1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Linux INET6 implementation
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 */
8
9 #ifndef _NET_IPV6_H
10 #define _NET_IPV6_H
11
12 #include <linux/ipv6.h>
13 #include <linux/hardirq.h>
14 #include <linux/jhash.h>
15 #include <linux/refcount.h>
16 #include <linux/jump_label_ratelimit.h>
17 #include <net/if_inet6.h>
18 #include <net/flow.h>
19 #include <net/flow_dissector.h>
20 #include <net/inet_dscp.h>
21 #include <net/snmp.h>
22 #include <net/netns/hash.h>
23
24 struct ip_tunnel_info;
25
26 #define SIN6_LEN_RFC2133 24
27
28 #define IPV6_MAXPLEN 65535
29
30 /*
31 * NextHeader field of IPv6 header
32 */
33
34 #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */
35 #define NEXTHDR_IPV4 4 /* IPv4 in IPv6 */
36 #define NEXTHDR_TCP 6 /* TCP segment. */
37 #define NEXTHDR_UDP 17 /* UDP message. */
38 #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */
39 #define NEXTHDR_ROUTING 43 /* Routing header. */
40 #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */
41 #define NEXTHDR_GRE 47 /* GRE header. */
42 #define NEXTHDR_ESP 50 /* Encapsulating security payload. */
43 #define NEXTHDR_AUTH 51 /* Authentication header. */
44 #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */
45 #define NEXTHDR_NONE 59 /* No next header */
46 #define NEXTHDR_DEST 60 /* Destination options header. */
47 #define NEXTHDR_SCTP 132 /* SCTP message. */
48 #define NEXTHDR_MOBILITY 135 /* Mobility header. */
49
50 #define NEXTHDR_MAX 255
51
52 #define IPV6_DEFAULT_HOPLIMIT 64
53 #define IPV6_DEFAULT_MCASTHOPS 1
54
55 /* Limits on Hop-by-Hop and Destination options.
56 *
57 * Per RFC8200 there is no limit on the maximum number or lengths of options in
58 * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
59 * We allow configurable limits in order to mitigate potential denial of
60 * service attacks.
61 *
62 * There are three limits that may be set:
63 * - Limit the number of options in a Hop-by-Hop or Destination options
64 * extension header
65 * - Limit the byte length of a Hop-by-Hop or Destination options extension
66 * header
67 * - Disallow unknown options
68 *
69 * The limits are expressed in corresponding sysctls:
70 *
71 * ipv6.sysctl.max_dst_opts_cnt
72 * ipv6.sysctl.max_hbh_opts_cnt
73 * ipv6.sysctl.max_dst_opts_len
74 * ipv6.sysctl.max_hbh_opts_len
75 *
76 * max_*_opts_cnt is the number of TLVs that are allowed for Destination
77 * options or Hop-by-Hop options. If the number is less than zero then unknown
78 * TLVs are disallowed and the number of known options that are allowed is the
79 * absolute value. Setting the value to INT_MAX indicates no limit.
80 *
81 * max_*_opts_len is the length limit in bytes of a Destination or
82 * Hop-by-Hop options extension header. Setting the value to INT_MAX
83 * indicates no length limit.
84 *
85 * If a limit is exceeded when processing an extension header the packet is
86 * silently discarded.
87 */
88
89 /* Default limits for Hop-by-Hop and Destination options */
90 #define IP6_DEFAULT_MAX_DST_OPTS_CNT 8
91 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8
92 #define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */
93 #define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */
94
95 /*
96 * Addr type
97 *
98 * type - unicast | multicast
99 * scope - local | site | global
100 * v4 - compat
101 * v4mapped
102 * any
103 * loopback
104 */
105
106 #define IPV6_ADDR_ANY 0x0000U
107
108 #define IPV6_ADDR_UNICAST 0x0001U
109 #define IPV6_ADDR_MULTICAST 0x0002U
110
111 #define IPV6_ADDR_LOOPBACK 0x0010U
112 #define IPV6_ADDR_LINKLOCAL 0x0020U
113 #define IPV6_ADDR_SITELOCAL 0x0040U
114
115 #define IPV6_ADDR_COMPATv4 0x0080U
116
117 #define IPV6_ADDR_SCOPE_MASK 0x00f0U
118
119 #define IPV6_ADDR_MAPPED 0x1000U
120
121 /*
122 * Addr scopes
123 */
124 #define IPV6_ADDR_MC_SCOPE(a) \
125 ((a)->s6_addr[1] & 0x0f) /* nonstandard */
126 #define __IPV6_ADDR_SCOPE_INVALID -1
127 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01
128 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02
129 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05
130 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08
131 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e
132
133 /*
134 * Addr flags
135 */
136 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \
137 ((a)->s6_addr[1] & 0x10)
138 #define IPV6_ADDR_MC_FLAG_PREFIX(a) \
139 ((a)->s6_addr[1] & 0x20)
140 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \
141 ((a)->s6_addr[1] & 0x40)
142
143 /*
144 * fragmentation header
145 */
146
147 struct frag_hdr {
148 __u8 nexthdr;
149 __u8 reserved;
150 __be16 frag_off;
151 __be32 identification;
152 };
153
154 /*
155 * Jumbo payload option, as described in RFC 2675 2.
156 */
157 struct hop_jumbo_hdr {
158 u8 nexthdr;
159 u8 hdrlen;
160 u8 tlv_type; /* IPV6_TLV_JUMBO, 0xC2 */
161 u8 tlv_len; /* 4 */
162 __be32 jumbo_payload_len;
163 };
164
165 #define IP6_MF 0x0001
166 #define IP6_OFFSET 0xFFF8
167
168 struct ip6_fraglist_iter {
169 struct ipv6hdr *tmp_hdr;
170 struct sk_buff *frag;
171 int offset;
172 unsigned int hlen;
173 __be32 frag_id;
174 u8 nexthdr;
175 };
176
177 int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr,
178 u8 nexthdr, __be32 frag_id,
179 struct ip6_fraglist_iter *iter);
180 void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter);
181
ip6_fraglist_next(struct ip6_fraglist_iter * iter)182 static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter)
183 {
184 struct sk_buff *skb = iter->frag;
185
186 iter->frag = skb->next;
187 skb_mark_not_on_list(skb);
188
189 return skb;
190 }
191
192 struct ip6_frag_state {
193 u8 *prevhdr;
194 unsigned int hlen;
195 unsigned int mtu;
196 unsigned int left;
197 int offset;
198 int ptr;
199 int hroom;
200 int troom;
201 __be32 frag_id;
202 u8 nexthdr;
203 };
204
205 void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu,
206 unsigned short needed_tailroom, int hdr_room, u8 *prevhdr,
207 u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state);
208 struct sk_buff *ip6_frag_next(struct sk_buff *skb,
209 struct ip6_frag_state *state);
210
211 #define IP6_REPLY_MARK(net, mark) \
212 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
213
214 #include <net/sock.h>
215
216 /* sysctls */
217 extern int sysctl_mld_max_msf;
218 extern int sysctl_mld_qrv;
219
220 #define _DEVINC(net, statname, mod, idev, field) \
221 ({ \
222 struct inet6_dev *_idev = (idev); \
223 if (likely(_idev != NULL)) \
224 mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
225 mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
226 })
227
228 /* per device counters are atomic_long_t */
229 #define _DEVINCATOMIC(net, statname, mod, idev, field) \
230 ({ \
231 struct inet6_dev *_idev = (idev); \
232 if (likely(_idev != NULL)) \
233 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
234 mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
235 })
236
237 /* per device and per net counters are atomic_long_t */
238 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \
239 ({ \
240 struct inet6_dev *_idev = (idev); \
241 if (likely(_idev != NULL)) \
242 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
243 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
244 })
245
246 #define _DEVADD(net, statname, mod, idev, field, val) \
247 ({ \
248 struct inet6_dev *_idev = (idev); \
249 if (likely(_idev != NULL)) \
250 mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
251 mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
252 })
253
254 #define _DEVUPD(net, statname, mod, idev, field, val) \
255 ({ \
256 struct inet6_dev *_idev = (idev); \
257 if (likely(_idev != NULL)) \
258 mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
259 mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
260 })
261
262 /* MIBs */
263
264 #define IP6_INC_STATS(net, idev,field) \
265 _DEVINC(net, ipv6, , idev, field)
266 #define __IP6_INC_STATS(net, idev,field) \
267 _DEVINC(net, ipv6, __, idev, field)
268 #define IP6_ADD_STATS(net, idev,field,val) \
269 _DEVADD(net, ipv6, , idev, field, val)
270 #define __IP6_ADD_STATS(net, idev,field,val) \
271 _DEVADD(net, ipv6, __, idev, field, val)
272 #define IP6_UPD_PO_STATS(net, idev,field,val) \
273 _DEVUPD(net, ipv6, , idev, field, val)
274 #define __IP6_UPD_PO_STATS(net, idev,field,val) \
275 _DEVUPD(net, ipv6, __, idev, field, val)
276 #define ICMP6_INC_STATS(net, idev, field) \
277 _DEVINCATOMIC(net, icmpv6, , idev, field)
278 #define __ICMP6_INC_STATS(net, idev, field) \
279 _DEVINCATOMIC(net, icmpv6, __, idev, field)
280
281 #define ICMP6MSGOUT_INC_STATS(net, idev, field) \
282 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
283 #define ICMP6MSGIN_INC_STATS(net, idev, field) \
284 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
285
286 struct ip6_ra_chain {
287 struct ip6_ra_chain *next;
288 struct sock *sk;
289 int sel;
290 void (*destructor)(struct sock *);
291 };
292
293 extern struct ip6_ra_chain *ip6_ra_chain;
294 extern rwlock_t ip6_ra_lock;
295
296 /*
297 This structure is prepared by protocol, when parsing
298 ancillary data and passed to IPv6.
299 */
300
301 struct ipv6_txoptions {
302 refcount_t refcnt;
303 /* Length of this structure */
304 int tot_len;
305
306 /* length of extension headers */
307
308 __u16 opt_flen; /* after fragment hdr */
309 __u16 opt_nflen; /* before fragment hdr */
310
311 struct ipv6_opt_hdr *hopopt;
312 struct ipv6_opt_hdr *dst0opt;
313 struct ipv6_rt_hdr *srcrt; /* Routing Header */
314 struct ipv6_opt_hdr *dst1opt;
315 struct rcu_head rcu;
316 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
317 };
318
319 /* flowlabel_reflect sysctl values */
320 enum flowlabel_reflect {
321 FLOWLABEL_REFLECT_ESTABLISHED = 1,
322 FLOWLABEL_REFLECT_TCP_RESET = 2,
323 FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES = 4,
324 };
325
326 struct ip6_flowlabel {
327 struct ip6_flowlabel __rcu *next;
328 __be32 label;
329 atomic_t users;
330 struct in6_addr dst;
331 struct ipv6_txoptions *opt;
332 unsigned long linger;
333 struct rcu_head rcu;
334 u8 share;
335 union {
336 struct pid *pid;
337 kuid_t uid;
338 } owner;
339 unsigned long lastuse;
340 unsigned long expires;
341 struct net *fl_net;
342 };
343
344 #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF)
345 #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF)
346 #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000)
347
348 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
349 #define IPV6_TCLASS_SHIFT 20
350
351 struct ipv6_fl_socklist {
352 struct ipv6_fl_socklist __rcu *next;
353 struct ip6_flowlabel *fl;
354 struct rcu_head rcu;
355 };
356
357 struct ipcm6_cookie {
358 struct sockcm_cookie sockc;
359 __s16 hlimit;
360 __s16 tclass;
361 __u16 gso_size;
362 __s8 dontfrag;
363 struct ipv6_txoptions *opt;
364 };
365
ipcm6_init(struct ipcm6_cookie * ipc6)366 static inline void ipcm6_init(struct ipcm6_cookie *ipc6)
367 {
368 *ipc6 = (struct ipcm6_cookie) {
369 .hlimit = -1,
370 .tclass = -1,
371 .dontfrag = -1,
372 };
373 }
374
ipcm6_init_sk(struct ipcm6_cookie * ipc6,const struct ipv6_pinfo * np)375 static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6,
376 const struct ipv6_pinfo *np)
377 {
378 *ipc6 = (struct ipcm6_cookie) {
379 .hlimit = -1,
380 .tclass = np->tclass,
381 .dontfrag = np->dontfrag,
382 };
383 }
384
txopt_get(const struct ipv6_pinfo * np)385 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
386 {
387 struct ipv6_txoptions *opt;
388
389 rcu_read_lock();
390 opt = rcu_dereference(np->opt);
391 if (opt) {
392 if (!refcount_inc_not_zero(&opt->refcnt))
393 opt = NULL;
394 else
395 opt = rcu_pointer_handoff(opt);
396 }
397 rcu_read_unlock();
398 return opt;
399 }
400
txopt_put(struct ipv6_txoptions * opt)401 static inline void txopt_put(struct ipv6_txoptions *opt)
402 {
403 if (opt && refcount_dec_and_test(&opt->refcnt))
404 kfree_rcu(opt, rcu);
405 }
406
407 #if IS_ENABLED(CONFIG_IPV6)
408 struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label);
409
410 extern struct static_key_false_deferred ipv6_flowlabel_exclusive;
fl6_sock_lookup(struct sock * sk,__be32 label)411 static inline struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk,
412 __be32 label)
413 {
414 if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key) &&
415 READ_ONCE(sock_net(sk)->ipv6.flowlabel_has_excl))
416 return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT);
417
418 return NULL;
419 }
420 #endif
421
422 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
423 struct ip6_flowlabel *fl,
424 struct ipv6_txoptions *fopt);
425 void fl6_free_socklist(struct sock *sk);
426 int ipv6_flowlabel_opt(struct sock *sk, sockptr_t optval, int optlen);
427 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
428 int flags);
429 int ip6_flowlabel_init(void);
430 void ip6_flowlabel_cleanup(void);
431 bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np);
432
fl6_sock_release(struct ip6_flowlabel * fl)433 static inline void fl6_sock_release(struct ip6_flowlabel *fl)
434 {
435 if (fl)
436 atomic_dec(&fl->users);
437 }
438
439 enum skb_drop_reason icmpv6_notify(struct sk_buff *skb, u8 type,
440 u8 code, __be32 info);
441
442 void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
443 struct icmp6hdr *thdr, int len);
444
445 int ip6_ra_control(struct sock *sk, int sel);
446
447 int ipv6_parse_hopopts(struct sk_buff *skb);
448
449 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
450 struct ipv6_txoptions *opt);
451 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
452 struct ipv6_txoptions *opt,
453 int newtype,
454 struct ipv6_opt_hdr *newopt);
455 struct ipv6_txoptions *__ipv6_fixup_options(struct ipv6_txoptions *opt_space,
456 struct ipv6_txoptions *opt);
457
458 static inline struct ipv6_txoptions *
ipv6_fixup_options(struct ipv6_txoptions * opt_space,struct ipv6_txoptions * opt)459 ipv6_fixup_options(struct ipv6_txoptions *opt_space, struct ipv6_txoptions *opt)
460 {
461 if (!opt)
462 return NULL;
463 return __ipv6_fixup_options(opt_space, opt);
464 }
465
466 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
467 const struct inet6_skb_parm *opt);
468 struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
469 struct ipv6_txoptions *opt);
470
471 /* This helper is specialized for BIG TCP needs.
472 * It assumes the hop_jumbo_hdr will immediately follow the IPV6 header.
473 * It assumes headers are already in skb->head.
474 * Returns 0, or IPPROTO_TCP if a BIG TCP packet is there.
475 */
ipv6_has_hopopt_jumbo(const struct sk_buff * skb)476 static inline int ipv6_has_hopopt_jumbo(const struct sk_buff *skb)
477 {
478 const struct hop_jumbo_hdr *jhdr;
479 const struct ipv6hdr *nhdr;
480
481 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
482 return 0;
483
484 if (skb->protocol != htons(ETH_P_IPV6))
485 return 0;
486
487 if (skb_network_offset(skb) +
488 sizeof(struct ipv6hdr) +
489 sizeof(struct hop_jumbo_hdr) > skb_headlen(skb))
490 return 0;
491
492 nhdr = ipv6_hdr(skb);
493
494 if (nhdr->nexthdr != NEXTHDR_HOP)
495 return 0;
496
497 jhdr = (const struct hop_jumbo_hdr *) (nhdr + 1);
498 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
499 jhdr->nexthdr != IPPROTO_TCP)
500 return 0;
501 return jhdr->nexthdr;
502 }
503
504 /* Return 0 if HBH header is successfully removed
505 * Or if HBH removal is unnecessary (packet is not big TCP)
506 * Return error to indicate dropping the packet
507 */
ipv6_hopopt_jumbo_remove(struct sk_buff * skb)508 static inline int ipv6_hopopt_jumbo_remove(struct sk_buff *skb)
509 {
510 const int hophdr_len = sizeof(struct hop_jumbo_hdr);
511 int nexthdr = ipv6_has_hopopt_jumbo(skb);
512 struct ipv6hdr *h6;
513
514 if (!nexthdr)
515 return 0;
516
517 if (skb_cow_head(skb, 0))
518 return -1;
519
520 /* Remove the HBH header.
521 * Layout: [Ethernet header][IPv6 header][HBH][L4 Header]
522 */
523 memmove(skb_mac_header(skb) + hophdr_len, skb_mac_header(skb),
524 skb_network_header(skb) - skb_mac_header(skb) +
525 sizeof(struct ipv6hdr));
526
527 __skb_pull(skb, hophdr_len);
528 skb->network_header += hophdr_len;
529 skb->mac_header += hophdr_len;
530
531 h6 = ipv6_hdr(skb);
532 h6->nexthdr = nexthdr;
533
534 return 0;
535 }
536
ipv6_accept_ra(struct inet6_dev * idev)537 static inline bool ipv6_accept_ra(struct inet6_dev *idev)
538 {
539 /* If forwarding is enabled, RA are not accepted unless the special
540 * hybrid mode (accept_ra=2) is enabled.
541 */
542 return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
543 idev->cnf.accept_ra;
544 }
545
546 #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */
547 #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */
548 #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */
549
550 int __ipv6_addr_type(const struct in6_addr *addr);
ipv6_addr_type(const struct in6_addr * addr)551 static inline int ipv6_addr_type(const struct in6_addr *addr)
552 {
553 return __ipv6_addr_type(addr) & 0xffff;
554 }
555
ipv6_addr_scope(const struct in6_addr * addr)556 static inline int ipv6_addr_scope(const struct in6_addr *addr)
557 {
558 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
559 }
560
__ipv6_addr_src_scope(int type)561 static inline int __ipv6_addr_src_scope(int type)
562 {
563 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
564 }
565
ipv6_addr_src_scope(const struct in6_addr * addr)566 static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
567 {
568 return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
569 }
570
__ipv6_addr_needs_scope_id(int type)571 static inline bool __ipv6_addr_needs_scope_id(int type)
572 {
573 return type & IPV6_ADDR_LINKLOCAL ||
574 (type & IPV6_ADDR_MULTICAST &&
575 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
576 }
577
ipv6_iface_scope_id(const struct in6_addr * addr,int iface)578 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
579 {
580 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
581 }
582
ipv6_addr_cmp(const struct in6_addr * a1,const struct in6_addr * a2)583 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
584 {
585 return memcmp(a1, a2, sizeof(struct in6_addr));
586 }
587
588 static inline bool
ipv6_masked_addr_cmp(const struct in6_addr * a1,const struct in6_addr * m,const struct in6_addr * a2)589 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
590 const struct in6_addr *a2)
591 {
592 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
593 const unsigned long *ul1 = (const unsigned long *)a1;
594 const unsigned long *ulm = (const unsigned long *)m;
595 const unsigned long *ul2 = (const unsigned long *)a2;
596
597 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
598 ((ul1[1] ^ ul2[1]) & ulm[1]));
599 #else
600 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
601 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
602 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
603 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
604 #endif
605 }
606
ipv6_addr_prefix(struct in6_addr * pfx,const struct in6_addr * addr,int plen)607 static inline void ipv6_addr_prefix(struct in6_addr *pfx,
608 const struct in6_addr *addr,
609 int plen)
610 {
611 /* caller must guarantee 0 <= plen <= 128 */
612 int o = plen >> 3,
613 b = plen & 0x7;
614
615 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
616 memcpy(pfx->s6_addr, addr, o);
617 if (b != 0)
618 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
619 }
620
ipv6_addr_prefix_copy(struct in6_addr * addr,const struct in6_addr * pfx,int plen)621 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
622 const struct in6_addr *pfx,
623 int plen)
624 {
625 /* caller must guarantee 0 <= plen <= 128 */
626 int o = plen >> 3,
627 b = plen & 0x7;
628
629 memcpy(addr->s6_addr, pfx, o);
630 if (b != 0) {
631 addr->s6_addr[o] &= ~(0xff00 >> b);
632 addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
633 }
634 }
635
__ipv6_addr_set_half(__be32 * addr,__be32 wh,__be32 wl)636 static inline void __ipv6_addr_set_half(__be32 *addr,
637 __be32 wh, __be32 wl)
638 {
639 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
640 #if defined(__BIG_ENDIAN)
641 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
642 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
643 return;
644 }
645 #elif defined(__LITTLE_ENDIAN)
646 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
647 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
648 return;
649 }
650 #endif
651 #endif
652 addr[0] = wh;
653 addr[1] = wl;
654 }
655
ipv6_addr_set(struct in6_addr * addr,__be32 w1,__be32 w2,__be32 w3,__be32 w4)656 static inline void ipv6_addr_set(struct in6_addr *addr,
657 __be32 w1, __be32 w2,
658 __be32 w3, __be32 w4)
659 {
660 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
661 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
662 }
663
ipv6_addr_equal(const struct in6_addr * a1,const struct in6_addr * a2)664 static inline bool ipv6_addr_equal(const struct in6_addr *a1,
665 const struct in6_addr *a2)
666 {
667 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
668 const unsigned long *ul1 = (const unsigned long *)a1;
669 const unsigned long *ul2 = (const unsigned long *)a2;
670
671 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
672 #else
673 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
674 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
675 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
676 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
677 #endif
678 }
679
680 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
__ipv6_prefix_equal64_half(const __be64 * a1,const __be64 * a2,unsigned int len)681 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
682 const __be64 *a2,
683 unsigned int len)
684 {
685 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
686 return false;
687 return true;
688 }
689
ipv6_prefix_equal(const struct in6_addr * addr1,const struct in6_addr * addr2,unsigned int prefixlen)690 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
691 const struct in6_addr *addr2,
692 unsigned int prefixlen)
693 {
694 const __be64 *a1 = (const __be64 *)addr1;
695 const __be64 *a2 = (const __be64 *)addr2;
696
697 if (prefixlen >= 64) {
698 if (a1[0] ^ a2[0])
699 return false;
700 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
701 }
702 return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
703 }
704 #else
ipv6_prefix_equal(const struct in6_addr * addr1,const struct in6_addr * addr2,unsigned int prefixlen)705 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
706 const struct in6_addr *addr2,
707 unsigned int prefixlen)
708 {
709 const __be32 *a1 = addr1->s6_addr32;
710 const __be32 *a2 = addr2->s6_addr32;
711 unsigned int pdw, pbi;
712
713 /* check complete u32 in prefix */
714 pdw = prefixlen >> 5;
715 if (pdw && memcmp(a1, a2, pdw << 2))
716 return false;
717
718 /* check incomplete u32 in prefix */
719 pbi = prefixlen & 0x1f;
720 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
721 return false;
722
723 return true;
724 }
725 #endif
726
ipv6_addr_any(const struct in6_addr * a)727 static inline bool ipv6_addr_any(const struct in6_addr *a)
728 {
729 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
730 const unsigned long *ul = (const unsigned long *)a;
731
732 return (ul[0] | ul[1]) == 0UL;
733 #else
734 return (a->s6_addr32[0] | a->s6_addr32[1] |
735 a->s6_addr32[2] | a->s6_addr32[3]) == 0;
736 #endif
737 }
738
ipv6_addr_hash(const struct in6_addr * a)739 static inline u32 ipv6_addr_hash(const struct in6_addr *a)
740 {
741 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
742 const unsigned long *ul = (const unsigned long *)a;
743 unsigned long x = ul[0] ^ ul[1];
744
745 return (u32)(x ^ (x >> 32));
746 #else
747 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
748 a->s6_addr32[2] ^ a->s6_addr32[3]);
749 #endif
750 }
751
752 /* more secured version of ipv6_addr_hash() */
__ipv6_addr_jhash(const struct in6_addr * a,const u32 initval)753 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
754 {
755 u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1];
756
757 return jhash_3words(v,
758 (__force u32)a->s6_addr32[2],
759 (__force u32)a->s6_addr32[3],
760 initval);
761 }
762
ipv6_addr_loopback(const struct in6_addr * a)763 static inline bool ipv6_addr_loopback(const struct in6_addr *a)
764 {
765 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
766 const __be64 *be = (const __be64 *)a;
767
768 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
769 #else
770 return (a->s6_addr32[0] | a->s6_addr32[1] |
771 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
772 #endif
773 }
774
775 /*
776 * Note that we must __force cast these to unsigned long to make sparse happy,
777 * since all of the endian-annotated types are fixed size regardless of arch.
778 */
ipv6_addr_v4mapped(const struct in6_addr * a)779 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
780 {
781 return (
782 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
783 *(unsigned long *)a |
784 #else
785 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
786 #endif
787 (__force unsigned long)(a->s6_addr32[2] ^
788 cpu_to_be32(0x0000ffff))) == 0UL;
789 }
790
ipv6_addr_v4mapped_loopback(const struct in6_addr * a)791 static inline bool ipv6_addr_v4mapped_loopback(const struct in6_addr *a)
792 {
793 return ipv6_addr_v4mapped(a) && ipv4_is_loopback(a->s6_addr32[3]);
794 }
795
ipv6_portaddr_hash(const struct net * net,const struct in6_addr * addr6,unsigned int port)796 static inline u32 ipv6_portaddr_hash(const struct net *net,
797 const struct in6_addr *addr6,
798 unsigned int port)
799 {
800 unsigned int hash, mix = net_hash_mix(net);
801
802 if (ipv6_addr_any(addr6))
803 hash = jhash_1word(0, mix);
804 else if (ipv6_addr_v4mapped(addr6))
805 hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix);
806 else
807 hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix);
808
809 return hash ^ port;
810 }
811
812 /*
813 * Check for a RFC 4843 ORCHID address
814 * (Overlay Routable Cryptographic Hash Identifiers)
815 */
ipv6_addr_orchid(const struct in6_addr * a)816 static inline bool ipv6_addr_orchid(const struct in6_addr *a)
817 {
818 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
819 }
820
ipv6_addr_is_multicast(const struct in6_addr * addr)821 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
822 {
823 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
824 }
825
ipv6_addr_set_v4mapped(const __be32 addr,struct in6_addr * v4mapped)826 static inline void ipv6_addr_set_v4mapped(const __be32 addr,
827 struct in6_addr *v4mapped)
828 {
829 ipv6_addr_set(v4mapped,
830 0, 0,
831 htonl(0x0000FFFF),
832 addr);
833 }
834
835 /*
836 * find the first different bit between two addresses
837 * length of address must be a multiple of 32bits
838 */
__ipv6_addr_diff32(const void * token1,const void * token2,int addrlen)839 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
840 {
841 const __be32 *a1 = token1, *a2 = token2;
842 int i;
843
844 addrlen >>= 2;
845
846 for (i = 0; i < addrlen; i++) {
847 __be32 xb = a1[i] ^ a2[i];
848 if (xb)
849 return i * 32 + 31 - __fls(ntohl(xb));
850 }
851
852 /*
853 * we should *never* get to this point since that
854 * would mean the addrs are equal
855 *
856 * However, we do get to it 8) And exacly, when
857 * addresses are equal 8)
858 *
859 * ip route add 1111::/128 via ...
860 * ip route add 1111::/64 via ...
861 * and we are here.
862 *
863 * Ideally, this function should stop comparison
864 * at prefix length. It does not, but it is still OK,
865 * if returned value is greater than prefix length.
866 * --ANK (980803)
867 */
868 return addrlen << 5;
869 }
870
871 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
__ipv6_addr_diff64(const void * token1,const void * token2,int addrlen)872 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
873 {
874 const __be64 *a1 = token1, *a2 = token2;
875 int i;
876
877 addrlen >>= 3;
878
879 for (i = 0; i < addrlen; i++) {
880 __be64 xb = a1[i] ^ a2[i];
881 if (xb)
882 return i * 64 + 63 - __fls(be64_to_cpu(xb));
883 }
884
885 return addrlen << 6;
886 }
887 #endif
888
__ipv6_addr_diff(const void * token1,const void * token2,int addrlen)889 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
890 {
891 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
892 if (__builtin_constant_p(addrlen) && !(addrlen & 7))
893 return __ipv6_addr_diff64(token1, token2, addrlen);
894 #endif
895 return __ipv6_addr_diff32(token1, token2, addrlen);
896 }
897
ipv6_addr_diff(const struct in6_addr * a1,const struct in6_addr * a2)898 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
899 {
900 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
901 }
902
903 __be32 ipv6_select_ident(struct net *net,
904 const struct in6_addr *daddr,
905 const struct in6_addr *saddr);
906 __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
907
908 int ip6_dst_hoplimit(struct dst_entry *dst);
909
ip6_sk_dst_hoplimit(struct ipv6_pinfo * np,struct flowi6 * fl6,struct dst_entry * dst)910 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
911 struct dst_entry *dst)
912 {
913 int hlimit;
914
915 if (ipv6_addr_is_multicast(&fl6->daddr))
916 hlimit = np->mcast_hops;
917 else
918 hlimit = np->hop_limit;
919 if (hlimit < 0)
920 hlimit = ip6_dst_hoplimit(dst);
921 return hlimit;
922 }
923
924 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
925 * Equivalent to : flow->v6addrs.src = iph->saddr;
926 * flow->v6addrs.dst = iph->daddr;
927 */
iph_to_flow_copy_v6addrs(struct flow_keys * flow,const struct ipv6hdr * iph)928 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
929 const struct ipv6hdr *iph)
930 {
931 BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
932 offsetof(typeof(flow->addrs), v6addrs.src) +
933 sizeof(flow->addrs.v6addrs.src));
934 memcpy(&flow->addrs.v6addrs, &iph->addrs, sizeof(flow->addrs.v6addrs));
935 flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
936 }
937
938 #if IS_ENABLED(CONFIG_IPV6)
939
ipv6_can_nonlocal_bind(struct net * net,struct inet_sock * inet)940 static inline bool ipv6_can_nonlocal_bind(struct net *net,
941 struct inet_sock *inet)
942 {
943 return net->ipv6.sysctl.ip_nonlocal_bind ||
944 inet->freebind || inet->transparent;
945 }
946
947 /* Sysctl settings for net ipv6.auto_flowlabels */
948 #define IP6_AUTO_FLOW_LABEL_OFF 0
949 #define IP6_AUTO_FLOW_LABEL_OPTOUT 1
950 #define IP6_AUTO_FLOW_LABEL_OPTIN 2
951 #define IP6_AUTO_FLOW_LABEL_FORCED 3
952
953 #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED
954
955 #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT
956
ip6_make_flowlabel(struct net * net,struct sk_buff * skb,__be32 flowlabel,bool autolabel,struct flowi6 * fl6)957 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
958 __be32 flowlabel, bool autolabel,
959 struct flowi6 *fl6)
960 {
961 u32 hash;
962
963 /* @flowlabel may include more than a flow label, eg, the traffic class.
964 * Here we want only the flow label value.
965 */
966 flowlabel &= IPV6_FLOWLABEL_MASK;
967
968 if (flowlabel ||
969 net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
970 (!autolabel &&
971 net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
972 return flowlabel;
973
974 hash = skb_get_hash_flowi6(skb, fl6);
975
976 /* Since this is being sent on the wire obfuscate hash a bit
977 * to minimize possbility that any useful information to an
978 * attacker is leaked. Only lower 20 bits are relevant.
979 */
980 hash = rol32(hash, 16);
981
982 flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
983
984 if (net->ipv6.sysctl.flowlabel_state_ranges)
985 flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
986
987 return flowlabel;
988 }
989
ip6_default_np_autolabel(struct net * net)990 static inline int ip6_default_np_autolabel(struct net *net)
991 {
992 switch (net->ipv6.sysctl.auto_flowlabels) {
993 case IP6_AUTO_FLOW_LABEL_OFF:
994 case IP6_AUTO_FLOW_LABEL_OPTIN:
995 default:
996 return 0;
997 case IP6_AUTO_FLOW_LABEL_OPTOUT:
998 case IP6_AUTO_FLOW_LABEL_FORCED:
999 return 1;
1000 }
1001 }
1002 #else
ip6_make_flowlabel(struct net * net,struct sk_buff * skb,__be32 flowlabel,bool autolabel,struct flowi6 * fl6)1003 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
1004 __be32 flowlabel, bool autolabel,
1005 struct flowi6 *fl6)
1006 {
1007 return flowlabel;
1008 }
ip6_default_np_autolabel(struct net * net)1009 static inline int ip6_default_np_autolabel(struct net *net)
1010 {
1011 return 0;
1012 }
1013 #endif
1014
1015 #if IS_ENABLED(CONFIG_IPV6)
ip6_multipath_hash_policy(const struct net * net)1016 static inline int ip6_multipath_hash_policy(const struct net *net)
1017 {
1018 return net->ipv6.sysctl.multipath_hash_policy;
1019 }
ip6_multipath_hash_fields(const struct net * net)1020 static inline u32 ip6_multipath_hash_fields(const struct net *net)
1021 {
1022 return net->ipv6.sysctl.multipath_hash_fields;
1023 }
1024 #else
ip6_multipath_hash_policy(const struct net * net)1025 static inline int ip6_multipath_hash_policy(const struct net *net)
1026 {
1027 return 0;
1028 }
ip6_multipath_hash_fields(const struct net * net)1029 static inline u32 ip6_multipath_hash_fields(const struct net *net)
1030 {
1031 return 0;
1032 }
1033 #endif
1034
1035 /*
1036 * Header manipulation
1037 */
ip6_flow_hdr(struct ipv6hdr * hdr,unsigned int tclass,__be32 flowlabel)1038 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
1039 __be32 flowlabel)
1040 {
1041 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
1042 }
1043
ip6_flowinfo(const struct ipv6hdr * hdr)1044 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
1045 {
1046 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
1047 }
1048
ip6_flowlabel(const struct ipv6hdr * hdr)1049 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
1050 {
1051 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
1052 }
1053
ip6_tclass(__be32 flowinfo)1054 static inline u8 ip6_tclass(__be32 flowinfo)
1055 {
1056 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
1057 }
1058
ip6_dscp(__be32 flowinfo)1059 static inline dscp_t ip6_dscp(__be32 flowinfo)
1060 {
1061 return inet_dsfield_to_dscp(ip6_tclass(flowinfo));
1062 }
1063
ip6_make_flowinfo(unsigned int tclass,__be32 flowlabel)1064 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
1065 {
1066 return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
1067 }
1068
flowi6_get_flowlabel(const struct flowi6 * fl6)1069 static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6)
1070 {
1071 return fl6->flowlabel & IPV6_FLOWLABEL_MASK;
1072 }
1073
1074 /*
1075 * Prototypes exported by ipv6
1076 */
1077
1078 /*
1079 * rcv function (called from netdevice level)
1080 */
1081
1082 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
1083 struct packet_type *pt, struct net_device *orig_dev);
1084 void ipv6_list_rcv(struct list_head *head, struct packet_type *pt,
1085 struct net_device *orig_dev);
1086
1087 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
1088
1089 /*
1090 * upper-layer output functions
1091 */
1092 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
1093 __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority);
1094
1095 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
1096
1097 int ip6_append_data(struct sock *sk,
1098 int getfrag(void *from, char *to, int offset, int len,
1099 int odd, struct sk_buff *skb),
1100 void *from, size_t length, int transhdrlen,
1101 struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
1102 struct rt6_info *rt, unsigned int flags);
1103
1104 int ip6_push_pending_frames(struct sock *sk);
1105
1106 void ip6_flush_pending_frames(struct sock *sk);
1107
1108 int ip6_send_skb(struct sk_buff *skb);
1109
1110 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
1111 struct inet_cork_full *cork,
1112 struct inet6_cork *v6_cork);
1113 struct sk_buff *ip6_make_skb(struct sock *sk,
1114 int getfrag(void *from, char *to, int offset,
1115 int len, int odd, struct sk_buff *skb),
1116 void *from, size_t length, int transhdrlen,
1117 struct ipcm6_cookie *ipc6,
1118 struct rt6_info *rt, unsigned int flags,
1119 struct inet_cork_full *cork);
1120
ip6_finish_skb(struct sock * sk)1121 static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
1122 {
1123 return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
1124 &inet6_sk(sk)->cork);
1125 }
1126
1127 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
1128 struct flowi6 *fl6);
1129 struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6,
1130 const struct in6_addr *final_dst);
1131 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
1132 const struct in6_addr *final_dst,
1133 bool connected);
1134 struct dst_entry *ip6_dst_lookup_tunnel(struct sk_buff *skb,
1135 struct net_device *dev,
1136 struct net *net, struct socket *sock,
1137 struct in6_addr *saddr,
1138 const struct ip_tunnel_info *info,
1139 u8 protocol, bool use_cache);
1140 struct dst_entry *ip6_blackhole_route(struct net *net,
1141 struct dst_entry *orig_dst);
1142
1143 /*
1144 * skb processing functions
1145 */
1146
1147 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
1148 int ip6_forward(struct sk_buff *skb);
1149 int ip6_input(struct sk_buff *skb);
1150 int ip6_mc_input(struct sk_buff *skb);
1151 void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr,
1152 bool have_final);
1153
1154 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1155 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1156
1157 /*
1158 * Extension header (options) processing
1159 */
1160
1161 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1162 u8 *proto, struct in6_addr **daddr_p,
1163 struct in6_addr *saddr);
1164 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1165 u8 *proto);
1166
1167 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
1168 __be16 *frag_offp);
1169
1170 bool ipv6_ext_hdr(u8 nexthdr);
1171
1172 enum {
1173 IP6_FH_F_FRAG = (1 << 0),
1174 IP6_FH_F_AUTH = (1 << 1),
1175 IP6_FH_F_SKIP_RH = (1 << 2),
1176 };
1177
1178 /* find specified header and get offset to it */
1179 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
1180 unsigned short *fragoff, int *fragflg);
1181
1182 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
1183
1184 struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
1185 const struct ipv6_txoptions *opt,
1186 struct in6_addr *orig);
1187
1188 /*
1189 * socket options (ipv6_sockglue.c)
1190 */
1191 DECLARE_STATIC_KEY_FALSE(ip6_min_hopcount);
1192
1193 int do_ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
1194 unsigned int optlen);
1195 int ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
1196 unsigned int optlen);
1197 int do_ipv6_getsockopt(struct sock *sk, int level, int optname,
1198 sockptr_t optval, sockptr_t optlen);
1199 int ipv6_getsockopt(struct sock *sk, int level, int optname,
1200 char __user *optval, int __user *optlen);
1201
1202 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
1203 int addr_len);
1204 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
1205 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
1206 int addr_len);
1207 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
1208 void ip6_datagram_release_cb(struct sock *sk);
1209
1210 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
1211 int *addr_len);
1212 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
1213 int *addr_len);
1214 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
1215 u32 info, u8 *payload);
1216 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
1217 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
1218
1219 void inet6_cleanup_sock(struct sock *sk);
1220 void inet6_sock_destruct(struct sock *sk);
1221 int inet6_release(struct socket *sock);
1222 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
1223 int inet6_getname(struct socket *sock, struct sockaddr *uaddr,
1224 int peer);
1225 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
1226 int inet6_compat_ioctl(struct socket *sock, unsigned int cmd,
1227 unsigned long arg);
1228
1229 int inet6_hash_connect(struct inet_timewait_death_row *death_row,
1230 struct sock *sk);
1231 int inet6_sendmsg(struct socket *sock, struct msghdr *msg, size_t size);
1232 int inet6_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1233 int flags);
1234
1235 /*
1236 * reassembly.c
1237 */
1238 extern const struct proto_ops inet6_stream_ops;
1239 extern const struct proto_ops inet6_dgram_ops;
1240 extern const struct proto_ops inet6_sockraw_ops;
1241
1242 struct group_source_req;
1243 struct group_filter;
1244
1245 int ip6_mc_source(int add, int omode, struct sock *sk,
1246 struct group_source_req *pgsr);
1247 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf,
1248 struct sockaddr_storage *list);
1249 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
1250 sockptr_t optval, size_t ss_offset);
1251
1252 #ifdef CONFIG_PROC_FS
1253 int ac6_proc_init(struct net *net);
1254 void ac6_proc_exit(struct net *net);
1255 int raw6_proc_init(void);
1256 void raw6_proc_exit(void);
1257 int tcp6_proc_init(struct net *net);
1258 void tcp6_proc_exit(struct net *net);
1259 int udp6_proc_init(struct net *net);
1260 void udp6_proc_exit(struct net *net);
1261 int udplite6_proc_init(void);
1262 void udplite6_proc_exit(void);
1263 int ipv6_misc_proc_init(void);
1264 void ipv6_misc_proc_exit(void);
1265 int snmp6_register_dev(struct inet6_dev *idev);
1266 int snmp6_unregister_dev(struct inet6_dev *idev);
1267
1268 #else
ac6_proc_init(struct net * net)1269 static inline int ac6_proc_init(struct net *net) { return 0; }
ac6_proc_exit(struct net * net)1270 static inline void ac6_proc_exit(struct net *net) { }
snmp6_register_dev(struct inet6_dev * idev)1271 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
snmp6_unregister_dev(struct inet6_dev * idev)1272 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
1273 #endif
1274
1275 #ifdef CONFIG_SYSCTL
1276 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
1277 struct ctl_table *ipv6_route_sysctl_init(struct net *net);
1278 int ipv6_sysctl_register(void);
1279 void ipv6_sysctl_unregister(void);
1280 #endif
1281
1282 int ipv6_sock_mc_join(struct sock *sk, int ifindex,
1283 const struct in6_addr *addr);
1284 int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex,
1285 const struct in6_addr *addr, unsigned int mode);
1286 int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
1287 const struct in6_addr *addr);
1288
ip6_sock_set_v6only(struct sock * sk)1289 static inline int ip6_sock_set_v6only(struct sock *sk)
1290 {
1291 if (inet_sk(sk)->inet_num)
1292 return -EINVAL;
1293 lock_sock(sk);
1294 sk->sk_ipv6only = true;
1295 release_sock(sk);
1296 return 0;
1297 }
1298
ip6_sock_set_recverr(struct sock * sk)1299 static inline void ip6_sock_set_recverr(struct sock *sk)
1300 {
1301 lock_sock(sk);
1302 inet6_sk(sk)->recverr = true;
1303 release_sock(sk);
1304 }
1305
__ip6_sock_set_addr_preferences(struct sock * sk,int val)1306 static inline int __ip6_sock_set_addr_preferences(struct sock *sk, int val)
1307 {
1308 unsigned int pref = 0;
1309 unsigned int prefmask = ~0;
1310
1311 /* check PUBLIC/TMP/PUBTMP_DEFAULT conflicts */
1312 switch (val & (IPV6_PREFER_SRC_PUBLIC |
1313 IPV6_PREFER_SRC_TMP |
1314 IPV6_PREFER_SRC_PUBTMP_DEFAULT)) {
1315 case IPV6_PREFER_SRC_PUBLIC:
1316 pref |= IPV6_PREFER_SRC_PUBLIC;
1317 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1318 IPV6_PREFER_SRC_TMP);
1319 break;
1320 case IPV6_PREFER_SRC_TMP:
1321 pref |= IPV6_PREFER_SRC_TMP;
1322 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1323 IPV6_PREFER_SRC_TMP);
1324 break;
1325 case IPV6_PREFER_SRC_PUBTMP_DEFAULT:
1326 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1327 IPV6_PREFER_SRC_TMP);
1328 break;
1329 case 0:
1330 break;
1331 default:
1332 return -EINVAL;
1333 }
1334
1335 /* check HOME/COA conflicts */
1336 switch (val & (IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_COA)) {
1337 case IPV6_PREFER_SRC_HOME:
1338 prefmask &= ~IPV6_PREFER_SRC_COA;
1339 break;
1340 case IPV6_PREFER_SRC_COA:
1341 pref |= IPV6_PREFER_SRC_COA;
1342 break;
1343 case 0:
1344 break;
1345 default:
1346 return -EINVAL;
1347 }
1348
1349 /* check CGA/NONCGA conflicts */
1350 switch (val & (IPV6_PREFER_SRC_CGA|IPV6_PREFER_SRC_NONCGA)) {
1351 case IPV6_PREFER_SRC_CGA:
1352 case IPV6_PREFER_SRC_NONCGA:
1353 case 0:
1354 break;
1355 default:
1356 return -EINVAL;
1357 }
1358
1359 inet6_sk(sk)->srcprefs = (inet6_sk(sk)->srcprefs & prefmask) | pref;
1360 return 0;
1361 }
1362
ip6_sock_set_addr_preferences(struct sock * sk,bool val)1363 static inline int ip6_sock_set_addr_preferences(struct sock *sk, bool val)
1364 {
1365 int ret;
1366
1367 lock_sock(sk);
1368 ret = __ip6_sock_set_addr_preferences(sk, val);
1369 release_sock(sk);
1370 return ret;
1371 }
1372
ip6_sock_set_recvpktinfo(struct sock * sk)1373 static inline void ip6_sock_set_recvpktinfo(struct sock *sk)
1374 {
1375 lock_sock(sk);
1376 inet6_sk(sk)->rxopt.bits.rxinfo = true;
1377 release_sock(sk);
1378 }
1379
1380 #endif /* _NET_IPV6_H */
1381