1 /**
2 * @file
3 * This is the IPv4 packet segmentation and reassembly implementation.
4 *
5 */
6
7 /*
8 * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without modification,
12 * are permitted provided that the following conditions are met:
13 *
14 * 1. Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright notice,
17 * this list of conditions and the following disclaimer in the documentation
18 * and/or other materials provided with the distribution.
19 * 3. The name of the author may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
25 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
27 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
30 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
31 * OF SUCH DAMAGE.
32 *
33 * This file is part of the lwIP TCP/IP stack.
34 *
35 * Author: Jani Monoses <jani@iv.ro>
36 * Simon Goldschmidt
37 * original reassembly code by Adam Dunkels <adam@sics.se>
38 *
39 */
40
41 #include "lwip/opt.h"
42
43 #if LWIP_IPV4
44
45 #include "lwip/ip4_frag.h"
46 #include "lwip/def.h"
47 #include "lwip/inet_chksum.h"
48 #include "lwip/netif.h"
49 #include "lwip/stats.h"
50 #include "lwip/icmp.h"
51
52 #include <string.h>
53
54 #if IP_REASSEMBLY
55 /**
56 * The IP reassembly code currently has the following limitations:
57 * - IP header options are not supported
58 * - fragments must not overlap (e.g. due to different routes),
59 * currently, overlapping or duplicate fragments are thrown away
60 * if IP_REASS_CHECK_OVERLAP=1 (the default)!
61 *
62 * @todo: work with IP header options
63 */
64
65 /** Setting this to 0, you can turn off checking the fragments for overlapping
66 * regions. The code gets a little smaller. Only use this if you know that
67 * overlapping won't occur on your network! */
68 #ifndef IP_REASS_CHECK_OVERLAP
69 #define IP_REASS_CHECK_OVERLAP 1
70 #endif /* IP_REASS_CHECK_OVERLAP */
71
72 /** Set to 0 to prevent freeing the oldest datagram when the reassembly buffer is
73 * full (IP_REASS_MAX_PBUFS pbufs are enqueued). The code gets a little smaller.
74 * Datagrams will be freed by timeout only. Especially useful when MEMP_NUM_REASSDATA
75 * is set to 1, so one datagram can be reassembled at a time, only. */
76 #ifndef IP_REASS_FREE_OLDEST
77 #define IP_REASS_FREE_OLDEST 1
78 #endif /* IP_REASS_FREE_OLDEST */
79
80 #define IP_REASS_FLAG_LASTFRAG 0x01
81
82 /** This is a helper struct which holds the starting
83 * offset and the ending offset of this fragment to
84 * easily chain the fragments.
85 * It has the same packing requirements as the IP header, since it replaces
86 * the IP header in memory in incoming fragments (after copying it) to keep
87 * track of the various fragments. (-> If the IP header doesn't need packing,
88 * this struct doesn't need packing, too.)
89 */
90 #ifdef PACK_STRUCT_USE_INCLUDES
91 # include "arch/bpstruct.h"
92 #endif
93 PACK_STRUCT_BEGIN
94 struct ip_reass_helper {
95 PACK_STRUCT_FIELD(struct pbuf *next_pbuf);
96 PACK_STRUCT_FIELD(u16_t start);
97 PACK_STRUCT_FIELD(u16_t end);
98 } PACK_STRUCT_STRUCT;
99 PACK_STRUCT_END
100 #ifdef PACK_STRUCT_USE_INCLUDES
101 # include "arch/epstruct.h"
102 #endif
103
104 #define IP_ADDRESSES_AND_ID_MATCH(iphdrA, iphdrB) \
105 (ip4_addr_cmp(&(iphdrA)->src, &(iphdrB)->src) && \
106 ip4_addr_cmp(&(iphdrA)->dest, &(iphdrB)->dest) && \
107 IPH_ID(iphdrA) == IPH_ID(iphdrB)) ? 1 : 0
108
109 /* global variables */
110 static struct ip_reassdata *reassdatagrams;
111 static u16_t ip_reass_pbufcount;
112
113 /* function prototypes */
114 static void ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
115 static int ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
116
117 /**
118 * Reassembly timer base function
119 * for both NO_SYS == 0 and 1 (!).
120 *
121 * Should be called every 1000 msec (defined by IP_TMR_INTERVAL).
122 */
123 void
ip_reass_tmr(void)124 ip_reass_tmr(void)
125 {
126 struct ip_reassdata *r, *prev = NULL;
127
128 r = reassdatagrams;
129 while (r != NULL) {
130 /* Decrement the timer. Once it reaches 0,
131 * clean up the incomplete fragment assembly */
132 if (r->timer > 0) {
133 r->timer--;
134 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer dec %"U16_F"\n",(u16_t)r->timer));
135 prev = r;
136 r = r->next;
137 } else {
138 /* reassembly timed out */
139 struct ip_reassdata *tmp;
140 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer timed out\n"));
141 tmp = r;
142 /* get the next pointer before freeing */
143 r = r->next;
144 /* free the helper struct and all enqueued pbufs */
145 ip_reass_free_complete_datagram(tmp, prev);
146 }
147 }
148 }
149
150 /**
151 * Free a datagram (struct ip_reassdata) and all its pbufs.
152 * Updates the total count of enqueued pbufs (ip_reass_pbufcount),
153 * SNMP counters and sends an ICMP time exceeded packet.
154 *
155 * @param ipr datagram to free
156 * @param prev the previous datagram in the linked list
157 * @return the number of pbufs freed
158 */
159 static int
ip_reass_free_complete_datagram(struct ip_reassdata * ipr,struct ip_reassdata * prev)160 ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
161 {
162 u16_t pbufs_freed = 0;
163 u16_t clen;
164 struct pbuf *p;
165 struct ip_reass_helper *iprh;
166
167 LWIP_ASSERT("prev != ipr", prev != ipr);
168 if (prev != NULL) {
169 LWIP_ASSERT("prev->next == ipr", prev->next == ipr);
170 }
171
172 MIB2_STATS_INC(mib2.ipreasmfails);
173 #if LWIP_ICMP
174 iprh = (struct ip_reass_helper *)ipr->p->payload;
175 if (iprh->start == 0) {
176 /* The first fragment was received, send ICMP time exceeded. */
177 /* First, de-queue the first pbuf from r->p. */
178 p = ipr->p;
179 ipr->p = iprh->next_pbuf;
180 /* Then, copy the original header into it. */
181 SMEMCPY(p->payload, &ipr->iphdr, IP_HLEN);
182 icmp_time_exceeded(p, ICMP_TE_FRAG);
183 clen = pbuf_clen(p);
184 LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
185 pbufs_freed += clen;
186 pbuf_free(p);
187 }
188 #endif /* LWIP_ICMP */
189
190 /* First, free all received pbufs. The individual pbufs need to be released
191 separately as they have not yet been chained */
192 p = ipr->p;
193 while (p != NULL) {
194 struct pbuf *pcur;
195 iprh = (struct ip_reass_helper *)p->payload;
196 pcur = p;
197 /* get the next pointer before freeing */
198 p = iprh->next_pbuf;
199 clen = pbuf_clen(pcur);
200 LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
201 pbufs_freed += clen;
202 pbuf_free(pcur);
203 }
204 /* Then, unchain the struct ip_reassdata from the list and free it. */
205 ip_reass_dequeue_datagram(ipr, prev);
206 LWIP_ASSERT("ip_reass_pbufcount >= clen", ip_reass_pbufcount >= pbufs_freed);
207 ip_reass_pbufcount -= pbufs_freed;
208
209 return pbufs_freed;
210 }
211
212 #if IP_REASS_FREE_OLDEST
213 /**
214 * Free the oldest datagram to make room for enqueueing new fragments.
215 * The datagram 'fraghdr' belongs to is not freed!
216 *
217 * @param fraghdr IP header of the current fragment
218 * @param pbufs_needed number of pbufs needed to enqueue
219 * (used for freeing other datagrams if not enough space)
220 * @return the number of pbufs freed
221 */
222 static int
ip_reass_remove_oldest_datagram(struct ip_hdr * fraghdr,int pbufs_needed)223 ip_reass_remove_oldest_datagram(struct ip_hdr *fraghdr, int pbufs_needed)
224 {
225 /* @todo Can't we simply remove the last datagram in the
226 * linked list behind reassdatagrams?
227 */
228 struct ip_reassdata *r, *oldest, *prev, *oldest_prev;
229 int pbufs_freed = 0, pbufs_freed_current;
230 int other_datagrams;
231
232 /* Free datagrams until being allowed to enqueue 'pbufs_needed' pbufs,
233 * but don't free the datagram that 'fraghdr' belongs to! */
234 do {
235 oldest = NULL;
236 prev = NULL;
237 oldest_prev = NULL;
238 other_datagrams = 0;
239 r = reassdatagrams;
240 while (r != NULL) {
241 if (!IP_ADDRESSES_AND_ID_MATCH(&r->iphdr, fraghdr)) {
242 /* Not the same datagram as fraghdr */
243 other_datagrams++;
244 if (oldest == NULL) {
245 oldest = r;
246 oldest_prev = prev;
247 } else if (r->timer <= oldest->timer) {
248 /* older than the previous oldest */
249 oldest = r;
250 oldest_prev = prev;
251 }
252 }
253 if (r->next != NULL) {
254 prev = r;
255 }
256 r = r->next;
257 }
258 if (oldest != NULL) {
259 pbufs_freed_current = ip_reass_free_complete_datagram(oldest, oldest_prev);
260 pbufs_freed += pbufs_freed_current;
261 }
262 } while ((pbufs_freed < pbufs_needed) && (other_datagrams > 1));
263 return pbufs_freed;
264 }
265 #endif /* IP_REASS_FREE_OLDEST */
266
267 /**
268 * Enqueues a new fragment into the fragment queue
269 * @param fraghdr points to the new fragments IP hdr
270 * @param clen number of pbufs needed to enqueue (used for freeing other datagrams if not enough space)
271 * @return A pointer to the queue location into which the fragment was enqueued
272 */
273 static struct ip_reassdata*
ip_reass_enqueue_new_datagram(struct ip_hdr * fraghdr,int clen)274 ip_reass_enqueue_new_datagram(struct ip_hdr *fraghdr, int clen)
275 {
276 struct ip_reassdata* ipr;
277 #if ! IP_REASS_FREE_OLDEST
278 LWIP_UNUSED_ARG(clen);
279 #endif
280
281 /* No matching previous fragment found, allocate a new reassdata struct */
282 ipr = (struct ip_reassdata *)memp_malloc(MEMP_REASSDATA);
283 if (ipr == NULL) {
284 #if IP_REASS_FREE_OLDEST
285 if (ip_reass_remove_oldest_datagram(fraghdr, clen) >= clen) {
286 ipr = (struct ip_reassdata *)memp_malloc(MEMP_REASSDATA);
287 }
288 if (ipr == NULL)
289 #endif /* IP_REASS_FREE_OLDEST */
290 {
291 IPFRAG_STATS_INC(ip_frag.memerr);
292 LWIP_DEBUGF(IP_REASS_DEBUG,("Failed to alloc reassdata struct\n"));
293 return NULL;
294 }
295 }
296 memset(ipr, 0, sizeof(struct ip_reassdata));
297 ipr->timer = IP_REASS_MAXAGE;
298
299 /* enqueue the new structure to the front of the list */
300 ipr->next = reassdatagrams;
301 reassdatagrams = ipr;
302 /* copy the ip header for later tests and input */
303 /* @todo: no ip options supported? */
304 SMEMCPY(&(ipr->iphdr), fraghdr, IP_HLEN);
305 return ipr;
306 }
307
308 /**
309 * Dequeues a datagram from the datagram queue. Doesn't deallocate the pbufs.
310 * @param ipr points to the queue entry to dequeue
311 */
312 static void
ip_reass_dequeue_datagram(struct ip_reassdata * ipr,struct ip_reassdata * prev)313 ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
314 {
315 /* dequeue the reass struct */
316 if (reassdatagrams == ipr) {
317 /* it was the first in the list */
318 reassdatagrams = ipr->next;
319 } else {
320 /* it wasn't the first, so it must have a valid 'prev' */
321 LWIP_ASSERT("sanity check linked list", prev != NULL);
322 prev->next = ipr->next;
323 }
324
325 /* now we can free the ip_reassdata struct */
326 memp_free(MEMP_REASSDATA, ipr);
327 }
328
329 /**
330 * Chain a new pbuf into the pbuf list that composes the datagram. The pbuf list
331 * will grow over time as new pbufs are rx.
332 * Also checks that the datagram passes basic continuity checks (if the last
333 * fragment was received at least once).
334 * @param ipr points to the reassembly state
335 * @param new_p points to the pbuf for the current fragment
336 * @return 0 if invalid, >0 otherwise
337 */
338 static int
ip_reass_chain_frag_into_datagram_and_validate(struct ip_reassdata * ipr,struct pbuf * new_p)339 ip_reass_chain_frag_into_datagram_and_validate(struct ip_reassdata *ipr, struct pbuf *new_p)
340 {
341 struct ip_reass_helper *iprh, *iprh_tmp, *iprh_prev=NULL;
342 struct pbuf *q;
343 u16_t offset, len;
344 struct ip_hdr *fraghdr;
345 int valid = 1;
346
347 /* Extract length and fragment offset from current fragment */
348 fraghdr = (struct ip_hdr*)new_p->payload;
349 len = lwip_ntohs(IPH_LEN(fraghdr)) - IPH_HL(fraghdr) * 4;
350 offset = (lwip_ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) * 8;
351
352 /* overwrite the fragment's ip header from the pbuf with our helper struct,
353 * and setup the embedded helper structure. */
354 /* make sure the struct ip_reass_helper fits into the IP header */
355 LWIP_ASSERT("sizeof(struct ip_reass_helper) <= IP_HLEN",
356 sizeof(struct ip_reass_helper) <= IP_HLEN);
357 iprh = (struct ip_reass_helper*)new_p->payload;
358 iprh->next_pbuf = NULL;
359 iprh->start = offset;
360 iprh->end = offset + len;
361
362 /* Iterate through until we either get to the end of the list (append),
363 * or we find one with a larger offset (insert). */
364 for (q = ipr->p; q != NULL;) {
365 iprh_tmp = (struct ip_reass_helper*)q->payload;
366 if (iprh->start < iprh_tmp->start) {
367 /* the new pbuf should be inserted before this */
368 iprh->next_pbuf = q;
369 if (iprh_prev != NULL) {
370 /* not the fragment with the lowest offset */
371 #if IP_REASS_CHECK_OVERLAP
372 if ((iprh->start < iprh_prev->end) || (iprh->end > iprh_tmp->start)) {
373 /* fragment overlaps with previous or following, throw away */
374 goto freepbuf;
375 }
376 #endif /* IP_REASS_CHECK_OVERLAP */
377 iprh_prev->next_pbuf = new_p;
378 } else {
379 /* fragment with the lowest offset */
380 ipr->p = new_p;
381 }
382 break;
383 } else if (iprh->start == iprh_tmp->start) {
384 /* received the same datagram twice: no need to keep the datagram */
385 goto freepbuf;
386 #if IP_REASS_CHECK_OVERLAP
387 } else if (iprh->start < iprh_tmp->end) {
388 /* overlap: no need to keep the new datagram */
389 goto freepbuf;
390 #endif /* IP_REASS_CHECK_OVERLAP */
391 } else {
392 /* Check if the fragments received so far have no holes. */
393 if (iprh_prev != NULL) {
394 if (iprh_prev->end != iprh_tmp->start) {
395 /* There is a fragment missing between the current
396 * and the previous fragment */
397 valid = 0;
398 }
399 }
400 }
401 q = iprh_tmp->next_pbuf;
402 iprh_prev = iprh_tmp;
403 }
404
405 /* If q is NULL, then we made it to the end of the list. Determine what to do now */
406 if (q == NULL) {
407 if (iprh_prev != NULL) {
408 /* this is (for now), the fragment with the highest offset:
409 * chain it to the last fragment */
410 #if IP_REASS_CHECK_OVERLAP
411 LWIP_ASSERT("check fragments don't overlap", iprh_prev->end <= iprh->start);
412 #endif /* IP_REASS_CHECK_OVERLAP */
413 iprh_prev->next_pbuf = new_p;
414 if (iprh_prev->end != iprh->start) {
415 valid = 0;
416 }
417 } else {
418 #if IP_REASS_CHECK_OVERLAP
419 LWIP_ASSERT("no previous fragment, this must be the first fragment!",
420 ipr->p == NULL);
421 #endif /* IP_REASS_CHECK_OVERLAP */
422 /* this is the first fragment we ever received for this ip datagram */
423 ipr->p = new_p;
424 }
425 }
426
427 /* At this point, the validation part begins: */
428 /* If we already received the last fragment */
429 if ((ipr->flags & IP_REASS_FLAG_LASTFRAG) != 0) {
430 /* and had no holes so far */
431 if (valid) {
432 /* then check if the rest of the fragments is here */
433 /* Check if the queue starts with the first datagram */
434 if ((ipr->p == NULL) || (((struct ip_reass_helper*)ipr->p->payload)->start != 0)) {
435 valid = 0;
436 } else {
437 /* and check that there are no holes after this datagram */
438 iprh_prev = iprh;
439 q = iprh->next_pbuf;
440 while (q != NULL) {
441 iprh = (struct ip_reass_helper*)q->payload;
442 if (iprh_prev->end != iprh->start) {
443 valid = 0;
444 break;
445 }
446 iprh_prev = iprh;
447 q = iprh->next_pbuf;
448 }
449 /* if still valid, all fragments are received
450 * (because to the MF==0 already arrived */
451 if (valid) {
452 LWIP_ASSERT("sanity check", ipr->p != NULL);
453 LWIP_ASSERT("sanity check",
454 ((struct ip_reass_helper*)ipr->p->payload) != iprh);
455 LWIP_ASSERT("validate_datagram:next_pbuf!=NULL",
456 iprh->next_pbuf == NULL);
457 LWIP_ASSERT("validate_datagram:datagram end!=datagram len",
458 iprh->end == ipr->datagram_len);
459 }
460 }
461 }
462 /* If valid is 0 here, there are some fragments missing in the middle
463 * (since MF == 0 has already arrived). Such datagrams simply time out if
464 * no more fragments are received... */
465 return valid;
466 }
467 /* If we come here, not all fragments were received, yet! */
468 return 0; /* not yet valid! */
469 #if IP_REASS_CHECK_OVERLAP
470 freepbuf:
471 ip_reass_pbufcount -= pbuf_clen(new_p);
472 pbuf_free(new_p);
473 return 0;
474 #endif /* IP_REASS_CHECK_OVERLAP */
475 }
476
477 /**
478 * Reassembles incoming IP fragments into an IP datagram.
479 *
480 * @param p points to a pbuf chain of the fragment
481 * @return NULL if reassembly is incomplete, ? otherwise
482 */
483 struct pbuf *
ip4_reass(struct pbuf * p)484 ip4_reass(struct pbuf *p)
485 {
486 struct pbuf *r;
487 struct ip_hdr *fraghdr;
488 struct ip_reassdata *ipr;
489 struct ip_reass_helper *iprh;
490 u16_t offset, len, clen;
491
492 IPFRAG_STATS_INC(ip_frag.recv);
493 MIB2_STATS_INC(mib2.ipreasmreqds);
494
495 fraghdr = (struct ip_hdr*)p->payload;
496
497 if ((IPH_HL(fraghdr) * 4) != IP_HLEN) {
498 LWIP_DEBUGF(IP_REASS_DEBUG,("ip4_reass: IP options currently not supported!\n"));
499 IPFRAG_STATS_INC(ip_frag.err);
500 goto nullreturn;
501 }
502
503 offset = (lwip_ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) * 8;
504 len = lwip_ntohs(IPH_LEN(fraghdr)) - IPH_HL(fraghdr) * 4;
505
506 /* Check if we are allowed to enqueue more datagrams. */
507 clen = pbuf_clen(p);
508 if ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS) {
509 #if IP_REASS_FREE_OLDEST
510 if (!ip_reass_remove_oldest_datagram(fraghdr, clen) ||
511 ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS))
512 #endif /* IP_REASS_FREE_OLDEST */
513 {
514 /* No datagram could be freed and still too many pbufs enqueued */
515 LWIP_DEBUGF(IP_REASS_DEBUG,("ip4_reass: Overflow condition: pbufct=%d, clen=%d, MAX=%d\n",
516 ip_reass_pbufcount, clen, IP_REASS_MAX_PBUFS));
517 IPFRAG_STATS_INC(ip_frag.memerr);
518 /* @todo: send ICMP time exceeded here? */
519 /* drop this pbuf */
520 goto nullreturn;
521 }
522 }
523
524 /* Look for the datagram the fragment belongs to in the current datagram queue,
525 * remembering the previous in the queue for later dequeueing. */
526 for (ipr = reassdatagrams; ipr != NULL; ipr = ipr->next) {
527 /* Check if the incoming fragment matches the one currently present
528 in the reassembly buffer. If so, we proceed with copying the
529 fragment into the buffer. */
530 if (IP_ADDRESSES_AND_ID_MATCH(&ipr->iphdr, fraghdr)) {
531 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: matching previous fragment ID=%"X16_F"\n",
532 lwip_ntohs(IPH_ID(fraghdr))));
533 IPFRAG_STATS_INC(ip_frag.cachehit);
534 break;
535 }
536 }
537
538 if (ipr == NULL) {
539 /* Enqueue a new datagram into the datagram queue */
540 ipr = ip_reass_enqueue_new_datagram(fraghdr, clen);
541 /* Bail if unable to enqueue */
542 if (ipr == NULL) {
543 goto nullreturn;
544 }
545 } else {
546 if (((lwip_ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) == 0) &&
547 ((lwip_ntohs(IPH_OFFSET(&ipr->iphdr)) & IP_OFFMASK) != 0)) {
548 /* ipr->iphdr is not the header from the first fragment, but fraghdr is
549 * -> copy fraghdr into ipr->iphdr since we want to have the header
550 * of the first fragment (for ICMP time exceeded and later, for copying
551 * all options, if supported)*/
552 SMEMCPY(&ipr->iphdr, fraghdr, IP_HLEN);
553 }
554 }
555 /* Track the current number of pbufs current 'in-flight', in order to limit
556 the number of fragments that may be enqueued at any one time */
557 ip_reass_pbufcount += clen;
558
559 /* At this point, we have either created a new entry or pointing
560 * to an existing one */
561
562 /* check for 'no more fragments', and update queue entry*/
563 if ((IPH_OFFSET(fraghdr) & PP_NTOHS(IP_MF)) == 0) {
564 ipr->flags |= IP_REASS_FLAG_LASTFRAG;
565 ipr->datagram_len = offset + len;
566 LWIP_DEBUGF(IP_REASS_DEBUG,
567 ("ip4_reass: last fragment seen, total len %"S16_F"\n",
568 ipr->datagram_len));
569 }
570 /* find the right place to insert this pbuf */
571 /* @todo: trim pbufs if fragments are overlapping */
572 if (ip_reass_chain_frag_into_datagram_and_validate(ipr, p)) {
573 struct ip_reassdata *ipr_prev;
574 /* the totally last fragment (flag more fragments = 0) was received at least
575 * once AND all fragments are received */
576 ipr->datagram_len += IP_HLEN;
577
578 /* save the second pbuf before copying the header over the pointer */
579 r = ((struct ip_reass_helper*)ipr->p->payload)->next_pbuf;
580
581 /* copy the original ip header back to the first pbuf */
582 fraghdr = (struct ip_hdr*)(ipr->p->payload);
583 SMEMCPY(fraghdr, &ipr->iphdr, IP_HLEN);
584 IPH_LEN_SET(fraghdr, lwip_htons(ipr->datagram_len));
585 IPH_OFFSET_SET(fraghdr, 0);
586 IPH_CHKSUM_SET(fraghdr, 0);
587 /* @todo: do we need to set/calculate the correct checksum? */
588 #if CHECKSUM_GEN_IP
589 IF__NETIF_CHECKSUM_ENABLED(ip_current_input_netif(), NETIF_CHECKSUM_GEN_IP) {
590 IPH_CHKSUM_SET(fraghdr, inet_chksum(fraghdr, IP_HLEN));
591 }
592 #endif /* CHECKSUM_GEN_IP */
593
594 p = ipr->p;
595
596 /* chain together the pbufs contained within the reass_data list. */
597 while (r != NULL) {
598 iprh = (struct ip_reass_helper*)r->payload;
599
600 /* hide the ip header for every succeeding fragment */
601 pbuf_header(r, -IP_HLEN);
602 pbuf_cat(p, r);
603 r = iprh->next_pbuf;
604 }
605
606 /* find the previous entry in the linked list */
607 if (ipr == reassdatagrams) {
608 ipr_prev = NULL;
609 } else {
610 for (ipr_prev = reassdatagrams; ipr_prev != NULL; ipr_prev = ipr_prev->next) {
611 if (ipr_prev->next == ipr) {
612 break;
613 }
614 }
615 }
616
617 /* release the sources allocate for the fragment queue entry */
618 ip_reass_dequeue_datagram(ipr, ipr_prev);
619
620 /* and adjust the number of pbufs currently queued for reassembly. */
621 ip_reass_pbufcount -= pbuf_clen(p);
622
623 MIB2_STATS_INC(mib2.ipreasmoks);
624
625 /* Return the pbuf chain */
626 return p;
627 }
628 /* the datagram is not (yet?) reassembled completely */
629 LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass_pbufcount: %d out\n", ip_reass_pbufcount));
630 return NULL;
631
632 nullreturn:
633 LWIP_DEBUGF(IP_REASS_DEBUG,("ip4_reass: nullreturn\n"));
634 IPFRAG_STATS_INC(ip_frag.drop);
635 pbuf_free(p);
636 return NULL;
637 }
638 #endif /* IP_REASSEMBLY */
639
640 #if IP_FRAG
641 #if !LWIP_NETIF_TX_SINGLE_PBUF
642 /** Allocate a new struct pbuf_custom_ref */
643 static struct pbuf_custom_ref*
ip_frag_alloc_pbuf_custom_ref(void)644 ip_frag_alloc_pbuf_custom_ref(void)
645 {
646 return (struct pbuf_custom_ref*)memp_malloc(MEMP_FRAG_PBUF);
647 }
648
649 /** Free a struct pbuf_custom_ref */
650 static void
ip_frag_free_pbuf_custom_ref(struct pbuf_custom_ref * p)651 ip_frag_free_pbuf_custom_ref(struct pbuf_custom_ref* p)
652 {
653 LWIP_ASSERT("p != NULL", p != NULL);
654 memp_free(MEMP_FRAG_PBUF, p);
655 }
656
657 /** Free-callback function to free a 'struct pbuf_custom_ref', called by
658 * pbuf_free. */
659 static void
ipfrag_free_pbuf_custom(struct pbuf * p)660 ipfrag_free_pbuf_custom(struct pbuf *p)
661 {
662 struct pbuf_custom_ref *pcr = (struct pbuf_custom_ref*)p;
663 LWIP_ASSERT("pcr != NULL", pcr != NULL);
664 LWIP_ASSERT("pcr == p", (void*)pcr == (void*)p);
665 if (pcr->original != NULL) {
666 pbuf_free(pcr->original);
667 }
668 ip_frag_free_pbuf_custom_ref(pcr);
669 }
670 #endif /* !LWIP_NETIF_TX_SINGLE_PBUF */
671
672 /**
673 * Fragment an IP datagram if too large for the netif.
674 *
675 * Chop the datagram in MTU sized chunks and send them in order
676 * by pointing PBUF_REFs into p.
677 *
678 * @param p ip packet to send
679 * @param netif the netif on which to send
680 * @param dest destination ip address to which to send
681 *
682 * @return ERR_OK if sent successfully, err_t otherwise
683 */
684 err_t
ip4_frag(struct pbuf * p,struct netif * netif,const ip4_addr_t * dest)685 ip4_frag(struct pbuf *p, struct netif *netif, const ip4_addr_t *dest)
686 {
687 struct pbuf *rambuf;
688 #if !LWIP_NETIF_TX_SINGLE_PBUF
689 struct pbuf *newpbuf;
690 #endif
691 struct ip_hdr *original_iphdr;
692 struct ip_hdr *iphdr;
693 const u16_t nfb = (netif->mtu - IP_HLEN) / 8;
694 u16_t left, fragsize;
695 u16_t ofo;
696 int last;
697 u16_t poff = IP_HLEN;
698 u16_t tmp;
699 #if !LWIP_NETIF_TX_SINGLE_PBUF
700 u16_t newpbuflen = 0;
701 u16_t left_to_copy;
702 #endif
703
704 original_iphdr = (struct ip_hdr *)p->payload;
705 iphdr = original_iphdr;
706 LWIP_ERROR("ip4_frag() does not support IP options", IPH_HL(iphdr) * 4 == IP_HLEN, return ERR_VAL);
707
708 /* Save original offset */
709 tmp = lwip_ntohs(IPH_OFFSET(iphdr));
710 ofo = tmp & IP_OFFMASK;
711 LWIP_ERROR("ip_frag(): MF already set", (tmp & IP_MF) == 0, return ERR_VAL);
712
713 left = p->tot_len - IP_HLEN;
714
715 while (left) {
716 /* Fill this fragment */
717 fragsize = LWIP_MIN(left, nfb * 8);
718
719 #if LWIP_NETIF_TX_SINGLE_PBUF
720 rambuf = pbuf_alloc(PBUF_IP, fragsize, PBUF_RAM);
721 if (rambuf == NULL) {
722 goto memerr;
723 }
724 LWIP_ASSERT("this needs a pbuf in one piece!",
725 (rambuf->len == rambuf->tot_len) && (rambuf->next == NULL));
726 poff += pbuf_copy_partial(p, rambuf->payload, fragsize, poff);
727 /* make room for the IP header */
728 if (pbuf_header(rambuf, IP_HLEN)) {
729 pbuf_free(rambuf);
730 goto memerr;
731 }
732 /* fill in the IP header */
733 SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
734 iphdr = (struct ip_hdr*)rambuf->payload;
735 #else /* LWIP_NETIF_TX_SINGLE_PBUF */
736 /* When not using a static buffer, create a chain of pbufs.
737 * The first will be a PBUF_RAM holding the link and IP header.
738 * The rest will be PBUF_REFs mirroring the pbuf chain to be fragged,
739 * but limited to the size of an mtu.
740 */
741 rambuf = pbuf_alloc(PBUF_LINK, IP_HLEN, PBUF_RAM);
742 if (rambuf == NULL) {
743 goto memerr;
744 }
745 LWIP_ASSERT("this needs a pbuf in one piece!",
746 (p->len >= (IP_HLEN)));
747 SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
748 iphdr = (struct ip_hdr *)rambuf->payload;
749
750 left_to_copy = fragsize;
751 while (left_to_copy) {
752 struct pbuf_custom_ref *pcr;
753 u16_t plen = p->len - poff;
754 newpbuflen = LWIP_MIN(left_to_copy, plen);
755 /* Is this pbuf already empty? */
756 if (!newpbuflen) {
757 poff = 0;
758 p = p->next;
759 continue;
760 }
761 pcr = ip_frag_alloc_pbuf_custom_ref();
762 if (pcr == NULL) {
763 pbuf_free(rambuf);
764 goto memerr;
765 }
766 /* Mirror this pbuf, although we might not need all of it. */
767 newpbuf = pbuf_alloced_custom(PBUF_RAW, newpbuflen, PBUF_REF, &pcr->pc,
768 (u8_t*)p->payload + poff, newpbuflen);
769 if (newpbuf == NULL) {
770 ip_frag_free_pbuf_custom_ref(pcr);
771 pbuf_free(rambuf);
772 goto memerr;
773 }
774 pbuf_ref(p);
775 pcr->original = p;
776 pcr->pc.custom_free_function = ipfrag_free_pbuf_custom;
777
778 /* Add it to end of rambuf's chain, but using pbuf_cat, not pbuf_chain
779 * so that it is removed when pbuf_dechain is later called on rambuf.
780 */
781 pbuf_cat(rambuf, newpbuf);
782 left_to_copy -= newpbuflen;
783 if (left_to_copy) {
784 poff = 0;
785 p = p->next;
786 }
787 }
788 poff += newpbuflen;
789 #endif /* LWIP_NETIF_TX_SINGLE_PBUF */
790
791 /* Correct header */
792 last = (left <= netif->mtu - IP_HLEN);
793
794 /* Set new offset and MF flag */
795 tmp = (IP_OFFMASK & (ofo));
796 if (!last) {
797 tmp = tmp | IP_MF;
798 }
799 IPH_OFFSET_SET(iphdr, lwip_htons(tmp));
800 IPH_LEN_SET(iphdr, lwip_htons(fragsize + IP_HLEN));
801 IPH_CHKSUM_SET(iphdr, 0);
802 #if CHECKSUM_GEN_IP
803 IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_IP) {
804 IPH_CHKSUM_SET(iphdr, inet_chksum(iphdr, IP_HLEN));
805 }
806 #endif /* CHECKSUM_GEN_IP */
807
808 /* No need for separate header pbuf - we allowed room for it in rambuf
809 * when allocated.
810 */
811 netif->output(netif, rambuf, dest);
812 IPFRAG_STATS_INC(ip_frag.xmit);
813
814 /* Unfortunately we can't reuse rambuf - the hardware may still be
815 * using the buffer. Instead we free it (and the ensuing chain) and
816 * recreate it next time round the loop. If we're lucky the hardware
817 * will have already sent the packet, the free will really free, and
818 * there will be zero memory penalty.
819 */
820
821 pbuf_free(rambuf);
822 left -= fragsize;
823 ofo += nfb;
824 }
825 MIB2_STATS_INC(mib2.ipfragoks);
826 return ERR_OK;
827 memerr:
828 MIB2_STATS_INC(mib2.ipfragfails);
829 return ERR_MEM;
830 }
831 #endif /* IP_FRAG */
832
833 #endif /* LWIP_IPV4 */
834