt->i915;
848 struct intel_gt_info *info = >->info;
849 unsigned long meml3_mask;
850 unsigned long quad;
851
852 if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
853 GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
854 return;
855
856 meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
857 meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
858
859 /*
860 * Link Copy engines may be fused off according to meml3_mask. Each
861 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
862 */
863 for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
864 unsigned int instance = quad * 2 + 1;
865 intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
866 _BCS(instance));
867
868 if (mask & info->engine_mask) {
869 drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
870 drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
871
872 info->engine_mask &= ~mask;
873 }
874 }
875 }
876
877 /*
878 * Determine which engines are fused off in our particular hardware.
879 * Note that we have a catch-22 situation where we need to be able to access
880 * the blitter forcewake domain to read the engine fuses, but at the same time
881 * we need to know which engines are available on the system to know which
882 * forcewake domains are present. We solve this by intializing the forcewake
883 * domains based on the full engine mask in the platform capabilities before
884 * calling this function and pruning the domains for fused-off engines
885 * afterwards.
886 */
init_engine_mask(struct intel_gt * gt)887 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
888 {
889 struct intel_gt_info *info = >->info;
890
891 GEM_BUG_ON(!info->engine_mask);
892
893 engine_mask_apply_media_fuses(gt);
894 engine_mask_apply_compute_fuses(gt);
895 engine_mask_apply_copy_fuses(gt);
896
897 /*
898 * The only use of the GSC CS is to load and communicate with the GSC
899 * FW, so we have no use for it if we don't have the FW.
900 *
901 * IMPORTANT: in cases where we don't have the GSC FW, we have a
902 * catch-22 situation that breaks media C6 due to 2 requirements:
903 * 1) once turned on, the GSC power well will not go to sleep unless the
904 * GSC FW is loaded.
905 * 2) to enable idling (which is required for media C6) we need to
906 * initialize the IDLE_MSG register for the GSC CS and do at least 1
907 * submission, which will wake up the GSC power well.
908 */
909 if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(>->uc)) {
910 drm_notice(>->i915->drm,
911 "No GSC FW selected, disabling GSC CS and media C6\n");
912 info->engine_mask &= ~BIT(GSC0);
913 }
914
915 return info->engine_mask;
916 }
917
populate_logical_ids(struct intel_gt * gt,u8 * logical_ids,u8 class,const u8 * map,u8 num_instances)918 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
919 u8 class, const u8 *map, u8 num_instances)
920 {
921 int i, j;
922 u8 current_logical_id = 0;
923
924 for (j = 0; j < num_instances; ++j) {
925 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
926 if (!HAS_ENGINE(gt, i) ||
927 intel_engines[i].class != class)
928 continue;
929
930 if (intel_engines[i].instance == map[j]) {
931 logical_ids[intel_engines[i].instance] =
932 current_logical_id++;
933 break;
934 }
935 }
936 }
937 }
938
setup_logical_ids(struct intel_gt * gt,u8 * logical_ids,u8 class)939 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
940 {
941 /*
942 * Logical to physical mapping is needed for proper support
943 * to split-frame feature.
944 */
945 if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
946 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
947
948 populate_logical_ids(gt, logical_ids, class,
949 map, ARRAY_SIZE(map));
950 } else {
951 int i;
952 u8 map[MAX_ENGINE_INSTANCE + 1];
953
954 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
955 map[i] = i;
956 populate_logical_ids(gt, logical_ids, class,
957 map, ARRAY_SIZE(map));
958 }
959 }
960
961 /**
962 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
963 * @gt: pointer to struct intel_gt
964 *
965 * Return: non-zero if the initialization failed.
966 */
intel_engines_init_mmio(struct intel_gt * gt)967 int intel_engines_init_mmio(struct intel_gt *gt)
968 {
969 struct drm_i915_private *i915 = gt->i915;
970 const unsigned int engine_mask = init_engine_mask(gt);
971 unsigned int mask = 0;
972 unsigned int i, class;
973 u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
974 int err;
975
976 drm_WARN_ON(&i915->drm, engine_mask == 0);
977 drm_WARN_ON(&i915->drm, engine_mask &
978 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
979
980 if (i915_inject_probe_failure(i915))
981 return -ENODEV;
982
983 for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
984 setup_logical_ids(gt, logical_ids, class);
985
986 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
987 u8 instance = intel_engines[i].instance;
988
989 if (intel_engines[i].class != class ||
990 !HAS_ENGINE(gt, i))
991 continue;
992
993 err = intel_engine_setup(gt, i,
994 logical_ids[instance]);
995 if (err)
996 goto cleanup;
997
998 mask |= BIT(i);
999 }
1000 }
1001
1002 /*
1003 * Catch failures to update intel_engines table when the new engines
1004 * are added to the driver by a warning and disabling the forgotten
1005 * engines.
1006 */
1007 if (drm_WARN_ON(&i915->drm, mask != engine_mask))
1008 gt->info.engine_mask = mask;
1009
1010 gt->info.num_engines = hweight32(mask);
1011
1012 intel_gt_check_and_clear_faults(gt);
1013
1014 intel_setup_engine_capabilities(gt);
1015
1016 intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1017
1018 return 0;
1019
1020 cleanup:
1021 intel_engines_free(gt);
1022 return err;
1023 }
1024
intel_engine_init_execlists(struct intel_engine_cs * engine)1025 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1026 {
1027 struct intel_engine_execlists * const execlists = &engine->execlists;
1028
1029 execlists->port_mask = 1;
1030 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1031 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1032
1033 memset(execlists->pending, 0, sizeof(execlists->pending));
1034 execlists->active =
1035 memset(execlists->inflight, 0, sizeof(execlists->inflight));
1036 }
1037
cleanup_status_page(struct intel_engine_cs * engine)1038 static void cleanup_status_page(struct intel_engine_cs *engine)
1039 {
1040 struct i915_vma *vma;
1041
1042 /* Prevent writes into HWSP after returning the page to the system */
1043 intel_engine_set_hwsp_writemask(engine, ~0u);
1044
1045 vma = fetch_and_zero(&engine->status_page.vma);
1046 if (!vma)
1047 return;
1048
1049 if (!HWS_NEEDS_PHYSICAL(engine->i915))
1050 i915_vma_unpin(vma);
1051
1052 i915_gem_object_unpin_map(vma->obj);
1053 i915_gem_object_put(vma->obj);
1054 }
1055
pin_ggtt_status_page(struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,struct i915_vma * vma)1056 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1057 struct i915_gem_ww_ctx *ww,
1058 struct i915_vma *vma)
1059 {
1060 unsigned int flags;
1061
1062 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1063 /*
1064 * On g33, we cannot place HWS above 256MiB, so
1065 * restrict its pinning to the low mappable arena.
1066 * Though this restriction is not documented for
1067 * gen4, gen5, or byt, they also behave similarly
1068 * and hang if the HWS is placed at the top of the
1069 * GTT. To generalise, it appears that all !llc
1070 * platforms have issues with us placing the HWS
1071 * above the mappable region (even though we never
1072 * actually map it).
1073 */
1074 flags = PIN_MAPPABLE;
1075 else
1076 flags = PIN_HIGH;
1077
1078 return i915_ggtt_pin(vma, ww, 0, flags);
1079 }
1080
init_status_page(struct intel_engine_cs * engine)1081 static int init_status_page(struct intel_engine_cs *engine)
1082 {
1083 struct drm_i915_gem_object *obj;
1084 struct i915_gem_ww_ctx ww;
1085 struct i915_vma *vma;
1086 void *vaddr;
1087 int ret;
1088
1089 INIT_LIST_HEAD(&engine->status_page.timelines);
1090
1091 /*
1092 * Though the HWS register does support 36bit addresses, historically
1093 * we have had hangs and corruption reported due to wild writes if
1094 * the HWS is placed above 4G. We only allow objects to be allocated
1095 * in GFP_DMA32 for i965, and no earlier physical address users had
1096 * access to more than 4G.
1097 */
1098 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1099 if (IS_ERR(obj)) {
1100 drm_err(&engine->i915->drm,
1101 "Failed to allocate status page\n");
1102 return PTR_ERR(obj);
1103 }
1104
1105 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1106
1107 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1108 if (IS_ERR(vma)) {
1109 ret = PTR_ERR(vma);
1110 goto err_put;
1111 }
1112
1113 i915_gem_ww_ctx_init(&ww, true);
1114 retry:
1115 ret = i915_gem_object_lock(obj, &ww);
1116 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1117 ret = pin_ggtt_status_page(engine, &ww, vma);
1118 if (ret)
1119 goto err;
1120
1121 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1122 if (IS_ERR(vaddr)) {
1123 ret = PTR_ERR(vaddr);
1124 goto err_unpin;
1125 }
1126
1127 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1128 engine->status_page.vma = vma;
1129
1130 err_unpin:
1131 if (ret)
1132 i915_vma_unpin(vma);
1133 err:
1134 if (ret == -EDEADLK) {
1135 ret = i915_gem_ww_ctx_backoff(&ww);
1136 if (!ret)
1137 goto retry;
1138 }
1139 i915_gem_ww_ctx_fini(&ww);
1140 err_put:
1141 if (ret)
1142 i915_gem_object_put(obj);
1143 return ret;
1144 }
1145
engine_setup_common(struct intel_engine_cs * engine)1146 static int engine_setup_common(struct intel_engine_cs *engine)
1147 {
1148 int err;
1149
1150 init_llist_head(&engine->barrier_tasks);
1151
1152 err = init_status_page(engine);
1153 if (err)
1154 return err;
1155
1156 engine->breadcrumbs = intel_breadcrumbs_create(engine);
1157 if (!engine->breadcrumbs) {
1158 err = -ENOMEM;
1159 goto err_status;
1160 }
1161
1162 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1163 if (!engine->sched_engine) {
1164 err = -ENOMEM;
1165 goto err_sched_engine;
1166 }
1167 engine->sched_engine->private_data = engine;
1168
1169 err = intel_engine_init_cmd_parser(engine);
1170 if (err)
1171 goto err_cmd_parser;
1172
1173 intel_engine_init_execlists(engine);
1174 intel_engine_init__pm(engine);
1175 intel_engine_init_retire(engine);
1176
1177 /* Use the whole device by default */
1178 engine->sseu =
1179 intel_sseu_from_device_info(&engine->gt->info.sseu);
1180
1181 intel_engine_init_workarounds(engine);
1182 intel_engine_init_whitelist(engine);
1183 intel_engine_init_ctx_wa(engine);
1184
1185 if (GRAPHICS_VER(engine->i915) >= 12)
1186 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1187
1188 return 0;
1189
1190 err_cmd_parser:
1191 i915_sched_engine_put(engine->sched_engine);
1192 err_sched_engine:
1193 intel_breadcrumbs_put(engine->breadcrumbs);
1194 err_status:
1195 cleanup_status_page(engine);
1196 return err;
1197 }
1198
1199 struct measure_breadcrumb {
1200 struct i915_request rq;
1201 struct intel_ring ring;
1202 u32 cs[2048];
1203 };
1204
measure_breadcrumb_dw(struct intel_context * ce)1205 static int measure_breadcrumb_dw(struct intel_context *ce)
1206 {
1207 struct intel_engine_cs *engine = ce->engine;
1208 struct measure_breadcrumb *frame;
1209 int dw;
1210
1211 GEM_BUG_ON(!engine->gt->scratch);
1212
1213 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1214 if (!frame)
1215 return -ENOMEM;
1216
1217 frame->rq.engine = engine;
1218 frame->rq.context = ce;
1219 rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1220 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1221
1222 frame->ring.vaddr = frame->cs;
1223 frame->ring.size = sizeof(frame->cs);
1224 frame->ring.wrap =
1225 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1226 frame->ring.effective_size = frame->ring.size;
1227 intel_ring_update_space(&frame->ring);
1228 frame->rq.ring = &frame->ring;
1229
1230 mutex_lock(&ce->timeline->mutex);
1231 spin_lock_irq(&engine->sched_engine->lock);
1232
1233 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1234
1235 spin_unlock_irq(&engine->sched_engine->lock);
1236 mutex_unlock(&ce->timeline->mutex);
1237
1238 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1239
1240 kfree(frame);
1241 return dw;
1242 }
1243
1244 struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs * engine,struct i915_address_space * vm,unsigned int ring_size,unsigned int hwsp,struct lock_class_key * key,const char * name)1245 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1246 struct i915_address_space *vm,
1247 unsigned int ring_size,
1248 unsigned int hwsp,
1249 struct lock_class_key *key,
1250 const char *name)
1251 {
1252 struct intel_context *ce;
1253 int err;
1254
1255 ce = intel_context_create(engine);
1256 if (IS_ERR(ce))
1257 return ce;
1258
1259 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1260 ce->timeline = page_pack_bits(NULL, hwsp);
1261 ce->ring = NULL;
1262 ce->ring_size = ring_size;
1263
1264 i915_vm_put(ce->vm);
1265 ce->vm = i915_vm_get(vm);
1266
1267 err = intel_context_pin(ce); /* perma-pin so it is always available */
1268 if (err) {
1269 intel_context_put(ce);
1270 return ERR_PTR(err);
1271 }
1272
1273 list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1274
1275 /*
1276 * Give our perma-pinned kernel timelines a separate lockdep class,
1277 * so that we can use them from within the normal user timelines
1278 * should we need to inject GPU operations during their request
1279 * construction.
1280 */
1281 lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1282
1283 return ce;
1284 }
1285
intel_engine_destroy_pinned_context(struct intel_context * ce)1286 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1287 {
1288 struct intel_engine_cs *engine = ce->engine;
1289 struct i915_vma *hwsp = engine->status_page.vma;
1290
1291 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1292
1293 mutex_lock(&hwsp->vm->mutex);
1294 list_del(&ce->timeline->engine_link);
1295 mutex_unlock(&hwsp->vm->mutex);
1296
1297 list_del(&ce->pinned_contexts_link);
1298 intel_context_unpin(ce);
1299 intel_context_put(ce);
1300 }
1301
1302 static struct intel_context *
create_kernel_context(struct intel_engine_cs * engine)1303 create_kernel_context(struct intel_engine_cs *engine)
1304 {
1305 static struct lock_class_key kernel;
1306
1307 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1308 I915_GEM_HWS_SEQNO_ADDR,
1309 &kernel, "kernel_context");
1310 }
1311
1312 /**
1313 * intel_engines_init_common - initialize cengine state which might require hw access
1314 * @engine: Engine to initialize.
1315 *
1316 * Initializes @engine@ structure members shared between legacy and execlists
1317 * submission modes which do require hardware access.
1318 *
1319 * Typcally done at later stages of submission mode specific engine setup.
1320 *
1321 * Returns zero on success or an error code on failure.
1322 */
engine_init_common(struct intel_engine_cs * engine)1323 static int engine_init_common(struct intel_engine_cs *engine)
1324 {
1325 struct intel_context *ce;
1326 int ret;
1327
1328 engine->set_default_submission(engine);
1329
1330 /*
1331 * We may need to do things with the shrinker which
1332 * require us to immediately switch back to the default
1333 * context. This can cause a problem as pinning the
1334 * default context also requires GTT space which may not
1335 * be available. To avoid this we always pin the default
1336 * context.
1337 */
1338 ce = create_kernel_context(engine);
1339 if (IS_ERR(ce))
1340 return PTR_ERR(ce);
1341
1342 ret = measure_breadcrumb_dw(ce);
1343 if (ret < 0)
1344 goto err_context;
1345
1346 engine->emit_fini_breadcrumb_dw = ret;
1347 engine->kernel_context = ce;
1348
1349 return 0;
1350
1351 err_context:
1352 intel_engine_destroy_pinned_context(ce);
1353 return ret;
1354 }
1355
intel_engines_init(struct intel_gt * gt)1356 int intel_engines_init(struct intel_gt *gt)
1357 {
1358 int (*setup)(struct intel_engine_cs *engine);
1359 struct intel_engine_cs *engine;
1360 enum intel_engine_id id;
1361 int err;
1362
1363 if (intel_uc_uses_guc_submission(>->uc)) {
1364 gt->submission_method = INTEL_SUBMISSION_GUC;
1365 setup = intel_guc_submission_setup;
1366 } else if (HAS_EXECLISTS(gt->i915)) {
1367 gt->submission_method = INTEL_SUBMISSION_ELSP;
1368 setup = intel_execlists_submission_setup;
1369 } else {
1370 gt->submission_method = INTEL_SUBMISSION_RING;
1371 setup = intel_ring_submission_setup;
1372 }
1373
1374 for_each_engine(engine, gt, id) {
1375 err = engine_setup_common(engine);
1376 if (err)
1377 return err;
1378
1379 err = setup(engine);
1380 if (err) {
1381 intel_engine_cleanup_common(engine);
1382 return err;
1383 }
1384
1385 /* The backend should now be responsible for cleanup */
1386 GEM_BUG_ON(engine->release == NULL);
1387
1388 err = engine_init_common(engine);
1389 if (err)
1390 return err;
1391
1392 intel_engine_add_user(engine);
1393 }
1394
1395 return 0;
1396 }
1397
1398 /**
1399 * intel_engines_cleanup_common - cleans up the engine state created by
1400 * the common initiailizers.
1401 * @engine: Engine to cleanup.
1402 *
1403 * This cleans up everything created by the common helpers.
1404 */
intel_engine_cleanup_common(struct intel_engine_cs * engine)1405 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1406 {
1407 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1408
1409 i915_sched_engine_put(engine->sched_engine);
1410 intel_breadcrumbs_put(engine->breadcrumbs);
1411
1412 intel_engine_fini_retire(engine);
1413 intel_engine_cleanup_cmd_parser(engine);
1414
1415 if (engine->default_state)
1416 fput(engine->default_state);
1417
1418 if (engine->kernel_context)
1419 intel_engine_destroy_pinned_context(engine->kernel_context);
1420
1421 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1422 cleanup_status_page(engine);
1423
1424 intel_wa_list_free(&engine->ctx_wa_list);
1425 intel_wa_list_free(&engine->wa_list);
1426 intel_wa_list_free(&engine->whitelist);
1427 }
1428
1429 /**
1430 * intel_engine_resume - re-initializes the HW state of the engine
1431 * @engine: Engine to resume.
1432 *
1433 * Returns zero on success or an error code on failure.
1434 */
intel_engine_resume(struct intel_engine_cs * engine)1435 int intel_engine_resume(struct intel_engine_cs *engine)
1436 {
1437 intel_engine_apply_workarounds(engine);
1438 intel_engine_apply_whitelist(engine);
1439
1440 return engine->resume(engine);
1441 }
1442
intel_engine_get_active_head(const struct intel_engine_cs * engine)1443 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1444 {
1445 struct drm_i915_private *i915 = engine->i915;
1446
1447 u64 acthd;
1448
1449 if (GRAPHICS_VER(i915) >= 8)
1450 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1451 else if (GRAPHICS_VER(i915) >= 4)
1452 acthd = ENGINE_READ(engine, RING_ACTHD);
1453 else
1454 acthd = ENGINE_READ(engine, ACTHD);
1455
1456 return acthd;
1457 }
1458
intel_engine_get_last_batch_head(const struct intel_engine_cs * engine)1459 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1460 {
1461 u64 bbaddr;
1462
1463 if (GRAPHICS_VER(engine->i915) >= 8)
1464 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1465 else
1466 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1467
1468 return bbaddr;
1469 }
1470
stop_timeout(const struct intel_engine_cs * engine)1471 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1472 {
1473 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1474 return 0;
1475
1476 /*
1477 * If we are doing a normal GPU reset, we can take our time and allow
1478 * the engine to quiesce. We've stopped submission to the engine, and
1479 * if we wait long enough an innocent context should complete and
1480 * leave the engine idle. So they should not be caught unaware by
1481 * the forthcoming GPU reset (which usually follows the stop_cs)!
1482 */
1483 return READ_ONCE(engine->props.stop_timeout_ms);
1484 }
1485
__intel_engine_stop_cs(struct intel_engine_cs * engine,int fast_timeout_us,int slow_timeout_ms)1486 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1487 int fast_timeout_us,
1488 int slow_timeout_ms)
1489 {
1490 struct intel_uncore *uncore = engine->uncore;
1491 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1492 int err;
1493
1494 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1495
1496 /*
1497 * Wa_22011802037: Prior to doing a reset, ensure CS is
1498 * stopped, set ring stop bit and prefetch disable bit to halt CS
1499 */
1500 if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) ||
1501 (GRAPHICS_VER(engine->i915) >= 11 &&
1502 GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 70)))
1503 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1504 _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1505
1506 err = __intel_wait_for_register_fw(engine->uncore, mode,
1507 MODE_IDLE, MODE_IDLE,
1508 fast_timeout_us,
1509 slow_timeout_ms,
1510 NULL);
1511
1512 /* A final mmio read to let GPU writes be hopefully flushed to memory */
1513 intel_uncore_posting_read_fw(uncore, mode);
1514 return err;
1515 }
1516
intel_engine_stop_cs(struct intel_engine_cs * engine)1517 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1518 {
1519 int err = 0;
1520
1521 if (GRAPHICS_VER(engine->i915) < 3)
1522 return -ENODEV;
1523
1524 ENGINE_TRACE(engine, "\n");
1525 /*
1526 * TODO: Find out why occasionally stopping the CS times out. Seen
1527 * especially with gem_eio tests.
1528 *
1529 * Occasionally trying to stop the cs times out, but does not adversely
1530 * affect functionality. The timeout is set as a config parameter that
1531 * defaults to 100ms. In most cases the follow up operation is to wait
1532 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1533 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1534 * caused, the caller must check and handle the return from this
1535 * function.
1536 */
1537 if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1538 ENGINE_TRACE(engine,
1539 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1540 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1541 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1542
1543 /*
1544 * Sometimes we observe that the idle flag is not
1545 * set even though the ring is empty. So double
1546 * check before giving up.
1547 */
1548 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1549 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1550 err = -ETIMEDOUT;
1551 }
1552
1553 return err;
1554 }
1555
intel_engine_cancel_stop_cs(struct intel_engine_cs * engine)1556 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1557 {
1558 ENGINE_TRACE(engine, "\n");
1559
1560 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1561 }
1562
__cs_pending_mi_force_wakes(struct intel_engine_cs * engine)1563 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1564 {
1565 static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1566 [RCS0] = MSG_IDLE_CS,
1567 [BCS0] = MSG_IDLE_BCS,
1568 [VCS0] = MSG_IDLE_VCS0,
1569 [VCS1] = MSG_IDLE_VCS1,
1570 [VCS2] = MSG_IDLE_VCS2,
1571 [VCS3] = MSG_IDLE_VCS3,
1572 [VCS4] = MSG_IDLE_VCS4,
1573 [VCS5] = MSG_IDLE_VCS5,
1574 [VCS6] = MSG_IDLE_VCS6,
1575 [VCS7] = MSG_IDLE_VCS7,
1576 [VECS0] = MSG_IDLE_VECS0,
1577 [VECS1] = MSG_IDLE_VECS1,
1578 [VECS2] = MSG_IDLE_VECS2,
1579 [VECS3] = MSG_IDLE_VECS3,
1580 [CCS0] = MSG_IDLE_CS,
1581 [CCS1] = MSG_IDLE_CS,
1582 [CCS2] = MSG_IDLE_CS,
1583 [CCS3] = MSG_IDLE_CS,
1584 };
1585 u32 val;
1586
1587 if (!_reg[engine->id].reg)
1588 return 0;
1589
1590 val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1591
1592 /* bits[29:25] & bits[13:9] >> shift */
1593 return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1594 }
1595
__gpm_wait_for_fw_complete(struct intel_gt * gt,u32 fw_mask)1596 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1597 {
1598 int ret;
1599
1600 /* Ensure GPM receives fw up/down after CS is stopped */
1601 udelay(1);
1602
1603 /* Wait for forcewake request to complete in GPM */
1604 ret = __intel_wait_for_register_fw(gt->uncore,
1605 GEN9_PWRGT_DOMAIN_STATUS,
1606 fw_mask, fw_mask, 5000, 0, NULL);
1607
1608 /* Ensure CS receives fw ack from GPM */
1609 udelay(1);
1610
1611 if (ret)
1612 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1613 }
1614
1615 /*
1616 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1617 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1618 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1619 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1620 * are concerned only with the gt reset here, we use a logical OR of pending
1621 * forcewakeups from all reset domains and then wait for them to complete by
1622 * querying PWRGT_DOMAIN_STATUS.
1623 */
intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs * engine)1624 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1625 {
1626 u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1627
1628 if (fw_pending)
1629 __gpm_wait_for_fw_complete(engine->gt, fw_pending);
1630 }
1631
1632 /* NB: please notice the memset */
intel_engine_get_instdone(const struct intel_engine_cs * engine,struct intel_instdone * instdone)1633 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1634 struct intel_instdone *instdone)
1635 {
1636 struct drm_i915_private *i915 = engine->i915;
1637 struct intel_uncore *uncore = engine->uncore;
1638 u32 mmio_base = engine->mmio_base;
1639 int slice;
1640 int subslice;
1641 int iter;
1642
1643 memset(instdone, 0, sizeof(*instdone));
1644
1645 if (GRAPHICS_VER(i915) >= 8) {
1646 instdone->instdone =
1647 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1648
1649 if (engine->id != RCS0)
1650 return;
1651
1652 instdone->slice_common =
1653 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1654 if (GRAPHICS_VER(i915) >= 12) {
1655 instdone->slice_common_extra[0] =
1656 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1657 instdone->slice_common_extra[1] =
1658 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1659 }
1660
1661 for_each_ss_steering(iter, engine->gt, slice, subslice) {
1662 instdone->sampler[slice][subslice] =
1663 intel_gt_mcr_read(engine->gt,
1664 GEN8_SAMPLER_INSTDONE,
1665 slice, subslice);
1666 instdone->row[slice][subslice] =
1667 intel_gt_mcr_read(engine->gt,
1668 GEN8_ROW_INSTDONE,
1669 slice, subslice);
1670 }
1671
1672 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1673 for_each_ss_steering(iter, engine->gt, slice, subslice)
1674 instdone->geom_svg[slice][subslice] =
1675 intel_gt_mcr_read(engine->gt,
1676 XEHPG_INSTDONE_GEOM_SVG,
1677 slice, subslice);
1678 }
1679 } else if (GRAPHICS_VER(i915) >= 7) {
1680 instdone->instdone =
1681 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1682
1683 if (engine->id != RCS0)
1684 return;
1685
1686 instdone->slice_common =
1687 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1688 instdone->sampler[0][0] =
1689 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1690 instdone->row[0][0] =
1691 intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1692 } else if (GRAPHICS_VER(i915) >= 4) {
1693 instdone->instdone =
1694 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1695 if (engine->id == RCS0)
1696 /* HACK: Using the wrong struct member */
1697 instdone->slice_common =
1698 intel_uncore_read(uncore, GEN4_INSTDONE1);
1699 } else {
1700 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1701 }
1702 }
1703
ring_is_idle(struct intel_engine_cs * engine)1704 static bool ring_is_idle(struct intel_engine_cs *engine)
1705 {
1706 bool idle = true;
1707
1708 if (I915_SELFTEST_ONLY(!engine->mmio_base))
1709 return true;
1710
1711 if (!intel_engine_pm_get_if_awake(engine))
1712 return true;
1713
1714 /* First check that no commands are left in the ring */
1715 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1716 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1717 idle = false;
1718
1719 /* No bit for gen2, so assume the CS parser is idle */
1720 if (GRAPHICS_VER(engine->i915) > 2 &&
1721 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1722 idle = false;
1723
1724 intel_engine_pm_put(engine);
1725
1726 return idle;
1727 }
1728
__intel_engine_flush_submission(struct intel_engine_cs * engine,bool sync)1729 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1730 {
1731 struct tasklet_struct *t = &engine->sched_engine->tasklet;
1732
1733 if (!t->callback)
1734 return;
1735
1736 local_bh_disable();
1737 if (tasklet_trylock(t)) {
1738 /* Must wait for any GPU reset in progress. */
1739 if (__tasklet_is_enabled(t))
1740 t->callback(t);
1741 tasklet_unlock(t);
1742 }
1743 local_bh_enable();
1744
1745 /* Synchronise and wait for the tasklet on another CPU */
1746 if (sync)
1747 tasklet_unlock_wait(t);
1748 }
1749
1750 /**
1751 * intel_engine_is_idle() - Report if the engine has finished process all work
1752 * @engine: the intel_engine_cs
1753 *
1754 * Return true if there are no requests pending, nothing left to be submitted
1755 * to hardware, and that the engine is idle.
1756 */
intel_engine_is_idle(struct intel_engine_cs * engine)1757 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1758 {
1759 /* More white lies, if wedged, hw state is inconsistent */
1760 if (intel_gt_is_wedged(engine->gt))
1761 return true;
1762
1763 if (!intel_engine_pm_is_awake(engine))
1764 return true;
1765
1766 /* Waiting to drain ELSP? */
1767 intel_synchronize_hardirq(engine->i915);
1768 intel_engine_flush_submission(engine);
1769
1770 /* ELSP is empty, but there are ready requests? E.g. after reset */
1771 if (!i915_sched_engine_is_empty(engine->sched_engine))
1772 return false;
1773
1774 /* Ring stopped? */
1775 return ring_is_idle(engine);
1776 }
1777
intel_engines_are_idle(struct intel_gt * gt)1778 bool intel_engines_are_idle(struct intel_gt *gt)
1779 {
1780 struct intel_engine_cs *engine;
1781 enum intel_engine_id id;
1782
1783 /*
1784 * If the driver is wedged, HW state may be very inconsistent and
1785 * report that it is still busy, even though we have stopped using it.
1786 */
1787 if (intel_gt_is_wedged(gt))
1788 return true;
1789
1790 /* Already parked (and passed an idleness test); must still be idle */
1791 if (!READ_ONCE(gt->awake))
1792 return true;
1793
1794 for_each_engine(engine, gt, id) {
1795 if (!intel_engine_is_idle(engine))
1796 return false;
1797 }
1798
1799 return true;
1800 }
1801
intel_engine_irq_enable(struct intel_engine_cs * engine)1802 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1803 {
1804 if (!engine->irq_enable)
1805 return false;
1806
1807 /* Caller disables interrupts */
1808 spin_lock(engine->gt->irq_lock);
1809 engine->irq_enable(engine);
1810 spin_unlock(engine->gt->irq_lock);
1811
1812 return true;
1813 }
1814
intel_engine_irq_disable(struct intel_engine_cs * engine)1815 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1816 {
1817 if (!engine->irq_disable)
1818 return;
1819
1820 /* Caller disables interrupts */
1821 spin_lock(engine->gt->irq_lock);
1822 engine->irq_disable(engine);
1823 spin_unlock(engine->gt->irq_lock);
1824 }
1825
intel_engines_reset_default_submission(struct intel_gt * gt)1826 void intel_engines_reset_default_submission(struct intel_gt *gt)
1827 {
1828 struct intel_engine_cs *engine;
1829 enum intel_engine_id id;
1830
1831 for_each_engine(engine, gt, id) {
1832 if (engine->sanitize)
1833 engine->sanitize(engine);
1834
1835 engine->set_default_submission(engine);
1836 }
1837 }
1838
intel_engine_can_store_dword(struct intel_engine_cs * engine)1839 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1840 {
1841 switch (GRAPHICS_VER(engine->i915)) {
1842 case 2:
1843 return false; /* uses physical not virtual addresses */
1844 case 3:
1845 /* maybe only uses physical not virtual addresses */
1846 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1847 case 4:
1848 return !IS_I965G(engine->i915); /* who knows! */
1849 case 6:
1850 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1851 default:
1852 return true;
1853 }
1854 }
1855
get_timeline(struct i915_request * rq)1856 static struct intel_timeline *get_timeline(struct i915_request *rq)
1857 {
1858 struct intel_timeline *tl;
1859
1860 /*
1861 * Even though we are holding the engine->sched_engine->lock here, there
1862 * is no control over the submission queue per-se and we are
1863 * inspecting the active state at a random point in time, with an
1864 * unknown queue. Play safe and make sure the timeline remains valid.
1865 * (Only being used for pretty printing, one extra kref shouldn't
1866 * cause a camel stampede!)
1867 */
1868 rcu_read_lock();
1869 tl = rcu_dereference(rq->timeline);
1870 if (!kref_get_unless_zero(&tl->kref))
1871 tl = NULL;
1872 rcu_read_unlock();
1873
1874 return tl;
1875 }
1876
print_ring(char * buf,int sz,struct i915_request * rq)1877 static int print_ring(char *buf, int sz, struct i915_request *rq)
1878 {
1879 int len = 0;
1880
1881 if (!i915_request_signaled(rq)) {
1882 struct intel_timeline *tl = get_timeline(rq);
1883
1884 len = scnprintf(buf, sz,
1885 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1886 i915_ggtt_offset(rq->ring->vma),
1887 tl ? tl->hwsp_offset : 0,
1888 hwsp_seqno(rq),
1889 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1890 1000 * 1000));
1891
1892 if (tl)
1893 intel_timeline_put(tl);
1894 }
1895
1896 return len;
1897 }
1898
hexdump(struct drm_printer * m,const void * buf,size_t len)1899 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1900 {
1901 const size_t rowsize = 8 * sizeof(u32);
1902 const void *prev = NULL;
1903 bool skip = false;
1904 size_t pos;
1905
1906 for (pos = 0; pos < len; pos += rowsize) {
1907 char line[128];
1908
1909 if (prev && !memcmp(prev, buf + pos, rowsize)) {
1910 if (!skip) {
1911 drm_printf(m, "*\n");
1912 skip = true;
1913 }
1914 continue;
1915 }
1916
1917 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1918 rowsize, sizeof(u32),
1919 line, sizeof(line),
1920 false) >= sizeof(line));
1921 drm_printf(m, "[%04zx] %s\n", pos, line);
1922
1923 prev = buf + pos;
1924 skip = false;
1925 }
1926 }
1927
repr_timer(const struct timer_list * t)1928 static const char *repr_timer(const struct timer_list *t)
1929 {
1930 if (!READ_ONCE(t->expires))
1931 return "inactive";
1932
1933 if (timer_pending(t))
1934 return "active";
1935
1936 return "expired";
1937 }
1938
intel_engine_print_registers(struct intel_engine_cs * engine,struct drm_printer * m)1939 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1940 struct drm_printer *m)
1941 {
1942 struct drm_i915_private *dev_priv = engine->i915;
1943 struct intel_engine_execlists * const execlists = &engine->execlists;
1944 u64 addr;
1945
1946 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1947 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1948 if (HAS_EXECLISTS(dev_priv)) {
1949 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1950 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1951 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1952 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1953 }
1954 drm_printf(m, "\tRING_START: 0x%08x\n",
1955 ENGINE_READ(engine, RING_START));
1956 drm_printf(m, "\tRING_HEAD: 0x%08x\n",
1957 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1958 drm_printf(m, "\tRING_TAIL: 0x%08x\n",
1959 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1960 drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
1961 ENGINE_READ(engine, RING_CTL),
1962 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1963 if (GRAPHICS_VER(engine->i915) > 2) {
1964 drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
1965 ENGINE_READ(engine, RING_MI_MODE),
1966 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1967 }
1968
1969 if (GRAPHICS_VER(dev_priv) >= 6) {
1970 drm_printf(m, "\tRING_IMR: 0x%08x\n",
1971 ENGINE_READ(engine, RING_IMR));
1972 drm_printf(m, "\tRING_ESR: 0x%08x\n",
1973 ENGINE_READ(engine, RING_ESR));
1974 drm_printf(m, "\tRING_EMR: 0x%08x\n",
1975 ENGINE_READ(engine, RING_EMR));
1976 drm_printf(m, "\tRING_EIR: 0x%08x\n",
1977 ENGINE_READ(engine, RING_EIR));
1978 }
1979
1980 addr = intel_engine_get_active_head(engine);
1981 drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
1982 upper_32_bits(addr), lower_32_bits(addr));
1983 addr = intel_engine_get_last_batch_head(engine);
1984 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1985 upper_32_bits(addr), lower_32_bits(addr));
1986 if (GRAPHICS_VER(dev_priv) >= 8)
1987 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1988 else if (GRAPHICS_VER(dev_priv) >= 4)
1989 addr = ENGINE_READ(engine, RING_DMA_FADD);
1990 else
1991 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1992 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1993 upper_32_bits(addr), lower_32_bits(addr));
1994 if (GRAPHICS_VER(dev_priv) >= 4) {
1995 drm_printf(m, "\tIPEIR: 0x%08x\n",
1996 ENGINE_READ(engine, RING_IPEIR));
1997 drm_printf(m, "\tIPEHR: 0x%08x\n",
1998 ENGINE_READ(engine, RING_IPEHR));
1999 } else {
2000 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2001 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2002 }
2003
2004 if (HAS_EXECLISTS(dev_priv) && !intel_engine_uses_guc(engine)) {
2005 struct i915_request * const *port, *rq;
2006 const u32 *hws =
2007 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2008 const u8 num_entries = execlists->csb_size;
2009 unsigned int idx;
2010 u8 read, write;
2011
2012 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2013 str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2014 str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2015 repr_timer(&engine->execlists.preempt),
2016 repr_timer(&engine->execlists.timer));
2017
2018 read = execlists->csb_head;
2019 write = READ_ONCE(*execlists->csb_write);
2020
2021 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2022 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2023 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2024 read, write, num_entries);
2025
2026 if (read >= num_entries)
2027 read = 0;
2028 if (write >= num_entries)
2029 write = 0;
2030 if (read > write)
2031 write += num_entries;
2032 while (read < write) {
2033 idx = ++read % num_entries;
2034 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2035 idx, hws[idx * 2], hws[idx * 2 + 1]);
2036 }
2037
2038 i915_sched_engine_active_lock_bh(engine->sched_engine);
2039 rcu_read_lock();
2040 for (port = execlists->active; (rq = *port); port++) {
2041 char hdr[160];
2042 int len;
2043
2044 len = scnprintf(hdr, sizeof(hdr),
2045 "\t\tActive[%d]: ccid:%08x%s%s, ",
2046 (int)(port - execlists->active),
2047 rq->context->lrc.ccid,
2048 intel_context_is_closed(rq->context) ? "!" : "",
2049 intel_context_is_banned(rq->context) ? "*" : "");
2050 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2051 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2052 i915_request_show(m, rq, hdr, 0);
2053 }
2054 for (port = execlists->pending; (rq = *port); port++) {
2055 char hdr[160];
2056 int len;
2057
2058 len = scnprintf(hdr, sizeof(hdr),
2059 "\t\tPending[%d]: ccid:%08x%s%s, ",
2060 (int)(port - execlists->pending),
2061 rq->context->lrc.ccid,
2062 intel_context_is_closed(rq->context) ? "!" : "",
2063 intel_context_is_banned(rq->context) ? "*" : "");
2064 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2065 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2066 i915_request_show(m, rq, hdr, 0);
2067 }
2068 rcu_read_unlock();
2069 i915_sched_engine_active_unlock_bh(engine->sched_engine);
2070 } else if (GRAPHICS_VER(dev_priv) > 6) {
2071 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2072 ENGINE_READ(engine, RING_PP_DIR_BASE));
2073 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2074 ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2075 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2076 ENGINE_READ(engine, RING_PP_DIR_DCLV));
2077 }
2078 }
2079
print_request_ring(struct drm_printer * m,struct i915_request * rq)2080 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2081 {
2082 struct i915_vma_resource *vma_res = rq->batch_res;
2083 void *ring;
2084 int size;
2085
2086 drm_printf(m,
2087 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2088 rq->head, rq->postfix, rq->tail,
2089 vma_res ? upper_32_bits(vma_res->start) : ~0u,
2090 vma_res ? lower_32_bits(vma_res->start) : ~0u);
2091
2092 size = rq->tail - rq->head;
2093 if (rq->tail < rq->head)
2094 size += rq->ring->size;
2095
2096 ring = kmalloc(size, GFP_ATOMIC);
2097 if (ring) {
2098 const void *vaddr = rq->ring->vaddr;
2099 unsigned int head = rq->head;
2100 unsigned int len = 0;
2101
2102 if (rq->tail < head) {
2103 len = rq->ring->size - head;
2104 memcpy(ring, vaddr + head, len);
2105 head = 0;
2106 }
2107 memcpy(ring + len, vaddr + head, size - len);
2108
2109 hexdump(m, ring, size);
2110 kfree(ring);
2111 }
2112 }
2113
read_ul(void * p,size_t x)2114 static unsigned long read_ul(void *p, size_t x)
2115 {
2116 return *(unsigned long *)(p + x);
2117 }
2118
print_properties(struct intel_engine_cs * engine,struct drm_printer * m)2119 static void print_properties(struct intel_engine_cs *engine,
2120 struct drm_printer *m)
2121 {
2122 static const struct pmap {
2123 size_t offset;
2124 const char *name;
2125 } props[] = {
2126 #define P(x) { \
2127 .offset = offsetof(typeof(engine->props), x), \
2128 .name = #x \
2129 }
2130 P(heartbeat_interval_ms),
2131 P(max_busywait_duration_ns),
2132 P(preempt_timeout_ms),
2133 P(stop_timeout_ms),
2134 P(timeslice_duration_ms),
2135
2136 {},
2137 #undef P
2138 };
2139 const struct pmap *p;
2140
2141 drm_printf(m, "\tProperties:\n");
2142 for (p = props; p->name; p++)
2143 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2144 p->name,
2145 read_ul(&engine->props, p->offset),
2146 read_ul(&engine->defaults, p->offset));
2147 }
2148
engine_dump_request(struct i915_request * rq,struct drm_printer * m,const char * msg)2149 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2150 {
2151 struct intel_timeline *tl = get_timeline(rq);
2152
2153 i915_request_show(m, rq, msg, 0);
2154
2155 drm_printf(m, "\t\tring->start: 0x%08x\n",
2156 i915_ggtt_offset(rq->ring->vma));
2157 drm_printf(m, "\t\tring->head: 0x%08x\n",
2158 rq->ring->head);
2159 drm_printf(m, "\t\tring->tail: 0x%08x\n",
2160 rq->ring->tail);
2161 drm_printf(m, "\t\tring->emit: 0x%08x\n",
2162 rq->ring->emit);
2163 drm_printf(m, "\t\tring->space: 0x%08x\n",
2164 rq->ring->space);
2165
2166 if (tl) {
2167 drm_printf(m, "\t\tring->hwsp: 0x%08x\n",
2168 tl->hwsp_offset);
2169 intel_timeline_put(tl);
2170 }
2171
2172 print_request_ring(m, rq);
2173
2174 if (rq->context->lrc_reg_state) {
2175 drm_printf(m, "Logical Ring Context:\n");
2176 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2177 }
2178 }
2179
intel_engine_dump_active_requests(struct list_head * requests,struct i915_request * hung_rq,struct drm_printer * m)2180 void intel_engine_dump_active_requests(struct list_head *requests,
2181 struct i915_request *hung_rq,
2182 struct drm_printer *m)
2183 {
2184 struct i915_request *rq;
2185 const char *msg;
2186 enum i915_request_state state;
2187
2188 list_for_each_entry(rq, requests, sched.link) {
2189 if (rq == hung_rq)
2190 continue;
2191
2192 state = i915_test_request_state(rq);
2193 if (state < I915_REQUEST_QUEUED)
2194 continue;
2195
2196 if (state == I915_REQUEST_ACTIVE)
2197 msg = "\t\tactive on engine";
2198 else
2199 msg = "\t\tactive in queue";
2200
2201 engine_dump_request(rq, m, msg);
2202 }
2203 }
2204
engine_dump_active_requests(struct intel_engine_cs * engine,struct drm_printer * m)2205 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2206 struct drm_printer *m)
2207 {
2208 struct intel_context *hung_ce = NULL;
2209 struct i915_request *hung_rq = NULL;
2210
2211 /*
2212 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2213 * The GPU is still running so requests are still executing and any
2214 * hardware reads will be out of date by the time they are reported.
2215 * But the intention here is just to report an instantaneous snapshot
2216 * so that's fine.
2217 */
2218 intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2219
2220 drm_printf(m, "\tRequests:\n");
2221
2222 if (hung_rq)
2223 engine_dump_request(hung_rq, m, "\t\thung");
2224 else if (hung_ce)
2225 drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2226
2227 if (intel_uc_uses_guc_submission(&engine->gt->uc))
2228 intel_guc_dump_active_requests(engine, hung_rq, m);
2229 else
2230 intel_execlists_dump_active_requests(engine, hung_rq, m);
2231
2232 if (hung_rq)
2233 i915_request_put(hung_rq);
2234 }
2235
intel_engine_dump(struct intel_engine_cs * engine,struct drm_printer * m,const char * header,...)2236 void intel_engine_dump(struct intel_engine_cs *engine,
2237 struct drm_printer *m,
2238 const char *header, ...)
2239 {
2240 struct i915_gpu_error * const error = &engine->i915->gpu_error;
2241 struct i915_request *rq;
2242 intel_wakeref_t wakeref;
2243 ktime_t dummy;
2244
2245 if (header) {
2246 va_list ap;
2247
2248 va_start(ap, header);
2249 drm_vprintf(m, header, &ap);
2250 va_end(ap);
2251 }
2252
2253 if (intel_gt_is_wedged(engine->gt))
2254 drm_printf(m, "*** WEDGED ***\n");
2255
2256 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2257 drm_printf(m, "\tBarriers?: %s\n",
2258 str_yes_no(!llist_empty(&engine->barrier_tasks)));
2259 drm_printf(m, "\tLatency: %luus\n",
2260 ewma__engine_latency_read(&engine->latency));
2261 if (intel_engine_supports_stats(engine))
2262 drm_printf(m, "\tRuntime: %llums\n",
2263 ktime_to_ms(intel_engine_get_busy_time(engine,
2264 &dummy)));
2265 drm_printf(m, "\tForcewake: %x domains, %d active\n",
2266 engine->fw_domain, READ_ONCE(engine->fw_active));
2267
2268 rcu_read_lock();
2269 rq = READ_ONCE(engine->heartbeat.systole);
2270 if (rq)
2271 drm_printf(m, "\tHeartbeat: %d ms ago\n",
2272 jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2273 rcu_read_unlock();
2274 drm_printf(m, "\tReset count: %d (global %d)\n",
2275 i915_reset_engine_count(error, engine),
2276 i915_reset_count(error));
2277 print_properties(engine, m);
2278
2279 engine_dump_active_requests(engine, m);
2280
2281 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base);
2282 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2283 if (wakeref) {
2284 intel_engine_print_registers(engine, m);
2285 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2286 } else {
2287 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2288 }
2289
2290 intel_execlists_show_requests(engine, m, i915_request_show, 8);
2291
2292 drm_printf(m, "HWSP:\n");
2293 hexdump(m, engine->status_page.addr, PAGE_SIZE);
2294
2295 drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2296
2297 intel_engine_print_breadcrumbs(engine, m);
2298 }
2299
2300 /**
2301 * intel_engine_get_busy_time() - Return current accumulated engine busyness
2302 * @engine: engine to report on
2303 * @now: monotonic timestamp of sampling
2304 *
2305 * Returns accumulated time @engine was busy since engine stats were enabled.
2306 */
intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)2307 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2308 {
2309 return engine->busyness(engine, now);
2310 }
2311
2312 struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)2313 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2314 unsigned int count, unsigned long flags)
2315 {
2316 if (count == 0)
2317 return ERR_PTR(-EINVAL);
2318
2319 if (count == 1 && !(flags & FORCE_VIRTUAL))
2320 return intel_context_create(siblings[0]);
2321
2322 GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2323 return siblings[0]->cops->create_virtual(siblings, count, flags);
2324 }
2325
engine_execlist_find_hung_request(struct intel_engine_cs * engine)2326 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2327 {
2328 struct i915_request *request, *active = NULL;
2329
2330 /*
2331 * This search does not work in GuC submission mode. However, the GuC
2332 * will report the hanging context directly to the driver itself. So
2333 * the driver should never get here when in GuC mode.
2334 */
2335 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2336
2337 /*
2338 * We are called by the error capture, reset and to dump engine
2339 * state at random points in time. In particular, note that neither is
2340 * crucially ordered with an interrupt. After a hang, the GPU is dead
2341 * and we assume that no more writes can happen (we waited long enough
2342 * for all writes that were in transaction to be flushed) - adding an
2343 * extra delay for a recent interrupt is pointless. Hence, we do
2344 * not need an engine->irq_seqno_barrier() before the seqno reads.
2345 * At all other times, we must assume the GPU is still running, but
2346 * we only care about the snapshot of this moment.
2347 */
2348 lockdep_assert_held(&engine->sched_engine->lock);
2349
2350 rcu_read_lock();
2351 request = execlists_active(&engine->execlists);
2352 if (request) {
2353 struct intel_timeline *tl = request->context->timeline;
2354
2355 list_for_each_entry_from_reverse(request, &tl->requests, link) {
2356 if (__i915_request_is_complete(request))
2357 break;
2358
2359 active = request;
2360 }
2361 }
2362 rcu_read_unlock();
2363 if (active)
2364 return active;
2365
2366 list_for_each_entry(request, &engine->sched_engine->requests,
2367 sched.link) {
2368 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2369 continue;
2370
2371 active = request;
2372 break;
2373 }
2374
2375 return active;
2376 }
2377
intel_engine_get_hung_entity(struct intel_engine_cs * engine,struct intel_context ** ce,struct i915_request ** rq)2378 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2379 struct intel_context **ce, struct i915_request **rq)
2380 {
2381 unsigned long flags;
2382
2383 *ce = intel_engine_get_hung_context(engine);
2384 if (*ce) {
2385 intel_engine_clear_hung_context(engine);
2386
2387 *rq = intel_context_get_active_request(*ce);
2388 return;
2389 }
2390
2391 /*
2392 * Getting here with GuC enabled means it is a forced error capture
2393 * with no actual hang. So, no need to attempt the execlist search.
2394 */
2395 if (intel_uc_uses_guc_submission(&engine->gt->uc))
2396 return;
2397
2398 spin_lock_irqsave(&engine->sched_engine->lock, flags);
2399 *rq = engine_execlist_find_hung_request(engine);
2400 if (*rq)
2401 *rq = i915_request_get_rcu(*rq);
2402 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2403 }
2404
xehp_enable_ccs_engines(struct intel_engine_cs * engine)2405 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2406 {
2407 /*
2408 * If there are any non-fused-off CCS engines, we need to enable CCS
2409 * support in the RCU_MODE register. This only needs to be done once,
2410 * so for simplicity we'll take care of this in the RCS engine's
2411 * resume handler; since the RCS and all CCS engines belong to the
2412 * same reset domain and are reset together, this will also take care
2413 * of re-applying the setting after i915-triggered resets.
2414 */
2415 if (!CCS_MASK(engine->gt))
2416 return;
2417
2418 intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2419 _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2420 }
2421
2422 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2423 #include "mock_engine.c"
2424 #include "selftest_engine.c"
2425 #include "selftest_engine_cs.c"
2426 #endif
2427