1 /* Copyright 2019 The TensorFlow Authors. All Rights Reserved. 2 3 Licensed under the Apache License, Version 2.0 (the "License"); 4 you may not use this file except in compliance with the License. 5 You may obtain a copy of the License at 6 7 http://www.apache.org/licenses/LICENSE-2.0 8 9 Unless required by applicable law or agreed to in writing, software 10 distributed under the License is distributed on an "AS IS" BASIS, 11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 See the License for the specific language governing permissions and 13 limitations under the License. 14 ==============================================================================*/ 15 16 // This file defines common C types and APIs for implementing operations, 17 // delegates and other constructs in TensorFlow Lite. The actual operations and 18 // delegates can be defined using C++, but the interface between the interpreter 19 // and the operations are C. 20 // 21 // Summary of abstractions 22 // TF_LITE_ENSURE - Self-sufficient error checking 23 // TfLiteStatus - Status reporting 24 // TfLiteIntArray - stores tensor shapes (dims), 25 // TfLiteContext - allows an op to access the tensors 26 // TfLiteTensor - tensor (a multidimensional array) 27 // TfLiteNode - a single node or operation 28 // TfLiteRegistration - the implementation of a conceptual operation. 29 // TfLiteDelegate - allows delegation of nodes to alternative backends. 30 // 31 // Some abstractions in this file are created and managed by Interpreter. 32 // 33 // NOTE: The order of values in these structs are "semi-ABI stable". New values 34 // should be added only to the end of structs and never reordered. 35 36 #ifndef TENSORFLOW_LITE_C_COMMON_H_ 37 #define TENSORFLOW_LITE_C_COMMON_H_ 38 39 #include <stdbool.h> 40 #include <stddef.h> 41 #include <stdint.h> 42 43 #include "tensorflow/lite/c/c_api_types.h" // IWYU pragma: export 44 45 #ifdef __cplusplus 46 extern "C" { 47 #endif // __cplusplus 48 49 // The list of external context types known to TF Lite. This list exists solely 50 // to avoid conflicts and to ensure ops can share the external contexts they 51 // need. Access to the external contexts is controlled by one of the 52 // corresponding support files. 53 typedef enum TfLiteExternalContextType { 54 kTfLiteEigenContext = 0, // include eigen_support.h to use. 55 kTfLiteGemmLowpContext = 1, // include gemm_support.h to use. 56 kTfLiteEdgeTpuContext = 2, // Placeholder for Edge TPU support. 57 kTfLiteCpuBackendContext = 3, // include cpu_backend_context.h to use. 58 kTfLiteMaxExternalContexts = 4 59 } TfLiteExternalContextType; 60 61 // Forward declare so dependent structs and methods can reference these types 62 // prior to the struct definitions. 63 struct TfLiteContext; 64 struct TfLiteDelegate; 65 struct TfLiteRegistration; 66 67 // An external context is a collection of information unrelated to the TF Lite 68 // framework, but useful to a subset of the ops. TF Lite knows very little 69 // about the actual contexts, but it keeps a list of them, and is able to 70 // refresh them if configurations like the number of recommended threads 71 // change. 72 typedef struct TfLiteExternalContext { 73 TfLiteExternalContextType type; 74 TfLiteStatus (*Refresh)(struct TfLiteContext* context); 75 } TfLiteExternalContext; 76 77 #define kTfLiteOptionalTensor (-1) 78 79 // Fixed size list of integers. Used for dimensions and inputs/outputs tensor 80 // indices 81 typedef struct TfLiteIntArray { 82 int size; 83 // gcc 6.1+ have a bug where flexible members aren't properly handled 84 // https://github.com/google/re2/commit/b94b7cd42e9f02673cd748c1ac1d16db4052514c 85 #if (!defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && \ 86 __GNUC_MINOR__ >= 1) || \ 87 defined(HEXAGON) || \ 88 (defined(__clang__) && __clang_major__ == 7 && __clang_minor__ == 1) 89 int data[0]; 90 #else 91 int data[]; 92 #endif 93 } TfLiteIntArray; 94 95 // Given the size (number of elements) in a TfLiteIntArray, calculate its size 96 // in bytes. 97 int TfLiteIntArrayGetSizeInBytes(int size); 98 99 #ifndef TF_LITE_STATIC_MEMORY 100 // Create a array of a given `size` (uninitialized entries). 101 // This returns a pointer, that you must free using TfLiteIntArrayFree(). 102 TfLiteIntArray* TfLiteIntArrayCreate(int size); 103 #endif 104 105 // Check if two intarrays are equal. Returns 1 if they are equal, 0 otherwise. 106 int TfLiteIntArrayEqual(const TfLiteIntArray* a, const TfLiteIntArray* b); 107 108 // Check if an intarray equals an array. Returns 1 if equals, 0 otherwise. 109 int TfLiteIntArrayEqualsArray(const TfLiteIntArray* a, int b_size, 110 const int b_data[]); 111 112 #ifndef TF_LITE_STATIC_MEMORY 113 // Create a copy of an array passed as `src`. 114 // You are expected to free memory with TfLiteIntArrayFree 115 TfLiteIntArray* TfLiteIntArrayCopy(const TfLiteIntArray* src); 116 117 // Free memory of array `a`. 118 void TfLiteIntArrayFree(TfLiteIntArray* a); 119 #endif // TF_LITE_STATIC_MEMORY 120 121 // Fixed size list of floats. Used for per-channel quantization. 122 typedef struct TfLiteFloatArray { 123 int size; 124 // gcc 6.1+ have a bug where flexible members aren't properly handled 125 // https://github.com/google/re2/commit/b94b7cd42e9f02673cd748c1ac1d16db4052514c 126 // This also applies to the toolchain used for Qualcomm Hexagon DSPs. 127 #if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && \ 128 __GNUC_MINOR__ >= 1 129 float data[0]; 130 #else 131 float data[]; 132 #endif 133 } TfLiteFloatArray; 134 135 // Given the size (number of elements) in a TfLiteFloatArray, calculate its size 136 // in bytes. 137 int TfLiteFloatArrayGetSizeInBytes(int size); 138 139 #ifndef TF_LITE_STATIC_MEMORY 140 // Create a array of a given `size` (uninitialized entries). 141 // This returns a pointer, that you must free using TfLiteFloatArrayFree(). 142 TfLiteFloatArray* TfLiteFloatArrayCreate(int size); 143 144 // Free memory of array `a`. 145 void TfLiteFloatArrayFree(TfLiteFloatArray* a); 146 #endif // TF_LITE_STATIC_MEMORY 147 148 // Since we must not depend on any libraries, define a minimal subset of 149 // error macros while avoiding names that have pre-conceived meanings like 150 // assert and check. 151 152 // Try to make all reporting calls through TF_LITE_KERNEL_LOG rather than 153 // calling the context->ReportError function directly, so that message strings 154 // can be stripped out if the binary size needs to be severely optimized. 155 #ifndef TF_LITE_STRIP_ERROR_STRINGS 156 #define TF_LITE_KERNEL_LOG(context, ...) \ 157 do { \ 158 (context)->ReportError((context), __VA_ARGS__); \ 159 } while (false) 160 161 #define TF_LITE_MAYBE_KERNEL_LOG(context, ...) \ 162 do { \ 163 if ((context) != nullptr) { \ 164 (context)->ReportError((context), __VA_ARGS__); \ 165 } \ 166 } while (false) 167 #else // TF_LITE_STRIP_ERROR_STRINGS 168 #define TF_LITE_KERNEL_LOG(context, ...) 169 #define TF_LITE_MAYBE_KERNEL_LOG(context, ...) 170 #endif // TF_LITE_STRIP_ERROR_STRINGS 171 172 // Check whether value is true, and if not return kTfLiteError from 173 // the current function (and report the error string msg). 174 #define TF_LITE_ENSURE_MSG(context, value, msg) \ 175 do { \ 176 if (!(value)) { \ 177 TF_LITE_KERNEL_LOG((context), __FILE__ " " msg); \ 178 return kTfLiteError; \ 179 } \ 180 } while (0) 181 182 // Check whether the value `a` is true, and if not return kTfLiteError from 183 // the current function, while also reporting the location of the error. 184 #define TF_LITE_ENSURE(context, a) \ 185 do { \ 186 if (!(a)) { \ 187 TF_LITE_KERNEL_LOG((context), "%s:%d %s was not true.", __FILE__, \ 188 __LINE__, #a); \ 189 return kTfLiteError; \ 190 } \ 191 } while (0) 192 193 #define TF_LITE_ENSURE_STATUS(a) \ 194 do { \ 195 const TfLiteStatus s = (a); \ 196 if (s != kTfLiteOk) { \ 197 return s; \ 198 } \ 199 } while (0) 200 201 // Check whether the value `a == b` is true, and if not return kTfLiteError from 202 // the current function, while also reporting the location of the error. 203 // `a` and `b` may be evaluated more than once, so no side effects or 204 // extremely expensive computations should be done. 205 // NOTE: Use TF_LITE_ENSURE_TYPES_EQ if comparing TfLiteTypes. 206 #define TF_LITE_ENSURE_EQ(context, a, b) \ 207 do { \ 208 if ((a) != (b)) { \ 209 TF_LITE_KERNEL_LOG((context), "%s:%d %s != %s (%d != %d)", __FILE__, \ 210 __LINE__, #a, #b, (a), (b)); \ 211 return kTfLiteError; \ 212 } \ 213 } while (0) 214 215 #define TF_LITE_ENSURE_TYPES_EQ(context, a, b) \ 216 do { \ 217 if ((a) != (b)) { \ 218 TF_LITE_KERNEL_LOG((context), "%s:%d %s != %s (%s != %s)", __FILE__, \ 219 __LINE__, #a, #b, TfLiteTypeGetName(a), \ 220 TfLiteTypeGetName(b)); \ 221 return kTfLiteError; \ 222 } \ 223 } while (0) 224 225 #define TF_LITE_ENSURE_NEAR(context, a, b, epsilon) \ 226 do { \ 227 auto delta = ((a) > (b)) ? ((a) - (b)) : ((b) - (a)); \ 228 if (delta > epsilon) { \ 229 TF_LITE_KERNEL_LOG((context), "%s:%d %s not near %s (%f != %f)", \ 230 __FILE__, __LINE__, #a, #b, static_cast<double>(a), \ 231 static_cast<double>(b)); \ 232 return kTfLiteError; \ 233 } \ 234 } while (0) 235 236 #define TF_LITE_ENSURE_OK(context, status) \ 237 do { \ 238 const TfLiteStatus s = (status); \ 239 if ((s) != kTfLiteOk) { \ 240 return s; \ 241 } \ 242 } while (0) 243 244 // Single-precision complex data type compatible with the C99 definition. 245 typedef struct TfLiteComplex64 { 246 float re, im; // real and imaginary parts, respectively. 247 } TfLiteComplex64; 248 249 // Double-precision complex data type compatible with the C99 definition. 250 typedef struct TfLiteComplex128 { 251 double re, im; // real and imaginary parts, respectively. 252 } TfLiteComplex128; 253 254 // Half precision data type compatible with the C99 definition. 255 typedef struct TfLiteFloat16 { 256 uint16_t data; 257 } TfLiteFloat16; 258 259 // Return the name of a given type, for error reporting purposes. 260 const char* TfLiteTypeGetName(TfLiteType type); 261 262 // SupportedQuantizationTypes. 263 typedef enum TfLiteQuantizationType { 264 // No quantization. 265 kTfLiteNoQuantization = 0, 266 // Affine quantization (with support for per-channel quantization). 267 // Corresponds to TfLiteAffineQuantization. 268 kTfLiteAffineQuantization = 1, 269 } TfLiteQuantizationType; 270 271 // Structure specifying the quantization used by the tensor, if-any. 272 typedef struct TfLiteQuantization { 273 // The type of quantization held by params. 274 TfLiteQuantizationType type; 275 // Holds an optional reference to a quantization param structure. The actual 276 // type depends on the value of the `type` field (see the comment there for 277 // the values and corresponding types). 278 void* params; 279 } TfLiteQuantization; 280 281 // Parameters for asymmetric quantization across a dimension (i.e per output 282 // channel quantization). 283 // quantized_dimension specifies which dimension the scales and zero_points 284 // correspond to. 285 // For a particular value in quantized_dimension, quantized values can be 286 // converted back to float using: 287 // real_value = scale * (quantized_value - zero_point) 288 typedef struct TfLiteAffineQuantization { 289 TfLiteFloatArray* scale; 290 TfLiteIntArray* zero_point; 291 int32_t quantized_dimension; 292 } TfLiteAffineQuantization; 293 294 /* A union of pointers that points to memory for a given tensor. */ 295 typedef union TfLitePtrUnion { 296 /* Do not access these members directly, if possible, use 297 * GetTensorData<TYPE>(tensor) instead, otherwise only access .data, as other 298 * members are deprecated. */ 299 int32_t* i32; 300 uint32_t* u32; 301 int64_t* i64; 302 uint64_t* u64; 303 float* f; 304 TfLiteFloat16* f16; 305 double* f64; 306 char* raw; 307 const char* raw_const; 308 uint8_t* uint8; 309 bool* b; 310 int16_t* i16; 311 TfLiteComplex64* c64; 312 TfLiteComplex128* c128; 313 int8_t* int8; 314 /* Only use this member. */ 315 void* data; 316 } TfLitePtrUnion; 317 318 // Memory allocation strategies. 319 // * kTfLiteMmapRo: Read-only memory-mapped data, or data externally allocated. 320 // * kTfLiteArenaRw: Arena allocated with no guarantees about persistence, 321 // and available during eval. 322 // * kTfLiteArenaRwPersistent: Arena allocated but persistent across eval, and 323 // only available during eval. 324 // * kTfLiteDynamic: Allocated during eval, or for string tensors. 325 // * kTfLitePersistentRo: Allocated and populated during prepare. This is 326 // useful for tensors that can be computed during prepare and treated 327 // as constant inputs for downstream ops (also in prepare). 328 // * kTfLiteCustom: Custom memory allocation provided by the user. See 329 // TfLiteCustomAllocation below. 330 typedef enum TfLiteAllocationType { 331 kTfLiteMemNone = 0, 332 kTfLiteMmapRo, 333 kTfLiteArenaRw, 334 kTfLiteArenaRwPersistent, 335 kTfLiteDynamic, 336 kTfLitePersistentRo, 337 kTfLiteCustom, 338 } TfLiteAllocationType; 339 340 // The delegates should use zero or positive integers to represent handles. 341 // -1 is reserved from unallocated status. 342 typedef int TfLiteBufferHandle; 343 enum { 344 kTfLiteNullBufferHandle = -1, 345 }; 346 347 // Storage format of each dimension in a sparse tensor. 348 typedef enum TfLiteDimensionType { 349 kTfLiteDimDense = 0, 350 kTfLiteDimSparseCSR, 351 } TfLiteDimensionType; 352 353 // Metadata to encode each dimension in a sparse tensor. 354 typedef struct TfLiteDimensionMetadata { 355 TfLiteDimensionType format; 356 int dense_size; 357 TfLiteIntArray* array_segments; 358 TfLiteIntArray* array_indices; 359 } TfLiteDimensionMetadata; 360 361 // Parameters used to encode a sparse tensor. For detailed explanation of each 362 // field please refer to lite/schema/schema.fbs. 363 typedef struct TfLiteSparsity { 364 TfLiteIntArray* traversal_order; 365 TfLiteIntArray* block_map; 366 TfLiteDimensionMetadata* dim_metadata; 367 int dim_metadata_size; 368 } TfLiteSparsity; 369 370 // Defines a custom memory allocation not owned by the runtime. 371 // `data` should be aligned to kDefaultTensorAlignment defined in 372 // lite/util.h. (Currently 64 bytes) 373 // NOTE: See Interpreter.SetCustomAllocationForTensor for details on usage. 374 typedef struct TfLiteCustomAllocation { 375 void* data; 376 size_t bytes; 377 } TfLiteCustomAllocation; 378 379 // The flags used in `Interpreter::SetCustomAllocationForTensor`. 380 // Note that this is a bitmask, so the values should be 1, 2, 4, 8, ...etc. 381 typedef enum TfLiteCustomAllocationFlags { 382 kTfLiteCustomAllocationFlagsNone = 0, 383 // Skips checking whether allocation.data points to an aligned buffer as 384 // expected by the TFLite runtime. 385 // NOTE: Setting this flag can cause crashes when calling Invoke(). 386 // Use with caution. 387 kTfLiteCustomAllocationFlagsSkipAlignCheck = 1, 388 } TfLiteCustomAllocationFlags; 389 390 // A tensor in the interpreter system which is a wrapper around a buffer of 391 // data including a dimensionality (or NULL if not currently defined). 392 #ifndef TF_LITE_STATIC_MEMORY 393 typedef struct TfLiteTensor { 394 // The data type specification for data stored in `data`. This affects 395 // what member of `data` union should be used. 396 TfLiteType type; 397 // A union of data pointers. The appropriate type should be used for a typed 398 // tensor based on `type`. 399 TfLitePtrUnion data; 400 // A pointer to a structure representing the dimensionality interpretation 401 // that the buffer should have. NOTE: the product of elements of `dims` 402 // and the element datatype size should be equal to `bytes` below. 403 TfLiteIntArray* dims; 404 // Quantization information. 405 TfLiteQuantizationParams params; 406 // How memory is mapped 407 // kTfLiteMmapRo: Memory mapped read only. 408 // i.e. weights 409 // kTfLiteArenaRw: Arena allocated read write memory 410 // (i.e. temporaries, outputs). 411 TfLiteAllocationType allocation_type; 412 // The number of bytes required to store the data of this Tensor. I.e. 413 // (bytes of each element) * dims[0] * ... * dims[n-1]. For example, if 414 // type is kTfLiteFloat32 and dims = {3, 2} then 415 // bytes = sizeof(float) * 3 * 2 = 4 * 3 * 2 = 24. 416 size_t bytes; 417 418 // An opaque pointer to a tflite::MMapAllocation 419 const void* allocation; 420 421 // Null-terminated name of this tensor. 422 const char* name; 423 424 // The delegate which knows how to handle `buffer_handle`. 425 // WARNING: This is an experimental interface that is subject to change. 426 struct TfLiteDelegate* delegate; 427 428 // An integer buffer handle that can be handled by `delegate`. 429 // The value is valid only when delegate is not null. 430 // WARNING: This is an experimental interface that is subject to change. 431 TfLiteBufferHandle buffer_handle; 432 433 // If the delegate uses its own buffer (e.g. GPU memory), the delegate is 434 // responsible to set data_is_stale to true. 435 // `delegate->CopyFromBufferHandle` can be called to copy the data from 436 // delegate buffer. 437 // WARNING: This is an // experimental interface that is subject to change. 438 bool data_is_stale; 439 440 // True if the tensor is a variable. 441 bool is_variable; 442 443 // Quantization information. Replaces params field above. 444 TfLiteQuantization quantization; 445 446 // Parameters used to encode a sparse tensor. 447 // This is optional. The field is NULL if a tensor is dense. 448 // WARNING: This is an experimental interface that is subject to change. 449 TfLiteSparsity* sparsity; 450 451 // Optional. Encodes shapes with unknown dimensions with -1. This field is 452 // only populated when unknown dimensions exist in a read-write tensor (i.e. 453 // an input or output tensor). (e.g. `dims` contains [1, 1, 1, 3] and 454 // `dims_signature` contains [1, -1, -1, 3]). 455 const TfLiteIntArray* dims_signature; 456 } TfLiteTensor; 457 458 // A structure representing an instance of a node. 459 // This structure only exhibits the inputs, outputs, user defined data and some 460 // node properties (like statefulness), not other features like the type. 461 typedef struct TfLiteNode { 462 // Inputs to this node expressed as indices into the simulator's tensors. 463 TfLiteIntArray* inputs; 464 465 // Outputs to this node expressed as indices into the simulator's tensors. 466 TfLiteIntArray* outputs; 467 468 // intermediate tensors to this node expressed as indices into the simulator's 469 // tensors. 470 TfLiteIntArray* intermediates; 471 472 // Temporary tensors uses during the computations. This usually contains no 473 // tensors, but ops are allowed to change that if they need scratch space of 474 // any sort. 475 TfLiteIntArray* temporaries; 476 477 // Opaque data provided by the node implementer through `Registration.init`. 478 void* user_data; 479 480 // Opaque data provided to the node if the node is a builtin. This is usually 481 // a structure defined in builtin_op_data.h 482 void* builtin_data; 483 484 // Custom initial data. This is the opaque data provided in the flatbuffer. 485 // WARNING: This is an experimental interface that is subject to change. 486 const void* custom_initial_data; 487 int custom_initial_data_size; 488 489 // The pointer to the delegate. This is non-null only when the node is 490 // created by calling `interpreter.ModifyGraphWithDelegate`. 491 // WARNING: This is an experimental interface that is subject to change. 492 struct TfLiteDelegate* delegate; 493 494 // Whether this op might have side effect (e.g. stateful op). 495 bool might_have_side_effect; 496 } TfLiteNode; 497 #else // defined(TF_LITE_STATIC_MEMORY)? 498 // NOTE: This flag is opt-in only at compile time. 499 // 500 // Specific reduced TfLiteTensor struct for TF Micro runtime. This struct 501 // contains only the minimum fields required to initialize and prepare a micro 502 // inference graph. The fields in this struct have been ordered from 503 // largest-to-smallest for optimal struct sizeof. 504 // 505 // This struct does not use: 506 // - allocation 507 // - buffer_handle 508 // - data_is_stale 509 // - delegate 510 // - dims_signature 511 // - name 512 // - sparsity 513 typedef struct TfLiteTensor { 514 // TODO(b/155784997): Consider consolidating these quantization fields: 515 // Quantization information. Replaces params field above. 516 TfLiteQuantization quantization; 517 518 // Quantization information. 519 TfLiteQuantizationParams params; 520 521 // A union of data pointers. The appropriate type should be used for a typed 522 // tensor based on `type`. 523 TfLitePtrUnion data; 524 525 // A pointer to a structure representing the dimensionality interpretation 526 // that the buffer should have. NOTE: the product of elements of `dims` 527 // and the element datatype size should be equal to `bytes` below. 528 TfLiteIntArray* dims; 529 530 // The number of bytes required to store the data of this Tensor. I.e. 531 // (bytes of each element) * dims[0] * ... * dims[n-1]. For example, if 532 // type is kTfLiteFloat32 and dims = {3, 2} then 533 // bytes = sizeof(float) * 3 * 2 = 4 * 3 * 2 = 24. 534 size_t bytes; 535 536 // The data type specification for data stored in `data`. This affects 537 // what member of `data` union should be used. 538 TfLiteType type; 539 540 // How memory is mapped 541 // kTfLiteMmapRo: Memory mapped read only. 542 // i.e. weights 543 // kTfLiteArenaRw: Arena allocated read write memory 544 // (i.e. temporaries, outputs). 545 TfLiteAllocationType allocation_type; 546 547 // True if the tensor is a variable. 548 bool is_variable; 549 } TfLiteTensor; 550 551 // Specific reduced TfLiteNode struct for TF Micro runtime. This struct contains 552 // only the minimum fields required to represent a node. 553 // 554 // This struct does not use: 555 // - delegate 556 // - intermediates 557 // - temporaries 558 typedef struct TfLiteNode { 559 // Inputs to this node expressed as indices into the simulator's tensors. 560 TfLiteIntArray* inputs; 561 562 // Outputs to this node expressed as indices into the simulator's tensors. 563 TfLiteIntArray* outputs; 564 565 // Opaque data provided by the node implementer through `Registration.init`. 566 void* user_data; 567 568 // Opaque data provided to the node if the node is a builtin. This is usually 569 // a structure defined in builtin_op_data.h 570 void* builtin_data; 571 572 // Custom initial data. This is the opaque data provided in the flatbuffer. 573 // WARNING: This is an experimental interface that is subject to change. 574 const void* custom_initial_data; 575 int custom_initial_data_size; 576 } TfLiteNode; 577 #endif // TF_LITE_STATIC_MEMORY 578 579 // Light-weight tensor struct for TF Micro runtime. Provides the minimal amount 580 // of information required for a kernel to run during TfLiteRegistration::Eval. 581 // TODO(b/160955687): Move this field into TF_LITE_STATIC_MEMORY when TFLM 582 // builds with this flag by default internally. 583 typedef struct TfLiteEvalTensor { 584 // A union of data pointers. The appropriate type should be used for a typed 585 // tensor based on `type`. 586 TfLitePtrUnion data; 587 588 // A pointer to a structure representing the dimensionality interpretation 589 // that the buffer should have. 590 TfLiteIntArray* dims; 591 592 // The data type specification for data stored in `data`. This affects 593 // what member of `data` union should be used. 594 TfLiteType type; 595 } TfLiteEvalTensor; 596 597 #ifndef TF_LITE_STATIC_MEMORY 598 // Free data memory of tensor `t`. 599 void TfLiteTensorDataFree(TfLiteTensor* t); 600 601 // Free quantization data. 602 void TfLiteQuantizationFree(TfLiteQuantization* quantization); 603 604 // Free sparsity parameters. 605 void TfLiteSparsityFree(TfLiteSparsity* sparsity); 606 607 // Free memory of tensor `t`. 608 void TfLiteTensorFree(TfLiteTensor* t); 609 610 // Set all of a tensor's fields (and free any previously allocated data). 611 void TfLiteTensorReset(TfLiteType type, const char* name, TfLiteIntArray* dims, 612 TfLiteQuantizationParams quantization, char* buffer, 613 size_t size, TfLiteAllocationType allocation_type, 614 const void* allocation, bool is_variable, 615 TfLiteTensor* tensor); 616 617 // Resize the allocated data of a (dynamic) tensor. Tensors with allocation 618 // types other than kTfLiteDynamic will be ignored. 619 void TfLiteTensorRealloc(size_t num_bytes, TfLiteTensor* tensor); 620 #endif // TF_LITE_STATIC_MEMORY 621 622 // WARNING: This is an experimental interface that is subject to change. 623 // 624 // Currently, TfLiteDelegateParams has to be allocated in a way that it's 625 // trivially destructable. It will be stored as `builtin_data` field in 626 // `TfLiteNode` of the delegate node. 627 // 628 // See also the `CreateDelegateParams` function in `interpreter.cc` details. 629 typedef struct TfLiteDelegateParams { 630 struct TfLiteDelegate* delegate; 631 TfLiteIntArray* nodes_to_replace; 632 TfLiteIntArray* input_tensors; 633 TfLiteIntArray* output_tensors; 634 } TfLiteDelegateParams; 635 636 typedef struct TfLiteContext { 637 // Number of tensors in the context. 638 size_t tensors_size; 639 640 // The execution plan contains a list of the node indices in execution 641 // order. execution_plan->size is the current number of nodes. And, 642 // execution_plan->data[0] is the first node that needs to be run. 643 // TfLiteDelegates can traverse the current execution plan by iterating 644 // through each member of this array and using GetNodeAndRegistration() to 645 // access details about a node. i.e. 646 // 647 // TfLiteIntArray* execution_plan; 648 // TF_LITE_ENSURE_STATUS(context->GetExecutionPlan(context, &execution_plan)); 649 // for (int exec_index = 0; exec_index < execution_plan->size; exec_index++) { 650 // int node_index = execution_plan->data[exec_index]; 651 // TfLiteNode* node; 652 // TfLiteRegistration* reg; 653 // context->GetNodeAndRegistration(context, node_index, &node, ®); 654 // } 655 // Note: the memory pointed by '`*execution_plan` is OWNED by TfLite runtime. 656 // Future calls to GetExecutionPlan invalidates earlier outputs. The following 657 // code snippet shows the issue of such an invocation pattern. After calling 658 // CheckNode, subsequent access to `plan_1st` is undefined. 659 // 660 // void CheckNode(const TfLiteNode* node) { 661 // ... 662 // TfLiteIntArray* plan_2nd; 663 // TF_LITE_ENSURE_STATUS(context->GetExecutionPlan(context, &plan_2nd)); 664 // ... 665 // } 666 // 667 // TfLiteIntArray* plan_1st; 668 // TF_LITE_ENSURE_STATUS(context->GetExecutionPlan(context, &plan_1st)); 669 // for (int exec_index = 0; exec_index < plan_1st->size; exec_index++) { 670 // int node_index = plan_1st->data[exec_index]; 671 // TfLiteNode* node; 672 // TfLiteRegistration* reg; 673 // context->GetNodeAndRegistration(context, node_index, &node, ®); 674 // CheckNode(node); 675 // } 676 // 677 // WARNING: This is an experimental interface that is subject to change. 678 TfLiteStatus (*GetExecutionPlan)(struct TfLiteContext* context, 679 TfLiteIntArray** execution_plan); 680 681 // An array of tensors in the interpreter context (of length `tensors_size`) 682 TfLiteTensor* tensors; 683 684 // opaque full context ptr (an opaque c++ data structure) 685 void* impl_; 686 687 // Request memory pointer be resized. Updates dimensions on the tensor. 688 // NOTE: ResizeTensor takes ownership of newSize. 689 TfLiteStatus (*ResizeTensor)(struct TfLiteContext*, TfLiteTensor* tensor, 690 TfLiteIntArray* new_size); 691 // Request that an error be reported with format string msg. 692 void (*ReportError)(struct TfLiteContext*, const char* msg, ...); 693 694 // Add `tensors_to_add` tensors, preserving pre-existing Tensor entries. If 695 // non-null, the value pointed to by `first_new_tensor_index` will be set to 696 // the index of the first new tensor. 697 TfLiteStatus (*AddTensors)(struct TfLiteContext*, int tensors_to_add, 698 int* first_new_tensor_index); 699 700 // Get a Tensor node by node_index. 701 // WARNING: This is an experimental interface that is subject to change. 702 TfLiteStatus (*GetNodeAndRegistration)( 703 struct TfLiteContext*, int node_index, TfLiteNode** node, 704 struct TfLiteRegistration** registration); 705 706 // Replace ops with one or more stub delegate operations. This function 707 // does not take ownership of `nodes_to_replace`. 708 TfLiteStatus (*ReplaceNodeSubsetsWithDelegateKernels)( 709 struct TfLiteContext*, struct TfLiteRegistration registration, 710 const TfLiteIntArray* nodes_to_replace, struct TfLiteDelegate* delegate); 711 712 // Number of threads that are recommended to subsystems like gemmlowp and 713 // eigen. 714 int recommended_num_threads; 715 716 // Access external contexts by type. 717 // WARNING: This is an experimental interface that is subject to change. 718 TfLiteExternalContext* (*GetExternalContext)(struct TfLiteContext*, 719 TfLiteExternalContextType); 720 // Set the value of a external context. Does not take ownership of the 721 // pointer. 722 // WARNING: This is an experimental interface that is subject to change. 723 void (*SetExternalContext)(struct TfLiteContext*, TfLiteExternalContextType, 724 TfLiteExternalContext*); 725 726 // Flag for allowing float16 precision for FP32 calculation. 727 // default: false. 728 // WARNING: This is an experimental API and subject to change. 729 bool allow_fp32_relax_to_fp16; 730 731 // Pointer to the op-level profiler, if set; nullptr otherwise. 732 void* profiler; 733 734 // Allocate persistent buffer which has the same life time as the interpreter. 735 // Returns nullptr on failure. 736 // The memory is allocated from heap for TFL, and from tail in TFLM. 737 // This method is only available in Init or Prepare stage. 738 // WARNING: This is an experimental interface that is subject to change. 739 void* (*AllocatePersistentBuffer)(struct TfLiteContext* ctx, size_t bytes); 740 741 // Allocate a buffer which will be deallocated right after invoke phase. 742 // The memory is allocated from heap in TFL, and from volatile arena in TFLM. 743 // This method is only available in invoke stage. 744 // NOTE: If possible use RequestScratchBufferInArena method to avoid memory 745 // allocation during inference time. 746 // WARNING: This is an experimental interface that is subject to change. 747 TfLiteStatus (*AllocateBufferForEval)(struct TfLiteContext* ctx, size_t bytes, 748 void** ptr); 749 750 // Request a scratch buffer in the arena through static memory planning. 751 // This method is only available in Prepare stage and the buffer is allocated 752 // by the interpreter between Prepare and Eval stage. In Eval stage, 753 // GetScratchBuffer API can be used to fetch the address. 754 // WARNING: This is an experimental interface that is subject to change. 755 TfLiteStatus (*RequestScratchBufferInArena)(struct TfLiteContext* ctx, 756 size_t bytes, int* buffer_idx); 757 758 // Get the scratch buffer pointer. 759 // This method is only available in Eval stage. 760 // WARNING: This is an experimental interface that is subject to change. 761 void* (*GetScratchBuffer)(struct TfLiteContext* ctx, int buffer_idx); 762 763 // Resize the memory pointer of the `tensor`. This method behaves the same as 764 // `ResizeTensor`, except that it makes a copy of the shape array internally 765 // so the shape array could be deallocated right afterwards. 766 // WARNING: This is an experimental interface that is subject to change. 767 TfLiteStatus (*ResizeTensorExplicit)(struct TfLiteContext* ctx, 768 TfLiteTensor* tensor, int dims, 769 const int* shape); 770 771 // This method provides a preview of post-delegation partitioning. Each 772 // TfLiteDelegateParams in the referenced array corresponds to one instance of 773 // the delegate kernel. 774 // Example usage: 775 // 776 // TfLiteIntArray* nodes_to_replace = ...; 777 // TfLiteDelegateParams* params_array; 778 // int num_partitions = 0; 779 // TF_LITE_ENSURE_STATUS(context->PreviewDelegatePartitioning( 780 // context, delegate, nodes_to_replace, ¶ms_array, &num_partitions)); 781 // for (int idx = 0; idx < num_partitions; idx++) { 782 // const auto& partition_params = params_array[idx]; 783 // ... 784 // } 785 // 786 // NOTE: The context owns the memory referenced by partition_params_array. It 787 // will be cleared with another call to PreviewDelegateParitioning, or after 788 // TfLiteDelegateParams::Prepare returns. 789 // 790 // WARNING: This is an experimental interface that is subject to change. 791 TfLiteStatus (*PreviewDelegatePartitioning)( 792 struct TfLiteContext* context, const TfLiteIntArray* nodes_to_replace, 793 TfLiteDelegateParams** partition_params_array, int* num_partitions); 794 795 // Returns a TfLiteTensor struct for a given index. 796 // WARNING: This is an experimental interface that is subject to change. 797 // WARNING: This method may not be available on all platforms. 798 TfLiteTensor* (*GetTensor)(const struct TfLiteContext* context, 799 int tensor_idx); 800 801 // Returns a TfLiteEvalTensor struct for a given index. 802 // WARNING: This is an experimental interface that is subject to change. 803 // WARNING: This method may not be available on all platforms. 804 TfLiteEvalTensor* (*GetEvalTensor)(const struct TfLiteContext* context, 805 int tensor_idx); 806 } TfLiteContext; 807 808 typedef struct TfLiteRegistration { 809 // Initializes the op from serialized data. 810 // If a built-in op: 811 // `buffer` is the op's params data (TfLiteLSTMParams*). 812 // `length` is zero. 813 // If custom op: 814 // `buffer` is the op's `custom_options`. 815 // `length` is the size of the buffer. 816 // 817 // Returns a type-punned (i.e. void*) opaque data (e.g. a primitive pointer 818 // or an instance of a struct). 819 // 820 // The returned pointer will be stored with the node in the `user_data` field, 821 // accessible within prepare and invoke functions below. 822 // NOTE: if the data is already in the desired format, simply implement this 823 // function to return `nullptr` and implement the free function to be a no-op. 824 void* (*init)(TfLiteContext* context, const char* buffer, size_t length); 825 826 // The pointer `buffer` is the data previously returned by an init invocation. 827 void (*free)(TfLiteContext* context, void* buffer); 828 829 // prepare is called when the inputs this node depends on have been resized. 830 // context->ResizeTensor() can be called to request output tensors to be 831 // resized. 832 // 833 // Returns kTfLiteOk on success. 834 TfLiteStatus (*prepare)(TfLiteContext* context, TfLiteNode* node); 835 836 // Execute the node (should read node->inputs and output to node->outputs). 837 // Returns kTfLiteOk on success. 838 TfLiteStatus (*invoke)(TfLiteContext* context, TfLiteNode* node); 839 840 // profiling_string is called during summarization of profiling information 841 // in order to group executions together. Providing a value here will cause a 842 // given op to appear multiple times is the profiling report. This is 843 // particularly useful for custom ops that can perform significantly 844 // different calculations depending on their `user-data`. 845 const char* (*profiling_string)(const TfLiteContext* context, 846 const TfLiteNode* node); 847 848 // Builtin codes. If this kernel refers to a builtin this is the code 849 // of the builtin. This is so we can do marshaling to other frameworks like 850 // NN API. 851 // Note: It is the responsibility of the registration binder to set this 852 // properly. 853 int32_t builtin_code; 854 855 // Custom op name. If the op is a builtin, this will be null. 856 // Note: It is the responsibility of the registration binder to set this 857 // properly. 858 // WARNING: This is an experimental interface that is subject to change. 859 const char* custom_name; 860 861 // The version of the op. 862 // Note: It is the responsibility of the registration binder to set this 863 // properly. 864 int version; 865 } TfLiteRegistration; 866 867 // The flags used in `TfLiteDelegate`. Note that this is a bitmask, so the 868 // values should be 1, 2, 4, 8, ...etc. 869 typedef enum TfLiteDelegateFlags { 870 kTfLiteDelegateFlagsNone = 0, 871 // The flag is set if the delegate can handle dynamic sized tensors. 872 // For example, the output shape of a `Resize` op with non-constant shape 873 // can only be inferred when the op is invoked. 874 // In this case, the Delegate is responsible for calling 875 // `SetTensorToDynamic` to mark the tensor as a dynamic tensor, and calling 876 // `ResizeTensor` when invoking the op. 877 // 878 // If the delegate isn't capable to handle dynamic tensors, this flag need 879 // to be set to false. 880 kTfLiteDelegateFlagsAllowDynamicTensors = 1, 881 882 // This flag can be used by delegates (that allow dynamic tensors) to ensure 883 // applicable tensor shapes are automatically propagated in the case of tensor 884 // resizing. 885 // This means that non-dynamic (allocation_type != kTfLiteDynamic) I/O tensors 886 // of a delegate kernel will have correct shapes before its Prepare() method 887 // is called. The runtime leverages TFLite builtin ops in the original 888 // execution plan to propagate shapes. 889 // 890 // A few points to note: 891 // 1. This requires kTfLiteDelegateFlagsAllowDynamicTensors. If that flag is 892 // false, this one is redundant since the delegate kernels are re-initialized 893 // every time tensors are resized. 894 // 2. Enabling this flag adds some overhead to AllocateTensors(), since extra 895 // work is required to prepare the original execution plan. 896 // 3. This flag requires that the original execution plan only have ops with 897 // valid registrations (and not 'dummy' custom ops like with Flex). 898 // WARNING: This feature is experimental and subject to change. 899 kTfLiteDelegateFlagsRequirePropagatedShapes = 2 900 } TfLiteDelegateFlags; 901 902 // WARNING: This is an experimental interface that is subject to change. 903 typedef struct TfLiteDelegate { 904 // Data that delegate needs to identify itself. This data is owned by the 905 // delegate. The delegate is owned in the user code, so the delegate is 906 // responsible for doing this when it is destroyed. 907 void* data_; 908 909 // Invoked by ModifyGraphWithDelegate. This prepare is called, giving the 910 // delegate a view of the current graph through TfLiteContext*. It typically 911 // will look at the nodes and call ReplaceNodeSubsetsWithDelegateKernels() 912 // to ask the TensorFlow lite runtime to create macro-nodes to represent 913 // delegated subgraphs of the original graph. 914 TfLiteStatus (*Prepare)(TfLiteContext* context, 915 struct TfLiteDelegate* delegate); 916 917 // Copy the data from delegate buffer handle into raw memory of the given 918 // 'tensor'. Note that the delegate is allowed to allocate the raw bytes as 919 // long as it follows the rules for kTfLiteDynamic tensors, in which case this 920 // cannot be null. 921 TfLiteStatus (*CopyFromBufferHandle)(TfLiteContext* context, 922 struct TfLiteDelegate* delegate, 923 TfLiteBufferHandle buffer_handle, 924 TfLiteTensor* tensor); 925 926 // Copy the data from raw memory of the given 'tensor' to delegate buffer 927 // handle. This can be null if the delegate doesn't use its own buffer. 928 TfLiteStatus (*CopyToBufferHandle)(TfLiteContext* context, 929 struct TfLiteDelegate* delegate, 930 TfLiteBufferHandle buffer_handle, 931 TfLiteTensor* tensor); 932 933 // Free the Delegate Buffer Handle. Note: This only frees the handle, but 934 // this doesn't release the underlying resource (e.g. textures). The 935 // resources are either owned by application layer or the delegate. 936 // This can be null if the delegate doesn't use its own buffer. 937 void (*FreeBufferHandle)(TfLiteContext* context, 938 struct TfLiteDelegate* delegate, 939 TfLiteBufferHandle* handle); 940 941 // Bitmask flags. See the comments in `TfLiteDelegateFlags`. 942 int64_t flags; 943 } TfLiteDelegate; 944 945 // Build a 'null' delegate, with all the fields properly set to their default 946 // values. 947 TfLiteDelegate TfLiteDelegateCreate(); 948 949 #ifdef __cplusplus 950 } // extern "C" 951 #endif // __cplusplus 952 #endif // TENSORFLOW_LITE_C_COMMON_H_ 953