1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30 * Fragmentation score check interval for proactive compaction purposes.
31 */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
33
count_compact_event(enum vm_event_item item)34 static inline void count_compact_event(enum vm_event_item item)
35 {
36 count_vm_event(item);
37 }
38
count_compact_events(enum vm_event_item item,long delta)39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41 count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
55
56 /*
57 * Page order with-respect-to which proactive compaction
58 * calculates external fragmentation, which is used as
59 * the "fragmentation score" of a node/zone.
60 */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
67 #endif
68
release_freepages(struct list_head * freelist)69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71 struct page *page, *next;
72 unsigned long high_pfn = 0;
73
74 list_for_each_entry_safe(page, next, freelist, lru) {
75 unsigned long pfn = page_to_pfn(page);
76 list_del(&page->lru);
77 __free_page(page);
78 if (pfn > high_pfn)
79 high_pfn = pfn;
80 }
81
82 return high_pfn;
83 }
84
split_map_pages(struct list_head * list)85 static void split_map_pages(struct list_head *list)
86 {
87 unsigned int i, order, nr_pages;
88 struct page *page, *next;
89 LIST_HEAD(tmp_list);
90
91 list_for_each_entry_safe(page, next, list, lru) {
92 list_del(&page->lru);
93
94 order = page_private(page);
95 nr_pages = 1 << order;
96
97 post_alloc_hook(page, order, __GFP_MOVABLE);
98 if (order)
99 split_page(page, order);
100
101 for (i = 0; i < nr_pages; i++) {
102 list_add(&page->lru, &tmp_list);
103 page++;
104 }
105 }
106
107 list_splice(&tmp_list, list);
108 }
109
110 #ifdef CONFIG_COMPACTION
PageMovable(struct page * page)111 bool PageMovable(struct page *page)
112 {
113 const struct movable_operations *mops;
114
115 VM_BUG_ON_PAGE(!PageLocked(page), page);
116 if (!__PageMovable(page))
117 return false;
118
119 mops = page_movable_ops(page);
120 if (mops)
121 return true;
122
123 return false;
124 }
125
__SetPageMovable(struct page * page,const struct movable_operations * mops)126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128 VM_BUG_ON_PAGE(!PageLocked(page), page);
129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133
__ClearPageMovable(struct page * page)134 void __ClearPageMovable(struct page *page)
135 {
136 VM_BUG_ON_PAGE(!PageMovable(page), page);
137 /*
138 * This page still has the type of a movable page, but it's
139 * actually not movable any more.
140 */
141 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147
148 /*
149 * Compaction is deferred when compaction fails to result in a page
150 * allocation success. 1 << compact_defer_shift, compactions are skipped up
151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152 */
defer_compaction(struct zone * zone,int order)153 static void defer_compaction(struct zone *zone, int order)
154 {
155 zone->compact_considered = 0;
156 zone->compact_defer_shift++;
157
158 if (order < zone->compact_order_failed)
159 zone->compact_order_failed = order;
160
161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164 trace_mm_compaction_defer_compaction(zone, order);
165 }
166
167 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172 if (order < zone->compact_order_failed)
173 return false;
174
175 /* Avoid possible overflow */
176 if (++zone->compact_considered >= defer_limit) {
177 zone->compact_considered = defer_limit;
178 return false;
179 }
180
181 trace_mm_compaction_deferred(zone, order);
182
183 return true;
184 }
185
186 /*
187 * Update defer tracking counters after successful compaction of given order,
188 * which means an allocation either succeeded (alloc_success == true) or is
189 * expected to succeed.
190 */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)191 void compaction_defer_reset(struct zone *zone, int order,
192 bool alloc_success)
193 {
194 if (alloc_success) {
195 zone->compact_considered = 0;
196 zone->compact_defer_shift = 0;
197 }
198 if (order >= zone->compact_order_failed)
199 zone->compact_order_failed = order + 1;
200
201 trace_mm_compaction_defer_reset(zone, order);
202 }
203
204 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207 if (order < zone->compact_order_failed)
208 return false;
209
210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)215 static inline bool isolation_suitable(struct compact_control *cc,
216 struct page *page)
217 {
218 if (cc->ignore_skip_hint)
219 return true;
220
221 return !get_pageblock_skip(page);
222 }
223
reset_cached_positions(struct zone * zone)224 static void reset_cached_positions(struct zone *zone)
225 {
226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228 zone->compact_cached_free_pfn =
229 pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231
232 /*
233 * Compound pages of >= pageblock_order should consistently be skipped until
234 * released. It is always pointless to compact pages of such order (if they are
235 * migratable), and the pageblocks they occupy cannot contain any free pages.
236 */
pageblock_skip_persistent(struct page * page)237 static bool pageblock_skip_persistent(struct page *page)
238 {
239 if (!PageCompound(page))
240 return false;
241
242 page = compound_head(page);
243
244 if (compound_order(page) >= pageblock_order)
245 return true;
246
247 return false;
248 }
249
250 static bool
__reset_isolation_pfn(struct zone * zone,unsigned long pfn,bool check_source,bool check_target)251 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
252 bool check_target)
253 {
254 struct page *page = pfn_to_online_page(pfn);
255 struct page *block_page;
256 struct page *end_page;
257 unsigned long block_pfn;
258
259 if (!page)
260 return false;
261 if (zone != page_zone(page))
262 return false;
263 if (pageblock_skip_persistent(page))
264 return false;
265
266 /*
267 * If skip is already cleared do no further checking once the
268 * restart points have been set.
269 */
270 if (check_source && check_target && !get_pageblock_skip(page))
271 return true;
272
273 /*
274 * If clearing skip for the target scanner, do not select a
275 * non-movable pageblock as the starting point.
276 */
277 if (!check_source && check_target &&
278 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
279 return false;
280
281 /* Ensure the start of the pageblock or zone is online and valid */
282 block_pfn = pageblock_start_pfn(pfn);
283 block_pfn = max(block_pfn, zone->zone_start_pfn);
284 block_page = pfn_to_online_page(block_pfn);
285 if (block_page) {
286 page = block_page;
287 pfn = block_pfn;
288 }
289
290 /* Ensure the end of the pageblock or zone is online and valid */
291 block_pfn = pageblock_end_pfn(pfn) - 1;
292 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
293 end_page = pfn_to_online_page(block_pfn);
294 if (!end_page)
295 return false;
296
297 /*
298 * Only clear the hint if a sample indicates there is either a
299 * free page or an LRU page in the block. One or other condition
300 * is necessary for the block to be a migration source/target.
301 */
302 do {
303 if (check_source && PageLRU(page)) {
304 clear_pageblock_skip(page);
305 return true;
306 }
307
308 if (check_target && PageBuddy(page)) {
309 clear_pageblock_skip(page);
310 return true;
311 }
312
313 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
314 } while (page <= end_page);
315
316 return false;
317 }
318
319 /*
320 * This function is called to clear all cached information on pageblocks that
321 * should be skipped for page isolation when the migrate and free page scanner
322 * meet.
323 */
__reset_isolation_suitable(struct zone * zone)324 static void __reset_isolation_suitable(struct zone *zone)
325 {
326 unsigned long migrate_pfn = zone->zone_start_pfn;
327 unsigned long free_pfn = zone_end_pfn(zone) - 1;
328 unsigned long reset_migrate = free_pfn;
329 unsigned long reset_free = migrate_pfn;
330 bool source_set = false;
331 bool free_set = false;
332
333 if (!zone->compact_blockskip_flush)
334 return;
335
336 zone->compact_blockskip_flush = false;
337
338 /*
339 * Walk the zone and update pageblock skip information. Source looks
340 * for PageLRU while target looks for PageBuddy. When the scanner
341 * is found, both PageBuddy and PageLRU are checked as the pageblock
342 * is suitable as both source and target.
343 */
344 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
345 free_pfn -= pageblock_nr_pages) {
346 cond_resched();
347
348 /* Update the migrate PFN */
349 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
350 migrate_pfn < reset_migrate) {
351 source_set = true;
352 reset_migrate = migrate_pfn;
353 zone->compact_init_migrate_pfn = reset_migrate;
354 zone->compact_cached_migrate_pfn[0] = reset_migrate;
355 zone->compact_cached_migrate_pfn[1] = reset_migrate;
356 }
357
358 /* Update the free PFN */
359 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
360 free_pfn > reset_free) {
361 free_set = true;
362 reset_free = free_pfn;
363 zone->compact_init_free_pfn = reset_free;
364 zone->compact_cached_free_pfn = reset_free;
365 }
366 }
367
368 /* Leave no distance if no suitable block was reset */
369 if (reset_migrate >= reset_free) {
370 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
371 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
372 zone->compact_cached_free_pfn = free_pfn;
373 }
374 }
375
reset_isolation_suitable(pg_data_t * pgdat)376 void reset_isolation_suitable(pg_data_t *pgdat)
377 {
378 int zoneid;
379
380 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
381 struct zone *zone = &pgdat->node_zones[zoneid];
382 if (!populated_zone(zone))
383 continue;
384
385 /* Only flush if a full compaction finished recently */
386 if (zone->compact_blockskip_flush)
387 __reset_isolation_suitable(zone);
388 }
389 }
390
391 /*
392 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
393 * locks are not required for read/writers. Returns true if it was already set.
394 */
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)395 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
396 unsigned long pfn)
397 {
398 bool skip;
399
400 /* Do no update if skip hint is being ignored */
401 if (cc->ignore_skip_hint)
402 return false;
403
404 if (!pageblock_aligned(pfn))
405 return false;
406
407 skip = get_pageblock_skip(page);
408 if (!skip && !cc->no_set_skip_hint)
409 set_pageblock_skip(page);
410
411 return skip;
412 }
413
update_cached_migrate(struct compact_control * cc,unsigned long pfn)414 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
415 {
416 struct zone *zone = cc->zone;
417
418 pfn = pageblock_end_pfn(pfn);
419
420 /* Set for isolation rather than compaction */
421 if (cc->no_set_skip_hint)
422 return;
423
424 if (pfn > zone->compact_cached_migrate_pfn[0])
425 zone->compact_cached_migrate_pfn[0] = pfn;
426 if (cc->mode != MIGRATE_ASYNC &&
427 pfn > zone->compact_cached_migrate_pfn[1])
428 zone->compact_cached_migrate_pfn[1] = pfn;
429 }
430
431 /*
432 * If no pages were isolated then mark this pageblock to be skipped in the
433 * future. The information is later cleared by __reset_isolation_suitable().
434 */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)435 static void update_pageblock_skip(struct compact_control *cc,
436 struct page *page, unsigned long pfn)
437 {
438 struct zone *zone = cc->zone;
439
440 if (cc->no_set_skip_hint)
441 return;
442
443 if (!page)
444 return;
445
446 set_pageblock_skip(page);
447
448 /* Update where async and sync compaction should restart */
449 if (pfn < zone->compact_cached_free_pfn)
450 zone->compact_cached_free_pfn = pfn;
451 }
452 #else
isolation_suitable(struct compact_control * cc,struct page * page)453 static inline bool isolation_suitable(struct compact_control *cc,
454 struct page *page)
455 {
456 return true;
457 }
458
pageblock_skip_persistent(struct page * page)459 static inline bool pageblock_skip_persistent(struct page *page)
460 {
461 return false;
462 }
463
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)464 static inline void update_pageblock_skip(struct compact_control *cc,
465 struct page *page, unsigned long pfn)
466 {
467 }
468
update_cached_migrate(struct compact_control * cc,unsigned long pfn)469 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
470 {
471 }
472
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)473 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
474 unsigned long pfn)
475 {
476 return false;
477 }
478 #endif /* CONFIG_COMPACTION */
479
480 /*
481 * Compaction requires the taking of some coarse locks that are potentially
482 * very heavily contended. For async compaction, trylock and record if the
483 * lock is contended. The lock will still be acquired but compaction will
484 * abort when the current block is finished regardless of success rate.
485 * Sync compaction acquires the lock.
486 *
487 * Always returns true which makes it easier to track lock state in callers.
488 */
compact_lock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)489 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
490 struct compact_control *cc)
491 __acquires(lock)
492 {
493 /* Track if the lock is contended in async mode */
494 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
495 if (spin_trylock_irqsave(lock, *flags))
496 return true;
497
498 cc->contended = true;
499 }
500
501 spin_lock_irqsave(lock, *flags);
502 return true;
503 }
504
505 /*
506 * Compaction requires the taking of some coarse locks that are potentially
507 * very heavily contended. The lock should be periodically unlocked to avoid
508 * having disabled IRQs for a long time, even when there is nobody waiting on
509 * the lock. It might also be that allowing the IRQs will result in
510 * need_resched() becoming true. If scheduling is needed, compaction schedules.
511 * Either compaction type will also abort if a fatal signal is pending.
512 * In either case if the lock was locked, it is dropped and not regained.
513 *
514 * Returns true if compaction should abort due to fatal signal pending.
515 * Returns false when compaction can continue.
516 */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)517 static bool compact_unlock_should_abort(spinlock_t *lock,
518 unsigned long flags, bool *locked, struct compact_control *cc)
519 {
520 if (*locked) {
521 spin_unlock_irqrestore(lock, flags);
522 *locked = false;
523 }
524
525 if (fatal_signal_pending(current)) {
526 cc->contended = true;
527 return true;
528 }
529
530 cond_resched();
531
532 return false;
533 }
534
535 /*
536 * Isolate free pages onto a private freelist. If @strict is true, will abort
537 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
538 * (even though it may still end up isolating some pages).
539 */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,unsigned int stride,bool strict)540 static unsigned long isolate_freepages_block(struct compact_control *cc,
541 unsigned long *start_pfn,
542 unsigned long end_pfn,
543 struct list_head *freelist,
544 unsigned int stride,
545 bool strict)
546 {
547 int nr_scanned = 0, total_isolated = 0;
548 struct page *cursor;
549 unsigned long flags = 0;
550 bool locked = false;
551 unsigned long blockpfn = *start_pfn;
552 unsigned int order;
553
554 /* Strict mode is for isolation, speed is secondary */
555 if (strict)
556 stride = 1;
557
558 cursor = pfn_to_page(blockpfn);
559
560 /* Isolate free pages. */
561 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
562 int isolated;
563 struct page *page = cursor;
564
565 /*
566 * Periodically drop the lock (if held) regardless of its
567 * contention, to give chance to IRQs. Abort if fatal signal
568 * pending.
569 */
570 if (!(blockpfn % COMPACT_CLUSTER_MAX)
571 && compact_unlock_should_abort(&cc->zone->lock, flags,
572 &locked, cc))
573 break;
574
575 nr_scanned++;
576
577 /*
578 * For compound pages such as THP and hugetlbfs, we can save
579 * potentially a lot of iterations if we skip them at once.
580 * The check is racy, but we can consider only valid values
581 * and the only danger is skipping too much.
582 */
583 if (PageCompound(page)) {
584 const unsigned int order = compound_order(page);
585
586 if (likely(order < MAX_ORDER)) {
587 blockpfn += (1UL << order) - 1;
588 cursor += (1UL << order) - 1;
589 }
590 goto isolate_fail;
591 }
592
593 if (!PageBuddy(page))
594 goto isolate_fail;
595
596 /* If we already hold the lock, we can skip some rechecking. */
597 if (!locked) {
598 locked = compact_lock_irqsave(&cc->zone->lock,
599 &flags, cc);
600
601 /* Recheck this is a buddy page under lock */
602 if (!PageBuddy(page))
603 goto isolate_fail;
604 }
605
606 /* Found a free page, will break it into order-0 pages */
607 order = buddy_order(page);
608 isolated = __isolate_free_page(page, order);
609 if (!isolated)
610 break;
611 set_page_private(page, order);
612
613 nr_scanned += isolated - 1;
614 total_isolated += isolated;
615 cc->nr_freepages += isolated;
616 list_add_tail(&page->lru, freelist);
617
618 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
619 blockpfn += isolated;
620 break;
621 }
622 /* Advance to the end of split page */
623 blockpfn += isolated - 1;
624 cursor += isolated - 1;
625 continue;
626
627 isolate_fail:
628 if (strict)
629 break;
630 else
631 continue;
632
633 }
634
635 if (locked)
636 spin_unlock_irqrestore(&cc->zone->lock, flags);
637
638 /*
639 * There is a tiny chance that we have read bogus compound_order(),
640 * so be careful to not go outside of the pageblock.
641 */
642 if (unlikely(blockpfn > end_pfn))
643 blockpfn = end_pfn;
644
645 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
646 nr_scanned, total_isolated);
647
648 /* Record how far we have got within the block */
649 *start_pfn = blockpfn;
650
651 /*
652 * If strict isolation is requested by CMA then check that all the
653 * pages requested were isolated. If there were any failures, 0 is
654 * returned and CMA will fail.
655 */
656 if (strict && blockpfn < end_pfn)
657 total_isolated = 0;
658
659 cc->total_free_scanned += nr_scanned;
660 if (total_isolated)
661 count_compact_events(COMPACTISOLATED, total_isolated);
662 return total_isolated;
663 }
664
665 /**
666 * isolate_freepages_range() - isolate free pages.
667 * @cc: Compaction control structure.
668 * @start_pfn: The first PFN to start isolating.
669 * @end_pfn: The one-past-last PFN.
670 *
671 * Non-free pages, invalid PFNs, or zone boundaries within the
672 * [start_pfn, end_pfn) range are considered errors, cause function to
673 * undo its actions and return zero.
674 *
675 * Otherwise, function returns one-past-the-last PFN of isolated page
676 * (which may be greater then end_pfn if end fell in a middle of
677 * a free page).
678 */
679 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)680 isolate_freepages_range(struct compact_control *cc,
681 unsigned long start_pfn, unsigned long end_pfn)
682 {
683 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
684 LIST_HEAD(freelist);
685
686 pfn = start_pfn;
687 block_start_pfn = pageblock_start_pfn(pfn);
688 if (block_start_pfn < cc->zone->zone_start_pfn)
689 block_start_pfn = cc->zone->zone_start_pfn;
690 block_end_pfn = pageblock_end_pfn(pfn);
691
692 for (; pfn < end_pfn; pfn += isolated,
693 block_start_pfn = block_end_pfn,
694 block_end_pfn += pageblock_nr_pages) {
695 /* Protect pfn from changing by isolate_freepages_block */
696 unsigned long isolate_start_pfn = pfn;
697
698 block_end_pfn = min(block_end_pfn, end_pfn);
699
700 /*
701 * pfn could pass the block_end_pfn if isolated freepage
702 * is more than pageblock order. In this case, we adjust
703 * scanning range to right one.
704 */
705 if (pfn >= block_end_pfn) {
706 block_start_pfn = pageblock_start_pfn(pfn);
707 block_end_pfn = pageblock_end_pfn(pfn);
708 block_end_pfn = min(block_end_pfn, end_pfn);
709 }
710
711 if (!pageblock_pfn_to_page(block_start_pfn,
712 block_end_pfn, cc->zone))
713 break;
714
715 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
716 block_end_pfn, &freelist, 0, true);
717
718 /*
719 * In strict mode, isolate_freepages_block() returns 0 if
720 * there are any holes in the block (ie. invalid PFNs or
721 * non-free pages).
722 */
723 if (!isolated)
724 break;
725
726 /*
727 * If we managed to isolate pages, it is always (1 << n) *
728 * pageblock_nr_pages for some non-negative n. (Max order
729 * page may span two pageblocks).
730 */
731 }
732
733 /* __isolate_free_page() does not map the pages */
734 split_map_pages(&freelist);
735
736 if (pfn < end_pfn) {
737 /* Loop terminated early, cleanup. */
738 release_freepages(&freelist);
739 return 0;
740 }
741
742 /* We don't use freelists for anything. */
743 return pfn;
744 }
745
746 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(pg_data_t * pgdat)747 static bool too_many_isolated(pg_data_t *pgdat)
748 {
749 bool too_many;
750
751 unsigned long active, inactive, isolated;
752
753 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
754 node_page_state(pgdat, NR_INACTIVE_ANON);
755 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
756 node_page_state(pgdat, NR_ACTIVE_ANON);
757 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
758 node_page_state(pgdat, NR_ISOLATED_ANON);
759
760 too_many = isolated > (inactive + active) / 2;
761 if (!too_many)
762 wake_throttle_isolated(pgdat);
763
764 return too_many;
765 }
766
767 /**
768 * isolate_migratepages_block() - isolate all migrate-able pages within
769 * a single pageblock
770 * @cc: Compaction control structure.
771 * @low_pfn: The first PFN to isolate
772 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
773 * @mode: Isolation mode to be used.
774 *
775 * Isolate all pages that can be migrated from the range specified by
776 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
777 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
778 * -ENOMEM in case we could not allocate a page, or 0.
779 * cc->migrate_pfn will contain the next pfn to scan.
780 *
781 * The pages are isolated on cc->migratepages list (not required to be empty),
782 * and cc->nr_migratepages is updated accordingly.
783 */
784 static int
isolate_migratepages_block(struct compact_control * cc,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t mode)785 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
786 unsigned long end_pfn, isolate_mode_t mode)
787 {
788 pg_data_t *pgdat = cc->zone->zone_pgdat;
789 unsigned long nr_scanned = 0, nr_isolated = 0;
790 struct lruvec *lruvec;
791 unsigned long flags = 0;
792 struct lruvec *locked = NULL;
793 struct page *page = NULL, *valid_page = NULL;
794 struct address_space *mapping;
795 unsigned long start_pfn = low_pfn;
796 bool skip_on_failure = false;
797 unsigned long next_skip_pfn = 0;
798 bool skip_updated = false;
799 int ret = 0;
800
801 cc->migrate_pfn = low_pfn;
802
803 /*
804 * Ensure that there are not too many pages isolated from the LRU
805 * list by either parallel reclaimers or compaction. If there are,
806 * delay for some time until fewer pages are isolated
807 */
808 while (unlikely(too_many_isolated(pgdat))) {
809 /* stop isolation if there are still pages not migrated */
810 if (cc->nr_migratepages)
811 return -EAGAIN;
812
813 /* async migration should just abort */
814 if (cc->mode == MIGRATE_ASYNC)
815 return -EAGAIN;
816
817 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
818
819 if (fatal_signal_pending(current))
820 return -EINTR;
821 }
822
823 cond_resched();
824
825 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
826 skip_on_failure = true;
827 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
828 }
829
830 /* Time to isolate some pages for migration */
831 for (; low_pfn < end_pfn; low_pfn++) {
832
833 if (skip_on_failure && low_pfn >= next_skip_pfn) {
834 /*
835 * We have isolated all migration candidates in the
836 * previous order-aligned block, and did not skip it due
837 * to failure. We should migrate the pages now and
838 * hopefully succeed compaction.
839 */
840 if (nr_isolated)
841 break;
842
843 /*
844 * We failed to isolate in the previous order-aligned
845 * block. Set the new boundary to the end of the
846 * current block. Note we can't simply increase
847 * next_skip_pfn by 1 << order, as low_pfn might have
848 * been incremented by a higher number due to skipping
849 * a compound or a high-order buddy page in the
850 * previous loop iteration.
851 */
852 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
853 }
854
855 /*
856 * Periodically drop the lock (if held) regardless of its
857 * contention, to give chance to IRQs. Abort completely if
858 * a fatal signal is pending.
859 */
860 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
861 if (locked) {
862 unlock_page_lruvec_irqrestore(locked, flags);
863 locked = NULL;
864 }
865
866 if (fatal_signal_pending(current)) {
867 cc->contended = true;
868 ret = -EINTR;
869
870 goto fatal_pending;
871 }
872
873 cond_resched();
874 }
875
876 nr_scanned++;
877
878 page = pfn_to_page(low_pfn);
879
880 /*
881 * Check if the pageblock has already been marked skipped.
882 * Only the aligned PFN is checked as the caller isolates
883 * COMPACT_CLUSTER_MAX at a time so the second call must
884 * not falsely conclude that the block should be skipped.
885 */
886 if (!valid_page && pageblock_aligned(low_pfn)) {
887 if (!isolation_suitable(cc, page)) {
888 low_pfn = end_pfn;
889 page = NULL;
890 goto isolate_abort;
891 }
892 valid_page = page;
893 }
894
895 if (PageHuge(page) && cc->alloc_contig) {
896 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
897
898 /*
899 * Fail isolation in case isolate_or_dissolve_huge_page()
900 * reports an error. In case of -ENOMEM, abort right away.
901 */
902 if (ret < 0) {
903 /* Do not report -EBUSY down the chain */
904 if (ret == -EBUSY)
905 ret = 0;
906 low_pfn += compound_nr(page) - 1;
907 goto isolate_fail;
908 }
909
910 if (PageHuge(page)) {
911 /*
912 * Hugepage was successfully isolated and placed
913 * on the cc->migratepages list.
914 */
915 low_pfn += compound_nr(page) - 1;
916 goto isolate_success_no_list;
917 }
918
919 /*
920 * Ok, the hugepage was dissolved. Now these pages are
921 * Buddy and cannot be re-allocated because they are
922 * isolated. Fall-through as the check below handles
923 * Buddy pages.
924 */
925 }
926
927 /*
928 * Skip if free. We read page order here without zone lock
929 * which is generally unsafe, but the race window is small and
930 * the worst thing that can happen is that we skip some
931 * potential isolation targets.
932 */
933 if (PageBuddy(page)) {
934 unsigned long freepage_order = buddy_order_unsafe(page);
935
936 /*
937 * Without lock, we cannot be sure that what we got is
938 * a valid page order. Consider only values in the
939 * valid order range to prevent low_pfn overflow.
940 */
941 if (freepage_order > 0 && freepage_order < MAX_ORDER)
942 low_pfn += (1UL << freepage_order) - 1;
943 continue;
944 }
945
946 /*
947 * Regardless of being on LRU, compound pages such as THP and
948 * hugetlbfs are not to be compacted unless we are attempting
949 * an allocation much larger than the huge page size (eg CMA).
950 * We can potentially save a lot of iterations if we skip them
951 * at once. The check is racy, but we can consider only valid
952 * values and the only danger is skipping too much.
953 */
954 if (PageCompound(page) && !cc->alloc_contig) {
955 const unsigned int order = compound_order(page);
956
957 if (likely(order < MAX_ORDER))
958 low_pfn += (1UL << order) - 1;
959 goto isolate_fail;
960 }
961
962 /*
963 * Check may be lockless but that's ok as we recheck later.
964 * It's possible to migrate LRU and non-lru movable pages.
965 * Skip any other type of page
966 */
967 if (!PageLRU(page)) {
968 /*
969 * __PageMovable can return false positive so we need
970 * to verify it under page_lock.
971 */
972 if (unlikely(__PageMovable(page)) &&
973 !PageIsolated(page)) {
974 if (locked) {
975 unlock_page_lruvec_irqrestore(locked, flags);
976 locked = NULL;
977 }
978
979 if (isolate_movable_page(page, mode))
980 goto isolate_success;
981 }
982
983 goto isolate_fail;
984 }
985
986 /*
987 * Be careful not to clear PageLRU until after we're
988 * sure the page is not being freed elsewhere -- the
989 * page release code relies on it.
990 */
991 if (unlikely(!get_page_unless_zero(page)))
992 goto isolate_fail;
993
994 /*
995 * Migration will fail if an anonymous page is pinned in memory,
996 * so avoid taking lru_lock and isolating it unnecessarily in an
997 * admittedly racy check.
998 */
999 mapping = page_mapping(page);
1000 if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1001 goto isolate_fail_put;
1002
1003 /*
1004 * Only allow to migrate anonymous pages in GFP_NOFS context
1005 * because those do not depend on fs locks.
1006 */
1007 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1008 goto isolate_fail_put;
1009
1010 /* Only take pages on LRU: a check now makes later tests safe */
1011 if (!PageLRU(page))
1012 goto isolate_fail_put;
1013
1014 /* Compaction might skip unevictable pages but CMA takes them */
1015 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1016 goto isolate_fail_put;
1017
1018 /*
1019 * To minimise LRU disruption, the caller can indicate with
1020 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1021 * it will be able to migrate without blocking - clean pages
1022 * for the most part. PageWriteback would require blocking.
1023 */
1024 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1025 goto isolate_fail_put;
1026
1027 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1028 bool migrate_dirty;
1029
1030 /*
1031 * Only pages without mappings or that have a
1032 * ->migrate_folio callback are possible to migrate
1033 * without blocking. However, we can be racing with
1034 * truncation so it's necessary to lock the page
1035 * to stabilise the mapping as truncation holds
1036 * the page lock until after the page is removed
1037 * from the page cache.
1038 */
1039 if (!trylock_page(page))
1040 goto isolate_fail_put;
1041
1042 mapping = page_mapping(page);
1043 migrate_dirty = !mapping ||
1044 mapping->a_ops->migrate_folio;
1045 unlock_page(page);
1046 if (!migrate_dirty)
1047 goto isolate_fail_put;
1048 }
1049
1050 /* Try isolate the page */
1051 if (!TestClearPageLRU(page))
1052 goto isolate_fail_put;
1053
1054 lruvec = folio_lruvec(page_folio(page));
1055
1056 /* If we already hold the lock, we can skip some rechecking */
1057 if (lruvec != locked) {
1058 if (locked)
1059 unlock_page_lruvec_irqrestore(locked, flags);
1060
1061 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1062 locked = lruvec;
1063
1064 lruvec_memcg_debug(lruvec, page_folio(page));
1065
1066 /* Try get exclusive access under lock */
1067 if (!skip_updated) {
1068 skip_updated = true;
1069 if (test_and_set_skip(cc, page, low_pfn))
1070 goto isolate_abort;
1071 }
1072
1073 /*
1074 * Page become compound since the non-locked check,
1075 * and it's on LRU. It can only be a THP so the order
1076 * is safe to read and it's 0 for tail pages.
1077 */
1078 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1079 low_pfn += compound_nr(page) - 1;
1080 SetPageLRU(page);
1081 goto isolate_fail_put;
1082 }
1083 }
1084
1085 /* The whole page is taken off the LRU; skip the tail pages. */
1086 if (PageCompound(page))
1087 low_pfn += compound_nr(page) - 1;
1088
1089 /* Successfully isolated */
1090 del_page_from_lru_list(page, lruvec);
1091 mod_node_page_state(page_pgdat(page),
1092 NR_ISOLATED_ANON + page_is_file_lru(page),
1093 thp_nr_pages(page));
1094
1095 isolate_success:
1096 list_add(&page->lru, &cc->migratepages);
1097 isolate_success_no_list:
1098 cc->nr_migratepages += compound_nr(page);
1099 nr_isolated += compound_nr(page);
1100 nr_scanned += compound_nr(page) - 1;
1101
1102 /*
1103 * Avoid isolating too much unless this block is being
1104 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1105 * or a lock is contended. For contention, isolate quickly to
1106 * potentially remove one source of contention.
1107 */
1108 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1109 !cc->finish_pageblock && !cc->contended) {
1110 ++low_pfn;
1111 break;
1112 }
1113
1114 continue;
1115
1116 isolate_fail_put:
1117 /* Avoid potential deadlock in freeing page under lru_lock */
1118 if (locked) {
1119 unlock_page_lruvec_irqrestore(locked, flags);
1120 locked = NULL;
1121 }
1122 put_page(page);
1123
1124 isolate_fail:
1125 if (!skip_on_failure && ret != -ENOMEM)
1126 continue;
1127
1128 /*
1129 * We have isolated some pages, but then failed. Release them
1130 * instead of migrating, as we cannot form the cc->order buddy
1131 * page anyway.
1132 */
1133 if (nr_isolated) {
1134 if (locked) {
1135 unlock_page_lruvec_irqrestore(locked, flags);
1136 locked = NULL;
1137 }
1138 putback_movable_pages(&cc->migratepages);
1139 cc->nr_migratepages = 0;
1140 nr_isolated = 0;
1141 }
1142
1143 if (low_pfn < next_skip_pfn) {
1144 low_pfn = next_skip_pfn - 1;
1145 /*
1146 * The check near the loop beginning would have updated
1147 * next_skip_pfn too, but this is a bit simpler.
1148 */
1149 next_skip_pfn += 1UL << cc->order;
1150 }
1151
1152 if (ret == -ENOMEM)
1153 break;
1154 }
1155
1156 /*
1157 * The PageBuddy() check could have potentially brought us outside
1158 * the range to be scanned.
1159 */
1160 if (unlikely(low_pfn > end_pfn))
1161 low_pfn = end_pfn;
1162
1163 page = NULL;
1164
1165 isolate_abort:
1166 if (locked)
1167 unlock_page_lruvec_irqrestore(locked, flags);
1168 if (page) {
1169 SetPageLRU(page);
1170 put_page(page);
1171 }
1172
1173 /*
1174 * Update the cached scanner pfn once the pageblock has been scanned.
1175 * Pages will either be migrated in which case there is no point
1176 * scanning in the near future or migration failed in which case the
1177 * failure reason may persist. The block is marked for skipping if
1178 * there were no pages isolated in the block or if the block is
1179 * rescanned twice in a row.
1180 */
1181 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1182 if (valid_page && !skip_updated)
1183 set_pageblock_skip(valid_page);
1184 update_cached_migrate(cc, low_pfn);
1185 }
1186
1187 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1188 nr_scanned, nr_isolated);
1189
1190 fatal_pending:
1191 cc->total_migrate_scanned += nr_scanned;
1192 if (nr_isolated)
1193 count_compact_events(COMPACTISOLATED, nr_isolated);
1194
1195 cc->migrate_pfn = low_pfn;
1196
1197 return ret;
1198 }
1199
1200 /**
1201 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1202 * @cc: Compaction control structure.
1203 * @start_pfn: The first PFN to start isolating.
1204 * @end_pfn: The one-past-last PFN.
1205 *
1206 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1207 * in case we could not allocate a page, or 0.
1208 */
1209 int
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)1210 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1211 unsigned long end_pfn)
1212 {
1213 unsigned long pfn, block_start_pfn, block_end_pfn;
1214 int ret = 0;
1215
1216 /* Scan block by block. First and last block may be incomplete */
1217 pfn = start_pfn;
1218 block_start_pfn = pageblock_start_pfn(pfn);
1219 if (block_start_pfn < cc->zone->zone_start_pfn)
1220 block_start_pfn = cc->zone->zone_start_pfn;
1221 block_end_pfn = pageblock_end_pfn(pfn);
1222
1223 for (; pfn < end_pfn; pfn = block_end_pfn,
1224 block_start_pfn = block_end_pfn,
1225 block_end_pfn += pageblock_nr_pages) {
1226
1227 block_end_pfn = min(block_end_pfn, end_pfn);
1228
1229 if (!pageblock_pfn_to_page(block_start_pfn,
1230 block_end_pfn, cc->zone))
1231 continue;
1232
1233 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1234 ISOLATE_UNEVICTABLE);
1235
1236 if (ret)
1237 break;
1238
1239 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1240 break;
1241 }
1242
1243 return ret;
1244 }
1245
1246 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1247 #ifdef CONFIG_COMPACTION
1248
suitable_migration_source(struct compact_control * cc,struct page * page)1249 static bool suitable_migration_source(struct compact_control *cc,
1250 struct page *page)
1251 {
1252 int block_mt;
1253
1254 if (pageblock_skip_persistent(page))
1255 return false;
1256
1257 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1258 return true;
1259
1260 block_mt = get_pageblock_migratetype(page);
1261
1262 if (cc->migratetype == MIGRATE_MOVABLE)
1263 return is_migrate_movable(block_mt);
1264 else
1265 return block_mt == cc->migratetype;
1266 }
1267
1268 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct compact_control * cc,struct page * page)1269 static bool suitable_migration_target(struct compact_control *cc,
1270 struct page *page)
1271 {
1272 /* If the page is a large free page, then disallow migration */
1273 if (PageBuddy(page)) {
1274 /*
1275 * We are checking page_order without zone->lock taken. But
1276 * the only small danger is that we skip a potentially suitable
1277 * pageblock, so it's not worth to check order for valid range.
1278 */
1279 if (buddy_order_unsafe(page) >= pageblock_order)
1280 return false;
1281 }
1282
1283 if (cc->ignore_block_suitable)
1284 return true;
1285
1286 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1287 if (is_migrate_movable(get_pageblock_migratetype(page)))
1288 return true;
1289
1290 /* Otherwise skip the block */
1291 return false;
1292 }
1293
1294 static inline unsigned int
freelist_scan_limit(struct compact_control * cc)1295 freelist_scan_limit(struct compact_control *cc)
1296 {
1297 unsigned short shift = BITS_PER_LONG - 1;
1298
1299 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1300 }
1301
1302 /*
1303 * Test whether the free scanner has reached the same or lower pageblock than
1304 * the migration scanner, and compaction should thus terminate.
1305 */
compact_scanners_met(struct compact_control * cc)1306 static inline bool compact_scanners_met(struct compact_control *cc)
1307 {
1308 return (cc->free_pfn >> pageblock_order)
1309 <= (cc->migrate_pfn >> pageblock_order);
1310 }
1311
1312 /*
1313 * Used when scanning for a suitable migration target which scans freelists
1314 * in reverse. Reorders the list such as the unscanned pages are scanned
1315 * first on the next iteration of the free scanner
1316 */
1317 static void
move_freelist_head(struct list_head * freelist,struct page * freepage)1318 move_freelist_head(struct list_head *freelist, struct page *freepage)
1319 {
1320 LIST_HEAD(sublist);
1321
1322 if (!list_is_last(freelist, &freepage->lru)) {
1323 list_cut_before(&sublist, freelist, &freepage->lru);
1324 list_splice_tail(&sublist, freelist);
1325 }
1326 }
1327
1328 /*
1329 * Similar to move_freelist_head except used by the migration scanner
1330 * when scanning forward. It's possible for these list operations to
1331 * move against each other if they search the free list exactly in
1332 * lockstep.
1333 */
1334 static void
move_freelist_tail(struct list_head * freelist,struct page * freepage)1335 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1336 {
1337 LIST_HEAD(sublist);
1338
1339 if (!list_is_first(freelist, &freepage->lru)) {
1340 list_cut_position(&sublist, freelist, &freepage->lru);
1341 list_splice_tail(&sublist, freelist);
1342 }
1343 }
1344
1345 static void
fast_isolate_around(struct compact_control * cc,unsigned long pfn)1346 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1347 {
1348 unsigned long start_pfn, end_pfn;
1349 struct page *page;
1350
1351 /* Do not search around if there are enough pages already */
1352 if (cc->nr_freepages >= cc->nr_migratepages)
1353 return;
1354
1355 /* Minimise scanning during async compaction */
1356 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1357 return;
1358
1359 /* Pageblock boundaries */
1360 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1361 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1362
1363 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1364 if (!page)
1365 return;
1366
1367 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1368
1369 /* Skip this pageblock in the future as it's full or nearly full */
1370 if (cc->nr_freepages < cc->nr_migratepages)
1371 set_pageblock_skip(page);
1372
1373 return;
1374 }
1375
1376 /* Search orders in round-robin fashion */
next_search_order(struct compact_control * cc,int order)1377 static int next_search_order(struct compact_control *cc, int order)
1378 {
1379 order--;
1380 if (order < 0)
1381 order = cc->order - 1;
1382
1383 /* Search wrapped around? */
1384 if (order == cc->search_order) {
1385 cc->search_order--;
1386 if (cc->search_order < 0)
1387 cc->search_order = cc->order - 1;
1388 return -1;
1389 }
1390
1391 return order;
1392 }
1393
1394 static unsigned long
fast_isolate_freepages(struct compact_control * cc)1395 fast_isolate_freepages(struct compact_control *cc)
1396 {
1397 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1398 unsigned int nr_scanned = 0;
1399 unsigned long low_pfn, min_pfn, highest = 0;
1400 unsigned long nr_isolated = 0;
1401 unsigned long distance;
1402 struct page *page = NULL;
1403 bool scan_start = false;
1404 int order;
1405
1406 /* Full compaction passes in a negative order */
1407 if (cc->order <= 0)
1408 return cc->free_pfn;
1409
1410 /*
1411 * If starting the scan, use a deeper search and use the highest
1412 * PFN found if a suitable one is not found.
1413 */
1414 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1415 limit = pageblock_nr_pages >> 1;
1416 scan_start = true;
1417 }
1418
1419 /*
1420 * Preferred point is in the top quarter of the scan space but take
1421 * a pfn from the top half if the search is problematic.
1422 */
1423 distance = (cc->free_pfn - cc->migrate_pfn);
1424 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1425 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1426
1427 if (WARN_ON_ONCE(min_pfn > low_pfn))
1428 low_pfn = min_pfn;
1429
1430 /*
1431 * Search starts from the last successful isolation order or the next
1432 * order to search after a previous failure
1433 */
1434 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1435
1436 for (order = cc->search_order;
1437 !page && order >= 0;
1438 order = next_search_order(cc, order)) {
1439 struct free_area *area = &cc->zone->free_area[order];
1440 struct list_head *freelist;
1441 struct page *freepage;
1442 unsigned long flags;
1443 unsigned int order_scanned = 0;
1444 unsigned long high_pfn = 0;
1445
1446 if (!area->nr_free)
1447 continue;
1448
1449 spin_lock_irqsave(&cc->zone->lock, flags);
1450 freelist = &area->free_list[MIGRATE_MOVABLE];
1451 list_for_each_entry_reverse(freepage, freelist, lru) {
1452 unsigned long pfn;
1453
1454 order_scanned++;
1455 nr_scanned++;
1456 pfn = page_to_pfn(freepage);
1457
1458 if (pfn >= highest)
1459 highest = max(pageblock_start_pfn(pfn),
1460 cc->zone->zone_start_pfn);
1461
1462 if (pfn >= low_pfn) {
1463 cc->fast_search_fail = 0;
1464 cc->search_order = order;
1465 page = freepage;
1466 break;
1467 }
1468
1469 if (pfn >= min_pfn && pfn > high_pfn) {
1470 high_pfn = pfn;
1471
1472 /* Shorten the scan if a candidate is found */
1473 limit >>= 1;
1474 }
1475
1476 if (order_scanned >= limit)
1477 break;
1478 }
1479
1480 /* Use a minimum pfn if a preferred one was not found */
1481 if (!page && high_pfn) {
1482 page = pfn_to_page(high_pfn);
1483
1484 /* Update freepage for the list reorder below */
1485 freepage = page;
1486 }
1487
1488 /* Reorder to so a future search skips recent pages */
1489 move_freelist_head(freelist, freepage);
1490
1491 /* Isolate the page if available */
1492 if (page) {
1493 if (__isolate_free_page(page, order)) {
1494 set_page_private(page, order);
1495 nr_isolated = 1 << order;
1496 nr_scanned += nr_isolated - 1;
1497 cc->nr_freepages += nr_isolated;
1498 list_add_tail(&page->lru, &cc->freepages);
1499 count_compact_events(COMPACTISOLATED, nr_isolated);
1500 } else {
1501 /* If isolation fails, abort the search */
1502 order = cc->search_order + 1;
1503 page = NULL;
1504 }
1505 }
1506
1507 spin_unlock_irqrestore(&cc->zone->lock, flags);
1508
1509 /*
1510 * Smaller scan on next order so the total scan is related
1511 * to freelist_scan_limit.
1512 */
1513 if (order_scanned >= limit)
1514 limit = max(1U, limit >> 1);
1515 }
1516
1517 if (!page) {
1518 cc->fast_search_fail++;
1519 if (scan_start) {
1520 /*
1521 * Use the highest PFN found above min. If one was
1522 * not found, be pessimistic for direct compaction
1523 * and use the min mark.
1524 */
1525 if (highest >= min_pfn) {
1526 page = pfn_to_page(highest);
1527 cc->free_pfn = highest;
1528 } else {
1529 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1530 page = pageblock_pfn_to_page(min_pfn,
1531 min(pageblock_end_pfn(min_pfn),
1532 zone_end_pfn(cc->zone)),
1533 cc->zone);
1534 cc->free_pfn = min_pfn;
1535 }
1536 }
1537 }
1538 }
1539
1540 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1541 highest -= pageblock_nr_pages;
1542 cc->zone->compact_cached_free_pfn = highest;
1543 }
1544
1545 cc->total_free_scanned += nr_scanned;
1546 if (!page)
1547 return cc->free_pfn;
1548
1549 low_pfn = page_to_pfn(page);
1550 fast_isolate_around(cc, low_pfn);
1551 return low_pfn;
1552 }
1553
1554 /*
1555 * Based on information in the current compact_control, find blocks
1556 * suitable for isolating free pages from and then isolate them.
1557 */
isolate_freepages(struct compact_control * cc)1558 static void isolate_freepages(struct compact_control *cc)
1559 {
1560 struct zone *zone = cc->zone;
1561 struct page *page;
1562 unsigned long block_start_pfn; /* start of current pageblock */
1563 unsigned long isolate_start_pfn; /* exact pfn we start at */
1564 unsigned long block_end_pfn; /* end of current pageblock */
1565 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1566 struct list_head *freelist = &cc->freepages;
1567 unsigned int stride;
1568
1569 /* Try a small search of the free lists for a candidate */
1570 fast_isolate_freepages(cc);
1571 if (cc->nr_freepages)
1572 goto splitmap;
1573
1574 /*
1575 * Initialise the free scanner. The starting point is where we last
1576 * successfully isolated from, zone-cached value, or the end of the
1577 * zone when isolating for the first time. For looping we also need
1578 * this pfn aligned down to the pageblock boundary, because we do
1579 * block_start_pfn -= pageblock_nr_pages in the for loop.
1580 * For ending point, take care when isolating in last pageblock of a
1581 * zone which ends in the middle of a pageblock.
1582 * The low boundary is the end of the pageblock the migration scanner
1583 * is using.
1584 */
1585 isolate_start_pfn = cc->free_pfn;
1586 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1587 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1588 zone_end_pfn(zone));
1589 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1590 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1591
1592 /*
1593 * Isolate free pages until enough are available to migrate the
1594 * pages on cc->migratepages. We stop searching if the migrate
1595 * and free page scanners meet or enough free pages are isolated.
1596 */
1597 for (; block_start_pfn >= low_pfn;
1598 block_end_pfn = block_start_pfn,
1599 block_start_pfn -= pageblock_nr_pages,
1600 isolate_start_pfn = block_start_pfn) {
1601 unsigned long nr_isolated;
1602
1603 /*
1604 * This can iterate a massively long zone without finding any
1605 * suitable migration targets, so periodically check resched.
1606 */
1607 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1608 cond_resched();
1609
1610 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1611 zone);
1612 if (!page)
1613 continue;
1614
1615 /* Check the block is suitable for migration */
1616 if (!suitable_migration_target(cc, page))
1617 continue;
1618
1619 /* If isolation recently failed, do not retry */
1620 if (!isolation_suitable(cc, page))
1621 continue;
1622
1623 /* Found a block suitable for isolating free pages from. */
1624 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1625 block_end_pfn, freelist, stride, false);
1626
1627 /* Update the skip hint if the full pageblock was scanned */
1628 if (isolate_start_pfn == block_end_pfn)
1629 update_pageblock_skip(cc, page, block_start_pfn);
1630
1631 /* Are enough freepages isolated? */
1632 if (cc->nr_freepages >= cc->nr_migratepages) {
1633 if (isolate_start_pfn >= block_end_pfn) {
1634 /*
1635 * Restart at previous pageblock if more
1636 * freepages can be isolated next time.
1637 */
1638 isolate_start_pfn =
1639 block_start_pfn - pageblock_nr_pages;
1640 }
1641 break;
1642 } else if (isolate_start_pfn < block_end_pfn) {
1643 /*
1644 * If isolation failed early, do not continue
1645 * needlessly.
1646 */
1647 break;
1648 }
1649
1650 /* Adjust stride depending on isolation */
1651 if (nr_isolated) {
1652 stride = 1;
1653 continue;
1654 }
1655 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1656 }
1657
1658 /*
1659 * Record where the free scanner will restart next time. Either we
1660 * broke from the loop and set isolate_start_pfn based on the last
1661 * call to isolate_freepages_block(), or we met the migration scanner
1662 * and the loop terminated due to isolate_start_pfn < low_pfn
1663 */
1664 cc->free_pfn = isolate_start_pfn;
1665
1666 splitmap:
1667 /* __isolate_free_page() does not map the pages */
1668 split_map_pages(freelist);
1669 }
1670
1671 /*
1672 * This is a migrate-callback that "allocates" freepages by taking pages
1673 * from the isolated freelists in the block we are migrating to.
1674 */
compaction_alloc(struct page * migratepage,unsigned long data)1675 static struct page *compaction_alloc(struct page *migratepage,
1676 unsigned long data)
1677 {
1678 struct compact_control *cc = (struct compact_control *)data;
1679 struct page *freepage;
1680
1681 if (list_empty(&cc->freepages)) {
1682 isolate_freepages(cc);
1683
1684 if (list_empty(&cc->freepages))
1685 return NULL;
1686 }
1687
1688 freepage = list_entry(cc->freepages.next, struct page, lru);
1689 list_del(&freepage->lru);
1690 cc->nr_freepages--;
1691
1692 return freepage;
1693 }
1694
1695 /*
1696 * This is a migrate-callback that "frees" freepages back to the isolated
1697 * freelist. All pages on the freelist are from the same zone, so there is no
1698 * special handling needed for NUMA.
1699 */
compaction_free(struct page * page,unsigned long data)1700 static void compaction_free(struct page *page, unsigned long data)
1701 {
1702 struct compact_control *cc = (struct compact_control *)data;
1703
1704 list_add(&page->lru, &cc->freepages);
1705 cc->nr_freepages++;
1706 }
1707
1708 /* possible outcome of isolate_migratepages */
1709 typedef enum {
1710 ISOLATE_ABORT, /* Abort compaction now */
1711 ISOLATE_NONE, /* No pages isolated, continue scanning */
1712 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1713 } isolate_migrate_t;
1714
1715 /*
1716 * Allow userspace to control policy on scanning the unevictable LRU for
1717 * compactable pages.
1718 */
1719 int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1720
1721 static inline void
update_fast_start_pfn(struct compact_control * cc,unsigned long pfn)1722 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1723 {
1724 if (cc->fast_start_pfn == ULONG_MAX)
1725 return;
1726
1727 if (!cc->fast_start_pfn)
1728 cc->fast_start_pfn = pfn;
1729
1730 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1731 }
1732
1733 static inline unsigned long
reinit_migrate_pfn(struct compact_control * cc)1734 reinit_migrate_pfn(struct compact_control *cc)
1735 {
1736 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1737 return cc->migrate_pfn;
1738
1739 cc->migrate_pfn = cc->fast_start_pfn;
1740 cc->fast_start_pfn = ULONG_MAX;
1741
1742 return cc->migrate_pfn;
1743 }
1744
1745 /*
1746 * Briefly search the free lists for a migration source that already has
1747 * some free pages to reduce the number of pages that need migration
1748 * before a pageblock is free.
1749 */
fast_find_migrateblock(struct compact_control * cc)1750 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1751 {
1752 unsigned int limit = freelist_scan_limit(cc);
1753 unsigned int nr_scanned = 0;
1754 unsigned long distance;
1755 unsigned long pfn = cc->migrate_pfn;
1756 unsigned long high_pfn;
1757 int order;
1758 bool found_block = false;
1759
1760 /* Skip hints are relied on to avoid repeats on the fast search */
1761 if (cc->ignore_skip_hint)
1762 return pfn;
1763
1764 /*
1765 * If the pageblock should be finished then do not select a different
1766 * pageblock.
1767 */
1768 if (cc->finish_pageblock)
1769 return pfn;
1770
1771 /*
1772 * If the migrate_pfn is not at the start of a zone or the start
1773 * of a pageblock then assume this is a continuation of a previous
1774 * scan restarted due to COMPACT_CLUSTER_MAX.
1775 */
1776 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1777 return pfn;
1778
1779 /*
1780 * For smaller orders, just linearly scan as the number of pages
1781 * to migrate should be relatively small and does not necessarily
1782 * justify freeing up a large block for a small allocation.
1783 */
1784 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1785 return pfn;
1786
1787 /*
1788 * Only allow kcompactd and direct requests for movable pages to
1789 * quickly clear out a MOVABLE pageblock for allocation. This
1790 * reduces the risk that a large movable pageblock is freed for
1791 * an unmovable/reclaimable small allocation.
1792 */
1793 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1794 return pfn;
1795
1796 /*
1797 * When starting the migration scanner, pick any pageblock within the
1798 * first half of the search space. Otherwise try and pick a pageblock
1799 * within the first eighth to reduce the chances that a migration
1800 * target later becomes a source.
1801 */
1802 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1803 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1804 distance >>= 2;
1805 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1806
1807 for (order = cc->order - 1;
1808 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1809 order--) {
1810 struct free_area *area = &cc->zone->free_area[order];
1811 struct list_head *freelist;
1812 unsigned long flags;
1813 struct page *freepage;
1814
1815 if (!area->nr_free)
1816 continue;
1817
1818 spin_lock_irqsave(&cc->zone->lock, flags);
1819 freelist = &area->free_list[MIGRATE_MOVABLE];
1820 list_for_each_entry(freepage, freelist, lru) {
1821 unsigned long free_pfn;
1822
1823 if (nr_scanned++ >= limit) {
1824 move_freelist_tail(freelist, freepage);
1825 break;
1826 }
1827
1828 free_pfn = page_to_pfn(freepage);
1829 if (free_pfn < high_pfn) {
1830 /*
1831 * Avoid if skipped recently. Ideally it would
1832 * move to the tail but even safe iteration of
1833 * the list assumes an entry is deleted, not
1834 * reordered.
1835 */
1836 if (get_pageblock_skip(freepage))
1837 continue;
1838
1839 /* Reorder to so a future search skips recent pages */
1840 move_freelist_tail(freelist, freepage);
1841
1842 update_fast_start_pfn(cc, free_pfn);
1843 pfn = pageblock_start_pfn(free_pfn);
1844 if (pfn < cc->zone->zone_start_pfn)
1845 pfn = cc->zone->zone_start_pfn;
1846 cc->fast_search_fail = 0;
1847 found_block = true;
1848 set_pageblock_skip(freepage);
1849 break;
1850 }
1851 }
1852 spin_unlock_irqrestore(&cc->zone->lock, flags);
1853 }
1854
1855 cc->total_migrate_scanned += nr_scanned;
1856
1857 /*
1858 * If fast scanning failed then use a cached entry for a page block
1859 * that had free pages as the basis for starting a linear scan.
1860 */
1861 if (!found_block) {
1862 cc->fast_search_fail++;
1863 pfn = reinit_migrate_pfn(cc);
1864 }
1865 return pfn;
1866 }
1867
1868 /*
1869 * Isolate all pages that can be migrated from the first suitable block,
1870 * starting at the block pointed to by the migrate scanner pfn within
1871 * compact_control.
1872 */
isolate_migratepages(struct compact_control * cc)1873 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1874 {
1875 unsigned long block_start_pfn;
1876 unsigned long block_end_pfn;
1877 unsigned long low_pfn;
1878 struct page *page;
1879 const isolate_mode_t isolate_mode =
1880 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1881 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1882 bool fast_find_block;
1883
1884 /*
1885 * Start at where we last stopped, or beginning of the zone as
1886 * initialized by compact_zone(). The first failure will use
1887 * the lowest PFN as the starting point for linear scanning.
1888 */
1889 low_pfn = fast_find_migrateblock(cc);
1890 block_start_pfn = pageblock_start_pfn(low_pfn);
1891 if (block_start_pfn < cc->zone->zone_start_pfn)
1892 block_start_pfn = cc->zone->zone_start_pfn;
1893
1894 /*
1895 * fast_find_migrateblock marks a pageblock skipped so to avoid
1896 * the isolation_suitable check below, check whether the fast
1897 * search was successful.
1898 */
1899 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1900
1901 /* Only scan within a pageblock boundary */
1902 block_end_pfn = pageblock_end_pfn(low_pfn);
1903
1904 /*
1905 * Iterate over whole pageblocks until we find the first suitable.
1906 * Do not cross the free scanner.
1907 */
1908 for (; block_end_pfn <= cc->free_pfn;
1909 fast_find_block = false,
1910 cc->migrate_pfn = low_pfn = block_end_pfn,
1911 block_start_pfn = block_end_pfn,
1912 block_end_pfn += pageblock_nr_pages) {
1913
1914 /*
1915 * This can potentially iterate a massively long zone with
1916 * many pageblocks unsuitable, so periodically check if we
1917 * need to schedule.
1918 */
1919 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1920 cond_resched();
1921
1922 page = pageblock_pfn_to_page(block_start_pfn,
1923 block_end_pfn, cc->zone);
1924 if (!page)
1925 continue;
1926
1927 /*
1928 * If isolation recently failed, do not retry. Only check the
1929 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1930 * to be visited multiple times. Assume skip was checked
1931 * before making it "skip" so other compaction instances do
1932 * not scan the same block.
1933 */
1934 if (pageblock_aligned(low_pfn) &&
1935 !fast_find_block && !isolation_suitable(cc, page))
1936 continue;
1937
1938 /*
1939 * For async direct compaction, only scan the pageblocks of the
1940 * same migratetype without huge pages. Async direct compaction
1941 * is optimistic to see if the minimum amount of work satisfies
1942 * the allocation. The cached PFN is updated as it's possible
1943 * that all remaining blocks between source and target are
1944 * unsuitable and the compaction scanners fail to meet.
1945 */
1946 if (!suitable_migration_source(cc, page)) {
1947 update_cached_migrate(cc, block_end_pfn);
1948 continue;
1949 }
1950
1951 /* Perform the isolation */
1952 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1953 isolate_mode))
1954 return ISOLATE_ABORT;
1955
1956 /*
1957 * Either we isolated something and proceed with migration. Or
1958 * we failed and compact_zone should decide if we should
1959 * continue or not.
1960 */
1961 break;
1962 }
1963
1964 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1965 }
1966
1967 /*
1968 * order == -1 is expected when compacting via
1969 * /proc/sys/vm/compact_memory
1970 */
is_via_compact_memory(int order)1971 static inline bool is_via_compact_memory(int order)
1972 {
1973 return order == -1;
1974 }
1975
1976 /*
1977 * Determine whether kswapd is (or recently was!) running on this node.
1978 *
1979 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
1980 * zero it.
1981 */
kswapd_is_running(pg_data_t * pgdat)1982 static bool kswapd_is_running(pg_data_t *pgdat)
1983 {
1984 bool running;
1985
1986 pgdat_kswapd_lock(pgdat);
1987 running = pgdat->kswapd && task_is_running(pgdat->kswapd);
1988 pgdat_kswapd_unlock(pgdat);
1989
1990 return running;
1991 }
1992
1993 /*
1994 * A zone's fragmentation score is the external fragmentation wrt to the
1995 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1996 */
fragmentation_score_zone(struct zone * zone)1997 static unsigned int fragmentation_score_zone(struct zone *zone)
1998 {
1999 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2000 }
2001
2002 /*
2003 * A weighted zone's fragmentation score is the external fragmentation
2004 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2005 * returns a value in the range [0, 100].
2006 *
2007 * The scaling factor ensures that proactive compaction focuses on larger
2008 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2009 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2010 * and thus never exceeds the high threshold for proactive compaction.
2011 */
fragmentation_score_zone_weighted(struct zone * zone)2012 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2013 {
2014 unsigned long score;
2015
2016 score = zone->present_pages * fragmentation_score_zone(zone);
2017 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2018 }
2019
2020 /*
2021 * The per-node proactive (background) compaction process is started by its
2022 * corresponding kcompactd thread when the node's fragmentation score
2023 * exceeds the high threshold. The compaction process remains active till
2024 * the node's score falls below the low threshold, or one of the back-off
2025 * conditions is met.
2026 */
fragmentation_score_node(pg_data_t * pgdat)2027 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2028 {
2029 unsigned int score = 0;
2030 int zoneid;
2031
2032 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2033 struct zone *zone;
2034
2035 zone = &pgdat->node_zones[zoneid];
2036 if (!populated_zone(zone))
2037 continue;
2038 score += fragmentation_score_zone_weighted(zone);
2039 }
2040
2041 return score;
2042 }
2043
fragmentation_score_wmark(pg_data_t * pgdat,bool low)2044 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2045 {
2046 unsigned int wmark_low;
2047
2048 /*
2049 * Cap the low watermark to avoid excessive compaction
2050 * activity in case a user sets the proactiveness tunable
2051 * close to 100 (maximum).
2052 */
2053 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2054 return low ? wmark_low : min(wmark_low + 10, 100U);
2055 }
2056
should_proactive_compact_node(pg_data_t * pgdat)2057 static bool should_proactive_compact_node(pg_data_t *pgdat)
2058 {
2059 int wmark_high;
2060
2061 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2062 return false;
2063
2064 wmark_high = fragmentation_score_wmark(pgdat, false);
2065 return fragmentation_score_node(pgdat) > wmark_high;
2066 }
2067
__compact_finished(struct compact_control * cc)2068 static enum compact_result __compact_finished(struct compact_control *cc)
2069 {
2070 unsigned int order;
2071 const int migratetype = cc->migratetype;
2072 int ret;
2073
2074 /* Compaction run completes if the migrate and free scanner meet */
2075 if (compact_scanners_met(cc)) {
2076 /* Let the next compaction start anew. */
2077 reset_cached_positions(cc->zone);
2078
2079 /*
2080 * Mark that the PG_migrate_skip information should be cleared
2081 * by kswapd when it goes to sleep. kcompactd does not set the
2082 * flag itself as the decision to be clear should be directly
2083 * based on an allocation request.
2084 */
2085 if (cc->direct_compaction)
2086 cc->zone->compact_blockskip_flush = true;
2087
2088 if (cc->whole_zone)
2089 return COMPACT_COMPLETE;
2090 else
2091 return COMPACT_PARTIAL_SKIPPED;
2092 }
2093
2094 if (cc->proactive_compaction) {
2095 int score, wmark_low;
2096 pg_data_t *pgdat;
2097
2098 pgdat = cc->zone->zone_pgdat;
2099 if (kswapd_is_running(pgdat))
2100 return COMPACT_PARTIAL_SKIPPED;
2101
2102 score = fragmentation_score_zone(cc->zone);
2103 wmark_low = fragmentation_score_wmark(pgdat, true);
2104
2105 if (score > wmark_low)
2106 ret = COMPACT_CONTINUE;
2107 else
2108 ret = COMPACT_SUCCESS;
2109
2110 goto out;
2111 }
2112
2113 if (is_via_compact_memory(cc->order))
2114 return COMPACT_CONTINUE;
2115
2116 /*
2117 * Always finish scanning a pageblock to reduce the possibility of
2118 * fallbacks in the future. This is particularly important when
2119 * migration source is unmovable/reclaimable but it's not worth
2120 * special casing.
2121 */
2122 if (!pageblock_aligned(cc->migrate_pfn))
2123 return COMPACT_CONTINUE;
2124
2125 /* Direct compactor: Is a suitable page free? */
2126 ret = COMPACT_NO_SUITABLE_PAGE;
2127 for (order = cc->order; order < MAX_ORDER; order++) {
2128 struct free_area *area = &cc->zone->free_area[order];
2129 bool can_steal;
2130
2131 /* Job done if page is free of the right migratetype */
2132 if (!free_area_empty(area, migratetype))
2133 return COMPACT_SUCCESS;
2134
2135 #ifdef CONFIG_CMA
2136 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2137 if (migratetype == MIGRATE_MOVABLE &&
2138 !free_area_empty(area, MIGRATE_CMA))
2139 return COMPACT_SUCCESS;
2140 #endif
2141 /*
2142 * Job done if allocation would steal freepages from
2143 * other migratetype buddy lists.
2144 */
2145 if (find_suitable_fallback(area, order, migratetype,
2146 true, &can_steal) != -1)
2147 /*
2148 * Movable pages are OK in any pageblock. If we are
2149 * stealing for a non-movable allocation, make sure
2150 * we finish compacting the current pageblock first
2151 * (which is assured by the above migrate_pfn align
2152 * check) so it is as free as possible and we won't
2153 * have to steal another one soon.
2154 */
2155 return COMPACT_SUCCESS;
2156 }
2157
2158 out:
2159 if (cc->contended || fatal_signal_pending(current))
2160 ret = COMPACT_CONTENDED;
2161
2162 return ret;
2163 }
2164
compact_finished(struct compact_control * cc)2165 static enum compact_result compact_finished(struct compact_control *cc)
2166 {
2167 int ret;
2168
2169 ret = __compact_finished(cc);
2170 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2171 if (ret == COMPACT_NO_SUITABLE_PAGE)
2172 ret = COMPACT_CONTINUE;
2173
2174 return ret;
2175 }
2176
__compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int highest_zoneidx,unsigned long wmark_target)2177 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2178 unsigned int alloc_flags,
2179 int highest_zoneidx,
2180 unsigned long wmark_target)
2181 {
2182 unsigned long watermark;
2183
2184 if (is_via_compact_memory(order))
2185 return COMPACT_CONTINUE;
2186
2187 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2188 /*
2189 * If watermarks for high-order allocation are already met, there
2190 * should be no need for compaction at all.
2191 */
2192 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2193 alloc_flags))
2194 return COMPACT_SUCCESS;
2195
2196 /*
2197 * Watermarks for order-0 must be met for compaction to be able to
2198 * isolate free pages for migration targets. This means that the
2199 * watermark and alloc_flags have to match, or be more pessimistic than
2200 * the check in __isolate_free_page(). We don't use the direct
2201 * compactor's alloc_flags, as they are not relevant for freepage
2202 * isolation. We however do use the direct compactor's highest_zoneidx
2203 * to skip over zones where lowmem reserves would prevent allocation
2204 * even if compaction succeeds.
2205 * For costly orders, we require low watermark instead of min for
2206 * compaction to proceed to increase its chances.
2207 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2208 * suitable migration targets
2209 */
2210 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2211 low_wmark_pages(zone) : min_wmark_pages(zone);
2212 watermark += compact_gap(order);
2213 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2214 ALLOC_CMA, wmark_target))
2215 return COMPACT_SKIPPED;
2216
2217 return COMPACT_CONTINUE;
2218 }
2219
2220 /*
2221 * compaction_suitable: Is this suitable to run compaction on this zone now?
2222 * Returns
2223 * COMPACT_SKIPPED - If there are too few free pages for compaction
2224 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2225 * COMPACT_CONTINUE - If compaction should run now
2226 */
compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int highest_zoneidx)2227 enum compact_result compaction_suitable(struct zone *zone, int order,
2228 unsigned int alloc_flags,
2229 int highest_zoneidx)
2230 {
2231 enum compact_result ret;
2232 int fragindex;
2233
2234 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2235 zone_page_state(zone, NR_FREE_PAGES));
2236 /*
2237 * fragmentation index determines if allocation failures are due to
2238 * low memory or external fragmentation
2239 *
2240 * index of -1000 would imply allocations might succeed depending on
2241 * watermarks, but we already failed the high-order watermark check
2242 * index towards 0 implies failure is due to lack of memory
2243 * index towards 1000 implies failure is due to fragmentation
2244 *
2245 * Only compact if a failure would be due to fragmentation. Also
2246 * ignore fragindex for non-costly orders where the alternative to
2247 * a successful reclaim/compaction is OOM. Fragindex and the
2248 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2249 * excessive compaction for costly orders, but it should not be at the
2250 * expense of system stability.
2251 */
2252 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2253 fragindex = fragmentation_index(zone, order);
2254 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2255 ret = COMPACT_NOT_SUITABLE_ZONE;
2256 }
2257
2258 trace_mm_compaction_suitable(zone, order, ret);
2259 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2260 ret = COMPACT_SKIPPED;
2261
2262 return ret;
2263 }
2264
compaction_zonelist_suitable(struct alloc_context * ac,int order,int alloc_flags)2265 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2266 int alloc_flags)
2267 {
2268 struct zone *zone;
2269 struct zoneref *z;
2270
2271 /*
2272 * Make sure at least one zone would pass __compaction_suitable if we continue
2273 * retrying the reclaim.
2274 */
2275 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2276 ac->highest_zoneidx, ac->nodemask) {
2277 unsigned long available;
2278 enum compact_result compact_result;
2279
2280 /*
2281 * Do not consider all the reclaimable memory because we do not
2282 * want to trash just for a single high order allocation which
2283 * is even not guaranteed to appear even if __compaction_suitable
2284 * is happy about the watermark check.
2285 */
2286 available = zone_reclaimable_pages(zone) / order;
2287 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2288 compact_result = __compaction_suitable(zone, order, alloc_flags,
2289 ac->highest_zoneidx, available);
2290 if (compact_result == COMPACT_CONTINUE)
2291 return true;
2292 }
2293
2294 return false;
2295 }
2296
2297 static enum compact_result
compact_zone(struct compact_control * cc,struct capture_control * capc)2298 compact_zone(struct compact_control *cc, struct capture_control *capc)
2299 {
2300 enum compact_result ret;
2301 unsigned long start_pfn = cc->zone->zone_start_pfn;
2302 unsigned long end_pfn = zone_end_pfn(cc->zone);
2303 unsigned long last_migrated_pfn;
2304 const bool sync = cc->mode != MIGRATE_ASYNC;
2305 bool update_cached;
2306 unsigned int nr_succeeded = 0;
2307
2308 /*
2309 * These counters track activities during zone compaction. Initialize
2310 * them before compacting a new zone.
2311 */
2312 cc->total_migrate_scanned = 0;
2313 cc->total_free_scanned = 0;
2314 cc->nr_migratepages = 0;
2315 cc->nr_freepages = 0;
2316 INIT_LIST_HEAD(&cc->freepages);
2317 INIT_LIST_HEAD(&cc->migratepages);
2318
2319 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2320 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2321 cc->highest_zoneidx);
2322 /* Compaction is likely to fail */
2323 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2324 return ret;
2325
2326 /*
2327 * Clear pageblock skip if there were failures recently and compaction
2328 * is about to be retried after being deferred.
2329 */
2330 if (compaction_restarting(cc->zone, cc->order))
2331 __reset_isolation_suitable(cc->zone);
2332
2333 /*
2334 * Setup to move all movable pages to the end of the zone. Used cached
2335 * information on where the scanners should start (unless we explicitly
2336 * want to compact the whole zone), but check that it is initialised
2337 * by ensuring the values are within zone boundaries.
2338 */
2339 cc->fast_start_pfn = 0;
2340 if (cc->whole_zone) {
2341 cc->migrate_pfn = start_pfn;
2342 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2343 } else {
2344 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2345 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2346 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2347 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2348 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2349 }
2350 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2351 cc->migrate_pfn = start_pfn;
2352 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2353 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2354 }
2355
2356 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2357 cc->whole_zone = true;
2358 }
2359
2360 last_migrated_pfn = 0;
2361
2362 /*
2363 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2364 * the basis that some migrations will fail in ASYNC mode. However,
2365 * if the cached PFNs match and pageblocks are skipped due to having
2366 * no isolation candidates, then the sync state does not matter.
2367 * Until a pageblock with isolation candidates is found, keep the
2368 * cached PFNs in sync to avoid revisiting the same blocks.
2369 */
2370 update_cached = !sync &&
2371 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2372
2373 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2374
2375 /* lru_add_drain_all could be expensive with involving other CPUs */
2376 lru_add_drain();
2377
2378 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2379 int err;
2380 unsigned long iteration_start_pfn = cc->migrate_pfn;
2381
2382 /*
2383 * Avoid multiple rescans of the same pageblock which can
2384 * happen if a page cannot be isolated (dirty/writeback in
2385 * async mode) or if the migrated pages are being allocated
2386 * before the pageblock is cleared. The first rescan will
2387 * capture the entire pageblock for migration. If it fails,
2388 * it'll be marked skip and scanning will proceed as normal.
2389 */
2390 cc->finish_pageblock = false;
2391 if (pageblock_start_pfn(last_migrated_pfn) ==
2392 pageblock_start_pfn(iteration_start_pfn)) {
2393 cc->finish_pageblock = true;
2394 }
2395
2396 rescan:
2397 switch (isolate_migratepages(cc)) {
2398 case ISOLATE_ABORT:
2399 ret = COMPACT_CONTENDED;
2400 putback_movable_pages(&cc->migratepages);
2401 cc->nr_migratepages = 0;
2402 goto out;
2403 case ISOLATE_NONE:
2404 if (update_cached) {
2405 cc->zone->compact_cached_migrate_pfn[1] =
2406 cc->zone->compact_cached_migrate_pfn[0];
2407 }
2408
2409 /*
2410 * We haven't isolated and migrated anything, but
2411 * there might still be unflushed migrations from
2412 * previous cc->order aligned block.
2413 */
2414 goto check_drain;
2415 case ISOLATE_SUCCESS:
2416 update_cached = false;
2417 last_migrated_pfn = iteration_start_pfn;
2418 }
2419
2420 err = migrate_pages(&cc->migratepages, compaction_alloc,
2421 compaction_free, (unsigned long)cc, cc->mode,
2422 MR_COMPACTION, &nr_succeeded);
2423
2424 trace_mm_compaction_migratepages(cc, nr_succeeded);
2425
2426 /* All pages were either migrated or will be released */
2427 cc->nr_migratepages = 0;
2428 if (err) {
2429 putback_movable_pages(&cc->migratepages);
2430 /*
2431 * migrate_pages() may return -ENOMEM when scanners meet
2432 * and we want compact_finished() to detect it
2433 */
2434 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2435 ret = COMPACT_CONTENDED;
2436 goto out;
2437 }
2438 /*
2439 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2440 * within the current order-aligned block, scan the
2441 * remainder of the pageblock. This will mark the
2442 * pageblock "skip" to avoid rescanning in the near
2443 * future. This will isolate more pages than necessary
2444 * for the request but avoid loops due to
2445 * fast_find_migrateblock revisiting blocks that were
2446 * recently partially scanned.
2447 */
2448 if (cc->direct_compaction && !cc->finish_pageblock &&
2449 (cc->mode < MIGRATE_SYNC)) {
2450 cc->finish_pageblock = true;
2451
2452 /*
2453 * Draining pcplists does not help THP if
2454 * any page failed to migrate. Even after
2455 * drain, the pageblock will not be free.
2456 */
2457 if (cc->order == COMPACTION_HPAGE_ORDER)
2458 last_migrated_pfn = 0;
2459
2460 goto rescan;
2461 }
2462 }
2463
2464 /* Stop if a page has been captured */
2465 if (capc && capc->page) {
2466 ret = COMPACT_SUCCESS;
2467 break;
2468 }
2469
2470 check_drain:
2471 /*
2472 * Has the migration scanner moved away from the previous
2473 * cc->order aligned block where we migrated from? If yes,
2474 * flush the pages that were freed, so that they can merge and
2475 * compact_finished() can detect immediately if allocation
2476 * would succeed.
2477 */
2478 if (cc->order > 0 && last_migrated_pfn) {
2479 unsigned long current_block_start =
2480 block_start_pfn(cc->migrate_pfn, cc->order);
2481
2482 if (last_migrated_pfn < current_block_start) {
2483 lru_add_drain_cpu_zone(cc->zone);
2484 /* No more flushing until we migrate again */
2485 last_migrated_pfn = 0;
2486 }
2487 }
2488 }
2489
2490 out:
2491 /*
2492 * Release free pages and update where the free scanner should restart,
2493 * so we don't leave any returned pages behind in the next attempt.
2494 */
2495 if (cc->nr_freepages > 0) {
2496 unsigned long free_pfn = release_freepages(&cc->freepages);
2497
2498 cc->nr_freepages = 0;
2499 VM_BUG_ON(free_pfn == 0);
2500 /* The cached pfn is always the first in a pageblock */
2501 free_pfn = pageblock_start_pfn(free_pfn);
2502 /*
2503 * Only go back, not forward. The cached pfn might have been
2504 * already reset to zone end in compact_finished()
2505 */
2506 if (free_pfn > cc->zone->compact_cached_free_pfn)
2507 cc->zone->compact_cached_free_pfn = free_pfn;
2508 }
2509
2510 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2511 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2512
2513 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2514
2515 VM_BUG_ON(!list_empty(&cc->freepages));
2516 VM_BUG_ON(!list_empty(&cc->migratepages));
2517
2518 return ret;
2519 }
2520
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum compact_priority prio,unsigned int alloc_flags,int highest_zoneidx,struct page ** capture)2521 static enum compact_result compact_zone_order(struct zone *zone, int order,
2522 gfp_t gfp_mask, enum compact_priority prio,
2523 unsigned int alloc_flags, int highest_zoneidx,
2524 struct page **capture)
2525 {
2526 enum compact_result ret;
2527 struct compact_control cc = {
2528 .order = order,
2529 .search_order = order,
2530 .gfp_mask = gfp_mask,
2531 .zone = zone,
2532 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2533 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2534 .alloc_flags = alloc_flags,
2535 .highest_zoneidx = highest_zoneidx,
2536 .direct_compaction = true,
2537 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2538 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2539 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2540 };
2541 struct capture_control capc = {
2542 .cc = &cc,
2543 .page = NULL,
2544 };
2545
2546 /*
2547 * Make sure the structs are really initialized before we expose the
2548 * capture control, in case we are interrupted and the interrupt handler
2549 * frees a page.
2550 */
2551 barrier();
2552 WRITE_ONCE(current->capture_control, &capc);
2553
2554 ret = compact_zone(&cc, &capc);
2555
2556 /*
2557 * Make sure we hide capture control first before we read the captured
2558 * page pointer, otherwise an interrupt could free and capture a page
2559 * and we would leak it.
2560 */
2561 WRITE_ONCE(current->capture_control, NULL);
2562 *capture = READ_ONCE(capc.page);
2563 /*
2564 * Technically, it is also possible that compaction is skipped but
2565 * the page is still captured out of luck(IRQ came and freed the page).
2566 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2567 * the COMPACT[STALL|FAIL] when compaction is skipped.
2568 */
2569 if (*capture)
2570 ret = COMPACT_SUCCESS;
2571
2572 return ret;
2573 }
2574
2575 int sysctl_extfrag_threshold = 500;
2576
2577 /**
2578 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2579 * @gfp_mask: The GFP mask of the current allocation
2580 * @order: The order of the current allocation
2581 * @alloc_flags: The allocation flags of the current allocation
2582 * @ac: The context of current allocation
2583 * @prio: Determines how hard direct compaction should try to succeed
2584 * @capture: Pointer to free page created by compaction will be stored here
2585 *
2586 * This is the main entry point for direct page compaction.
2587 */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,struct page ** capture)2588 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2589 unsigned int alloc_flags, const struct alloc_context *ac,
2590 enum compact_priority prio, struct page **capture)
2591 {
2592 int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2593 struct zoneref *z;
2594 struct zone *zone;
2595 enum compact_result rc = COMPACT_SKIPPED;
2596
2597 /*
2598 * Check if the GFP flags allow compaction - GFP_NOIO is really
2599 * tricky context because the migration might require IO
2600 */
2601 if (!may_perform_io)
2602 return COMPACT_SKIPPED;
2603
2604 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2605
2606 /* Compact each zone in the list */
2607 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2608 ac->highest_zoneidx, ac->nodemask) {
2609 enum compact_result status;
2610
2611 if (prio > MIN_COMPACT_PRIORITY
2612 && compaction_deferred(zone, order)) {
2613 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2614 continue;
2615 }
2616
2617 status = compact_zone_order(zone, order, gfp_mask, prio,
2618 alloc_flags, ac->highest_zoneidx, capture);
2619 rc = max(status, rc);
2620
2621 /* The allocation should succeed, stop compacting */
2622 if (status == COMPACT_SUCCESS) {
2623 /*
2624 * We think the allocation will succeed in this zone,
2625 * but it is not certain, hence the false. The caller
2626 * will repeat this with true if allocation indeed
2627 * succeeds in this zone.
2628 */
2629 compaction_defer_reset(zone, order, false);
2630
2631 break;
2632 }
2633
2634 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2635 status == COMPACT_PARTIAL_SKIPPED))
2636 /*
2637 * We think that allocation won't succeed in this zone
2638 * so we defer compaction there. If it ends up
2639 * succeeding after all, it will be reset.
2640 */
2641 defer_compaction(zone, order);
2642
2643 /*
2644 * We might have stopped compacting due to need_resched() in
2645 * async compaction, or due to a fatal signal detected. In that
2646 * case do not try further zones
2647 */
2648 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2649 || fatal_signal_pending(current))
2650 break;
2651 }
2652
2653 return rc;
2654 }
2655
2656 /*
2657 * Compact all zones within a node till each zone's fragmentation score
2658 * reaches within proactive compaction thresholds (as determined by the
2659 * proactiveness tunable).
2660 *
2661 * It is possible that the function returns before reaching score targets
2662 * due to various back-off conditions, such as, contention on per-node or
2663 * per-zone locks.
2664 */
proactive_compact_node(pg_data_t * pgdat)2665 static void proactive_compact_node(pg_data_t *pgdat)
2666 {
2667 int zoneid;
2668 struct zone *zone;
2669 struct compact_control cc = {
2670 .order = -1,
2671 .mode = MIGRATE_SYNC_LIGHT,
2672 .ignore_skip_hint = true,
2673 .whole_zone = true,
2674 .gfp_mask = GFP_KERNEL,
2675 .proactive_compaction = true,
2676 };
2677
2678 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2679 zone = &pgdat->node_zones[zoneid];
2680 if (!populated_zone(zone))
2681 continue;
2682
2683 cc.zone = zone;
2684
2685 compact_zone(&cc, NULL);
2686
2687 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2688 cc.total_migrate_scanned);
2689 count_compact_events(KCOMPACTD_FREE_SCANNED,
2690 cc.total_free_scanned);
2691 }
2692 }
2693
2694 /* Compact all zones within a node */
compact_node(int nid)2695 static void compact_node(int nid)
2696 {
2697 pg_data_t *pgdat = NODE_DATA(nid);
2698 int zoneid;
2699 struct zone *zone;
2700 struct compact_control cc = {
2701 .order = -1,
2702 .mode = MIGRATE_SYNC,
2703 .ignore_skip_hint = true,
2704 .whole_zone = true,
2705 .gfp_mask = GFP_KERNEL,
2706 };
2707
2708
2709 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2710
2711 zone = &pgdat->node_zones[zoneid];
2712 if (!populated_zone(zone))
2713 continue;
2714
2715 cc.zone = zone;
2716
2717 compact_zone(&cc, NULL);
2718 }
2719 }
2720
2721 /* Compact all nodes in the system */
compact_nodes(void)2722 static void compact_nodes(void)
2723 {
2724 int nid;
2725
2726 /* Flush pending updates to the LRU lists */
2727 lru_add_drain_all();
2728
2729 for_each_online_node(nid)
2730 compact_node(nid);
2731 }
2732
2733 /*
2734 * Tunable for proactive compaction. It determines how
2735 * aggressively the kernel should compact memory in the
2736 * background. It takes values in the range [0, 100].
2737 */
2738 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2739
compaction_proactiveness_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2740 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2741 void *buffer, size_t *length, loff_t *ppos)
2742 {
2743 int rc, nid;
2744
2745 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2746 if (rc)
2747 return rc;
2748
2749 if (write && sysctl_compaction_proactiveness) {
2750 for_each_online_node(nid) {
2751 pg_data_t *pgdat = NODE_DATA(nid);
2752
2753 if (pgdat->proactive_compact_trigger)
2754 continue;
2755
2756 pgdat->proactive_compact_trigger = true;
2757 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2758 pgdat->nr_zones - 1);
2759 wake_up_interruptible(&pgdat->kcompactd_wait);
2760 }
2761 }
2762
2763 return 0;
2764 }
2765
2766 /*
2767 * This is the entry point for compacting all nodes via
2768 * /proc/sys/vm/compact_memory
2769 */
sysctl_compaction_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2770 int sysctl_compaction_handler(struct ctl_table *table, int write,
2771 void *buffer, size_t *length, loff_t *ppos)
2772 {
2773 if (write)
2774 compact_nodes();
2775
2776 return 0;
2777 }
2778
2779 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
compact_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2780 static ssize_t compact_store(struct device *dev,
2781 struct device_attribute *attr,
2782 const char *buf, size_t count)
2783 {
2784 int nid = dev->id;
2785
2786 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2787 /* Flush pending updates to the LRU lists */
2788 lru_add_drain_all();
2789
2790 compact_node(nid);
2791 }
2792
2793 return count;
2794 }
2795 static DEVICE_ATTR_WO(compact);
2796
compaction_register_node(struct node * node)2797 int compaction_register_node(struct node *node)
2798 {
2799 return device_create_file(&node->dev, &dev_attr_compact);
2800 }
2801
compaction_unregister_node(struct node * node)2802 void compaction_unregister_node(struct node *node)
2803 {
2804 return device_remove_file(&node->dev, &dev_attr_compact);
2805 }
2806 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2807
kcompactd_work_requested(pg_data_t * pgdat)2808 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2809 {
2810 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2811 pgdat->proactive_compact_trigger;
2812 }
2813
kcompactd_node_suitable(pg_data_t * pgdat)2814 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2815 {
2816 int zoneid;
2817 struct zone *zone;
2818 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2819
2820 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2821 zone = &pgdat->node_zones[zoneid];
2822
2823 if (!populated_zone(zone))
2824 continue;
2825
2826 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2827 highest_zoneidx) == COMPACT_CONTINUE)
2828 return true;
2829 }
2830
2831 return false;
2832 }
2833
kcompactd_do_work(pg_data_t * pgdat)2834 static void kcompactd_do_work(pg_data_t *pgdat)
2835 {
2836 /*
2837 * With no special task, compact all zones so that a page of requested
2838 * order is allocatable.
2839 */
2840 int zoneid;
2841 struct zone *zone;
2842 struct compact_control cc = {
2843 .order = pgdat->kcompactd_max_order,
2844 .search_order = pgdat->kcompactd_max_order,
2845 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2846 .mode = MIGRATE_SYNC_LIGHT,
2847 .ignore_skip_hint = false,
2848 .gfp_mask = GFP_KERNEL,
2849 };
2850 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2851 cc.highest_zoneidx);
2852 count_compact_event(KCOMPACTD_WAKE);
2853
2854 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2855 int status;
2856
2857 zone = &pgdat->node_zones[zoneid];
2858 if (!populated_zone(zone))
2859 continue;
2860
2861 if (compaction_deferred(zone, cc.order))
2862 continue;
2863
2864 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2865 COMPACT_CONTINUE)
2866 continue;
2867
2868 if (kthread_should_stop())
2869 return;
2870
2871 cc.zone = zone;
2872 status = compact_zone(&cc, NULL);
2873
2874 if (status == COMPACT_SUCCESS) {
2875 compaction_defer_reset(zone, cc.order, false);
2876 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2877 /*
2878 * Buddy pages may become stranded on pcps that could
2879 * otherwise coalesce on the zone's free area for
2880 * order >= cc.order. This is ratelimited by the
2881 * upcoming deferral.
2882 */
2883 drain_all_pages(zone);
2884
2885 /*
2886 * We use sync migration mode here, so we defer like
2887 * sync direct compaction does.
2888 */
2889 defer_compaction(zone, cc.order);
2890 }
2891
2892 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2893 cc.total_migrate_scanned);
2894 count_compact_events(KCOMPACTD_FREE_SCANNED,
2895 cc.total_free_scanned);
2896 }
2897
2898 /*
2899 * Regardless of success, we are done until woken up next. But remember
2900 * the requested order/highest_zoneidx in case it was higher/tighter
2901 * than our current ones
2902 */
2903 if (pgdat->kcompactd_max_order <= cc.order)
2904 pgdat->kcompactd_max_order = 0;
2905 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2906 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2907 }
2908
wakeup_kcompactd(pg_data_t * pgdat,int order,int highest_zoneidx)2909 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2910 {
2911 if (!order)
2912 return;
2913
2914 if (pgdat->kcompactd_max_order < order)
2915 pgdat->kcompactd_max_order = order;
2916
2917 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2918 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2919
2920 /*
2921 * Pairs with implicit barrier in wait_event_freezable()
2922 * such that wakeups are not missed.
2923 */
2924 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2925 return;
2926
2927 if (!kcompactd_node_suitable(pgdat))
2928 return;
2929
2930 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2931 highest_zoneidx);
2932 wake_up_interruptible(&pgdat->kcompactd_wait);
2933 }
2934
2935 /*
2936 * The background compaction daemon, started as a kernel thread
2937 * from the init process.
2938 */
kcompactd(void * p)2939 static int kcompactd(void *p)
2940 {
2941 pg_data_t *pgdat = (pg_data_t *)p;
2942 struct task_struct *tsk = current;
2943 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2944 long timeout = default_timeout;
2945
2946 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2947
2948 if (!cpumask_empty(cpumask))
2949 set_cpus_allowed_ptr(tsk, cpumask);
2950
2951 set_freezable();
2952
2953 pgdat->kcompactd_max_order = 0;
2954 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2955
2956 while (!kthread_should_stop()) {
2957 unsigned long pflags;
2958
2959 /*
2960 * Avoid the unnecessary wakeup for proactive compaction
2961 * when it is disabled.
2962 */
2963 if (!sysctl_compaction_proactiveness)
2964 timeout = MAX_SCHEDULE_TIMEOUT;
2965 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2966 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2967 kcompactd_work_requested(pgdat), timeout) &&
2968 !pgdat->proactive_compact_trigger) {
2969
2970 psi_memstall_enter(&pflags);
2971 kcompactd_do_work(pgdat);
2972 psi_memstall_leave(&pflags);
2973 /*
2974 * Reset the timeout value. The defer timeout from
2975 * proactive compaction is lost here but that is fine
2976 * as the condition of the zone changing substantionally
2977 * then carrying on with the previous defer interval is
2978 * not useful.
2979 */
2980 timeout = default_timeout;
2981 continue;
2982 }
2983
2984 /*
2985 * Start the proactive work with default timeout. Based
2986 * on the fragmentation score, this timeout is updated.
2987 */
2988 timeout = default_timeout;
2989 if (should_proactive_compact_node(pgdat)) {
2990 unsigned int prev_score, score;
2991
2992 prev_score = fragmentation_score_node(pgdat);
2993 proactive_compact_node(pgdat);
2994 score = fragmentation_score_node(pgdat);
2995 /*
2996 * Defer proactive compaction if the fragmentation
2997 * score did not go down i.e. no progress made.
2998 */
2999 if (unlikely(score >= prev_score))
3000 timeout =
3001 default_timeout << COMPACT_MAX_DEFER_SHIFT;
3002 }
3003 if (unlikely(pgdat->proactive_compact_trigger))
3004 pgdat->proactive_compact_trigger = false;
3005 }
3006
3007 return 0;
3008 }
3009
3010 /*
3011 * This kcompactd start function will be called by init and node-hot-add.
3012 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3013 */
kcompactd_run(int nid)3014 void kcompactd_run(int nid)
3015 {
3016 pg_data_t *pgdat = NODE_DATA(nid);
3017
3018 if (pgdat->kcompactd)
3019 return;
3020
3021 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3022 if (IS_ERR(pgdat->kcompactd)) {
3023 pr_err("Failed to start kcompactd on node %d\n", nid);
3024 pgdat->kcompactd = NULL;
3025 }
3026 }
3027
3028 /*
3029 * Called by memory hotplug when all memory in a node is offlined. Caller must
3030 * be holding mem_hotplug_begin/done().
3031 */
kcompactd_stop(int nid)3032 void kcompactd_stop(int nid)
3033 {
3034 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3035
3036 if (kcompactd) {
3037 kthread_stop(kcompactd);
3038 NODE_DATA(nid)->kcompactd = NULL;
3039 }
3040 }
3041
3042 /*
3043 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3044 * not required for correctness. So if the last cpu in a node goes
3045 * away, we get changed to run anywhere: as the first one comes back,
3046 * restore their cpu bindings.
3047 */
kcompactd_cpu_online(unsigned int cpu)3048 static int kcompactd_cpu_online(unsigned int cpu)
3049 {
3050 int nid;
3051
3052 for_each_node_state(nid, N_MEMORY) {
3053 pg_data_t *pgdat = NODE_DATA(nid);
3054 const struct cpumask *mask;
3055
3056 mask = cpumask_of_node(pgdat->node_id);
3057
3058 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3059 /* One of our CPUs online: restore mask */
3060 if (pgdat->kcompactd)
3061 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3062 }
3063 return 0;
3064 }
3065
kcompactd_init(void)3066 static int __init kcompactd_init(void)
3067 {
3068 int nid;
3069 int ret;
3070
3071 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3072 "mm/compaction:online",
3073 kcompactd_cpu_online, NULL);
3074 if (ret < 0) {
3075 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3076 return ret;
3077 }
3078
3079 for_each_node_state(nid, N_MEMORY)
3080 kcompactd_run(nid);
3081 return 0;
3082 }
3083 subsys_initcall(kcompactd_init)
3084
3085 #endif /* CONFIG_COMPACTION */
3086