1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2008-2018 Intel Corporation
4 */
5
6 #include <linux/sched/mm.h>
7 #include <linux/stop_machine.h>
8 #include <linux/string_helpers.h>
9
10 #include "display/intel_display.h"
11 #include "display/intel_overlay.h"
12
13 #include "gem/i915_gem_context.h"
14
15 #include "gt/intel_gt_regs.h"
16
17 #include "i915_drv.h"
18 #include "i915_file_private.h"
19 #include "i915_gpu_error.h"
20 #include "i915_irq.h"
21 #include "intel_breadcrumbs.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_gt.h"
25 #include "intel_gt_pm.h"
26 #include "intel_gt_requests.h"
27 #include "intel_mchbar_regs.h"
28 #include "intel_pci_config.h"
29 #include "intel_reset.h"
30
31 #include "uc/intel_guc.h"
32
33 #define RESET_MAX_RETRIES 3
34
35 /* XXX How to handle concurrent GGTT updates using tiling registers? */
36 #define RESET_UNDER_STOP_MACHINE 0
37
client_mark_guilty(struct i915_gem_context * ctx,bool banned)38 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned)
39 {
40 struct drm_i915_file_private *file_priv = ctx->file_priv;
41 unsigned long prev_hang;
42 unsigned int score;
43
44 if (IS_ERR_OR_NULL(file_priv))
45 return;
46
47 score = 0;
48 if (banned)
49 score = I915_CLIENT_SCORE_CONTEXT_BAN;
50
51 prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
52 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
53 score += I915_CLIENT_SCORE_HANG_FAST;
54
55 if (score) {
56 atomic_add(score, &file_priv->ban_score);
57
58 drm_dbg(&ctx->i915->drm,
59 "client %s: gained %u ban score, now %u\n",
60 ctx->name, score,
61 atomic_read(&file_priv->ban_score));
62 }
63 }
64
mark_guilty(struct i915_request * rq)65 static bool mark_guilty(struct i915_request *rq)
66 {
67 struct i915_gem_context *ctx;
68 unsigned long prev_hang;
69 bool banned;
70 int i;
71
72 if (intel_context_is_closed(rq->context))
73 return true;
74
75 rcu_read_lock();
76 ctx = rcu_dereference(rq->context->gem_context);
77 if (ctx && !kref_get_unless_zero(&ctx->ref))
78 ctx = NULL;
79 rcu_read_unlock();
80 if (!ctx)
81 return intel_context_is_banned(rq->context);
82
83 atomic_inc(&ctx->guilty_count);
84
85 /* Cool contexts are too cool to be banned! (Used for reset testing.) */
86 if (!i915_gem_context_is_bannable(ctx)) {
87 banned = false;
88 goto out;
89 }
90
91 drm_notice(&ctx->i915->drm,
92 "%s context reset due to GPU hang\n",
93 ctx->name);
94
95 /* Record the timestamp for the last N hangs */
96 prev_hang = ctx->hang_timestamp[0];
97 for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++)
98 ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1];
99 ctx->hang_timestamp[i] = jiffies;
100
101 /* If we have hung N+1 times in rapid succession, we ban the context! */
102 banned = !i915_gem_context_is_recoverable(ctx);
103 if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES))
104 banned = true;
105 if (banned)
106 drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n",
107 ctx->name, atomic_read(&ctx->guilty_count));
108
109 client_mark_guilty(ctx, banned);
110
111 out:
112 i915_gem_context_put(ctx);
113 return banned;
114 }
115
mark_innocent(struct i915_request * rq)116 static void mark_innocent(struct i915_request *rq)
117 {
118 struct i915_gem_context *ctx;
119
120 rcu_read_lock();
121 ctx = rcu_dereference(rq->context->gem_context);
122 if (ctx)
123 atomic_inc(&ctx->active_count);
124 rcu_read_unlock();
125 }
126
__i915_request_reset(struct i915_request * rq,bool guilty)127 void __i915_request_reset(struct i915_request *rq, bool guilty)
128 {
129 bool banned = false;
130
131 RQ_TRACE(rq, "guilty? %s\n", str_yes_no(guilty));
132 GEM_BUG_ON(__i915_request_is_complete(rq));
133
134 rcu_read_lock(); /* protect the GEM context */
135 if (guilty) {
136 i915_request_set_error_once(rq, -EIO);
137 __i915_request_skip(rq);
138 banned = mark_guilty(rq);
139 } else {
140 i915_request_set_error_once(rq, -EAGAIN);
141 mark_innocent(rq);
142 }
143 rcu_read_unlock();
144
145 if (banned)
146 intel_context_ban(rq->context, rq);
147 }
148
i915_in_reset(struct pci_dev * pdev)149 static bool i915_in_reset(struct pci_dev *pdev)
150 {
151 u8 gdrst;
152
153 pci_read_config_byte(pdev, I915_GDRST, &gdrst);
154 return gdrst & GRDOM_RESET_STATUS;
155 }
156
i915_do_reset(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)157 static int i915_do_reset(struct intel_gt *gt,
158 intel_engine_mask_t engine_mask,
159 unsigned int retry)
160 {
161 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
162 int err;
163
164 /* Assert reset for at least 20 usec, and wait for acknowledgement. */
165 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
166 udelay(50);
167 err = wait_for_atomic(i915_in_reset(pdev), 50);
168
169 /* Clear the reset request. */
170 pci_write_config_byte(pdev, I915_GDRST, 0);
171 udelay(50);
172 if (!err)
173 err = wait_for_atomic(!i915_in_reset(pdev), 50);
174
175 return err;
176 }
177
g4x_reset_complete(struct pci_dev * pdev)178 static bool g4x_reset_complete(struct pci_dev *pdev)
179 {
180 u8 gdrst;
181
182 pci_read_config_byte(pdev, I915_GDRST, &gdrst);
183 return (gdrst & GRDOM_RESET_ENABLE) == 0;
184 }
185
g33_do_reset(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)186 static int g33_do_reset(struct intel_gt *gt,
187 intel_engine_mask_t engine_mask,
188 unsigned int retry)
189 {
190 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
191
192 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
193 return wait_for_atomic(g4x_reset_complete(pdev), 50);
194 }
195
g4x_do_reset(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)196 static int g4x_do_reset(struct intel_gt *gt,
197 intel_engine_mask_t engine_mask,
198 unsigned int retry)
199 {
200 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
201 struct intel_uncore *uncore = gt->uncore;
202 int ret;
203
204 /* WaVcpClkGateDisableForMediaReset:ctg,elk */
205 intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, 0, VCP_UNIT_CLOCK_GATE_DISABLE);
206 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D);
207
208 pci_write_config_byte(pdev, I915_GDRST,
209 GRDOM_MEDIA | GRDOM_RESET_ENABLE);
210 ret = wait_for_atomic(g4x_reset_complete(pdev), 50);
211 if (ret) {
212 GT_TRACE(gt, "Wait for media reset failed\n");
213 goto out;
214 }
215
216 pci_write_config_byte(pdev, I915_GDRST,
217 GRDOM_RENDER | GRDOM_RESET_ENABLE);
218 ret = wait_for_atomic(g4x_reset_complete(pdev), 50);
219 if (ret) {
220 GT_TRACE(gt, "Wait for render reset failed\n");
221 goto out;
222 }
223
224 out:
225 pci_write_config_byte(pdev, I915_GDRST, 0);
226
227 intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE, 0);
228 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D);
229
230 return ret;
231 }
232
ilk_do_reset(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)233 static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask,
234 unsigned int retry)
235 {
236 struct intel_uncore *uncore = gt->uncore;
237 int ret;
238
239 intel_uncore_write_fw(uncore, ILK_GDSR,
240 ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE);
241 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR,
242 ILK_GRDOM_RESET_ENABLE, 0,
243 5000, 0,
244 NULL);
245 if (ret) {
246 GT_TRACE(gt, "Wait for render reset failed\n");
247 goto out;
248 }
249
250 intel_uncore_write_fw(uncore, ILK_GDSR,
251 ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE);
252 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR,
253 ILK_GRDOM_RESET_ENABLE, 0,
254 5000, 0,
255 NULL);
256 if (ret) {
257 GT_TRACE(gt, "Wait for media reset failed\n");
258 goto out;
259 }
260
261 out:
262 intel_uncore_write_fw(uncore, ILK_GDSR, 0);
263 intel_uncore_posting_read_fw(uncore, ILK_GDSR);
264 return ret;
265 }
266
267 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */
gen6_hw_domain_reset(struct intel_gt * gt,u32 hw_domain_mask)268 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask)
269 {
270 struct intel_uncore *uncore = gt->uncore;
271 int loops = 2;
272 int err;
273
274 /*
275 * GEN6_GDRST is not in the gt power well, no need to check
276 * for fifo space for the write or forcewake the chip for
277 * the read
278 */
279 do {
280 intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask);
281
282 /*
283 * Wait for the device to ack the reset requests.
284 *
285 * On some platforms, e.g. Jasperlake, we see that the
286 * engine register state is not cleared until shortly after
287 * GDRST reports completion, causing a failure as we try
288 * to immediately resume while the internal state is still
289 * in flux. If we immediately repeat the reset, the second
290 * reset appears to serialise with the first, and since
291 * it is a no-op, the registers should retain their reset
292 * value. However, there is still a concern that upon
293 * leaving the second reset, the internal engine state
294 * is still in flux and not ready for resuming.
295 */
296 err = __intel_wait_for_register_fw(uncore, GEN6_GDRST,
297 hw_domain_mask, 0,
298 2000, 0,
299 NULL);
300 } while (err == 0 && --loops);
301 if (err)
302 GT_TRACE(gt,
303 "Wait for 0x%08x engines reset failed\n",
304 hw_domain_mask);
305
306 /*
307 * As we have observed that the engine state is still volatile
308 * after GDRST is acked, impose a small delay to let everything settle.
309 */
310 udelay(50);
311
312 return err;
313 }
314
__gen6_reset_engines(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)315 static int __gen6_reset_engines(struct intel_gt *gt,
316 intel_engine_mask_t engine_mask,
317 unsigned int retry)
318 {
319 struct intel_engine_cs *engine;
320 u32 hw_mask;
321
322 if (engine_mask == ALL_ENGINES) {
323 hw_mask = GEN6_GRDOM_FULL;
324 } else {
325 intel_engine_mask_t tmp;
326
327 hw_mask = 0;
328 for_each_engine_masked(engine, gt, engine_mask, tmp) {
329 hw_mask |= engine->reset_domain;
330 }
331 }
332
333 return gen6_hw_domain_reset(gt, hw_mask);
334 }
335
gen6_reset_engines(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)336 static int gen6_reset_engines(struct intel_gt *gt,
337 intel_engine_mask_t engine_mask,
338 unsigned int retry)
339 {
340 unsigned long flags;
341 int ret;
342
343 spin_lock_irqsave(>->uncore->lock, flags);
344 ret = __gen6_reset_engines(gt, engine_mask, retry);
345 spin_unlock_irqrestore(>->uncore->lock, flags);
346
347 return ret;
348 }
349
find_sfc_paired_vecs_engine(struct intel_engine_cs * engine)350 static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine)
351 {
352 int vecs_id;
353
354 GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS);
355
356 vecs_id = _VECS((engine->instance) / 2);
357
358 return engine->gt->engine[vecs_id];
359 }
360
361 struct sfc_lock_data {
362 i915_reg_t lock_reg;
363 i915_reg_t ack_reg;
364 i915_reg_t usage_reg;
365 u32 lock_bit;
366 u32 ack_bit;
367 u32 usage_bit;
368 u32 reset_bit;
369 };
370
get_sfc_forced_lock_data(struct intel_engine_cs * engine,struct sfc_lock_data * sfc_lock)371 static void get_sfc_forced_lock_data(struct intel_engine_cs *engine,
372 struct sfc_lock_data *sfc_lock)
373 {
374 switch (engine->class) {
375 default:
376 MISSING_CASE(engine->class);
377 fallthrough;
378 case VIDEO_DECODE_CLASS:
379 sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine->mmio_base);
380 sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT;
381
382 sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base);
383 sfc_lock->ack_bit = GEN11_VCS_SFC_LOCK_ACK_BIT;
384
385 sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base);
386 sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT;
387 sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance);
388
389 break;
390 case VIDEO_ENHANCEMENT_CLASS:
391 sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine->mmio_base);
392 sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT;
393
394 sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine->mmio_base);
395 sfc_lock->ack_bit = GEN11_VECS_SFC_LOCK_ACK_BIT;
396
397 sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine->mmio_base);
398 sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT;
399 sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance);
400
401 break;
402 }
403 }
404
gen11_lock_sfc(struct intel_engine_cs * engine,u32 * reset_mask,u32 * unlock_mask)405 static int gen11_lock_sfc(struct intel_engine_cs *engine,
406 u32 *reset_mask,
407 u32 *unlock_mask)
408 {
409 struct intel_uncore *uncore = engine->uncore;
410 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access;
411 struct sfc_lock_data sfc_lock;
412 bool lock_obtained, lock_to_other = false;
413 int ret;
414
415 switch (engine->class) {
416 case VIDEO_DECODE_CLASS:
417 if ((BIT(engine->instance) & vdbox_sfc_access) == 0)
418 return 0;
419
420 fallthrough;
421 case VIDEO_ENHANCEMENT_CLASS:
422 get_sfc_forced_lock_data(engine, &sfc_lock);
423
424 break;
425 default:
426 return 0;
427 }
428
429 if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) {
430 struct intel_engine_cs *paired_vecs;
431
432 if (engine->class != VIDEO_DECODE_CLASS ||
433 GRAPHICS_VER(engine->i915) != 12)
434 return 0;
435
436 /*
437 * Wa_14010733141
438 *
439 * If the VCS-MFX isn't using the SFC, we also need to check
440 * whether VCS-HCP is using it. If so, we need to issue a *VE*
441 * forced lock on the VE engine that shares the same SFC.
442 */
443 if (!(intel_uncore_read_fw(uncore,
444 GEN12_HCP_SFC_LOCK_STATUS(engine->mmio_base)) &
445 GEN12_HCP_SFC_USAGE_BIT))
446 return 0;
447
448 paired_vecs = find_sfc_paired_vecs_engine(engine);
449 get_sfc_forced_lock_data(paired_vecs, &sfc_lock);
450 lock_to_other = true;
451 *unlock_mask |= paired_vecs->mask;
452 } else {
453 *unlock_mask |= engine->mask;
454 }
455
456 /*
457 * If the engine is using an SFC, tell the engine that a software reset
458 * is going to happen. The engine will then try to force lock the SFC.
459 * If SFC ends up being locked to the engine we want to reset, we have
460 * to reset it as well (we will unlock it once the reset sequence is
461 * completed).
462 */
463 intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, 0, sfc_lock.lock_bit);
464
465 ret = __intel_wait_for_register_fw(uncore,
466 sfc_lock.ack_reg,
467 sfc_lock.ack_bit,
468 sfc_lock.ack_bit,
469 1000, 0, NULL);
470
471 /*
472 * Was the SFC released while we were trying to lock it?
473 *
474 * We should reset both the engine and the SFC if:
475 * - We were locking the SFC to this engine and the lock succeeded
476 * OR
477 * - We were locking the SFC to a different engine (Wa_14010733141)
478 * but the SFC was released before the lock was obtained.
479 *
480 * Otherwise we need only reset the engine by itself and we can
481 * leave the SFC alone.
482 */
483 lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) &
484 sfc_lock.usage_bit) != 0;
485 if (lock_obtained == lock_to_other)
486 return 0;
487
488 if (ret) {
489 ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n");
490 return ret;
491 }
492
493 *reset_mask |= sfc_lock.reset_bit;
494 return 0;
495 }
496
gen11_unlock_sfc(struct intel_engine_cs * engine)497 static void gen11_unlock_sfc(struct intel_engine_cs *engine)
498 {
499 struct intel_uncore *uncore = engine->uncore;
500 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access;
501 struct sfc_lock_data sfc_lock = {};
502
503 if (engine->class != VIDEO_DECODE_CLASS &&
504 engine->class != VIDEO_ENHANCEMENT_CLASS)
505 return;
506
507 if (engine->class == VIDEO_DECODE_CLASS &&
508 (BIT(engine->instance) & vdbox_sfc_access) == 0)
509 return;
510
511 get_sfc_forced_lock_data(engine, &sfc_lock);
512
513 intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit, 0);
514 }
515
__gen11_reset_engines(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)516 static int __gen11_reset_engines(struct intel_gt *gt,
517 intel_engine_mask_t engine_mask,
518 unsigned int retry)
519 {
520 struct intel_engine_cs *engine;
521 intel_engine_mask_t tmp;
522 u32 reset_mask, unlock_mask = 0;
523 int ret;
524
525 if (engine_mask == ALL_ENGINES) {
526 reset_mask = GEN11_GRDOM_FULL;
527 } else {
528 reset_mask = 0;
529 for_each_engine_masked(engine, gt, engine_mask, tmp) {
530 reset_mask |= engine->reset_domain;
531 ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask);
532 if (ret)
533 goto sfc_unlock;
534 }
535 }
536
537 ret = gen6_hw_domain_reset(gt, reset_mask);
538
539 sfc_unlock:
540 /*
541 * We unlock the SFC based on the lock status and not the result of
542 * gen11_lock_sfc to make sure that we clean properly if something
543 * wrong happened during the lock (e.g. lock acquired after timeout
544 * expiration).
545 *
546 * Due to Wa_14010733141, we may have locked an SFC to an engine that
547 * wasn't being reset. So instead of calling gen11_unlock_sfc()
548 * on engine_mask, we instead call it on the mask of engines that our
549 * gen11_lock_sfc() calls told us actually had locks attempted.
550 */
551 for_each_engine_masked(engine, gt, unlock_mask, tmp)
552 gen11_unlock_sfc(engine);
553
554 return ret;
555 }
556
gen8_engine_reset_prepare(struct intel_engine_cs * engine)557 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine)
558 {
559 struct intel_uncore *uncore = engine->uncore;
560 const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base);
561 u32 request, mask, ack;
562 int ret;
563
564 if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1)))
565 return -ETIMEDOUT;
566
567 ack = intel_uncore_read_fw(uncore, reg);
568 if (ack & RESET_CTL_CAT_ERROR) {
569 /*
570 * For catastrophic errors, ready-for-reset sequence
571 * needs to be bypassed: HAS#396813
572 */
573 request = RESET_CTL_CAT_ERROR;
574 mask = RESET_CTL_CAT_ERROR;
575
576 /* Catastrophic errors need to be cleared by HW */
577 ack = 0;
578 } else if (!(ack & RESET_CTL_READY_TO_RESET)) {
579 request = RESET_CTL_REQUEST_RESET;
580 mask = RESET_CTL_READY_TO_RESET;
581 ack = RESET_CTL_READY_TO_RESET;
582 } else {
583 return 0;
584 }
585
586 intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request));
587 ret = __intel_wait_for_register_fw(uncore, reg, mask, ack,
588 700, 0, NULL);
589 if (ret)
590 drm_err(&engine->i915->drm,
591 "%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n",
592 engine->name, request,
593 intel_uncore_read_fw(uncore, reg));
594
595 return ret;
596 }
597
gen8_engine_reset_cancel(struct intel_engine_cs * engine)598 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine)
599 {
600 intel_uncore_write_fw(engine->uncore,
601 RING_RESET_CTL(engine->mmio_base),
602 _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET));
603 }
604
gen8_reset_engines(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)605 static int gen8_reset_engines(struct intel_gt *gt,
606 intel_engine_mask_t engine_mask,
607 unsigned int retry)
608 {
609 struct intel_engine_cs *engine;
610 const bool reset_non_ready = retry >= 1;
611 intel_engine_mask_t tmp;
612 unsigned long flags;
613 int ret;
614
615 spin_lock_irqsave(>->uncore->lock, flags);
616
617 for_each_engine_masked(engine, gt, engine_mask, tmp) {
618 ret = gen8_engine_reset_prepare(engine);
619 if (ret && !reset_non_ready)
620 goto skip_reset;
621
622 /*
623 * If this is not the first failed attempt to prepare,
624 * we decide to proceed anyway.
625 *
626 * By doing so we risk context corruption and with
627 * some gens (kbl), possible system hang if reset
628 * happens during active bb execution.
629 *
630 * We rather take context corruption instead of
631 * failed reset with a wedged driver/gpu. And
632 * active bb execution case should be covered by
633 * stop_engines() we have before the reset.
634 */
635 }
636
637 /*
638 * Wa_22011100796:dg2, whenever Full soft reset is required,
639 * reset all individual engines firstly, and then do a full soft reset.
640 *
641 * This is best effort, so ignore any error from the initial reset.
642 */
643 if (IS_DG2(gt->i915) && engine_mask == ALL_ENGINES)
644 __gen11_reset_engines(gt, gt->info.engine_mask, 0);
645
646 if (GRAPHICS_VER(gt->i915) >= 11)
647 ret = __gen11_reset_engines(gt, engine_mask, retry);
648 else
649 ret = __gen6_reset_engines(gt, engine_mask, retry);
650
651 skip_reset:
652 for_each_engine_masked(engine, gt, engine_mask, tmp)
653 gen8_engine_reset_cancel(engine);
654
655 spin_unlock_irqrestore(>->uncore->lock, flags);
656
657 return ret;
658 }
659
mock_reset(struct intel_gt * gt,intel_engine_mask_t mask,unsigned int retry)660 static int mock_reset(struct intel_gt *gt,
661 intel_engine_mask_t mask,
662 unsigned int retry)
663 {
664 return 0;
665 }
666
667 typedef int (*reset_func)(struct intel_gt *,
668 intel_engine_mask_t engine_mask,
669 unsigned int retry);
670
intel_get_gpu_reset(const struct intel_gt * gt)671 static reset_func intel_get_gpu_reset(const struct intel_gt *gt)
672 {
673 struct drm_i915_private *i915 = gt->i915;
674
675 if (is_mock_gt(gt))
676 return mock_reset;
677 else if (GRAPHICS_VER(i915) >= 8)
678 return gen8_reset_engines;
679 else if (GRAPHICS_VER(i915) >= 6)
680 return gen6_reset_engines;
681 else if (GRAPHICS_VER(i915) >= 5)
682 return ilk_do_reset;
683 else if (IS_G4X(i915))
684 return g4x_do_reset;
685 else if (IS_G33(i915) || IS_PINEVIEW(i915))
686 return g33_do_reset;
687 else if (GRAPHICS_VER(i915) >= 3)
688 return i915_do_reset;
689 else
690 return NULL;
691 }
692
__intel_gt_reset(struct intel_gt * gt,intel_engine_mask_t engine_mask)693 int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask)
694 {
695 const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1;
696 reset_func reset;
697 int ret = -ETIMEDOUT;
698 int retry;
699
700 reset = intel_get_gpu_reset(gt);
701 if (!reset)
702 return -ENODEV;
703
704 /*
705 * If the power well sleeps during the reset, the reset
706 * request may be dropped and never completes (causing -EIO).
707 */
708 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
709 for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) {
710 GT_TRACE(gt, "engine_mask=%x\n", engine_mask);
711 preempt_disable();
712 ret = reset(gt, engine_mask, retry);
713 preempt_enable();
714 }
715 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
716
717 return ret;
718 }
719
intel_has_gpu_reset(const struct intel_gt * gt)720 bool intel_has_gpu_reset(const struct intel_gt *gt)
721 {
722 if (!gt->i915->params.reset)
723 return NULL;
724
725 return intel_get_gpu_reset(gt);
726 }
727
intel_has_reset_engine(const struct intel_gt * gt)728 bool intel_has_reset_engine(const struct intel_gt *gt)
729 {
730 if (gt->i915->params.reset < 2)
731 return false;
732
733 return INTEL_INFO(gt->i915)->has_reset_engine;
734 }
735
intel_reset_guc(struct intel_gt * gt)736 int intel_reset_guc(struct intel_gt *gt)
737 {
738 u32 guc_domain =
739 GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC;
740 int ret;
741
742 GEM_BUG_ON(!HAS_GT_UC(gt->i915));
743
744 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
745 ret = gen6_hw_domain_reset(gt, guc_domain);
746 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
747
748 return ret;
749 }
750
751 /*
752 * Ensure irq handler finishes, and not run again.
753 * Also return the active request so that we only search for it once.
754 */
reset_prepare_engine(struct intel_engine_cs * engine)755 static void reset_prepare_engine(struct intel_engine_cs *engine)
756 {
757 /*
758 * During the reset sequence, we must prevent the engine from
759 * entering RC6. As the context state is undefined until we restart
760 * the engine, if it does enter RC6 during the reset, the state
761 * written to the powercontext is undefined and so we may lose
762 * GPU state upon resume, i.e. fail to restart after a reset.
763 */
764 intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
765 if (engine->reset.prepare)
766 engine->reset.prepare(engine);
767 }
768
revoke_mmaps(struct intel_gt * gt)769 static void revoke_mmaps(struct intel_gt *gt)
770 {
771 int i;
772
773 for (i = 0; i < gt->ggtt->num_fences; i++) {
774 struct drm_vma_offset_node *node;
775 struct i915_vma *vma;
776 u64 vma_offset;
777
778 vma = READ_ONCE(gt->ggtt->fence_regs[i].vma);
779 if (!vma)
780 continue;
781
782 if (!i915_vma_has_userfault(vma))
783 continue;
784
785 GEM_BUG_ON(vma->fence != >->ggtt->fence_regs[i]);
786
787 if (!vma->mmo)
788 continue;
789
790 node = &vma->mmo->vma_node;
791 vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
792
793 unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping,
794 drm_vma_node_offset_addr(node) + vma_offset,
795 vma->size,
796 1);
797 }
798 }
799
reset_prepare(struct intel_gt * gt)800 static intel_engine_mask_t reset_prepare(struct intel_gt *gt)
801 {
802 struct intel_engine_cs *engine;
803 intel_engine_mask_t awake = 0;
804 enum intel_engine_id id;
805
806 /* For GuC mode, ensure submission is disabled before stopping ring */
807 intel_uc_reset_prepare(>->uc);
808
809 for_each_engine(engine, gt, id) {
810 if (intel_engine_pm_get_if_awake(engine))
811 awake |= engine->mask;
812 reset_prepare_engine(engine);
813 }
814
815 return awake;
816 }
817
gt_revoke(struct intel_gt * gt)818 static void gt_revoke(struct intel_gt *gt)
819 {
820 revoke_mmaps(gt);
821 }
822
gt_reset(struct intel_gt * gt,intel_engine_mask_t stalled_mask)823 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask)
824 {
825 struct intel_engine_cs *engine;
826 enum intel_engine_id id;
827 int err;
828
829 /*
830 * Everything depends on having the GTT running, so we need to start
831 * there.
832 */
833 err = i915_ggtt_enable_hw(gt->i915);
834 if (err)
835 return err;
836
837 local_bh_disable();
838 for_each_engine(engine, gt, id)
839 __intel_engine_reset(engine, stalled_mask & engine->mask);
840 local_bh_enable();
841
842 intel_uc_reset(>->uc, ALL_ENGINES);
843
844 intel_ggtt_restore_fences(gt->ggtt);
845
846 return err;
847 }
848
reset_finish_engine(struct intel_engine_cs * engine)849 static void reset_finish_engine(struct intel_engine_cs *engine)
850 {
851 if (engine->reset.finish)
852 engine->reset.finish(engine);
853 intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
854
855 intel_engine_signal_breadcrumbs(engine);
856 }
857
reset_finish(struct intel_gt * gt,intel_engine_mask_t awake)858 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake)
859 {
860 struct intel_engine_cs *engine;
861 enum intel_engine_id id;
862
863 for_each_engine(engine, gt, id) {
864 reset_finish_engine(engine);
865 if (awake & engine->mask)
866 intel_engine_pm_put(engine);
867 }
868
869 intel_uc_reset_finish(>->uc);
870 }
871
nop_submit_request(struct i915_request * request)872 static void nop_submit_request(struct i915_request *request)
873 {
874 RQ_TRACE(request, "-EIO\n");
875
876 request = i915_request_mark_eio(request);
877 if (request) {
878 i915_request_submit(request);
879 intel_engine_signal_breadcrumbs(request->engine);
880
881 i915_request_put(request);
882 }
883 }
884
__intel_gt_set_wedged(struct intel_gt * gt)885 static void __intel_gt_set_wedged(struct intel_gt *gt)
886 {
887 struct intel_engine_cs *engine;
888 intel_engine_mask_t awake;
889 enum intel_engine_id id;
890
891 if (test_bit(I915_WEDGED, >->reset.flags))
892 return;
893
894 GT_TRACE(gt, "start\n");
895
896 /*
897 * First, stop submission to hw, but do not yet complete requests by
898 * rolling the global seqno forward (since this would complete requests
899 * for which we haven't set the fence error to EIO yet).
900 */
901 awake = reset_prepare(gt);
902
903 /* Even if the GPU reset fails, it should still stop the engines */
904 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
905 __intel_gt_reset(gt, ALL_ENGINES);
906
907 for_each_engine(engine, gt, id)
908 engine->submit_request = nop_submit_request;
909
910 /*
911 * Make sure no request can slip through without getting completed by
912 * either this call here to intel_engine_write_global_seqno, or the one
913 * in nop_submit_request.
914 */
915 synchronize_rcu_expedited();
916 set_bit(I915_WEDGED, >->reset.flags);
917
918 /* Mark all executing requests as skipped */
919 local_bh_disable();
920 for_each_engine(engine, gt, id)
921 if (engine->reset.cancel)
922 engine->reset.cancel(engine);
923 intel_uc_cancel_requests(>->uc);
924 local_bh_enable();
925
926 reset_finish(gt, awake);
927
928 GT_TRACE(gt, "end\n");
929 }
930
intel_gt_set_wedged(struct intel_gt * gt)931 void intel_gt_set_wedged(struct intel_gt *gt)
932 {
933 intel_wakeref_t wakeref;
934
935 if (test_bit(I915_WEDGED, >->reset.flags))
936 return;
937
938 wakeref = intel_runtime_pm_get(gt->uncore->rpm);
939 mutex_lock(>->reset.mutex);
940
941 if (GEM_SHOW_DEBUG()) {
942 struct drm_printer p = drm_debug_printer(__func__);
943 struct intel_engine_cs *engine;
944 enum intel_engine_id id;
945
946 drm_printf(&p, "called from %pS\n", (void *)_RET_IP_);
947 for_each_engine(engine, gt, id) {
948 if (intel_engine_is_idle(engine))
949 continue;
950
951 intel_engine_dump(engine, &p, "%s\n", engine->name);
952 }
953 }
954
955 __intel_gt_set_wedged(gt);
956
957 mutex_unlock(>->reset.mutex);
958 intel_runtime_pm_put(gt->uncore->rpm, wakeref);
959 }
960
__intel_gt_unset_wedged(struct intel_gt * gt)961 static bool __intel_gt_unset_wedged(struct intel_gt *gt)
962 {
963 struct intel_gt_timelines *timelines = >->timelines;
964 struct intel_timeline *tl;
965 bool ok;
966
967 if (!test_bit(I915_WEDGED, >->reset.flags))
968 return true;
969
970 /* Never fully initialised, recovery impossible */
971 if (intel_gt_has_unrecoverable_error(gt))
972 return false;
973
974 GT_TRACE(gt, "start\n");
975
976 /*
977 * Before unwedging, make sure that all pending operations
978 * are flushed and errored out - we may have requests waiting upon
979 * third party fences. We marked all inflight requests as EIO, and
980 * every execbuf since returned EIO, for consistency we want all
981 * the currently pending requests to also be marked as EIO, which
982 * is done inside our nop_submit_request - and so we must wait.
983 *
984 * No more can be submitted until we reset the wedged bit.
985 */
986 spin_lock(&timelines->lock);
987 list_for_each_entry(tl, &timelines->active_list, link) {
988 struct dma_fence *fence;
989
990 fence = i915_active_fence_get(&tl->last_request);
991 if (!fence)
992 continue;
993
994 spin_unlock(&timelines->lock);
995
996 /*
997 * All internal dependencies (i915_requests) will have
998 * been flushed by the set-wedge, but we may be stuck waiting
999 * for external fences. These should all be capped to 10s
1000 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded
1001 * in the worst case.
1002 */
1003 dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT);
1004 dma_fence_put(fence);
1005
1006 /* Restart iteration after droping lock */
1007 spin_lock(&timelines->lock);
1008 tl = list_entry(&timelines->active_list, typeof(*tl), link);
1009 }
1010 spin_unlock(&timelines->lock);
1011
1012 /* We must reset pending GPU events before restoring our submission */
1013 ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */
1014 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1015 ok = __intel_gt_reset(gt, ALL_ENGINES) == 0;
1016 if (!ok) {
1017 /*
1018 * Warn CI about the unrecoverable wedged condition.
1019 * Time for a reboot.
1020 */
1021 add_taint_for_CI(gt->i915, TAINT_WARN);
1022 return false;
1023 }
1024
1025 /*
1026 * Undo nop_submit_request. We prevent all new i915 requests from
1027 * being queued (by disallowing execbuf whilst wedged) so having
1028 * waited for all active requests above, we know the system is idle
1029 * and do not have to worry about a thread being inside
1030 * engine->submit_request() as we swap over. So unlike installing
1031 * the nop_submit_request on reset, we can do this from normal
1032 * context and do not require stop_machine().
1033 */
1034 intel_engines_reset_default_submission(gt);
1035
1036 GT_TRACE(gt, "end\n");
1037
1038 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
1039 clear_bit(I915_WEDGED, >->reset.flags);
1040
1041 return true;
1042 }
1043
intel_gt_unset_wedged(struct intel_gt * gt)1044 bool intel_gt_unset_wedged(struct intel_gt *gt)
1045 {
1046 bool result;
1047
1048 mutex_lock(>->reset.mutex);
1049 result = __intel_gt_unset_wedged(gt);
1050 mutex_unlock(>->reset.mutex);
1051
1052 return result;
1053 }
1054
do_reset(struct intel_gt * gt,intel_engine_mask_t stalled_mask)1055 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask)
1056 {
1057 int err, i;
1058
1059 err = __intel_gt_reset(gt, ALL_ENGINES);
1060 for (i = 0; err && i < RESET_MAX_RETRIES; i++) {
1061 msleep(10 * (i + 1));
1062 err = __intel_gt_reset(gt, ALL_ENGINES);
1063 }
1064 if (err)
1065 return err;
1066
1067 return gt_reset(gt, stalled_mask);
1068 }
1069
resume(struct intel_gt * gt)1070 static int resume(struct intel_gt *gt)
1071 {
1072 struct intel_engine_cs *engine;
1073 enum intel_engine_id id;
1074 int ret;
1075
1076 for_each_engine(engine, gt, id) {
1077 ret = intel_engine_resume(engine);
1078 if (ret)
1079 return ret;
1080 }
1081
1082 return 0;
1083 }
1084
1085 /**
1086 * intel_gt_reset - reset chip after a hang
1087 * @gt: #intel_gt to reset
1088 * @stalled_mask: mask of the stalled engines with the guilty requests
1089 * @reason: user error message for why we are resetting
1090 *
1091 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1092 * on failure.
1093 *
1094 * Procedure is fairly simple:
1095 * - reset the chip using the reset reg
1096 * - re-init context state
1097 * - re-init hardware status page
1098 * - re-init ring buffer
1099 * - re-init interrupt state
1100 * - re-init display
1101 */
intel_gt_reset(struct intel_gt * gt,intel_engine_mask_t stalled_mask,const char * reason)1102 void intel_gt_reset(struct intel_gt *gt,
1103 intel_engine_mask_t stalled_mask,
1104 const char *reason)
1105 {
1106 intel_engine_mask_t awake;
1107 int ret;
1108
1109 GT_TRACE(gt, "flags=%lx\n", gt->reset.flags);
1110
1111 might_sleep();
1112 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, >->reset.flags));
1113
1114 /*
1115 * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence
1116 * critical section like gpu reset.
1117 */
1118 gt_revoke(gt);
1119
1120 mutex_lock(>->reset.mutex);
1121
1122 /* Clear any previous failed attempts at recovery. Time to try again. */
1123 if (!__intel_gt_unset_wedged(gt))
1124 goto unlock;
1125
1126 if (reason)
1127 drm_notice(>->i915->drm,
1128 "Resetting chip for %s\n", reason);
1129 atomic_inc(>->i915->gpu_error.reset_count);
1130
1131 awake = reset_prepare(gt);
1132
1133 if (!intel_has_gpu_reset(gt)) {
1134 if (gt->i915->params.reset)
1135 drm_err(>->i915->drm, "GPU reset not supported\n");
1136 else
1137 drm_dbg(>->i915->drm, "GPU reset disabled\n");
1138 goto error;
1139 }
1140
1141 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1142 intel_runtime_pm_disable_interrupts(gt->i915);
1143
1144 if (do_reset(gt, stalled_mask)) {
1145 drm_err(>->i915->drm, "Failed to reset chip\n");
1146 goto taint;
1147 }
1148
1149 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1150 intel_runtime_pm_enable_interrupts(gt->i915);
1151
1152 intel_overlay_reset(gt->i915);
1153
1154 /*
1155 * Next we need to restore the context, but we don't use those
1156 * yet either...
1157 *
1158 * Ring buffer needs to be re-initialized in the KMS case, or if X
1159 * was running at the time of the reset (i.e. we weren't VT
1160 * switched away).
1161 */
1162 ret = intel_gt_init_hw(gt);
1163 if (ret) {
1164 drm_err(>->i915->drm,
1165 "Failed to initialise HW following reset (%d)\n",
1166 ret);
1167 goto taint;
1168 }
1169
1170 ret = resume(gt);
1171 if (ret)
1172 goto taint;
1173
1174 finish:
1175 reset_finish(gt, awake);
1176 unlock:
1177 mutex_unlock(>->reset.mutex);
1178 return;
1179
1180 taint:
1181 /*
1182 * History tells us that if we cannot reset the GPU now, we
1183 * never will. This then impacts everything that is run
1184 * subsequently. On failing the reset, we mark the driver
1185 * as wedged, preventing further execution on the GPU.
1186 * We also want to go one step further and add a taint to the
1187 * kernel so that any subsequent faults can be traced back to
1188 * this failure. This is important for CI, where if the
1189 * GPU/driver fails we would like to reboot and restart testing
1190 * rather than continue on into oblivion. For everyone else,
1191 * the system should still plod along, but they have been warned!
1192 */
1193 add_taint_for_CI(gt->i915, TAINT_WARN);
1194 error:
1195 __intel_gt_set_wedged(gt);
1196 goto finish;
1197 }
1198
intel_gt_reset_engine(struct intel_engine_cs * engine)1199 static int intel_gt_reset_engine(struct intel_engine_cs *engine)
1200 {
1201 return __intel_gt_reset(engine->gt, engine->mask);
1202 }
1203
__intel_engine_reset_bh(struct intel_engine_cs * engine,const char * msg)1204 int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg)
1205 {
1206 struct intel_gt *gt = engine->gt;
1207 int ret;
1208
1209 ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags);
1210 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, >->reset.flags));
1211
1212 if (intel_engine_uses_guc(engine))
1213 return -ENODEV;
1214
1215 if (!intel_engine_pm_get_if_awake(engine))
1216 return 0;
1217
1218 reset_prepare_engine(engine);
1219
1220 if (msg)
1221 drm_notice(&engine->i915->drm,
1222 "Resetting %s for %s\n", engine->name, msg);
1223 atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]);
1224
1225 ret = intel_gt_reset_engine(engine);
1226 if (ret) {
1227 /* If we fail here, we expect to fallback to a global reset */
1228 ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret);
1229 goto out;
1230 }
1231
1232 /*
1233 * The request that caused the hang is stuck on elsp, we know the
1234 * active request and can drop it, adjust head to skip the offending
1235 * request to resume executing remaining requests in the queue.
1236 */
1237 __intel_engine_reset(engine, true);
1238
1239 /*
1240 * The engine and its registers (and workarounds in case of render)
1241 * have been reset to their default values. Follow the init_ring
1242 * process to program RING_MODE, HWSP and re-enable submission.
1243 */
1244 ret = intel_engine_resume(engine);
1245
1246 out:
1247 intel_engine_cancel_stop_cs(engine);
1248 reset_finish_engine(engine);
1249 intel_engine_pm_put_async(engine);
1250 return ret;
1251 }
1252
1253 /**
1254 * intel_engine_reset - reset GPU engine to recover from a hang
1255 * @engine: engine to reset
1256 * @msg: reason for GPU reset; or NULL for no drm_notice()
1257 *
1258 * Reset a specific GPU engine. Useful if a hang is detected.
1259 * Returns zero on successful reset or otherwise an error code.
1260 *
1261 * Procedure is:
1262 * - identifies the request that caused the hang and it is dropped
1263 * - reset engine (which will force the engine to idle)
1264 * - re-init/configure engine
1265 */
intel_engine_reset(struct intel_engine_cs * engine,const char * msg)1266 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg)
1267 {
1268 int err;
1269
1270 local_bh_disable();
1271 err = __intel_engine_reset_bh(engine, msg);
1272 local_bh_enable();
1273
1274 return err;
1275 }
1276
intel_gt_reset_global(struct intel_gt * gt,u32 engine_mask,const char * reason)1277 static void intel_gt_reset_global(struct intel_gt *gt,
1278 u32 engine_mask,
1279 const char *reason)
1280 {
1281 struct kobject *kobj = >->i915->drm.primary->kdev->kobj;
1282 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1283 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1284 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1285 struct intel_wedge_me w;
1286
1287 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
1288
1289 GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask);
1290 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
1291
1292 /* Use a watchdog to ensure that our reset completes */
1293 intel_wedge_on_timeout(&w, gt, 60 * HZ) {
1294 intel_display_prepare_reset(gt->i915);
1295
1296 intel_gt_reset(gt, engine_mask, reason);
1297
1298 intel_display_finish_reset(gt->i915);
1299 }
1300
1301 if (!test_bit(I915_WEDGED, >->reset.flags))
1302 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
1303 }
1304
1305 /**
1306 * intel_gt_handle_error - handle a gpu error
1307 * @gt: the intel_gt
1308 * @engine_mask: mask representing engines that are hung
1309 * @flags: control flags
1310 * @fmt: Error message format string
1311 *
1312 * Do some basic checking of register state at error time and
1313 * dump it to the syslog. Also call i915_capture_error_state() to make
1314 * sure we get a record and make it available in debugfs. Fire a uevent
1315 * so userspace knows something bad happened (should trigger collection
1316 * of a ring dump etc.).
1317 */
intel_gt_handle_error(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned long flags,const char * fmt,...)1318 void intel_gt_handle_error(struct intel_gt *gt,
1319 intel_engine_mask_t engine_mask,
1320 unsigned long flags,
1321 const char *fmt, ...)
1322 {
1323 struct intel_engine_cs *engine;
1324 intel_wakeref_t wakeref;
1325 intel_engine_mask_t tmp;
1326 char error_msg[80];
1327 char *msg = NULL;
1328
1329 if (fmt) {
1330 va_list args;
1331
1332 va_start(args, fmt);
1333 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
1334 va_end(args);
1335
1336 msg = error_msg;
1337 }
1338
1339 /*
1340 * In most cases it's guaranteed that we get here with an RPM
1341 * reference held, for example because there is a pending GPU
1342 * request that won't finish until the reset is done. This
1343 * isn't the case at least when we get here by doing a
1344 * simulated reset via debugfs, so get an RPM reference.
1345 */
1346 wakeref = intel_runtime_pm_get(gt->uncore->rpm);
1347
1348 engine_mask &= gt->info.engine_mask;
1349
1350 if (flags & I915_ERROR_CAPTURE) {
1351 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_NONE);
1352 intel_gt_clear_error_registers(gt, engine_mask);
1353 }
1354
1355 /*
1356 * Try engine reset when available. We fall back to full reset if
1357 * single reset fails.
1358 */
1359 if (!intel_uc_uses_guc_submission(>->uc) &&
1360 intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) {
1361 local_bh_disable();
1362 for_each_engine_masked(engine, gt, engine_mask, tmp) {
1363 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
1364 if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
1365 >->reset.flags))
1366 continue;
1367
1368 if (__intel_engine_reset_bh(engine, msg) == 0)
1369 engine_mask &= ~engine->mask;
1370
1371 clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id,
1372 >->reset.flags);
1373 }
1374 local_bh_enable();
1375 }
1376
1377 if (!engine_mask)
1378 goto out;
1379
1380 /* Full reset needs the mutex, stop any other user trying to do so. */
1381 if (test_and_set_bit(I915_RESET_BACKOFF, >->reset.flags)) {
1382 wait_event(gt->reset.queue,
1383 !test_bit(I915_RESET_BACKOFF, >->reset.flags));
1384 goto out; /* piggy-back on the other reset */
1385 }
1386
1387 /* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */
1388 synchronize_rcu_expedited();
1389
1390 /*
1391 * Prevent any other reset-engine attempt. We don't do this for GuC
1392 * submission the GuC owns the per-engine reset, not the i915.
1393 */
1394 if (!intel_uc_uses_guc_submission(>->uc)) {
1395 for_each_engine(engine, gt, tmp) {
1396 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
1397 >->reset.flags))
1398 wait_on_bit(>->reset.flags,
1399 I915_RESET_ENGINE + engine->id,
1400 TASK_UNINTERRUPTIBLE);
1401 }
1402 }
1403
1404 /* Flush everyone using a resource about to be clobbered */
1405 synchronize_srcu_expedited(>->reset.backoff_srcu);
1406
1407 intel_gt_reset_global(gt, engine_mask, msg);
1408
1409 if (!intel_uc_uses_guc_submission(>->uc)) {
1410 for_each_engine(engine, gt, tmp)
1411 clear_bit_unlock(I915_RESET_ENGINE + engine->id,
1412 >->reset.flags);
1413 }
1414 clear_bit_unlock(I915_RESET_BACKOFF, >->reset.flags);
1415 smp_mb__after_atomic();
1416 wake_up_all(>->reset.queue);
1417
1418 out:
1419 intel_runtime_pm_put(gt->uncore->rpm, wakeref);
1420 }
1421
_intel_gt_reset_lock(struct intel_gt * gt,int * srcu,bool retry)1422 static int _intel_gt_reset_lock(struct intel_gt *gt, int *srcu, bool retry)
1423 {
1424 might_lock(>->reset.backoff_srcu);
1425 if (retry)
1426 might_sleep();
1427
1428 rcu_read_lock();
1429 while (test_bit(I915_RESET_BACKOFF, >->reset.flags)) {
1430 rcu_read_unlock();
1431
1432 if (!retry)
1433 return -EBUSY;
1434
1435 if (wait_event_interruptible(gt->reset.queue,
1436 !test_bit(I915_RESET_BACKOFF,
1437 >->reset.flags)))
1438 return -EINTR;
1439
1440 rcu_read_lock();
1441 }
1442 *srcu = srcu_read_lock(>->reset.backoff_srcu);
1443 rcu_read_unlock();
1444
1445 return 0;
1446 }
1447
intel_gt_reset_trylock(struct intel_gt * gt,int * srcu)1448 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu)
1449 {
1450 return _intel_gt_reset_lock(gt, srcu, false);
1451 }
1452
intel_gt_reset_lock_interruptible(struct intel_gt * gt,int * srcu)1453 int intel_gt_reset_lock_interruptible(struct intel_gt *gt, int *srcu)
1454 {
1455 return _intel_gt_reset_lock(gt, srcu, true);
1456 }
1457
intel_gt_reset_unlock(struct intel_gt * gt,int tag)1458 void intel_gt_reset_unlock(struct intel_gt *gt, int tag)
1459 __releases(>->reset.backoff_srcu)
1460 {
1461 srcu_read_unlock(>->reset.backoff_srcu, tag);
1462 }
1463
intel_gt_terminally_wedged(struct intel_gt * gt)1464 int intel_gt_terminally_wedged(struct intel_gt *gt)
1465 {
1466 might_sleep();
1467
1468 if (!intel_gt_is_wedged(gt))
1469 return 0;
1470
1471 if (intel_gt_has_unrecoverable_error(gt))
1472 return -EIO;
1473
1474 /* Reset still in progress? Maybe we will recover? */
1475 if (wait_event_interruptible(gt->reset.queue,
1476 !test_bit(I915_RESET_BACKOFF,
1477 >->reset.flags)))
1478 return -EINTR;
1479
1480 return intel_gt_is_wedged(gt) ? -EIO : 0;
1481 }
1482
intel_gt_set_wedged_on_init(struct intel_gt * gt)1483 void intel_gt_set_wedged_on_init(struct intel_gt *gt)
1484 {
1485 BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES >
1486 I915_WEDGED_ON_INIT);
1487 intel_gt_set_wedged(gt);
1488 i915_disable_error_state(gt->i915, -ENODEV);
1489 set_bit(I915_WEDGED_ON_INIT, >->reset.flags);
1490
1491 /* Wedged on init is non-recoverable */
1492 add_taint_for_CI(gt->i915, TAINT_WARN);
1493 }
1494
intel_gt_set_wedged_on_fini(struct intel_gt * gt)1495 void intel_gt_set_wedged_on_fini(struct intel_gt *gt)
1496 {
1497 intel_gt_set_wedged(gt);
1498 i915_disable_error_state(gt->i915, -ENODEV);
1499 set_bit(I915_WEDGED_ON_FINI, >->reset.flags);
1500 intel_gt_retire_requests(gt); /* cleanup any wedged requests */
1501 }
1502
intel_gt_init_reset(struct intel_gt * gt)1503 void intel_gt_init_reset(struct intel_gt *gt)
1504 {
1505 init_waitqueue_head(>->reset.queue);
1506 mutex_init(>->reset.mutex);
1507 init_srcu_struct(>->reset.backoff_srcu);
1508
1509 /*
1510 * While undesirable to wait inside the shrinker, complain anyway.
1511 *
1512 * If we have to wait during shrinking, we guarantee forward progress
1513 * by forcing the reset. Therefore during the reset we must not
1514 * re-enter the shrinker. By declaring that we take the reset mutex
1515 * within the shrinker, we forbid ourselves from performing any
1516 * fs-reclaim or taking related locks during reset.
1517 */
1518 i915_gem_shrinker_taints_mutex(gt->i915, >->reset.mutex);
1519
1520 /* no GPU until we are ready! */
1521 __set_bit(I915_WEDGED, >->reset.flags);
1522 }
1523
intel_gt_fini_reset(struct intel_gt * gt)1524 void intel_gt_fini_reset(struct intel_gt *gt)
1525 {
1526 cleanup_srcu_struct(>->reset.backoff_srcu);
1527 }
1528
intel_wedge_me(struct work_struct * work)1529 static void intel_wedge_me(struct work_struct *work)
1530 {
1531 struct intel_wedge_me *w = container_of(work, typeof(*w), work.work);
1532
1533 drm_err(&w->gt->i915->drm,
1534 "%s timed out, cancelling all in-flight rendering.\n",
1535 w->name);
1536 intel_gt_set_wedged(w->gt);
1537 }
1538
__intel_init_wedge(struct intel_wedge_me * w,struct intel_gt * gt,long timeout,const char * name)1539 void __intel_init_wedge(struct intel_wedge_me *w,
1540 struct intel_gt *gt,
1541 long timeout,
1542 const char *name)
1543 {
1544 w->gt = gt;
1545 w->name = name;
1546
1547 INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me);
1548 schedule_delayed_work(&w->work, timeout);
1549 }
1550
__intel_fini_wedge(struct intel_wedge_me * w)1551 void __intel_fini_wedge(struct intel_wedge_me *w)
1552 {
1553 cancel_delayed_work_sync(&w->work);
1554 destroy_delayed_work_on_stack(&w->work);
1555 w->gt = NULL;
1556 }
1557
1558 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1559 #include "selftest_reset.c"
1560 #include "selftest_hangcheck.c"
1561 #endif
1562