1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2016, Semihalf
4 * Author: Tomasz Nowicki <tn@semihalf.com>
5 *
6 * This file implements early detection/parsing of I/O mapping
7 * reported to OS through firmware via I/O Remapping Table (IORT)
8 * IORT document number: ARM DEN 0049A
9 */
10
11 #define pr_fmt(fmt) "ACPI: IORT: " fmt
12
13 #include <linux/acpi_iort.h>
14 #include <linux/bitfield.h>
15 #include <linux/iommu.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/pci.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/dma-map-ops.h>
22
23 #define IORT_TYPE_MASK(type) (1 << (type))
24 #define IORT_MSI_TYPE (1 << ACPI_IORT_NODE_ITS_GROUP)
25 #define IORT_IOMMU_TYPE ((1 << ACPI_IORT_NODE_SMMU) | \
26 (1 << ACPI_IORT_NODE_SMMU_V3))
27
28 struct iort_its_msi_chip {
29 struct list_head list;
30 struct fwnode_handle *fw_node;
31 phys_addr_t base_addr;
32 u32 translation_id;
33 };
34
35 struct iort_fwnode {
36 struct list_head list;
37 struct acpi_iort_node *iort_node;
38 struct fwnode_handle *fwnode;
39 };
40 static LIST_HEAD(iort_fwnode_list);
41 static DEFINE_SPINLOCK(iort_fwnode_lock);
42
43 /**
44 * iort_set_fwnode() - Create iort_fwnode and use it to register
45 * iommu data in the iort_fwnode_list
46 *
47 * @iort_node: IORT table node associated with the IOMMU
48 * @fwnode: fwnode associated with the IORT node
49 *
50 * Returns: 0 on success
51 * <0 on failure
52 */
iort_set_fwnode(struct acpi_iort_node * iort_node,struct fwnode_handle * fwnode)53 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
54 struct fwnode_handle *fwnode)
55 {
56 struct iort_fwnode *np;
57
58 np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
59
60 if (WARN_ON(!np))
61 return -ENOMEM;
62
63 INIT_LIST_HEAD(&np->list);
64 np->iort_node = iort_node;
65 np->fwnode = fwnode;
66
67 spin_lock(&iort_fwnode_lock);
68 list_add_tail(&np->list, &iort_fwnode_list);
69 spin_unlock(&iort_fwnode_lock);
70
71 return 0;
72 }
73
74 /**
75 * iort_get_fwnode() - Retrieve fwnode associated with an IORT node
76 *
77 * @node: IORT table node to be looked-up
78 *
79 * Returns: fwnode_handle pointer on success, NULL on failure
80 */
iort_get_fwnode(struct acpi_iort_node * node)81 static inline struct fwnode_handle *iort_get_fwnode(
82 struct acpi_iort_node *node)
83 {
84 struct iort_fwnode *curr;
85 struct fwnode_handle *fwnode = NULL;
86
87 spin_lock(&iort_fwnode_lock);
88 list_for_each_entry(curr, &iort_fwnode_list, list) {
89 if (curr->iort_node == node) {
90 fwnode = curr->fwnode;
91 break;
92 }
93 }
94 spin_unlock(&iort_fwnode_lock);
95
96 return fwnode;
97 }
98
99 /**
100 * iort_delete_fwnode() - Delete fwnode associated with an IORT node
101 *
102 * @node: IORT table node associated with fwnode to delete
103 */
iort_delete_fwnode(struct acpi_iort_node * node)104 static inline void iort_delete_fwnode(struct acpi_iort_node *node)
105 {
106 struct iort_fwnode *curr, *tmp;
107
108 spin_lock(&iort_fwnode_lock);
109 list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
110 if (curr->iort_node == node) {
111 list_del(&curr->list);
112 kfree(curr);
113 break;
114 }
115 }
116 spin_unlock(&iort_fwnode_lock);
117 }
118
119 /**
120 * iort_get_iort_node() - Retrieve iort_node associated with an fwnode
121 *
122 * @fwnode: fwnode associated with device to be looked-up
123 *
124 * Returns: iort_node pointer on success, NULL on failure
125 */
iort_get_iort_node(struct fwnode_handle * fwnode)126 static inline struct acpi_iort_node *iort_get_iort_node(
127 struct fwnode_handle *fwnode)
128 {
129 struct iort_fwnode *curr;
130 struct acpi_iort_node *iort_node = NULL;
131
132 spin_lock(&iort_fwnode_lock);
133 list_for_each_entry(curr, &iort_fwnode_list, list) {
134 if (curr->fwnode == fwnode) {
135 iort_node = curr->iort_node;
136 break;
137 }
138 }
139 spin_unlock(&iort_fwnode_lock);
140
141 return iort_node;
142 }
143
144 typedef acpi_status (*iort_find_node_callback)
145 (struct acpi_iort_node *node, void *context);
146
147 /* Root pointer to the mapped IORT table */
148 static struct acpi_table_header *iort_table;
149
150 static LIST_HEAD(iort_msi_chip_list);
151 static DEFINE_SPINLOCK(iort_msi_chip_lock);
152
153 /**
154 * iort_register_domain_token() - register domain token along with related
155 * ITS ID and base address to the list from where we can get it back later on.
156 * @trans_id: ITS ID.
157 * @base: ITS base address.
158 * @fw_node: Domain token.
159 *
160 * Returns: 0 on success, -ENOMEM if no memory when allocating list element
161 */
iort_register_domain_token(int trans_id,phys_addr_t base,struct fwnode_handle * fw_node)162 int iort_register_domain_token(int trans_id, phys_addr_t base,
163 struct fwnode_handle *fw_node)
164 {
165 struct iort_its_msi_chip *its_msi_chip;
166
167 its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
168 if (!its_msi_chip)
169 return -ENOMEM;
170
171 its_msi_chip->fw_node = fw_node;
172 its_msi_chip->translation_id = trans_id;
173 its_msi_chip->base_addr = base;
174
175 spin_lock(&iort_msi_chip_lock);
176 list_add(&its_msi_chip->list, &iort_msi_chip_list);
177 spin_unlock(&iort_msi_chip_lock);
178
179 return 0;
180 }
181
182 /**
183 * iort_deregister_domain_token() - Deregister domain token based on ITS ID
184 * @trans_id: ITS ID.
185 *
186 * Returns: none.
187 */
iort_deregister_domain_token(int trans_id)188 void iort_deregister_domain_token(int trans_id)
189 {
190 struct iort_its_msi_chip *its_msi_chip, *t;
191
192 spin_lock(&iort_msi_chip_lock);
193 list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
194 if (its_msi_chip->translation_id == trans_id) {
195 list_del(&its_msi_chip->list);
196 kfree(its_msi_chip);
197 break;
198 }
199 }
200 spin_unlock(&iort_msi_chip_lock);
201 }
202
203 /**
204 * iort_find_domain_token() - Find domain token based on given ITS ID
205 * @trans_id: ITS ID.
206 *
207 * Returns: domain token when find on the list, NULL otherwise
208 */
iort_find_domain_token(int trans_id)209 struct fwnode_handle *iort_find_domain_token(int trans_id)
210 {
211 struct fwnode_handle *fw_node = NULL;
212 struct iort_its_msi_chip *its_msi_chip;
213
214 spin_lock(&iort_msi_chip_lock);
215 list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
216 if (its_msi_chip->translation_id == trans_id) {
217 fw_node = its_msi_chip->fw_node;
218 break;
219 }
220 }
221 spin_unlock(&iort_msi_chip_lock);
222
223 return fw_node;
224 }
225
iort_scan_node(enum acpi_iort_node_type type,iort_find_node_callback callback,void * context)226 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
227 iort_find_node_callback callback,
228 void *context)
229 {
230 struct acpi_iort_node *iort_node, *iort_end;
231 struct acpi_table_iort *iort;
232 int i;
233
234 if (!iort_table)
235 return NULL;
236
237 /* Get the first IORT node */
238 iort = (struct acpi_table_iort *)iort_table;
239 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
240 iort->node_offset);
241 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
242 iort_table->length);
243
244 for (i = 0; i < iort->node_count; i++) {
245 if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
246 "IORT node pointer overflows, bad table!\n"))
247 return NULL;
248
249 if (iort_node->type == type &&
250 ACPI_SUCCESS(callback(iort_node, context)))
251 return iort_node;
252
253 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
254 iort_node->length);
255 }
256
257 return NULL;
258 }
259
iort_match_node_callback(struct acpi_iort_node * node,void * context)260 static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
261 void *context)
262 {
263 struct device *dev = context;
264 acpi_status status = AE_NOT_FOUND;
265
266 if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
267 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
268 struct acpi_device *adev;
269 struct acpi_iort_named_component *ncomp;
270 struct device *nc_dev = dev;
271
272 /*
273 * Walk the device tree to find a device with an
274 * ACPI companion; there is no point in scanning
275 * IORT for a device matching a named component if
276 * the device does not have an ACPI companion to
277 * start with.
278 */
279 do {
280 adev = ACPI_COMPANION(nc_dev);
281 if (adev)
282 break;
283
284 nc_dev = nc_dev->parent;
285 } while (nc_dev);
286
287 if (!adev)
288 goto out;
289
290 status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
291 if (ACPI_FAILURE(status)) {
292 dev_warn(nc_dev, "Can't get device full path name\n");
293 goto out;
294 }
295
296 ncomp = (struct acpi_iort_named_component *)node->node_data;
297 status = !strcmp(ncomp->device_name, buf.pointer) ?
298 AE_OK : AE_NOT_FOUND;
299 acpi_os_free(buf.pointer);
300 } else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
301 struct acpi_iort_root_complex *pci_rc;
302 struct pci_bus *bus;
303
304 bus = to_pci_bus(dev);
305 pci_rc = (struct acpi_iort_root_complex *)node->node_data;
306
307 /*
308 * It is assumed that PCI segment numbers maps one-to-one
309 * with root complexes. Each segment number can represent only
310 * one root complex.
311 */
312 status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
313 AE_OK : AE_NOT_FOUND;
314 }
315 out:
316 return status;
317 }
318
iort_id_map(struct acpi_iort_id_mapping * map,u8 type,u32 rid_in,u32 * rid_out,bool check_overlap)319 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
320 u32 *rid_out, bool check_overlap)
321 {
322 /* Single mapping does not care for input id */
323 if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
324 if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
325 type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
326 *rid_out = map->output_base;
327 return 0;
328 }
329
330 pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
331 map, type);
332 return -ENXIO;
333 }
334
335 if (rid_in < map->input_base ||
336 (rid_in > map->input_base + map->id_count))
337 return -ENXIO;
338
339 if (check_overlap) {
340 /*
341 * We already found a mapping for this input ID at the end of
342 * another region. If it coincides with the start of this
343 * region, we assume the prior match was due to the off-by-1
344 * issue mentioned below, and allow it to be superseded.
345 * Otherwise, things are *really* broken, and we just disregard
346 * duplicate matches entirely to retain compatibility.
347 */
348 pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n",
349 map, rid_in);
350 if (rid_in != map->input_base)
351 return -ENXIO;
352
353 pr_err(FW_BUG "applying workaround.\n");
354 }
355
356 *rid_out = map->output_base + (rid_in - map->input_base);
357
358 /*
359 * Due to confusion regarding the meaning of the id_count field (which
360 * carries the number of IDs *minus 1*), we may have to disregard this
361 * match if it is at the end of the range, and overlaps with the start
362 * of another one.
363 */
364 if (map->id_count > 0 && rid_in == map->input_base + map->id_count)
365 return -EAGAIN;
366 return 0;
367 }
368
iort_node_get_id(struct acpi_iort_node * node,u32 * id_out,int index)369 static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
370 u32 *id_out, int index)
371 {
372 struct acpi_iort_node *parent;
373 struct acpi_iort_id_mapping *map;
374
375 if (!node->mapping_offset || !node->mapping_count ||
376 index >= node->mapping_count)
377 return NULL;
378
379 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
380 node->mapping_offset + index * sizeof(*map));
381
382 /* Firmware bug! */
383 if (!map->output_reference) {
384 pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
385 node, node->type);
386 return NULL;
387 }
388
389 parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
390 map->output_reference);
391
392 if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
393 if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
394 node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
395 node->type == ACPI_IORT_NODE_SMMU_V3 ||
396 node->type == ACPI_IORT_NODE_PMCG) {
397 *id_out = map->output_base;
398 return parent;
399 }
400 }
401
402 return NULL;
403 }
404
405 #ifndef ACPI_IORT_SMMU_V3_DEVICEID_VALID
406 #define ACPI_IORT_SMMU_V3_DEVICEID_VALID (1 << 4)
407 #endif
408
iort_get_id_mapping_index(struct acpi_iort_node * node)409 static int iort_get_id_mapping_index(struct acpi_iort_node *node)
410 {
411 struct acpi_iort_smmu_v3 *smmu;
412 struct acpi_iort_pmcg *pmcg;
413
414 switch (node->type) {
415 case ACPI_IORT_NODE_SMMU_V3:
416 /*
417 * SMMUv3 dev ID mapping index was introduced in revision 1
418 * table, not available in revision 0
419 */
420 if (node->revision < 1)
421 return -EINVAL;
422
423 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
424 /*
425 * Until IORT E.e (node rev. 5), the ID mapping index was
426 * defined to be valid unless all interrupts are GSIV-based.
427 */
428 if (node->revision < 5) {
429 if (smmu->event_gsiv && smmu->pri_gsiv &&
430 smmu->gerr_gsiv && smmu->sync_gsiv)
431 return -EINVAL;
432 } else if (!(smmu->flags & ACPI_IORT_SMMU_V3_DEVICEID_VALID)) {
433 return -EINVAL;
434 }
435
436 if (smmu->id_mapping_index >= node->mapping_count) {
437 pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
438 node, node->type);
439 return -EINVAL;
440 }
441
442 return smmu->id_mapping_index;
443 case ACPI_IORT_NODE_PMCG:
444 pmcg = (struct acpi_iort_pmcg *)node->node_data;
445 if (pmcg->overflow_gsiv || node->mapping_count == 0)
446 return -EINVAL;
447
448 return 0;
449 default:
450 return -EINVAL;
451 }
452 }
453
iort_node_map_id(struct acpi_iort_node * node,u32 id_in,u32 * id_out,u8 type_mask)454 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
455 u32 id_in, u32 *id_out,
456 u8 type_mask)
457 {
458 u32 id = id_in;
459
460 /* Parse the ID mapping tree to find specified node type */
461 while (node) {
462 struct acpi_iort_id_mapping *map;
463 int i, index, rc = 0;
464 u32 out_ref = 0, map_id = id;
465
466 if (IORT_TYPE_MASK(node->type) & type_mask) {
467 if (id_out)
468 *id_out = id;
469 return node;
470 }
471
472 if (!node->mapping_offset || !node->mapping_count)
473 goto fail_map;
474
475 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
476 node->mapping_offset);
477
478 /* Firmware bug! */
479 if (!map->output_reference) {
480 pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
481 node, node->type);
482 goto fail_map;
483 }
484
485 /*
486 * Get the special ID mapping index (if any) and skip its
487 * associated ID map to prevent erroneous multi-stage
488 * IORT ID translations.
489 */
490 index = iort_get_id_mapping_index(node);
491
492 /* Do the ID translation */
493 for (i = 0; i < node->mapping_count; i++, map++) {
494 /* if it is special mapping index, skip it */
495 if (i == index)
496 continue;
497
498 rc = iort_id_map(map, node->type, map_id, &id, out_ref);
499 if (!rc)
500 break;
501 if (rc == -EAGAIN)
502 out_ref = map->output_reference;
503 }
504
505 if (i == node->mapping_count && !out_ref)
506 goto fail_map;
507
508 node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
509 rc ? out_ref : map->output_reference);
510 }
511
512 fail_map:
513 /* Map input ID to output ID unchanged on mapping failure */
514 if (id_out)
515 *id_out = id_in;
516
517 return NULL;
518 }
519
iort_node_map_platform_id(struct acpi_iort_node * node,u32 * id_out,u8 type_mask,int index)520 static struct acpi_iort_node *iort_node_map_platform_id(
521 struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
522 int index)
523 {
524 struct acpi_iort_node *parent;
525 u32 id;
526
527 /* step 1: retrieve the initial dev id */
528 parent = iort_node_get_id(node, &id, index);
529 if (!parent)
530 return NULL;
531
532 /*
533 * optional step 2: map the initial dev id if its parent is not
534 * the target type we want, map it again for the use cases such
535 * as NC (named component) -> SMMU -> ITS. If the type is matched,
536 * return the initial dev id and its parent pointer directly.
537 */
538 if (!(IORT_TYPE_MASK(parent->type) & type_mask))
539 parent = iort_node_map_id(parent, id, id_out, type_mask);
540 else
541 if (id_out)
542 *id_out = id;
543
544 return parent;
545 }
546
iort_find_dev_node(struct device * dev)547 static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
548 {
549 struct pci_bus *pbus;
550
551 if (!dev_is_pci(dev)) {
552 struct acpi_iort_node *node;
553 /*
554 * scan iort_fwnode_list to see if it's an iort platform
555 * device (such as SMMU, PMCG),its iort node already cached
556 * and associated with fwnode when iort platform devices
557 * were initialized.
558 */
559 node = iort_get_iort_node(dev->fwnode);
560 if (node)
561 return node;
562 /*
563 * if not, then it should be a platform device defined in
564 * DSDT/SSDT (with Named Component node in IORT)
565 */
566 return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
567 iort_match_node_callback, dev);
568 }
569
570 pbus = to_pci_dev(dev)->bus;
571
572 return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
573 iort_match_node_callback, &pbus->dev);
574 }
575
576 /**
577 * iort_msi_map_id() - Map a MSI input ID for a device
578 * @dev: The device for which the mapping is to be done.
579 * @input_id: The device input ID.
580 *
581 * Returns: mapped MSI ID on success, input ID otherwise
582 */
iort_msi_map_id(struct device * dev,u32 input_id)583 u32 iort_msi_map_id(struct device *dev, u32 input_id)
584 {
585 struct acpi_iort_node *node;
586 u32 dev_id;
587
588 node = iort_find_dev_node(dev);
589 if (!node)
590 return input_id;
591
592 iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE);
593 return dev_id;
594 }
595
596 /**
597 * iort_pmsi_get_dev_id() - Get the device id for a device
598 * @dev: The device for which the mapping is to be done.
599 * @dev_id: The device ID found.
600 *
601 * Returns: 0 for successful find a dev id, -ENODEV on error
602 */
iort_pmsi_get_dev_id(struct device * dev,u32 * dev_id)603 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
604 {
605 int i, index;
606 struct acpi_iort_node *node;
607
608 node = iort_find_dev_node(dev);
609 if (!node)
610 return -ENODEV;
611
612 index = iort_get_id_mapping_index(node);
613 /* if there is a valid index, go get the dev_id directly */
614 if (index >= 0) {
615 if (iort_node_get_id(node, dev_id, index))
616 return 0;
617 } else {
618 for (i = 0; i < node->mapping_count; i++) {
619 if (iort_node_map_platform_id(node, dev_id,
620 IORT_MSI_TYPE, i))
621 return 0;
622 }
623 }
624
625 return -ENODEV;
626 }
627
iort_find_its_base(u32 its_id,phys_addr_t * base)628 static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
629 {
630 struct iort_its_msi_chip *its_msi_chip;
631 int ret = -ENODEV;
632
633 spin_lock(&iort_msi_chip_lock);
634 list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
635 if (its_msi_chip->translation_id == its_id) {
636 *base = its_msi_chip->base_addr;
637 ret = 0;
638 break;
639 }
640 }
641 spin_unlock(&iort_msi_chip_lock);
642
643 return ret;
644 }
645
646 /**
647 * iort_dev_find_its_id() - Find the ITS identifier for a device
648 * @dev: The device.
649 * @id: Device's ID
650 * @idx: Index of the ITS identifier list.
651 * @its_id: ITS identifier.
652 *
653 * Returns: 0 on success, appropriate error value otherwise
654 */
iort_dev_find_its_id(struct device * dev,u32 id,unsigned int idx,int * its_id)655 static int iort_dev_find_its_id(struct device *dev, u32 id,
656 unsigned int idx, int *its_id)
657 {
658 struct acpi_iort_its_group *its;
659 struct acpi_iort_node *node;
660
661 node = iort_find_dev_node(dev);
662 if (!node)
663 return -ENXIO;
664
665 node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE);
666 if (!node)
667 return -ENXIO;
668
669 /* Move to ITS specific data */
670 its = (struct acpi_iort_its_group *)node->node_data;
671 if (idx >= its->its_count) {
672 dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
673 idx, its->its_count);
674 return -ENXIO;
675 }
676
677 *its_id = its->identifiers[idx];
678 return 0;
679 }
680
681 /**
682 * iort_get_device_domain() - Find MSI domain related to a device
683 * @dev: The device.
684 * @id: Requester ID for the device.
685 * @bus_token: irq domain bus token.
686 *
687 * Returns: the MSI domain for this device, NULL otherwise
688 */
iort_get_device_domain(struct device * dev,u32 id,enum irq_domain_bus_token bus_token)689 struct irq_domain *iort_get_device_domain(struct device *dev, u32 id,
690 enum irq_domain_bus_token bus_token)
691 {
692 struct fwnode_handle *handle;
693 int its_id;
694
695 if (iort_dev_find_its_id(dev, id, 0, &its_id))
696 return NULL;
697
698 handle = iort_find_domain_token(its_id);
699 if (!handle)
700 return NULL;
701
702 return irq_find_matching_fwnode(handle, bus_token);
703 }
704
iort_set_device_domain(struct device * dev,struct acpi_iort_node * node)705 static void iort_set_device_domain(struct device *dev,
706 struct acpi_iort_node *node)
707 {
708 struct acpi_iort_its_group *its;
709 struct acpi_iort_node *msi_parent;
710 struct acpi_iort_id_mapping *map;
711 struct fwnode_handle *iort_fwnode;
712 struct irq_domain *domain;
713 int index;
714
715 index = iort_get_id_mapping_index(node);
716 if (index < 0)
717 return;
718
719 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
720 node->mapping_offset + index * sizeof(*map));
721
722 /* Firmware bug! */
723 if (!map->output_reference ||
724 !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
725 pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
726 node, node->type);
727 return;
728 }
729
730 msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
731 map->output_reference);
732
733 if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
734 return;
735
736 /* Move to ITS specific data */
737 its = (struct acpi_iort_its_group *)msi_parent->node_data;
738
739 iort_fwnode = iort_find_domain_token(its->identifiers[0]);
740 if (!iort_fwnode)
741 return;
742
743 domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
744 if (domain)
745 dev_set_msi_domain(dev, domain);
746 }
747
748 /**
749 * iort_get_platform_device_domain() - Find MSI domain related to a
750 * platform device
751 * @dev: the dev pointer associated with the platform device
752 *
753 * Returns: the MSI domain for this device, NULL otherwise
754 */
iort_get_platform_device_domain(struct device * dev)755 static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
756 {
757 struct acpi_iort_node *node, *msi_parent = NULL;
758 struct fwnode_handle *iort_fwnode;
759 struct acpi_iort_its_group *its;
760 int i;
761
762 /* find its associated iort node */
763 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
764 iort_match_node_callback, dev);
765 if (!node)
766 return NULL;
767
768 /* then find its msi parent node */
769 for (i = 0; i < node->mapping_count; i++) {
770 msi_parent = iort_node_map_platform_id(node, NULL,
771 IORT_MSI_TYPE, i);
772 if (msi_parent)
773 break;
774 }
775
776 if (!msi_parent)
777 return NULL;
778
779 /* Move to ITS specific data */
780 its = (struct acpi_iort_its_group *)msi_parent->node_data;
781
782 iort_fwnode = iort_find_domain_token(its->identifiers[0]);
783 if (!iort_fwnode)
784 return NULL;
785
786 return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
787 }
788
acpi_configure_pmsi_domain(struct device * dev)789 void acpi_configure_pmsi_domain(struct device *dev)
790 {
791 struct irq_domain *msi_domain;
792
793 msi_domain = iort_get_platform_device_domain(dev);
794 if (msi_domain)
795 dev_set_msi_domain(dev, msi_domain);
796 }
797
798 #ifdef CONFIG_IOMMU_API
iort_rmr_free(struct device * dev,struct iommu_resv_region * region)799 static void iort_rmr_free(struct device *dev,
800 struct iommu_resv_region *region)
801 {
802 struct iommu_iort_rmr_data *rmr_data;
803
804 rmr_data = container_of(region, struct iommu_iort_rmr_data, rr);
805 kfree(rmr_data->sids);
806 kfree(rmr_data);
807 }
808
iort_rmr_alloc(struct acpi_iort_rmr_desc * rmr_desc,int prot,enum iommu_resv_type type,u32 * sids,u32 num_sids)809 static struct iommu_iort_rmr_data *iort_rmr_alloc(
810 struct acpi_iort_rmr_desc *rmr_desc,
811 int prot, enum iommu_resv_type type,
812 u32 *sids, u32 num_sids)
813 {
814 struct iommu_iort_rmr_data *rmr_data;
815 struct iommu_resv_region *region;
816 u32 *sids_copy;
817 u64 addr = rmr_desc->base_address, size = rmr_desc->length;
818
819 rmr_data = kmalloc(sizeof(*rmr_data), GFP_KERNEL);
820 if (!rmr_data)
821 return NULL;
822
823 /* Create a copy of SIDs array to associate with this rmr_data */
824 sids_copy = kmemdup(sids, num_sids * sizeof(*sids), GFP_KERNEL);
825 if (!sids_copy) {
826 kfree(rmr_data);
827 return NULL;
828 }
829 rmr_data->sids = sids_copy;
830 rmr_data->num_sids = num_sids;
831
832 if (!IS_ALIGNED(addr, SZ_64K) || !IS_ALIGNED(size, SZ_64K)) {
833 /* PAGE align base addr and size */
834 addr &= PAGE_MASK;
835 size = PAGE_ALIGN(size + offset_in_page(rmr_desc->base_address));
836
837 pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] not aligned to 64K, continue with [0x%llx - 0x%llx]\n",
838 rmr_desc->base_address,
839 rmr_desc->base_address + rmr_desc->length - 1,
840 addr, addr + size - 1);
841 }
842
843 region = &rmr_data->rr;
844 INIT_LIST_HEAD(®ion->list);
845 region->start = addr;
846 region->length = size;
847 region->prot = prot;
848 region->type = type;
849 region->free = iort_rmr_free;
850
851 return rmr_data;
852 }
853
iort_rmr_desc_check_overlap(struct acpi_iort_rmr_desc * desc,u32 count)854 static void iort_rmr_desc_check_overlap(struct acpi_iort_rmr_desc *desc,
855 u32 count)
856 {
857 int i, j;
858
859 for (i = 0; i < count; i++) {
860 u64 end, start = desc[i].base_address, length = desc[i].length;
861
862 if (!length) {
863 pr_err(FW_BUG "RMR descriptor[0x%llx] with zero length, continue anyway\n",
864 start);
865 continue;
866 }
867
868 end = start + length - 1;
869
870 /* Check for address overlap */
871 for (j = i + 1; j < count; j++) {
872 u64 e_start = desc[j].base_address;
873 u64 e_end = e_start + desc[j].length - 1;
874
875 if (start <= e_end && end >= e_start)
876 pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] overlaps, continue anyway\n",
877 start, end);
878 }
879 }
880 }
881
882 /*
883 * Please note, we will keep the already allocated RMR reserve
884 * regions in case of a memory allocation failure.
885 */
iort_get_rmrs(struct acpi_iort_node * node,struct acpi_iort_node * smmu,u32 * sids,u32 num_sids,struct list_head * head)886 static void iort_get_rmrs(struct acpi_iort_node *node,
887 struct acpi_iort_node *smmu,
888 u32 *sids, u32 num_sids,
889 struct list_head *head)
890 {
891 struct acpi_iort_rmr *rmr = (struct acpi_iort_rmr *)node->node_data;
892 struct acpi_iort_rmr_desc *rmr_desc;
893 int i;
894
895 rmr_desc = ACPI_ADD_PTR(struct acpi_iort_rmr_desc, node,
896 rmr->rmr_offset);
897
898 iort_rmr_desc_check_overlap(rmr_desc, rmr->rmr_count);
899
900 for (i = 0; i < rmr->rmr_count; i++, rmr_desc++) {
901 struct iommu_iort_rmr_data *rmr_data;
902 enum iommu_resv_type type;
903 int prot = IOMMU_READ | IOMMU_WRITE;
904
905 if (rmr->flags & ACPI_IORT_RMR_REMAP_PERMITTED)
906 type = IOMMU_RESV_DIRECT_RELAXABLE;
907 else
908 type = IOMMU_RESV_DIRECT;
909
910 if (rmr->flags & ACPI_IORT_RMR_ACCESS_PRIVILEGE)
911 prot |= IOMMU_PRIV;
912
913 /* Attributes 0x00 - 0x03 represents device memory */
914 if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) <=
915 ACPI_IORT_RMR_ATTR_DEVICE_GRE)
916 prot |= IOMMU_MMIO;
917 else if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) ==
918 ACPI_IORT_RMR_ATTR_NORMAL_IWB_OWB)
919 prot |= IOMMU_CACHE;
920
921 rmr_data = iort_rmr_alloc(rmr_desc, prot, type,
922 sids, num_sids);
923 if (!rmr_data)
924 return;
925
926 list_add_tail(&rmr_data->rr.list, head);
927 }
928 }
929
iort_rmr_alloc_sids(u32 * sids,u32 count,u32 id_start,u32 new_count)930 static u32 *iort_rmr_alloc_sids(u32 *sids, u32 count, u32 id_start,
931 u32 new_count)
932 {
933 u32 *new_sids;
934 u32 total_count = count + new_count;
935 int i;
936
937 new_sids = krealloc_array(sids, count + new_count,
938 sizeof(*new_sids), GFP_KERNEL);
939 if (!new_sids)
940 return NULL;
941
942 for (i = count; i < total_count; i++)
943 new_sids[i] = id_start++;
944
945 return new_sids;
946 }
947
iort_rmr_has_dev(struct device * dev,u32 id_start,u32 id_count)948 static bool iort_rmr_has_dev(struct device *dev, u32 id_start,
949 u32 id_count)
950 {
951 int i;
952 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
953
954 /*
955 * Make sure the kernel has preserved the boot firmware PCIe
956 * configuration. This is required to ensure that the RMR PCIe
957 * StreamIDs are still valid (Refer: ARM DEN 0049E.d Section 3.1.1.5).
958 */
959 if (dev_is_pci(dev)) {
960 struct pci_dev *pdev = to_pci_dev(dev);
961 struct pci_host_bridge *host = pci_find_host_bridge(pdev->bus);
962
963 if (!host->preserve_config)
964 return false;
965 }
966
967 for (i = 0; i < fwspec->num_ids; i++) {
968 if (fwspec->ids[i] >= id_start &&
969 fwspec->ids[i] <= id_start + id_count)
970 return true;
971 }
972
973 return false;
974 }
975
iort_node_get_rmr_info(struct acpi_iort_node * node,struct acpi_iort_node * iommu,struct device * dev,struct list_head * head)976 static void iort_node_get_rmr_info(struct acpi_iort_node *node,
977 struct acpi_iort_node *iommu,
978 struct device *dev, struct list_head *head)
979 {
980 struct acpi_iort_node *smmu = NULL;
981 struct acpi_iort_rmr *rmr;
982 struct acpi_iort_id_mapping *map;
983 u32 *sids = NULL;
984 u32 num_sids = 0;
985 int i;
986
987 if (!node->mapping_offset || !node->mapping_count) {
988 pr_err(FW_BUG "Invalid ID mapping, skipping RMR node %p\n",
989 node);
990 return;
991 }
992
993 rmr = (struct acpi_iort_rmr *)node->node_data;
994 if (!rmr->rmr_offset || !rmr->rmr_count)
995 return;
996
997 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
998 node->mapping_offset);
999
1000 /*
1001 * Go through the ID mappings and see if we have a match for SMMU
1002 * and dev(if !NULL). If found, get the sids for the Node.
1003 * Please note, id_count is equal to the number of IDs in the
1004 * range minus one.
1005 */
1006 for (i = 0; i < node->mapping_count; i++, map++) {
1007 struct acpi_iort_node *parent;
1008
1009 if (!map->id_count)
1010 continue;
1011
1012 parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
1013 map->output_reference);
1014 if (parent != iommu)
1015 continue;
1016
1017 /* If dev is valid, check RMR node corresponds to the dev SID */
1018 if (dev && !iort_rmr_has_dev(dev, map->output_base,
1019 map->id_count))
1020 continue;
1021
1022 /* Retrieve SIDs associated with the Node. */
1023 sids = iort_rmr_alloc_sids(sids, num_sids, map->output_base,
1024 map->id_count + 1);
1025 if (!sids)
1026 return;
1027
1028 num_sids += map->id_count + 1;
1029 }
1030
1031 if (!sids)
1032 return;
1033
1034 iort_get_rmrs(node, smmu, sids, num_sids, head);
1035 kfree(sids);
1036 }
1037
iort_find_rmrs(struct acpi_iort_node * iommu,struct device * dev,struct list_head * head)1038 static void iort_find_rmrs(struct acpi_iort_node *iommu, struct device *dev,
1039 struct list_head *head)
1040 {
1041 struct acpi_table_iort *iort;
1042 struct acpi_iort_node *iort_node, *iort_end;
1043 int i;
1044
1045 /* Only supports ARM DEN 0049E.d onwards */
1046 if (iort_table->revision < 5)
1047 return;
1048
1049 iort = (struct acpi_table_iort *)iort_table;
1050
1051 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1052 iort->node_offset);
1053 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1054 iort_table->length);
1055
1056 for (i = 0; i < iort->node_count; i++) {
1057 if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
1058 "IORT node pointer overflows, bad table!\n"))
1059 return;
1060
1061 if (iort_node->type == ACPI_IORT_NODE_RMR)
1062 iort_node_get_rmr_info(iort_node, iommu, dev, head);
1063
1064 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1065 iort_node->length);
1066 }
1067 }
1068
1069 /*
1070 * Populate the RMR list associated with a given IOMMU and dev(if provided).
1071 * If dev is NULL, the function populates all the RMRs associated with the
1072 * given IOMMU.
1073 */
iort_iommu_rmr_get_resv_regions(struct fwnode_handle * iommu_fwnode,struct device * dev,struct list_head * head)1074 static void iort_iommu_rmr_get_resv_regions(struct fwnode_handle *iommu_fwnode,
1075 struct device *dev,
1076 struct list_head *head)
1077 {
1078 struct acpi_iort_node *iommu;
1079
1080 iommu = iort_get_iort_node(iommu_fwnode);
1081 if (!iommu)
1082 return;
1083
1084 iort_find_rmrs(iommu, dev, head);
1085 }
1086
iort_get_msi_resv_iommu(struct device * dev)1087 static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
1088 {
1089 struct acpi_iort_node *iommu;
1090 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1091
1092 iommu = iort_get_iort_node(fwspec->iommu_fwnode);
1093
1094 if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
1095 struct acpi_iort_smmu_v3 *smmu;
1096
1097 smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
1098 if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
1099 return iommu;
1100 }
1101
1102 return NULL;
1103 }
1104
1105 /*
1106 * Retrieve platform specific HW MSI reserve regions.
1107 * The ITS interrupt translation spaces (ITS_base + SZ_64K, SZ_64K)
1108 * associated with the device are the HW MSI reserved regions.
1109 */
iort_iommu_msi_get_resv_regions(struct device * dev,struct list_head * head)1110 static void iort_iommu_msi_get_resv_regions(struct device *dev,
1111 struct list_head *head)
1112 {
1113 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1114 struct acpi_iort_its_group *its;
1115 struct acpi_iort_node *iommu_node, *its_node = NULL;
1116 int i;
1117
1118 iommu_node = iort_get_msi_resv_iommu(dev);
1119 if (!iommu_node)
1120 return;
1121
1122 /*
1123 * Current logic to reserve ITS regions relies on HW topologies
1124 * where a given PCI or named component maps its IDs to only one
1125 * ITS group; if a PCI or named component can map its IDs to
1126 * different ITS groups through IORT mappings this function has
1127 * to be reworked to ensure we reserve regions for all ITS groups
1128 * a given PCI or named component may map IDs to.
1129 */
1130
1131 for (i = 0; i < fwspec->num_ids; i++) {
1132 its_node = iort_node_map_id(iommu_node,
1133 fwspec->ids[i],
1134 NULL, IORT_MSI_TYPE);
1135 if (its_node)
1136 break;
1137 }
1138
1139 if (!its_node)
1140 return;
1141
1142 /* Move to ITS specific data */
1143 its = (struct acpi_iort_its_group *)its_node->node_data;
1144
1145 for (i = 0; i < its->its_count; i++) {
1146 phys_addr_t base;
1147
1148 if (!iort_find_its_base(its->identifiers[i], &base)) {
1149 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1150 struct iommu_resv_region *region;
1151
1152 region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
1153 prot, IOMMU_RESV_MSI,
1154 GFP_KERNEL);
1155 if (region)
1156 list_add_tail(®ion->list, head);
1157 }
1158 }
1159 }
1160
1161 /**
1162 * iort_iommu_get_resv_regions - Generic helper to retrieve reserved regions.
1163 * @dev: Device from iommu_get_resv_regions()
1164 * @head: Reserved region list from iommu_get_resv_regions()
1165 */
iort_iommu_get_resv_regions(struct device * dev,struct list_head * head)1166 void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
1167 {
1168 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1169
1170 iort_iommu_msi_get_resv_regions(dev, head);
1171 iort_iommu_rmr_get_resv_regions(fwspec->iommu_fwnode, dev, head);
1172 }
1173
1174 /**
1175 * iort_get_rmr_sids - Retrieve IORT RMR node reserved regions with
1176 * associated StreamIDs information.
1177 * @iommu_fwnode: fwnode associated with IOMMU
1178 * @head: Resereved region list
1179 */
iort_get_rmr_sids(struct fwnode_handle * iommu_fwnode,struct list_head * head)1180 void iort_get_rmr_sids(struct fwnode_handle *iommu_fwnode,
1181 struct list_head *head)
1182 {
1183 iort_iommu_rmr_get_resv_regions(iommu_fwnode, NULL, head);
1184 }
1185 EXPORT_SYMBOL_GPL(iort_get_rmr_sids);
1186
1187 /**
1188 * iort_put_rmr_sids - Free memory allocated for RMR reserved regions.
1189 * @iommu_fwnode: fwnode associated with IOMMU
1190 * @head: Resereved region list
1191 */
iort_put_rmr_sids(struct fwnode_handle * iommu_fwnode,struct list_head * head)1192 void iort_put_rmr_sids(struct fwnode_handle *iommu_fwnode,
1193 struct list_head *head)
1194 {
1195 struct iommu_resv_region *entry, *next;
1196
1197 list_for_each_entry_safe(entry, next, head, list)
1198 entry->free(NULL, entry);
1199 }
1200 EXPORT_SYMBOL_GPL(iort_put_rmr_sids);
1201
iort_iommu_driver_enabled(u8 type)1202 static inline bool iort_iommu_driver_enabled(u8 type)
1203 {
1204 switch (type) {
1205 case ACPI_IORT_NODE_SMMU_V3:
1206 return IS_ENABLED(CONFIG_ARM_SMMU_V3);
1207 case ACPI_IORT_NODE_SMMU:
1208 return IS_ENABLED(CONFIG_ARM_SMMU);
1209 default:
1210 pr_warn("IORT node type %u does not describe an SMMU\n", type);
1211 return false;
1212 }
1213 }
1214
iort_pci_rc_supports_ats(struct acpi_iort_node * node)1215 static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node)
1216 {
1217 struct acpi_iort_root_complex *pci_rc;
1218
1219 pci_rc = (struct acpi_iort_root_complex *)node->node_data;
1220 return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED;
1221 }
1222
iort_iommu_xlate(struct device * dev,struct acpi_iort_node * node,u32 streamid)1223 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
1224 u32 streamid)
1225 {
1226 const struct iommu_ops *ops;
1227 struct fwnode_handle *iort_fwnode;
1228
1229 if (!node)
1230 return -ENODEV;
1231
1232 iort_fwnode = iort_get_fwnode(node);
1233 if (!iort_fwnode)
1234 return -ENODEV;
1235
1236 /*
1237 * If the ops look-up fails, this means that either
1238 * the SMMU drivers have not been probed yet or that
1239 * the SMMU drivers are not built in the kernel;
1240 * Depending on whether the SMMU drivers are built-in
1241 * in the kernel or not, defer the IOMMU configuration
1242 * or just abort it.
1243 */
1244 ops = iommu_ops_from_fwnode(iort_fwnode);
1245 if (!ops)
1246 return iort_iommu_driver_enabled(node->type) ?
1247 -EPROBE_DEFER : -ENODEV;
1248
1249 return acpi_iommu_fwspec_init(dev, streamid, iort_fwnode, ops);
1250 }
1251
1252 struct iort_pci_alias_info {
1253 struct device *dev;
1254 struct acpi_iort_node *node;
1255 };
1256
iort_pci_iommu_init(struct pci_dev * pdev,u16 alias,void * data)1257 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
1258 {
1259 struct iort_pci_alias_info *info = data;
1260 struct acpi_iort_node *parent;
1261 u32 streamid;
1262
1263 parent = iort_node_map_id(info->node, alias, &streamid,
1264 IORT_IOMMU_TYPE);
1265 return iort_iommu_xlate(info->dev, parent, streamid);
1266 }
1267
iort_named_component_init(struct device * dev,struct acpi_iort_node * node)1268 static void iort_named_component_init(struct device *dev,
1269 struct acpi_iort_node *node)
1270 {
1271 struct property_entry props[3] = {};
1272 struct acpi_iort_named_component *nc;
1273
1274 nc = (struct acpi_iort_named_component *)node->node_data;
1275 props[0] = PROPERTY_ENTRY_U32("pasid-num-bits",
1276 FIELD_GET(ACPI_IORT_NC_PASID_BITS,
1277 nc->node_flags));
1278 if (nc->node_flags & ACPI_IORT_NC_STALL_SUPPORTED)
1279 props[1] = PROPERTY_ENTRY_BOOL("dma-can-stall");
1280
1281 if (device_create_managed_software_node(dev, props, NULL))
1282 dev_warn(dev, "Could not add device properties\n");
1283 }
1284
iort_nc_iommu_map(struct device * dev,struct acpi_iort_node * node)1285 static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node)
1286 {
1287 struct acpi_iort_node *parent;
1288 int err = -ENODEV, i = 0;
1289 u32 streamid = 0;
1290
1291 do {
1292
1293 parent = iort_node_map_platform_id(node, &streamid,
1294 IORT_IOMMU_TYPE,
1295 i++);
1296
1297 if (parent)
1298 err = iort_iommu_xlate(dev, parent, streamid);
1299 } while (parent && !err);
1300
1301 return err;
1302 }
1303
iort_nc_iommu_map_id(struct device * dev,struct acpi_iort_node * node,const u32 * in_id)1304 static int iort_nc_iommu_map_id(struct device *dev,
1305 struct acpi_iort_node *node,
1306 const u32 *in_id)
1307 {
1308 struct acpi_iort_node *parent;
1309 u32 streamid;
1310
1311 parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE);
1312 if (parent)
1313 return iort_iommu_xlate(dev, parent, streamid);
1314
1315 return -ENODEV;
1316 }
1317
1318
1319 /**
1320 * iort_iommu_configure_id - Set-up IOMMU configuration for a device.
1321 *
1322 * @dev: device to configure
1323 * @id_in: optional input id const value pointer
1324 *
1325 * Returns: 0 on success, <0 on failure
1326 */
iort_iommu_configure_id(struct device * dev,const u32 * id_in)1327 int iort_iommu_configure_id(struct device *dev, const u32 *id_in)
1328 {
1329 struct acpi_iort_node *node;
1330 int err = -ENODEV;
1331
1332 if (dev_is_pci(dev)) {
1333 struct iommu_fwspec *fwspec;
1334 struct pci_bus *bus = to_pci_dev(dev)->bus;
1335 struct iort_pci_alias_info info = { .dev = dev };
1336
1337 node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1338 iort_match_node_callback, &bus->dev);
1339 if (!node)
1340 return -ENODEV;
1341
1342 info.node = node;
1343 err = pci_for_each_dma_alias(to_pci_dev(dev),
1344 iort_pci_iommu_init, &info);
1345
1346 fwspec = dev_iommu_fwspec_get(dev);
1347 if (fwspec && iort_pci_rc_supports_ats(node))
1348 fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS;
1349 } else {
1350 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1351 iort_match_node_callback, dev);
1352 if (!node)
1353 return -ENODEV;
1354
1355 err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) :
1356 iort_nc_iommu_map(dev, node);
1357
1358 if (!err)
1359 iort_named_component_init(dev, node);
1360 }
1361
1362 return err;
1363 }
1364
1365 #else
iort_iommu_get_resv_regions(struct device * dev,struct list_head * head)1366 void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
1367 { }
iort_iommu_configure_id(struct device * dev,const u32 * input_id)1368 int iort_iommu_configure_id(struct device *dev, const u32 *input_id)
1369 { return -ENODEV; }
1370 #endif
1371
nc_dma_get_range(struct device * dev,u64 * size)1372 static int nc_dma_get_range(struct device *dev, u64 *size)
1373 {
1374 struct acpi_iort_node *node;
1375 struct acpi_iort_named_component *ncomp;
1376
1377 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1378 iort_match_node_callback, dev);
1379 if (!node)
1380 return -ENODEV;
1381
1382 ncomp = (struct acpi_iort_named_component *)node->node_data;
1383
1384 if (!ncomp->memory_address_limit) {
1385 pr_warn(FW_BUG "Named component missing memory address limit\n");
1386 return -EINVAL;
1387 }
1388
1389 *size = ncomp->memory_address_limit >= 64 ? U64_MAX :
1390 1ULL<<ncomp->memory_address_limit;
1391
1392 return 0;
1393 }
1394
rc_dma_get_range(struct device * dev,u64 * size)1395 static int rc_dma_get_range(struct device *dev, u64 *size)
1396 {
1397 struct acpi_iort_node *node;
1398 struct acpi_iort_root_complex *rc;
1399 struct pci_bus *pbus = to_pci_dev(dev)->bus;
1400
1401 node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1402 iort_match_node_callback, &pbus->dev);
1403 if (!node || node->revision < 1)
1404 return -ENODEV;
1405
1406 rc = (struct acpi_iort_root_complex *)node->node_data;
1407
1408 if (!rc->memory_address_limit) {
1409 pr_warn(FW_BUG "Root complex missing memory address limit\n");
1410 return -EINVAL;
1411 }
1412
1413 *size = rc->memory_address_limit >= 64 ? U64_MAX :
1414 1ULL<<rc->memory_address_limit;
1415
1416 return 0;
1417 }
1418
1419 /**
1420 * iort_dma_get_ranges() - Look up DMA addressing limit for the device
1421 * @dev: device to lookup
1422 * @size: DMA range size result pointer
1423 *
1424 * Return: 0 on success, an error otherwise.
1425 */
iort_dma_get_ranges(struct device * dev,u64 * size)1426 int iort_dma_get_ranges(struct device *dev, u64 *size)
1427 {
1428 if (dev_is_pci(dev))
1429 return rc_dma_get_range(dev, size);
1430 else
1431 return nc_dma_get_range(dev, size);
1432 }
1433
acpi_iort_register_irq(int hwirq,const char * name,int trigger,struct resource * res)1434 static void __init acpi_iort_register_irq(int hwirq, const char *name,
1435 int trigger,
1436 struct resource *res)
1437 {
1438 int irq = acpi_register_gsi(NULL, hwirq, trigger,
1439 ACPI_ACTIVE_HIGH);
1440
1441 if (irq <= 0) {
1442 pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
1443 name);
1444 return;
1445 }
1446
1447 res->start = irq;
1448 res->end = irq;
1449 res->flags = IORESOURCE_IRQ;
1450 res->name = name;
1451 }
1452
arm_smmu_v3_count_resources(struct acpi_iort_node * node)1453 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
1454 {
1455 struct acpi_iort_smmu_v3 *smmu;
1456 /* Always present mem resource */
1457 int num_res = 1;
1458
1459 /* Retrieve SMMUv3 specific data */
1460 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1461
1462 if (smmu->event_gsiv)
1463 num_res++;
1464
1465 if (smmu->pri_gsiv)
1466 num_res++;
1467
1468 if (smmu->gerr_gsiv)
1469 num_res++;
1470
1471 if (smmu->sync_gsiv)
1472 num_res++;
1473
1474 return num_res;
1475 }
1476
arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 * smmu)1477 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
1478 {
1479 /*
1480 * Cavium ThunderX2 implementation doesn't not support unique
1481 * irq line. Use single irq line for all the SMMUv3 interrupts.
1482 */
1483 if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1484 return false;
1485
1486 /*
1487 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking
1488 * SPI numbers here.
1489 */
1490 return smmu->event_gsiv == smmu->pri_gsiv &&
1491 smmu->event_gsiv == smmu->gerr_gsiv &&
1492 smmu->event_gsiv == smmu->sync_gsiv;
1493 }
1494
arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 * smmu)1495 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
1496 {
1497 /*
1498 * Override the size, for Cavium ThunderX2 implementation
1499 * which doesn't support the page 1 SMMU register space.
1500 */
1501 if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1502 return SZ_64K;
1503
1504 return SZ_128K;
1505 }
1506
arm_smmu_v3_init_resources(struct resource * res,struct acpi_iort_node * node)1507 static void __init arm_smmu_v3_init_resources(struct resource *res,
1508 struct acpi_iort_node *node)
1509 {
1510 struct acpi_iort_smmu_v3 *smmu;
1511 int num_res = 0;
1512
1513 /* Retrieve SMMUv3 specific data */
1514 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1515
1516 res[num_res].start = smmu->base_address;
1517 res[num_res].end = smmu->base_address +
1518 arm_smmu_v3_resource_size(smmu) - 1;
1519 res[num_res].flags = IORESOURCE_MEM;
1520
1521 num_res++;
1522 if (arm_smmu_v3_is_combined_irq(smmu)) {
1523 if (smmu->event_gsiv)
1524 acpi_iort_register_irq(smmu->event_gsiv, "combined",
1525 ACPI_EDGE_SENSITIVE,
1526 &res[num_res++]);
1527 } else {
1528
1529 if (smmu->event_gsiv)
1530 acpi_iort_register_irq(smmu->event_gsiv, "eventq",
1531 ACPI_EDGE_SENSITIVE,
1532 &res[num_res++]);
1533
1534 if (smmu->pri_gsiv)
1535 acpi_iort_register_irq(smmu->pri_gsiv, "priq",
1536 ACPI_EDGE_SENSITIVE,
1537 &res[num_res++]);
1538
1539 if (smmu->gerr_gsiv)
1540 acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
1541 ACPI_EDGE_SENSITIVE,
1542 &res[num_res++]);
1543
1544 if (smmu->sync_gsiv)
1545 acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
1546 ACPI_EDGE_SENSITIVE,
1547 &res[num_res++]);
1548 }
1549 }
1550
arm_smmu_v3_dma_configure(struct device * dev,struct acpi_iort_node * node)1551 static void __init arm_smmu_v3_dma_configure(struct device *dev,
1552 struct acpi_iort_node *node)
1553 {
1554 struct acpi_iort_smmu_v3 *smmu;
1555 enum dev_dma_attr attr;
1556
1557 /* Retrieve SMMUv3 specific data */
1558 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1559
1560 attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ?
1561 DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1562
1563 /* We expect the dma masks to be equivalent for all SMMUv3 set-ups */
1564 dev->dma_mask = &dev->coherent_dma_mask;
1565
1566 /* Configure DMA for the page table walker */
1567 acpi_dma_configure(dev, attr);
1568 }
1569
1570 #if defined(CONFIG_ACPI_NUMA)
1571 /*
1572 * set numa proximity domain for smmuv3 device
1573 */
arm_smmu_v3_set_proximity(struct device * dev,struct acpi_iort_node * node)1574 static int __init arm_smmu_v3_set_proximity(struct device *dev,
1575 struct acpi_iort_node *node)
1576 {
1577 struct acpi_iort_smmu_v3 *smmu;
1578
1579 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1580 if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
1581 int dev_node = pxm_to_node(smmu->pxm);
1582
1583 if (dev_node != NUMA_NO_NODE && !node_online(dev_node))
1584 return -EINVAL;
1585
1586 set_dev_node(dev, dev_node);
1587 pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
1588 smmu->base_address,
1589 smmu->pxm);
1590 }
1591 return 0;
1592 }
1593 #else
1594 #define arm_smmu_v3_set_proximity NULL
1595 #endif
1596
arm_smmu_count_resources(struct acpi_iort_node * node)1597 static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
1598 {
1599 struct acpi_iort_smmu *smmu;
1600
1601 /* Retrieve SMMU specific data */
1602 smmu = (struct acpi_iort_smmu *)node->node_data;
1603
1604 /*
1605 * Only consider the global fault interrupt and ignore the
1606 * configuration access interrupt.
1607 *
1608 * MMIO address and global fault interrupt resources are always
1609 * present so add them to the context interrupt count as a static
1610 * value.
1611 */
1612 return smmu->context_interrupt_count + 2;
1613 }
1614
arm_smmu_init_resources(struct resource * res,struct acpi_iort_node * node)1615 static void __init arm_smmu_init_resources(struct resource *res,
1616 struct acpi_iort_node *node)
1617 {
1618 struct acpi_iort_smmu *smmu;
1619 int i, hw_irq, trigger, num_res = 0;
1620 u64 *ctx_irq, *glb_irq;
1621
1622 /* Retrieve SMMU specific data */
1623 smmu = (struct acpi_iort_smmu *)node->node_data;
1624
1625 res[num_res].start = smmu->base_address;
1626 res[num_res].end = smmu->base_address + smmu->span - 1;
1627 res[num_res].flags = IORESOURCE_MEM;
1628 num_res++;
1629
1630 glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1631 /* Global IRQs */
1632 hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1633 trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1634
1635 acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1636 &res[num_res++]);
1637
1638 /* Context IRQs */
1639 ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1640 for (i = 0; i < smmu->context_interrupt_count; i++) {
1641 hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1642 trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1643
1644 acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1645 &res[num_res++]);
1646 }
1647 }
1648
arm_smmu_dma_configure(struct device * dev,struct acpi_iort_node * node)1649 static void __init arm_smmu_dma_configure(struct device *dev,
1650 struct acpi_iort_node *node)
1651 {
1652 struct acpi_iort_smmu *smmu;
1653 enum dev_dma_attr attr;
1654
1655 /* Retrieve SMMU specific data */
1656 smmu = (struct acpi_iort_smmu *)node->node_data;
1657
1658 attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ?
1659 DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1660
1661 /* We expect the dma masks to be equivalent for SMMU set-ups */
1662 dev->dma_mask = &dev->coherent_dma_mask;
1663
1664 /* Configure DMA for the page table walker */
1665 acpi_dma_configure(dev, attr);
1666 }
1667
arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node * node)1668 static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node)
1669 {
1670 struct acpi_iort_pmcg *pmcg;
1671
1672 /* Retrieve PMCG specific data */
1673 pmcg = (struct acpi_iort_pmcg *)node->node_data;
1674
1675 /*
1676 * There are always 2 memory resources.
1677 * If the overflow_gsiv is present then add that for a total of 3.
1678 */
1679 return pmcg->overflow_gsiv ? 3 : 2;
1680 }
1681
arm_smmu_v3_pmcg_init_resources(struct resource * res,struct acpi_iort_node * node)1682 static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res,
1683 struct acpi_iort_node *node)
1684 {
1685 struct acpi_iort_pmcg *pmcg;
1686
1687 /* Retrieve PMCG specific data */
1688 pmcg = (struct acpi_iort_pmcg *)node->node_data;
1689
1690 res[0].start = pmcg->page0_base_address;
1691 res[0].end = pmcg->page0_base_address + SZ_4K - 1;
1692 res[0].flags = IORESOURCE_MEM;
1693 /*
1694 * The initial version in DEN0049C lacked a way to describe register
1695 * page 1, which makes it broken for most PMCG implementations; in
1696 * that case, just let the driver fail gracefully if it expects to
1697 * find a second memory resource.
1698 */
1699 if (node->revision > 0) {
1700 res[1].start = pmcg->page1_base_address;
1701 res[1].end = pmcg->page1_base_address + SZ_4K - 1;
1702 res[1].flags = IORESOURCE_MEM;
1703 }
1704
1705 if (pmcg->overflow_gsiv)
1706 acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow",
1707 ACPI_EDGE_SENSITIVE, &res[2]);
1708 }
1709
1710 static struct acpi_platform_list pmcg_plat_info[] __initdata = {
1711 /* HiSilicon Hip08 Platform */
1712 {"HISI ", "HIP08 ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1713 "Erratum #162001800", IORT_SMMU_V3_PMCG_HISI_HIP08},
1714 { }
1715 };
1716
arm_smmu_v3_pmcg_add_platdata(struct platform_device * pdev)1717 static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev)
1718 {
1719 u32 model;
1720 int idx;
1721
1722 idx = acpi_match_platform_list(pmcg_plat_info);
1723 if (idx >= 0)
1724 model = pmcg_plat_info[idx].data;
1725 else
1726 model = IORT_SMMU_V3_PMCG_GENERIC;
1727
1728 return platform_device_add_data(pdev, &model, sizeof(model));
1729 }
1730
1731 struct iort_dev_config {
1732 const char *name;
1733 int (*dev_init)(struct acpi_iort_node *node);
1734 void (*dev_dma_configure)(struct device *dev,
1735 struct acpi_iort_node *node);
1736 int (*dev_count_resources)(struct acpi_iort_node *node);
1737 void (*dev_init_resources)(struct resource *res,
1738 struct acpi_iort_node *node);
1739 int (*dev_set_proximity)(struct device *dev,
1740 struct acpi_iort_node *node);
1741 int (*dev_add_platdata)(struct platform_device *pdev);
1742 };
1743
1744 static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
1745 .name = "arm-smmu-v3",
1746 .dev_dma_configure = arm_smmu_v3_dma_configure,
1747 .dev_count_resources = arm_smmu_v3_count_resources,
1748 .dev_init_resources = arm_smmu_v3_init_resources,
1749 .dev_set_proximity = arm_smmu_v3_set_proximity,
1750 };
1751
1752 static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
1753 .name = "arm-smmu",
1754 .dev_dma_configure = arm_smmu_dma_configure,
1755 .dev_count_resources = arm_smmu_count_resources,
1756 .dev_init_resources = arm_smmu_init_resources,
1757 };
1758
1759 static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = {
1760 .name = "arm-smmu-v3-pmcg",
1761 .dev_count_resources = arm_smmu_v3_pmcg_count_resources,
1762 .dev_init_resources = arm_smmu_v3_pmcg_init_resources,
1763 .dev_add_platdata = arm_smmu_v3_pmcg_add_platdata,
1764 };
1765
iort_get_dev_cfg(struct acpi_iort_node * node)1766 static __init const struct iort_dev_config *iort_get_dev_cfg(
1767 struct acpi_iort_node *node)
1768 {
1769 switch (node->type) {
1770 case ACPI_IORT_NODE_SMMU_V3:
1771 return &iort_arm_smmu_v3_cfg;
1772 case ACPI_IORT_NODE_SMMU:
1773 return &iort_arm_smmu_cfg;
1774 case ACPI_IORT_NODE_PMCG:
1775 return &iort_arm_smmu_v3_pmcg_cfg;
1776 default:
1777 return NULL;
1778 }
1779 }
1780
1781 /**
1782 * iort_add_platform_device() - Allocate a platform device for IORT node
1783 * @node: Pointer to device ACPI IORT node
1784 * @ops: Pointer to IORT device config struct
1785 *
1786 * Returns: 0 on success, <0 failure
1787 */
iort_add_platform_device(struct acpi_iort_node * node,const struct iort_dev_config * ops)1788 static int __init iort_add_platform_device(struct acpi_iort_node *node,
1789 const struct iort_dev_config *ops)
1790 {
1791 struct fwnode_handle *fwnode;
1792 struct platform_device *pdev;
1793 struct resource *r;
1794 int ret, count;
1795
1796 pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1797 if (!pdev)
1798 return -ENOMEM;
1799
1800 if (ops->dev_set_proximity) {
1801 ret = ops->dev_set_proximity(&pdev->dev, node);
1802 if (ret)
1803 goto dev_put;
1804 }
1805
1806 count = ops->dev_count_resources(node);
1807
1808 r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1809 if (!r) {
1810 ret = -ENOMEM;
1811 goto dev_put;
1812 }
1813
1814 ops->dev_init_resources(r, node);
1815
1816 ret = platform_device_add_resources(pdev, r, count);
1817 /*
1818 * Resources are duplicated in platform_device_add_resources,
1819 * free their allocated memory
1820 */
1821 kfree(r);
1822
1823 if (ret)
1824 goto dev_put;
1825
1826 /*
1827 * Platform devices based on PMCG nodes uses platform_data to
1828 * pass the hardware model info to the driver. For others, add
1829 * a copy of IORT node pointer to platform_data to be used to
1830 * retrieve IORT data information.
1831 */
1832 if (ops->dev_add_platdata)
1833 ret = ops->dev_add_platdata(pdev);
1834 else
1835 ret = platform_device_add_data(pdev, &node, sizeof(node));
1836
1837 if (ret)
1838 goto dev_put;
1839
1840 fwnode = iort_get_fwnode(node);
1841
1842 if (!fwnode) {
1843 ret = -ENODEV;
1844 goto dev_put;
1845 }
1846
1847 pdev->dev.fwnode = fwnode;
1848
1849 if (ops->dev_dma_configure)
1850 ops->dev_dma_configure(&pdev->dev, node);
1851
1852 iort_set_device_domain(&pdev->dev, node);
1853
1854 ret = platform_device_add(pdev);
1855 if (ret)
1856 goto dma_deconfigure;
1857
1858 return 0;
1859
1860 dma_deconfigure:
1861 arch_teardown_dma_ops(&pdev->dev);
1862 dev_put:
1863 platform_device_put(pdev);
1864
1865 return ret;
1866 }
1867
1868 #ifdef CONFIG_PCI
iort_enable_acs(struct acpi_iort_node * iort_node)1869 static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
1870 {
1871 static bool acs_enabled __initdata;
1872
1873 if (acs_enabled)
1874 return;
1875
1876 if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1877 struct acpi_iort_node *parent;
1878 struct acpi_iort_id_mapping *map;
1879 int i;
1880
1881 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1882 iort_node->mapping_offset);
1883
1884 for (i = 0; i < iort_node->mapping_count; i++, map++) {
1885 if (!map->output_reference)
1886 continue;
1887
1888 parent = ACPI_ADD_PTR(struct acpi_iort_node,
1889 iort_table, map->output_reference);
1890 /*
1891 * If we detect a RC->SMMU mapping, make sure
1892 * we enable ACS on the system.
1893 */
1894 if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1895 (parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1896 pci_request_acs();
1897 acs_enabled = true;
1898 return;
1899 }
1900 }
1901 }
1902 }
1903 #else
iort_enable_acs(struct acpi_iort_node * iort_node)1904 static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
1905 #endif
1906
iort_init_platform_devices(void)1907 static void __init iort_init_platform_devices(void)
1908 {
1909 struct acpi_iort_node *iort_node, *iort_end;
1910 struct acpi_table_iort *iort;
1911 struct fwnode_handle *fwnode;
1912 int i, ret;
1913 const struct iort_dev_config *ops;
1914
1915 /*
1916 * iort_table and iort both point to the start of IORT table, but
1917 * have different struct types
1918 */
1919 iort = (struct acpi_table_iort *)iort_table;
1920
1921 /* Get the first IORT node */
1922 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1923 iort->node_offset);
1924 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1925 iort_table->length);
1926
1927 for (i = 0; i < iort->node_count; i++) {
1928 if (iort_node >= iort_end) {
1929 pr_err("iort node pointer overflows, bad table\n");
1930 return;
1931 }
1932
1933 iort_enable_acs(iort_node);
1934
1935 ops = iort_get_dev_cfg(iort_node);
1936 if (ops) {
1937 fwnode = acpi_alloc_fwnode_static();
1938 if (!fwnode)
1939 return;
1940
1941 iort_set_fwnode(iort_node, fwnode);
1942
1943 ret = iort_add_platform_device(iort_node, ops);
1944 if (ret) {
1945 iort_delete_fwnode(iort_node);
1946 acpi_free_fwnode_static(fwnode);
1947 return;
1948 }
1949 }
1950
1951 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1952 iort_node->length);
1953 }
1954 }
1955
acpi_iort_init(void)1956 void __init acpi_iort_init(void)
1957 {
1958 acpi_status status;
1959
1960 /* iort_table will be used at runtime after the iort init,
1961 * so we don't need to call acpi_put_table() to release
1962 * the IORT table mapping.
1963 */
1964 status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1965 if (ACPI_FAILURE(status)) {
1966 if (status != AE_NOT_FOUND) {
1967 const char *msg = acpi_format_exception(status);
1968
1969 pr_err("Failed to get table, %s\n", msg);
1970 }
1971
1972 return;
1973 }
1974
1975 iort_init_platform_devices();
1976 }
1977
1978 #ifdef CONFIG_ZONE_DMA
1979 /*
1980 * Extract the highest CPU physical address accessible to all DMA masters in
1981 * the system. PHYS_ADDR_MAX is returned when no constrained device is found.
1982 */
acpi_iort_dma_get_max_cpu_address(void)1983 phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void)
1984 {
1985 phys_addr_t limit = PHYS_ADDR_MAX;
1986 struct acpi_iort_node *node, *end;
1987 struct acpi_table_iort *iort;
1988 acpi_status status;
1989 int i;
1990
1991 if (acpi_disabled)
1992 return limit;
1993
1994 status = acpi_get_table(ACPI_SIG_IORT, 0,
1995 (struct acpi_table_header **)&iort);
1996 if (ACPI_FAILURE(status))
1997 return limit;
1998
1999 node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset);
2000 end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length);
2001
2002 for (i = 0; i < iort->node_count; i++) {
2003 if (node >= end)
2004 break;
2005
2006 switch (node->type) {
2007 struct acpi_iort_named_component *ncomp;
2008 struct acpi_iort_root_complex *rc;
2009 phys_addr_t local_limit;
2010
2011 case ACPI_IORT_NODE_NAMED_COMPONENT:
2012 ncomp = (struct acpi_iort_named_component *)node->node_data;
2013 local_limit = DMA_BIT_MASK(ncomp->memory_address_limit);
2014 limit = min_not_zero(limit, local_limit);
2015 break;
2016
2017 case ACPI_IORT_NODE_PCI_ROOT_COMPLEX:
2018 if (node->revision < 1)
2019 break;
2020
2021 rc = (struct acpi_iort_root_complex *)node->node_data;
2022 local_limit = DMA_BIT_MASK(rc->memory_address_limit);
2023 limit = min_not_zero(limit, local_limit);
2024 break;
2025 }
2026 node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length);
2027 }
2028 acpi_put_table(&iort->header);
2029 return limit;
2030 }
2031 #endif
2032