1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8
9 #include <linux/hash.h>
10 #include <linux/refcount.h>
11 #include "extent_map.h"
12 #include "extent_io.h"
13 #include "ordered-data.h"
14 #include "delayed-inode.h"
15
16 /*
17 * Since we search a directory based on f_pos (struct dir_context::pos) we have
18 * to start at 2 since '.' and '..' have f_pos of 0 and 1 respectively, so
19 * everybody else has to start at 2 (see btrfs_real_readdir() and dir_emit_dots()).
20 */
21 #define BTRFS_DIR_START_INDEX 2
22
23 /*
24 * ordered_data_close is set by truncate when a file that used
25 * to have good data has been truncated to zero. When it is set
26 * the btrfs file release call will add this inode to the
27 * ordered operations list so that we make sure to flush out any
28 * new data the application may have written before commit.
29 */
30 enum {
31 BTRFS_INODE_FLUSH_ON_CLOSE,
32 BTRFS_INODE_DUMMY,
33 BTRFS_INODE_IN_DEFRAG,
34 BTRFS_INODE_HAS_ASYNC_EXTENT,
35 /*
36 * Always set under the VFS' inode lock, otherwise it can cause races
37 * during fsync (we start as a fast fsync and then end up in a full
38 * fsync racing with ordered extent completion).
39 */
40 BTRFS_INODE_NEEDS_FULL_SYNC,
41 BTRFS_INODE_COPY_EVERYTHING,
42 BTRFS_INODE_IN_DELALLOC_LIST,
43 BTRFS_INODE_HAS_PROPS,
44 BTRFS_INODE_SNAPSHOT_FLUSH,
45 /*
46 * Set and used when logging an inode and it serves to signal that an
47 * inode does not have xattrs, so subsequent fsyncs can avoid searching
48 * for xattrs to log. This bit must be cleared whenever a xattr is added
49 * to an inode.
50 */
51 BTRFS_INODE_NO_XATTRS,
52 /*
53 * Set when we are in a context where we need to start a transaction and
54 * have dirty pages with the respective file range locked. This is to
55 * ensure that when reserving space for the transaction, if we are low
56 * on available space and need to flush delalloc, we will not flush
57 * delalloc for this inode, because that could result in a deadlock (on
58 * the file range, inode's io_tree).
59 */
60 BTRFS_INODE_NO_DELALLOC_FLUSH,
61 /*
62 * Set when we are working on enabling verity for a file. Computing and
63 * writing the whole Merkle tree can take a while so we want to prevent
64 * races where two separate tasks attempt to simultaneously start verity
65 * on the same file.
66 */
67 BTRFS_INODE_VERITY_IN_PROGRESS,
68 /* Set when this inode is a free space inode. */
69 BTRFS_INODE_FREE_SPACE_INODE,
70 };
71
72 /* in memory btrfs inode */
73 struct btrfs_inode {
74 /* which subvolume this inode belongs to */
75 struct btrfs_root *root;
76
77 /* key used to find this inode on disk. This is used by the code
78 * to read in roots of subvolumes
79 */
80 struct btrfs_key location;
81
82 /*
83 * Lock for counters and all fields used to determine if the inode is in
84 * the log or not (last_trans, last_sub_trans, last_log_commit,
85 * logged_trans), to access/update new_delalloc_bytes and to update the
86 * VFS' inode number of bytes used.
87 */
88 spinlock_t lock;
89
90 /* the extent_tree has caches of all the extent mappings to disk */
91 struct extent_map_tree extent_tree;
92
93 /* the io_tree does range state (DIRTY, LOCKED etc) */
94 struct extent_io_tree io_tree;
95
96 /*
97 * Keep track of where the inode has extent items mapped in order to
98 * make sure the i_size adjustments are accurate
99 */
100 struct extent_io_tree file_extent_tree;
101
102 /* held while logging the inode in tree-log.c */
103 struct mutex log_mutex;
104
105 /* used to order data wrt metadata */
106 struct btrfs_ordered_inode_tree ordered_tree;
107
108 /* list of all the delalloc inodes in the FS. There are times we need
109 * to write all the delalloc pages to disk, and this list is used
110 * to walk them all.
111 */
112 struct list_head delalloc_inodes;
113
114 /* node for the red-black tree that links inodes in subvolume root */
115 struct rb_node rb_node;
116
117 unsigned long runtime_flags;
118
119 /* Keep track of who's O_SYNC/fsyncing currently */
120 atomic_t sync_writers;
121
122 /* full 64 bit generation number, struct vfs_inode doesn't have a big
123 * enough field for this.
124 */
125 u64 generation;
126
127 /*
128 * transid of the trans_handle that last modified this inode
129 */
130 u64 last_trans;
131
132 /*
133 * transid that last logged this inode
134 */
135 u64 logged_trans;
136
137 /*
138 * log transid when this inode was last modified
139 */
140 int last_sub_trans;
141
142 /* a local copy of root's last_log_commit */
143 int last_log_commit;
144
145 /*
146 * Total number of bytes pending delalloc, used by stat to calculate the
147 * real block usage of the file. This is used only for files.
148 */
149 u64 delalloc_bytes;
150
151 union {
152 /*
153 * Total number of bytes pending delalloc that fall within a file
154 * range that is either a hole or beyond EOF (and no prealloc extent
155 * exists in the range). This is always <= delalloc_bytes and this
156 * is used only for files.
157 */
158 u64 new_delalloc_bytes;
159 /*
160 * The offset of the last dir index key that was logged.
161 * This is used only for directories.
162 */
163 u64 last_dir_index_offset;
164 };
165
166 /*
167 * total number of bytes pending defrag, used by stat to check whether
168 * it needs COW.
169 */
170 u64 defrag_bytes;
171
172 /*
173 * the size of the file stored in the metadata on disk. data=ordered
174 * means the in-memory i_size might be larger than the size on disk
175 * because not all the blocks are written yet.
176 */
177 u64 disk_i_size;
178
179 /*
180 * If this is a directory then index_cnt is the counter for the index
181 * number for new files that are created. For an empty directory, this
182 * must be initialized to BTRFS_DIR_START_INDEX.
183 */
184 u64 index_cnt;
185
186 /* Cache the directory index number to speed the dir/file remove */
187 u64 dir_index;
188
189 /* the fsync log has some corner cases that mean we have to check
190 * directories to see if any unlinks have been done before
191 * the directory was logged. See tree-log.c for all the
192 * details
193 */
194 u64 last_unlink_trans;
195
196 /*
197 * The id/generation of the last transaction where this inode was
198 * either the source or the destination of a clone/dedupe operation.
199 * Used when logging an inode to know if there are shared extents that
200 * need special care when logging checksum items, to avoid duplicate
201 * checksum items in a log (which can lead to a corruption where we end
202 * up with missing checksum ranges after log replay).
203 * Protected by the vfs inode lock.
204 */
205 u64 last_reflink_trans;
206
207 /*
208 * Number of bytes outstanding that are going to need csums. This is
209 * used in ENOSPC accounting.
210 */
211 u64 csum_bytes;
212
213 /* Backwards incompatible flags, lower half of inode_item::flags */
214 u32 flags;
215 /* Read-only compatibility flags, upper half of inode_item::flags */
216 u32 ro_flags;
217
218 /*
219 * Counters to keep track of the number of extent item's we may use due
220 * to delalloc and such. outstanding_extents is the number of extent
221 * items we think we'll end up using, and reserved_extents is the number
222 * of extent items we've reserved metadata for.
223 */
224 unsigned outstanding_extents;
225
226 struct btrfs_block_rsv block_rsv;
227
228 /*
229 * Cached values of inode properties
230 */
231 unsigned prop_compress; /* per-file compression algorithm */
232 /*
233 * Force compression on the file using the defrag ioctl, could be
234 * different from prop_compress and takes precedence if set
235 */
236 unsigned defrag_compress;
237
238 struct btrfs_delayed_node *delayed_node;
239
240 /* File creation time. */
241 struct timespec64 i_otime;
242
243 /* Hook into fs_info->delayed_iputs */
244 struct list_head delayed_iput;
245
246 struct rw_semaphore i_mmap_lock;
247 struct inode vfs_inode;
248 };
249
BTRFS_I(const struct inode * inode)250 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
251 {
252 return container_of(inode, struct btrfs_inode, vfs_inode);
253 }
254
btrfs_inode_hash(u64 objectid,const struct btrfs_root * root)255 static inline unsigned long btrfs_inode_hash(u64 objectid,
256 const struct btrfs_root *root)
257 {
258 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
259
260 #if BITS_PER_LONG == 32
261 h = (h >> 32) ^ (h & 0xffffffff);
262 #endif
263
264 return (unsigned long)h;
265 }
266
267 #if BITS_PER_LONG == 32
268
269 /*
270 * On 32 bit systems the i_ino of struct inode is 32 bits (unsigned long), so
271 * we use the inode's location objectid which is a u64 to avoid truncation.
272 */
btrfs_ino(const struct btrfs_inode * inode)273 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
274 {
275 u64 ino = inode->location.objectid;
276
277 /* type == BTRFS_ROOT_ITEM_KEY: subvol dir */
278 if (inode->location.type == BTRFS_ROOT_ITEM_KEY)
279 ino = inode->vfs_inode.i_ino;
280 return ino;
281 }
282
283 #else
284
btrfs_ino(const struct btrfs_inode * inode)285 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
286 {
287 return inode->vfs_inode.i_ino;
288 }
289
290 #endif
291
btrfs_i_size_write(struct btrfs_inode * inode,u64 size)292 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
293 {
294 i_size_write(&inode->vfs_inode, size);
295 inode->disk_i_size = size;
296 }
297
btrfs_is_free_space_inode(struct btrfs_inode * inode)298 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
299 {
300 return test_bit(BTRFS_INODE_FREE_SPACE_INODE, &inode->runtime_flags);
301 }
302
is_data_inode(struct inode * inode)303 static inline bool is_data_inode(struct inode *inode)
304 {
305 return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
306 }
307
btrfs_mod_outstanding_extents(struct btrfs_inode * inode,int mod)308 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
309 int mod)
310 {
311 lockdep_assert_held(&inode->lock);
312 inode->outstanding_extents += mod;
313 if (btrfs_is_free_space_inode(inode))
314 return;
315 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
316 mod);
317 }
318
319 /*
320 * Called every time after doing a buffered, direct IO or memory mapped write.
321 *
322 * This is to ensure that if we write to a file that was previously fsynced in
323 * the current transaction, then try to fsync it again in the same transaction,
324 * we will know that there were changes in the file and that it needs to be
325 * logged.
326 */
btrfs_set_inode_last_sub_trans(struct btrfs_inode * inode)327 static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode)
328 {
329 spin_lock(&inode->lock);
330 inode->last_sub_trans = inode->root->log_transid;
331 spin_unlock(&inode->lock);
332 }
333
334 /*
335 * Should be called while holding the inode's VFS lock in exclusive mode or in a
336 * context where no one else can access the inode concurrently (during inode
337 * creation or when loading an inode from disk).
338 */
btrfs_set_inode_full_sync(struct btrfs_inode * inode)339 static inline void btrfs_set_inode_full_sync(struct btrfs_inode *inode)
340 {
341 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
342 /*
343 * The inode may have been part of a reflink operation in the last
344 * transaction that modified it, and then a fsync has reset the
345 * last_reflink_trans to avoid subsequent fsyncs in the same
346 * transaction to do unnecessary work. So update last_reflink_trans
347 * to the last_trans value (we have to be pessimistic and assume a
348 * reflink happened).
349 *
350 * The ->last_trans is protected by the inode's spinlock and we can
351 * have a concurrent ordered extent completion update it. Also set
352 * last_reflink_trans to ->last_trans only if the former is less than
353 * the later, because we can be called in a context where
354 * last_reflink_trans was set to the current transaction generation
355 * while ->last_trans was not yet updated in the current transaction,
356 * and therefore has a lower value.
357 */
358 spin_lock(&inode->lock);
359 if (inode->last_reflink_trans < inode->last_trans)
360 inode->last_reflink_trans = inode->last_trans;
361 spin_unlock(&inode->lock);
362 }
363
btrfs_inode_in_log(struct btrfs_inode * inode,u64 generation)364 static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
365 {
366 bool ret = false;
367
368 spin_lock(&inode->lock);
369 if (inode->logged_trans == generation &&
370 inode->last_sub_trans <= inode->last_log_commit &&
371 inode->last_sub_trans <= inode->root->last_log_commit)
372 ret = true;
373 spin_unlock(&inode->lock);
374 return ret;
375 }
376
377 /*
378 * Check if the inode has flags compatible with compression
379 */
btrfs_inode_can_compress(const struct btrfs_inode * inode)380 static inline bool btrfs_inode_can_compress(const struct btrfs_inode *inode)
381 {
382 if (inode->flags & BTRFS_INODE_NODATACOW ||
383 inode->flags & BTRFS_INODE_NODATASUM)
384 return false;
385 return true;
386 }
387
388 /*
389 * btrfs_inode_item stores flags in a u64, btrfs_inode stores them in two
390 * separate u32s. These two functions convert between the two representations.
391 */
btrfs_inode_combine_flags(u32 flags,u32 ro_flags)392 static inline u64 btrfs_inode_combine_flags(u32 flags, u32 ro_flags)
393 {
394 return (flags | ((u64)ro_flags << 32));
395 }
396
btrfs_inode_split_flags(u64 inode_item_flags,u32 * flags,u32 * ro_flags)397 static inline void btrfs_inode_split_flags(u64 inode_item_flags,
398 u32 *flags, u32 *ro_flags)
399 {
400 *flags = (u32)inode_item_flags;
401 *ro_flags = (u32)(inode_item_flags >> 32);
402 }
403
404 /* Array of bytes with variable length, hexadecimal format 0x1234 */
405 #define CSUM_FMT "0x%*phN"
406 #define CSUM_FMT_VALUE(size, bytes) size, bytes
407
408 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
409 u32 pgoff, u8 *csum, const u8 * const csum_expected);
410 blk_status_t btrfs_extract_ordered_extent(struct btrfs_bio *bbio);
411 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
412 u32 bio_offset, struct bio_vec *bv);
413 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
414 u64 *orig_start, u64 *orig_block_len,
415 u64 *ram_bytes, bool nowait, bool strict);
416
417 void __btrfs_del_delalloc_inode(struct btrfs_root *root, struct btrfs_inode *inode);
418 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
419 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
420 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
421 struct btrfs_inode *dir, struct btrfs_inode *inode,
422 const struct fscrypt_str *name);
423 int btrfs_add_link(struct btrfs_trans_handle *trans,
424 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
425 const struct fscrypt_str *name, int add_backref, u64 index);
426 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry);
427 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
428 int front);
429
430 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
431 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
432 bool in_reclaim_context);
433 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
434 unsigned int extra_bits,
435 struct extent_state **cached_state);
436
437 struct btrfs_new_inode_args {
438 /* Input */
439 struct inode *dir;
440 struct dentry *dentry;
441 struct inode *inode;
442 bool orphan;
443 bool subvol;
444
445 /* Output from btrfs_new_inode_prepare(), input to btrfs_create_new_inode(). */
446 struct posix_acl *default_acl;
447 struct posix_acl *acl;
448 struct fscrypt_name fname;
449 };
450
451 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
452 unsigned int *trans_num_items);
453 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
454 struct btrfs_new_inode_args *args);
455 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
456 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
457 struct inode *dir);
458 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
459 u32 bits);
460 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
461 struct extent_state *state, u32 bits);
462 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
463 struct extent_state *other);
464 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
465 struct extent_state *orig, u64 split);
466 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
467 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
468 void btrfs_evict_inode(struct inode *inode);
469 struct inode *btrfs_alloc_inode(struct super_block *sb);
470 void btrfs_destroy_inode(struct inode *inode);
471 void btrfs_free_inode(struct inode *inode);
472 int btrfs_drop_inode(struct inode *inode);
473 int __init btrfs_init_cachep(void);
474 void __cold btrfs_destroy_cachep(void);
475 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
476 struct btrfs_root *root, struct btrfs_path *path);
477 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
478 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
479 struct page *page, size_t pg_offset,
480 u64 start, u64 end);
481 int btrfs_update_inode(struct btrfs_trans_handle *trans,
482 struct btrfs_root *root, struct btrfs_inode *inode);
483 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
484 struct btrfs_root *root, struct btrfs_inode *inode);
485 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct btrfs_inode *inode);
486 int btrfs_orphan_cleanup(struct btrfs_root *root);
487 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
488 void btrfs_add_delayed_iput(struct btrfs_inode *inode);
489 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
490 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
491 int btrfs_prealloc_file_range(struct inode *inode, int mode,
492 u64 start, u64 num_bytes, u64 min_size,
493 loff_t actual_len, u64 *alloc_hint);
494 int btrfs_prealloc_file_range_trans(struct inode *inode,
495 struct btrfs_trans_handle *trans, int mode,
496 u64 start, u64 num_bytes, u64 min_size,
497 loff_t actual_len, u64 *alloc_hint);
498 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
499 u64 start, u64 end, int *page_started,
500 unsigned long *nr_written, struct writeback_control *wbc);
501 int btrfs_writepage_cow_fixup(struct page *page);
502 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
503 struct page *page, u64 start,
504 u64 end, bool uptodate);
505 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
506 int compress_type);
507 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
508 u64 file_offset, u64 disk_bytenr,
509 u64 disk_io_size,
510 struct page **pages);
511 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
512 struct btrfs_ioctl_encoded_io_args *encoded);
513 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
514 const struct btrfs_ioctl_encoded_io_args *encoded);
515
516 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter,
517 size_t done_before);
518 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
519 size_t done_before);
520
521 extern const struct dentry_operations btrfs_dentry_operations;
522
523 /* Inode locking type flags, by default the exclusive lock is taken. */
524 enum btrfs_ilock_type {
525 ENUM_BIT(BTRFS_ILOCK_SHARED),
526 ENUM_BIT(BTRFS_ILOCK_TRY),
527 ENUM_BIT(BTRFS_ILOCK_MMAP),
528 };
529
530 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags);
531 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags);
532 void btrfs_update_inode_bytes(struct btrfs_inode *inode, const u64 add_bytes,
533 const u64 del_bytes);
534 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
535
536 #endif
537