1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (c) 2016-2021 Christoph Hellwig.
5 */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/fscrypt.h>
10 #include <linux/pagemap.h>
11 #include <linux/iomap.h>
12 #include <linux/backing-dev.h>
13 #include <linux/uio.h>
14 #include <linux/task_io_accounting_ops.h>
15 #include "trace.h"
16
17 #include "../internal.h"
18
19 /*
20 * Private flags for iomap_dio, must not overlap with the public ones in
21 * iomap.h:
22 */
23 #define IOMAP_DIO_WRITE_FUA (1 << 28)
24 #define IOMAP_DIO_NEED_SYNC (1 << 29)
25 #define IOMAP_DIO_WRITE (1 << 30)
26 #define IOMAP_DIO_DIRTY (1 << 31)
27
28 struct iomap_dio {
29 struct kiocb *iocb;
30 const struct iomap_dio_ops *dops;
31 loff_t i_size;
32 loff_t size;
33 atomic_t ref;
34 unsigned flags;
35 int error;
36 size_t done_before;
37 bool wait_for_completion;
38
39 union {
40 /* used during submission and for synchronous completion: */
41 struct {
42 struct iov_iter *iter;
43 struct task_struct *waiter;
44 struct bio *poll_bio;
45 } submit;
46
47 /* used for aio completion: */
48 struct {
49 struct work_struct work;
50 } aio;
51 };
52 };
53
iomap_dio_alloc_bio(const struct iomap_iter * iter,struct iomap_dio * dio,unsigned short nr_vecs,blk_opf_t opf)54 static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter,
55 struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf)
56 {
57 if (dio->dops && dio->dops->bio_set)
58 return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf,
59 GFP_KERNEL, dio->dops->bio_set);
60 return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL);
61 }
62
iomap_dio_submit_bio(const struct iomap_iter * iter,struct iomap_dio * dio,struct bio * bio,loff_t pos)63 static void iomap_dio_submit_bio(const struct iomap_iter *iter,
64 struct iomap_dio *dio, struct bio *bio, loff_t pos)
65 {
66 atomic_inc(&dio->ref);
67
68 /* Sync dio can't be polled reliably */
69 if ((dio->iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(dio->iocb)) {
70 bio_set_polled(bio, dio->iocb);
71 dio->submit.poll_bio = bio;
72 }
73
74 if (dio->dops && dio->dops->submit_io)
75 dio->dops->submit_io(iter, bio, pos);
76 else
77 submit_bio(bio);
78 }
79
iomap_dio_complete(struct iomap_dio * dio)80 ssize_t iomap_dio_complete(struct iomap_dio *dio)
81 {
82 const struct iomap_dio_ops *dops = dio->dops;
83 struct kiocb *iocb = dio->iocb;
84 struct inode *inode = file_inode(iocb->ki_filp);
85 loff_t offset = iocb->ki_pos;
86 ssize_t ret = dio->error;
87
88 if (dops && dops->end_io)
89 ret = dops->end_io(iocb, dio->size, ret, dio->flags);
90
91 if (likely(!ret)) {
92 ret = dio->size;
93 /* check for short read */
94 if (offset + ret > dio->i_size &&
95 !(dio->flags & IOMAP_DIO_WRITE))
96 ret = dio->i_size - offset;
97 iocb->ki_pos += ret;
98 }
99
100 /*
101 * Try again to invalidate clean pages which might have been cached by
102 * non-direct readahead, or faulted in by get_user_pages() if the source
103 * of the write was an mmap'ed region of the file we're writing. Either
104 * one is a pretty crazy thing to do, so we don't support it 100%. If
105 * this invalidation fails, tough, the write still worked...
106 *
107 * And this page cache invalidation has to be after ->end_io(), as some
108 * filesystems convert unwritten extents to real allocations in
109 * ->end_io() when necessary, otherwise a racing buffer read would cache
110 * zeros from unwritten extents.
111 */
112 if (!dio->error && dio->size &&
113 (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
114 int err;
115 err = invalidate_inode_pages2_range(inode->i_mapping,
116 offset >> PAGE_SHIFT,
117 (offset + dio->size - 1) >> PAGE_SHIFT);
118 if (err)
119 dio_warn_stale_pagecache(iocb->ki_filp);
120 }
121
122 inode_dio_end(file_inode(iocb->ki_filp));
123 /*
124 * If this is a DSYNC write, make sure we push it to stable storage now
125 * that we've written data.
126 */
127 if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
128 ret = generic_write_sync(iocb, ret);
129
130 if (ret > 0)
131 ret += dio->done_before;
132
133 kfree(dio);
134
135 return ret;
136 }
137 EXPORT_SYMBOL_GPL(iomap_dio_complete);
138
iomap_dio_complete_work(struct work_struct * work)139 static void iomap_dio_complete_work(struct work_struct *work)
140 {
141 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
142 struct kiocb *iocb = dio->iocb;
143
144 iocb->ki_complete(iocb, iomap_dio_complete(dio));
145 }
146
147 /*
148 * Set an error in the dio if none is set yet. We have to use cmpxchg
149 * as the submission context and the completion context(s) can race to
150 * update the error.
151 */
iomap_dio_set_error(struct iomap_dio * dio,int ret)152 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
153 {
154 cmpxchg(&dio->error, 0, ret);
155 }
156
iomap_dio_bio_end_io(struct bio * bio)157 void iomap_dio_bio_end_io(struct bio *bio)
158 {
159 struct iomap_dio *dio = bio->bi_private;
160 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
161
162 if (bio->bi_status)
163 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
164
165 if (atomic_dec_and_test(&dio->ref)) {
166 if (dio->wait_for_completion) {
167 struct task_struct *waiter = dio->submit.waiter;
168 WRITE_ONCE(dio->submit.waiter, NULL);
169 blk_wake_io_task(waiter);
170 } else if (dio->flags & IOMAP_DIO_WRITE) {
171 struct inode *inode = file_inode(dio->iocb->ki_filp);
172
173 WRITE_ONCE(dio->iocb->private, NULL);
174 INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
175 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
176 } else {
177 WRITE_ONCE(dio->iocb->private, NULL);
178 iomap_dio_complete_work(&dio->aio.work);
179 }
180 }
181
182 if (should_dirty) {
183 bio_check_pages_dirty(bio);
184 } else {
185 bio_release_pages(bio, false);
186 bio_put(bio);
187 }
188 }
189 EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io);
190
iomap_dio_zero(const struct iomap_iter * iter,struct iomap_dio * dio,loff_t pos,unsigned len)191 static void iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio,
192 loff_t pos, unsigned len)
193 {
194 struct inode *inode = file_inode(dio->iocb->ki_filp);
195 struct page *page = ZERO_PAGE(0);
196 struct bio *bio;
197
198 bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE);
199 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
200 GFP_KERNEL);
201 bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos);
202 bio->bi_private = dio;
203 bio->bi_end_io = iomap_dio_bio_end_io;
204
205 get_page(page);
206 __bio_add_page(bio, page, len, 0);
207 iomap_dio_submit_bio(iter, dio, bio, pos);
208 }
209
210 /*
211 * Figure out the bio's operation flags from the dio request, the
212 * mapping, and whether or not we want FUA. Note that we can end up
213 * clearing the WRITE_FUA flag in the dio request.
214 */
iomap_dio_bio_opflags(struct iomap_dio * dio,const struct iomap * iomap,bool use_fua)215 static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio,
216 const struct iomap *iomap, bool use_fua)
217 {
218 blk_opf_t opflags = REQ_SYNC | REQ_IDLE;
219
220 if (!(dio->flags & IOMAP_DIO_WRITE))
221 return REQ_OP_READ;
222
223 opflags |= REQ_OP_WRITE;
224 if (use_fua)
225 opflags |= REQ_FUA;
226 else
227 dio->flags &= ~IOMAP_DIO_WRITE_FUA;
228
229 return opflags;
230 }
231
iomap_dio_bio_iter(const struct iomap_iter * iter,struct iomap_dio * dio)232 static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter,
233 struct iomap_dio *dio)
234 {
235 const struct iomap *iomap = &iter->iomap;
236 struct inode *inode = iter->inode;
237 unsigned int fs_block_size = i_blocksize(inode), pad;
238 loff_t length = iomap_length(iter);
239 loff_t pos = iter->pos;
240 blk_opf_t bio_opf;
241 struct bio *bio;
242 bool need_zeroout = false;
243 bool use_fua = false;
244 int nr_pages, ret = 0;
245 size_t copied = 0;
246 size_t orig_count;
247
248 if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) ||
249 !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter))
250 return -EINVAL;
251
252 if (iomap->type == IOMAP_UNWRITTEN) {
253 dio->flags |= IOMAP_DIO_UNWRITTEN;
254 need_zeroout = true;
255 }
256
257 if (iomap->flags & IOMAP_F_SHARED)
258 dio->flags |= IOMAP_DIO_COW;
259
260 if (iomap->flags & IOMAP_F_NEW) {
261 need_zeroout = true;
262 } else if (iomap->type == IOMAP_MAPPED) {
263 /*
264 * Use a FUA write if we need datasync semantics, this is a pure
265 * data IO that doesn't require any metadata updates (including
266 * after IO completion such as unwritten extent conversion) and
267 * the underlying device supports FUA. This allows us to avoid
268 * cache flushes on IO completion.
269 */
270 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
271 (dio->flags & IOMAP_DIO_WRITE_FUA) && bdev_fua(iomap->bdev))
272 use_fua = true;
273 }
274
275 /*
276 * Save the original count and trim the iter to just the extent we
277 * are operating on right now. The iter will be re-expanded once
278 * we are done.
279 */
280 orig_count = iov_iter_count(dio->submit.iter);
281 iov_iter_truncate(dio->submit.iter, length);
282
283 if (!iov_iter_count(dio->submit.iter))
284 goto out;
285
286 /*
287 * We can only poll for single bio I/Os.
288 */
289 if (need_zeroout ||
290 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode)))
291 dio->iocb->ki_flags &= ~IOCB_HIPRI;
292
293 if (need_zeroout) {
294 /* zero out from the start of the block to the write offset */
295 pad = pos & (fs_block_size - 1);
296 if (pad)
297 iomap_dio_zero(iter, dio, pos - pad, pad);
298 }
299
300 /*
301 * Set the operation flags early so that bio_iov_iter_get_pages
302 * can set up the page vector appropriately for a ZONE_APPEND
303 * operation.
304 */
305 bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua);
306
307 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS);
308 do {
309 size_t n;
310 if (dio->error) {
311 iov_iter_revert(dio->submit.iter, copied);
312 copied = ret = 0;
313 goto out;
314 }
315
316 bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf);
317 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
318 GFP_KERNEL);
319 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
320 bio->bi_ioprio = dio->iocb->ki_ioprio;
321 bio->bi_private = dio;
322 bio->bi_end_io = iomap_dio_bio_end_io;
323
324 ret = bio_iov_iter_get_pages(bio, dio->submit.iter);
325 if (unlikely(ret)) {
326 /*
327 * We have to stop part way through an IO. We must fall
328 * through to the sub-block tail zeroing here, otherwise
329 * this short IO may expose stale data in the tail of
330 * the block we haven't written data to.
331 */
332 bio_put(bio);
333 goto zero_tail;
334 }
335
336 n = bio->bi_iter.bi_size;
337 if (dio->flags & IOMAP_DIO_WRITE) {
338 task_io_account_write(n);
339 } else {
340 if (dio->flags & IOMAP_DIO_DIRTY)
341 bio_set_pages_dirty(bio);
342 }
343
344 dio->size += n;
345 copied += n;
346
347 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter,
348 BIO_MAX_VECS);
349 /*
350 * We can only poll for single bio I/Os.
351 */
352 if (nr_pages)
353 dio->iocb->ki_flags &= ~IOCB_HIPRI;
354 iomap_dio_submit_bio(iter, dio, bio, pos);
355 pos += n;
356 } while (nr_pages);
357
358 /*
359 * We need to zeroout the tail of a sub-block write if the extent type
360 * requires zeroing or the write extends beyond EOF. If we don't zero
361 * the block tail in the latter case, we can expose stale data via mmap
362 * reads of the EOF block.
363 */
364 zero_tail:
365 if (need_zeroout ||
366 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
367 /* zero out from the end of the write to the end of the block */
368 pad = pos & (fs_block_size - 1);
369 if (pad)
370 iomap_dio_zero(iter, dio, pos, fs_block_size - pad);
371 }
372 out:
373 /* Undo iter limitation to current extent */
374 iov_iter_reexpand(dio->submit.iter, orig_count - copied);
375 if (copied)
376 return copied;
377 return ret;
378 }
379
iomap_dio_hole_iter(const struct iomap_iter * iter,struct iomap_dio * dio)380 static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter,
381 struct iomap_dio *dio)
382 {
383 loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter);
384
385 dio->size += length;
386 if (!length)
387 return -EFAULT;
388 return length;
389 }
390
iomap_dio_inline_iter(const struct iomap_iter * iomi,struct iomap_dio * dio)391 static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi,
392 struct iomap_dio *dio)
393 {
394 const struct iomap *iomap = &iomi->iomap;
395 struct iov_iter *iter = dio->submit.iter;
396 void *inline_data = iomap_inline_data(iomap, iomi->pos);
397 loff_t length = iomap_length(iomi);
398 loff_t pos = iomi->pos;
399 size_t copied;
400
401 if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap)))
402 return -EIO;
403
404 if (dio->flags & IOMAP_DIO_WRITE) {
405 loff_t size = iomi->inode->i_size;
406
407 if (pos > size)
408 memset(iomap_inline_data(iomap, size), 0, pos - size);
409 copied = copy_from_iter(inline_data, length, iter);
410 if (copied) {
411 if (pos + copied > size)
412 i_size_write(iomi->inode, pos + copied);
413 mark_inode_dirty(iomi->inode);
414 }
415 } else {
416 copied = copy_to_iter(inline_data, length, iter);
417 }
418 dio->size += copied;
419 if (!copied)
420 return -EFAULT;
421 return copied;
422 }
423
iomap_dio_iter(const struct iomap_iter * iter,struct iomap_dio * dio)424 static loff_t iomap_dio_iter(const struct iomap_iter *iter,
425 struct iomap_dio *dio)
426 {
427 switch (iter->iomap.type) {
428 case IOMAP_HOLE:
429 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
430 return -EIO;
431 return iomap_dio_hole_iter(iter, dio);
432 case IOMAP_UNWRITTEN:
433 if (!(dio->flags & IOMAP_DIO_WRITE))
434 return iomap_dio_hole_iter(iter, dio);
435 return iomap_dio_bio_iter(iter, dio);
436 case IOMAP_MAPPED:
437 return iomap_dio_bio_iter(iter, dio);
438 case IOMAP_INLINE:
439 return iomap_dio_inline_iter(iter, dio);
440 case IOMAP_DELALLOC:
441 /*
442 * DIO is not serialised against mmap() access at all, and so
443 * if the page_mkwrite occurs between the writeback and the
444 * iomap_iter() call in the DIO path, then it will see the
445 * DELALLOC block that the page-mkwrite allocated.
446 */
447 pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n",
448 dio->iocb->ki_filp, current->comm);
449 return -EIO;
450 default:
451 WARN_ON_ONCE(1);
452 return -EIO;
453 }
454 }
455
456 /*
457 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
458 * is being issued as AIO or not. This allows us to optimise pure data writes
459 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
460 * REQ_FLUSH post write. This is slightly tricky because a single request here
461 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
462 * may be pure data writes. In that case, we still need to do a full data sync
463 * completion.
464 *
465 * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL,
466 * __iomap_dio_rw can return a partial result if it encounters a non-resident
467 * page in @iter after preparing a transfer. In that case, the non-resident
468 * pages can be faulted in and the request resumed with @done_before set to the
469 * number of bytes previously transferred. The request will then complete with
470 * the correct total number of bytes transferred; this is essential for
471 * completing partial requests asynchronously.
472 *
473 * Returns -ENOTBLK In case of a page invalidation invalidation failure for
474 * writes. The callers needs to fall back to buffered I/O in this case.
475 */
476 struct iomap_dio *
__iomap_dio_rw(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops,const struct iomap_dio_ops * dops,unsigned int dio_flags,void * private,size_t done_before)477 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
478 const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
479 unsigned int dio_flags, void *private, size_t done_before)
480 {
481 struct address_space *mapping = iocb->ki_filp->f_mapping;
482 struct inode *inode = file_inode(iocb->ki_filp);
483 struct iomap_iter iomi = {
484 .inode = inode,
485 .pos = iocb->ki_pos,
486 .len = iov_iter_count(iter),
487 .flags = IOMAP_DIRECT,
488 .private = private,
489 };
490 loff_t end = iomi.pos + iomi.len - 1, ret = 0;
491 bool wait_for_completion =
492 is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT);
493 struct blk_plug plug;
494 struct iomap_dio *dio;
495
496 if (!iomi.len)
497 return NULL;
498
499 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
500 if (!dio)
501 return ERR_PTR(-ENOMEM);
502
503 dio->iocb = iocb;
504 atomic_set(&dio->ref, 1);
505 dio->size = 0;
506 dio->i_size = i_size_read(inode);
507 dio->dops = dops;
508 dio->error = 0;
509 dio->flags = 0;
510 dio->done_before = done_before;
511
512 dio->submit.iter = iter;
513 dio->submit.waiter = current;
514 dio->submit.poll_bio = NULL;
515
516 if (iov_iter_rw(iter) == READ) {
517 if (iomi.pos >= dio->i_size)
518 goto out_free_dio;
519
520 if (iocb->ki_flags & IOCB_NOWAIT) {
521 if (filemap_range_needs_writeback(mapping, iomi.pos,
522 end)) {
523 ret = -EAGAIN;
524 goto out_free_dio;
525 }
526 iomi.flags |= IOMAP_NOWAIT;
527 }
528
529 if (user_backed_iter(iter))
530 dio->flags |= IOMAP_DIO_DIRTY;
531 } else {
532 iomi.flags |= IOMAP_WRITE;
533 dio->flags |= IOMAP_DIO_WRITE;
534
535 if (iocb->ki_flags & IOCB_NOWAIT) {
536 if (filemap_range_has_page(mapping, iomi.pos, end)) {
537 ret = -EAGAIN;
538 goto out_free_dio;
539 }
540 iomi.flags |= IOMAP_NOWAIT;
541 }
542
543 /* for data sync or sync, we need sync completion processing */
544 if (iocb_is_dsync(iocb) && !(dio_flags & IOMAP_DIO_NOSYNC)) {
545 dio->flags |= IOMAP_DIO_NEED_SYNC;
546
547 /*
548 * For datasync only writes, we optimistically try
549 * using FUA for this IO. Any non-FUA write that
550 * occurs will clear this flag, hence we know before
551 * completion whether a cache flush is necessary.
552 */
553 if (!(iocb->ki_flags & IOCB_SYNC))
554 dio->flags |= IOMAP_DIO_WRITE_FUA;
555 }
556 }
557
558 if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) {
559 ret = -EAGAIN;
560 if (iomi.pos >= dio->i_size ||
561 iomi.pos + iomi.len > dio->i_size)
562 goto out_free_dio;
563 iomi.flags |= IOMAP_OVERWRITE_ONLY;
564 }
565
566 ret = filemap_write_and_wait_range(mapping, iomi.pos, end);
567 if (ret)
568 goto out_free_dio;
569
570 if (iov_iter_rw(iter) == WRITE) {
571 /*
572 * Try to invalidate cache pages for the range we are writing.
573 * If this invalidation fails, let the caller fall back to
574 * buffered I/O.
575 */
576 if (invalidate_inode_pages2_range(mapping,
577 iomi.pos >> PAGE_SHIFT, end >> PAGE_SHIFT)) {
578 trace_iomap_dio_invalidate_fail(inode, iomi.pos,
579 iomi.len);
580 ret = -ENOTBLK;
581 goto out_free_dio;
582 }
583
584 if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) {
585 ret = sb_init_dio_done_wq(inode->i_sb);
586 if (ret < 0)
587 goto out_free_dio;
588 }
589 }
590
591 inode_dio_begin(inode);
592
593 blk_start_plug(&plug);
594 while ((ret = iomap_iter(&iomi, ops)) > 0) {
595 iomi.processed = iomap_dio_iter(&iomi, dio);
596
597 /*
598 * We can only poll for single bio I/Os.
599 */
600 iocb->ki_flags &= ~IOCB_HIPRI;
601 }
602
603 blk_finish_plug(&plug);
604
605 /*
606 * We only report that we've read data up to i_size.
607 * Revert iter to a state corresponding to that as some callers (such
608 * as the splice code) rely on it.
609 */
610 if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size)
611 iov_iter_revert(iter, iomi.pos - dio->i_size);
612
613 if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) {
614 if (!(iocb->ki_flags & IOCB_NOWAIT))
615 wait_for_completion = true;
616 ret = 0;
617 }
618
619 /* magic error code to fall back to buffered I/O */
620 if (ret == -ENOTBLK) {
621 wait_for_completion = true;
622 ret = 0;
623 }
624 if (ret < 0)
625 iomap_dio_set_error(dio, ret);
626
627 /*
628 * If all the writes we issued were FUA, we don't need to flush the
629 * cache on IO completion. Clear the sync flag for this case.
630 */
631 if (dio->flags & IOMAP_DIO_WRITE_FUA)
632 dio->flags &= ~IOMAP_DIO_NEED_SYNC;
633
634 WRITE_ONCE(iocb->private, dio->submit.poll_bio);
635
636 /*
637 * We are about to drop our additional submission reference, which
638 * might be the last reference to the dio. There are three different
639 * ways we can progress here:
640 *
641 * (a) If this is the last reference we will always complete and free
642 * the dio ourselves.
643 * (b) If this is not the last reference, and we serve an asynchronous
644 * iocb, we must never touch the dio after the decrement, the
645 * I/O completion handler will complete and free it.
646 * (c) If this is not the last reference, but we serve a synchronous
647 * iocb, the I/O completion handler will wake us up on the drop
648 * of the final reference, and we will complete and free it here
649 * after we got woken by the I/O completion handler.
650 */
651 dio->wait_for_completion = wait_for_completion;
652 if (!atomic_dec_and_test(&dio->ref)) {
653 if (!wait_for_completion)
654 return ERR_PTR(-EIOCBQUEUED);
655
656 for (;;) {
657 set_current_state(TASK_UNINTERRUPTIBLE);
658 if (!READ_ONCE(dio->submit.waiter))
659 break;
660
661 blk_io_schedule();
662 }
663 __set_current_state(TASK_RUNNING);
664 }
665
666 return dio;
667
668 out_free_dio:
669 kfree(dio);
670 if (ret)
671 return ERR_PTR(ret);
672 return NULL;
673 }
674 EXPORT_SYMBOL_GPL(__iomap_dio_rw);
675
676 ssize_t
iomap_dio_rw(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops,const struct iomap_dio_ops * dops,unsigned int dio_flags,void * private,size_t done_before)677 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
678 const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
679 unsigned int dio_flags, void *private, size_t done_before)
680 {
681 struct iomap_dio *dio;
682
683 dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private,
684 done_before);
685 if (IS_ERR_OR_NULL(dio))
686 return PTR_ERR_OR_ZERO(dio);
687 return iomap_dio_complete(dio);
688 }
689 EXPORT_SYMBOL_GPL(iomap_dio_rw);
690