1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/net.h>
61 #include <linux/interrupt.h>
62 #include <linux/thread_info.h>
63 #include <linux/rcupdate.h>
64 #include <linux/netdevice.h>
65 #include <linux/proc_fs.h>
66 #include <linux/seq_file.h>
67 #include <linux/mutex.h>
68 #include <linux/if_bridge.h>
69 #include <linux/if_vlan.h>
70 #include <linux/ptp_classify.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/cache.h>
74 #include <linux/module.h>
75 #include <linux/highmem.h>
76 #include <linux/mount.h>
77 #include <linux/pseudo_fs.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/compat.h>
81 #include <linux/kmod.h>
82 #include <linux/audit.h>
83 #include <linux/wireless.h>
84 #include <linux/nsproxy.h>
85 #include <linux/magic.h>
86 #include <linux/slab.h>
87 #include <linux/xattr.h>
88 #include <linux/nospec.h>
89 #include <linux/indirect_call_wrapper.h>
90
91 #include <linux/uaccess.h>
92 #include <asm/unistd.h>
93
94 #include <net/compat.h>
95 #include <net/wext.h>
96 #include <net/cls_cgroup.h>
97
98 #include <net/sock.h>
99 #include <linux/netfilter.h>
100
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/termios.h>
105 #include <linux/sockios.h>
106 #include <net/busy_poll.h>
107 #include <linux/errqueue.h>
108 #include <linux/ptp_clock_kernel.h>
109 #include <trace/events/sock.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)136 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
137 {
138 struct socket *sock = f->private_data;
139
140 if (sock->ops->show_fdinfo)
141 sock->ops->show_fdinfo(m, sock);
142 }
143 #else
144 #define sock_show_fdinfo NULL
145 #endif
146
147 /*
148 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
149 * in the operation structures but are done directly via the socketcall() multiplexor.
150 */
151
152 static const struct file_operations socket_file_ops = {
153 .owner = THIS_MODULE,
154 .llseek = no_llseek,
155 .read_iter = sock_read_iter,
156 .write_iter = sock_write_iter,
157 .poll = sock_poll,
158 .unlocked_ioctl = sock_ioctl,
159 #ifdef CONFIG_COMPAT
160 .compat_ioctl = compat_sock_ioctl,
161 #endif
162 .mmap = sock_mmap,
163 .release = sock_close,
164 .fasync = sock_fasync,
165 .sendpage = sock_sendpage,
166 .splice_write = generic_splice_sendpage,
167 .splice_read = sock_splice_read,
168 .show_fdinfo = sock_show_fdinfo,
169 };
170
171 static const char * const pf_family_names[] = {
172 [PF_UNSPEC] = "PF_UNSPEC",
173 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
174 [PF_INET] = "PF_INET",
175 [PF_AX25] = "PF_AX25",
176 [PF_IPX] = "PF_IPX",
177 [PF_APPLETALK] = "PF_APPLETALK",
178 [PF_NETROM] = "PF_NETROM",
179 [PF_BRIDGE] = "PF_BRIDGE",
180 [PF_ATMPVC] = "PF_ATMPVC",
181 [PF_X25] = "PF_X25",
182 [PF_INET6] = "PF_INET6",
183 [PF_ROSE] = "PF_ROSE",
184 [PF_DECnet] = "PF_DECnet",
185 [PF_NETBEUI] = "PF_NETBEUI",
186 [PF_SECURITY] = "PF_SECURITY",
187 [PF_KEY] = "PF_KEY",
188 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
189 [PF_PACKET] = "PF_PACKET",
190 [PF_ASH] = "PF_ASH",
191 [PF_ECONET] = "PF_ECONET",
192 [PF_ATMSVC] = "PF_ATMSVC",
193 [PF_RDS] = "PF_RDS",
194 [PF_SNA] = "PF_SNA",
195 [PF_IRDA] = "PF_IRDA",
196 [PF_PPPOX] = "PF_PPPOX",
197 [PF_WANPIPE] = "PF_WANPIPE",
198 [PF_LLC] = "PF_LLC",
199 [PF_IB] = "PF_IB",
200 [PF_MPLS] = "PF_MPLS",
201 [PF_CAN] = "PF_CAN",
202 [PF_TIPC] = "PF_TIPC",
203 [PF_BLUETOOTH] = "PF_BLUETOOTH",
204 [PF_IUCV] = "PF_IUCV",
205 [PF_RXRPC] = "PF_RXRPC",
206 [PF_ISDN] = "PF_ISDN",
207 [PF_PHONET] = "PF_PHONET",
208 [PF_IEEE802154] = "PF_IEEE802154",
209 [PF_CAIF] = "PF_CAIF",
210 [PF_ALG] = "PF_ALG",
211 [PF_NFC] = "PF_NFC",
212 [PF_VSOCK] = "PF_VSOCK",
213 [PF_KCM] = "PF_KCM",
214 [PF_QIPCRTR] = "PF_QIPCRTR",
215 [PF_SMC] = "PF_SMC",
216 [PF_XDP] = "PF_XDP",
217 [PF_MCTP] = "PF_MCTP",
218 };
219
220 /*
221 * The protocol list. Each protocol is registered in here.
222 */
223
224 static DEFINE_SPINLOCK(net_family_lock);
225 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
226
227 /*
228 * Support routines.
229 * Move socket addresses back and forth across the kernel/user
230 * divide and look after the messy bits.
231 */
232
233 /**
234 * move_addr_to_kernel - copy a socket address into kernel space
235 * @uaddr: Address in user space
236 * @kaddr: Address in kernel space
237 * @ulen: Length in user space
238 *
239 * The address is copied into kernel space. If the provided address is
240 * too long an error code of -EINVAL is returned. If the copy gives
241 * invalid addresses -EFAULT is returned. On a success 0 is returned.
242 */
243
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)244 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
245 {
246 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
247 return -EINVAL;
248 if (ulen == 0)
249 return 0;
250 if (copy_from_user(kaddr, uaddr, ulen))
251 return -EFAULT;
252 return audit_sockaddr(ulen, kaddr);
253 }
254
255 /**
256 * move_addr_to_user - copy an address to user space
257 * @kaddr: kernel space address
258 * @klen: length of address in kernel
259 * @uaddr: user space address
260 * @ulen: pointer to user length field
261 *
262 * The value pointed to by ulen on entry is the buffer length available.
263 * This is overwritten with the buffer space used. -EINVAL is returned
264 * if an overlong buffer is specified or a negative buffer size. -EFAULT
265 * is returned if either the buffer or the length field are not
266 * accessible.
267 * After copying the data up to the limit the user specifies, the true
268 * length of the data is written over the length limit the user
269 * specified. Zero is returned for a success.
270 */
271
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)272 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
273 void __user *uaddr, int __user *ulen)
274 {
275 int err;
276 int len;
277
278 BUG_ON(klen > sizeof(struct sockaddr_storage));
279 err = get_user(len, ulen);
280 if (err)
281 return err;
282 if (len > klen)
283 len = klen;
284 if (len < 0)
285 return -EINVAL;
286 if (len) {
287 if (audit_sockaddr(klen, kaddr))
288 return -ENOMEM;
289 if (copy_to_user(uaddr, kaddr, len))
290 return -EFAULT;
291 }
292 /*
293 * "fromlen shall refer to the value before truncation.."
294 * 1003.1g
295 */
296 return __put_user(klen, ulen);
297 }
298
299 static struct kmem_cache *sock_inode_cachep __ro_after_init;
300
sock_alloc_inode(struct super_block * sb)301 static struct inode *sock_alloc_inode(struct super_block *sb)
302 {
303 struct socket_alloc *ei;
304
305 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
306 if (!ei)
307 return NULL;
308 init_waitqueue_head(&ei->socket.wq.wait);
309 ei->socket.wq.fasync_list = NULL;
310 ei->socket.wq.flags = 0;
311
312 ei->socket.state = SS_UNCONNECTED;
313 ei->socket.flags = 0;
314 ei->socket.ops = NULL;
315 ei->socket.sk = NULL;
316 ei->socket.file = NULL;
317
318 return &ei->vfs_inode;
319 }
320
sock_free_inode(struct inode * inode)321 static void sock_free_inode(struct inode *inode)
322 {
323 struct socket_alloc *ei;
324
325 ei = container_of(inode, struct socket_alloc, vfs_inode);
326 kmem_cache_free(sock_inode_cachep, ei);
327 }
328
init_once(void * foo)329 static void init_once(void *foo)
330 {
331 struct socket_alloc *ei = (struct socket_alloc *)foo;
332
333 inode_init_once(&ei->vfs_inode);
334 }
335
init_inodecache(void)336 static void init_inodecache(void)
337 {
338 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
339 sizeof(struct socket_alloc),
340 0,
341 (SLAB_HWCACHE_ALIGN |
342 SLAB_RECLAIM_ACCOUNT |
343 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
344 init_once);
345 BUG_ON(sock_inode_cachep == NULL);
346 }
347
348 static const struct super_operations sockfs_ops = {
349 .alloc_inode = sock_alloc_inode,
350 .free_inode = sock_free_inode,
351 .statfs = simple_statfs,
352 };
353
354 /*
355 * sockfs_dname() is called from d_path().
356 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)357 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
358 {
359 return dynamic_dname(buffer, buflen, "socket:[%lu]",
360 d_inode(dentry)->i_ino);
361 }
362
363 static const struct dentry_operations sockfs_dentry_operations = {
364 .d_dname = sockfs_dname,
365 };
366
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)367 static int sockfs_xattr_get(const struct xattr_handler *handler,
368 struct dentry *dentry, struct inode *inode,
369 const char *suffix, void *value, size_t size)
370 {
371 if (value) {
372 if (dentry->d_name.len + 1 > size)
373 return -ERANGE;
374 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
375 }
376 return dentry->d_name.len + 1;
377 }
378
379 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
380 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
381 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
382
383 static const struct xattr_handler sockfs_xattr_handler = {
384 .name = XATTR_NAME_SOCKPROTONAME,
385 .get = sockfs_xattr_get,
386 };
387
sockfs_security_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)388 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
389 struct mnt_idmap *idmap,
390 struct dentry *dentry, struct inode *inode,
391 const char *suffix, const void *value,
392 size_t size, int flags)
393 {
394 /* Handled by LSM. */
395 return -EAGAIN;
396 }
397
398 static const struct xattr_handler sockfs_security_xattr_handler = {
399 .prefix = XATTR_SECURITY_PREFIX,
400 .set = sockfs_security_xattr_set,
401 };
402
403 static const struct xattr_handler *sockfs_xattr_handlers[] = {
404 &sockfs_xattr_handler,
405 &sockfs_security_xattr_handler,
406 NULL
407 };
408
sockfs_init_fs_context(struct fs_context * fc)409 static int sockfs_init_fs_context(struct fs_context *fc)
410 {
411 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
412 if (!ctx)
413 return -ENOMEM;
414 ctx->ops = &sockfs_ops;
415 ctx->dops = &sockfs_dentry_operations;
416 ctx->xattr = sockfs_xattr_handlers;
417 return 0;
418 }
419
420 static struct vfsmount *sock_mnt __read_mostly;
421
422 static struct file_system_type sock_fs_type = {
423 .name = "sockfs",
424 .init_fs_context = sockfs_init_fs_context,
425 .kill_sb = kill_anon_super,
426 };
427
428 /*
429 * Obtains the first available file descriptor and sets it up for use.
430 *
431 * These functions create file structures and maps them to fd space
432 * of the current process. On success it returns file descriptor
433 * and file struct implicitly stored in sock->file.
434 * Note that another thread may close file descriptor before we return
435 * from this function. We use the fact that now we do not refer
436 * to socket after mapping. If one day we will need it, this
437 * function will increment ref. count on file by 1.
438 *
439 * In any case returned fd MAY BE not valid!
440 * This race condition is unavoidable
441 * with shared fd spaces, we cannot solve it inside kernel,
442 * but we take care of internal coherence yet.
443 */
444
445 /**
446 * sock_alloc_file - Bind a &socket to a &file
447 * @sock: socket
448 * @flags: file status flags
449 * @dname: protocol name
450 *
451 * Returns the &file bound with @sock, implicitly storing it
452 * in sock->file. If dname is %NULL, sets to "".
453 *
454 * On failure @sock is released, and an ERR pointer is returned.
455 *
456 * This function uses GFP_KERNEL internally.
457 */
458
sock_alloc_file(struct socket * sock,int flags,const char * dname)459 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
460 {
461 struct file *file;
462
463 if (!dname)
464 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
465
466 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
467 O_RDWR | (flags & O_NONBLOCK),
468 &socket_file_ops);
469 if (IS_ERR(file)) {
470 sock_release(sock);
471 return file;
472 }
473
474 sock->file = file;
475 file->private_data = sock;
476 stream_open(SOCK_INODE(sock), file);
477 return file;
478 }
479 EXPORT_SYMBOL(sock_alloc_file);
480
sock_map_fd(struct socket * sock,int flags)481 static int sock_map_fd(struct socket *sock, int flags)
482 {
483 struct file *newfile;
484 int fd = get_unused_fd_flags(flags);
485 if (unlikely(fd < 0)) {
486 sock_release(sock);
487 return fd;
488 }
489
490 newfile = sock_alloc_file(sock, flags, NULL);
491 if (!IS_ERR(newfile)) {
492 fd_install(fd, newfile);
493 return fd;
494 }
495
496 put_unused_fd(fd);
497 return PTR_ERR(newfile);
498 }
499
500 /**
501 * sock_from_file - Return the &socket bounded to @file.
502 * @file: file
503 *
504 * On failure returns %NULL.
505 */
506
sock_from_file(struct file * file)507 struct socket *sock_from_file(struct file *file)
508 {
509 if (file->f_op == &socket_file_ops)
510 return file->private_data; /* set in sock_alloc_file */
511
512 return NULL;
513 }
514 EXPORT_SYMBOL(sock_from_file);
515
516 /**
517 * sockfd_lookup - Go from a file number to its socket slot
518 * @fd: file handle
519 * @err: pointer to an error code return
520 *
521 * The file handle passed in is locked and the socket it is bound
522 * to is returned. If an error occurs the err pointer is overwritten
523 * with a negative errno code and NULL is returned. The function checks
524 * for both invalid handles and passing a handle which is not a socket.
525 *
526 * On a success the socket object pointer is returned.
527 */
528
sockfd_lookup(int fd,int * err)529 struct socket *sockfd_lookup(int fd, int *err)
530 {
531 struct file *file;
532 struct socket *sock;
533
534 file = fget(fd);
535 if (!file) {
536 *err = -EBADF;
537 return NULL;
538 }
539
540 sock = sock_from_file(file);
541 if (!sock) {
542 *err = -ENOTSOCK;
543 fput(file);
544 }
545 return sock;
546 }
547 EXPORT_SYMBOL(sockfd_lookup);
548
sockfd_lookup_light(int fd,int * err,int * fput_needed)549 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
550 {
551 struct fd f = fdget(fd);
552 struct socket *sock;
553
554 *err = -EBADF;
555 if (f.file) {
556 sock = sock_from_file(f.file);
557 if (likely(sock)) {
558 *fput_needed = f.flags & FDPUT_FPUT;
559 return sock;
560 }
561 *err = -ENOTSOCK;
562 fdput(f);
563 }
564 return NULL;
565 }
566
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)567 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
568 size_t size)
569 {
570 ssize_t len;
571 ssize_t used = 0;
572
573 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
574 if (len < 0)
575 return len;
576 used += len;
577 if (buffer) {
578 if (size < used)
579 return -ERANGE;
580 buffer += len;
581 }
582
583 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
584 used += len;
585 if (buffer) {
586 if (size < used)
587 return -ERANGE;
588 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
589 buffer += len;
590 }
591
592 return used;
593 }
594
sockfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)595 static int sockfs_setattr(struct mnt_idmap *idmap,
596 struct dentry *dentry, struct iattr *iattr)
597 {
598 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
599
600 if (!err && (iattr->ia_valid & ATTR_UID)) {
601 struct socket *sock = SOCKET_I(d_inode(dentry));
602
603 if (sock->sk)
604 sock->sk->sk_uid = iattr->ia_uid;
605 else
606 err = -ENOENT;
607 }
608
609 return err;
610 }
611
612 static const struct inode_operations sockfs_inode_ops = {
613 .listxattr = sockfs_listxattr,
614 .setattr = sockfs_setattr,
615 };
616
617 /**
618 * sock_alloc - allocate a socket
619 *
620 * Allocate a new inode and socket object. The two are bound together
621 * and initialised. The socket is then returned. If we are out of inodes
622 * NULL is returned. This functions uses GFP_KERNEL internally.
623 */
624
sock_alloc(void)625 struct socket *sock_alloc(void)
626 {
627 struct inode *inode;
628 struct socket *sock;
629
630 inode = new_inode_pseudo(sock_mnt->mnt_sb);
631 if (!inode)
632 return NULL;
633
634 sock = SOCKET_I(inode);
635
636 inode->i_ino = get_next_ino();
637 inode->i_mode = S_IFSOCK | S_IRWXUGO;
638 inode->i_uid = current_fsuid();
639 inode->i_gid = current_fsgid();
640 inode->i_op = &sockfs_inode_ops;
641
642 return sock;
643 }
644 EXPORT_SYMBOL(sock_alloc);
645
__sock_release(struct socket * sock,struct inode * inode)646 static void __sock_release(struct socket *sock, struct inode *inode)
647 {
648 if (sock->ops) {
649 struct module *owner = sock->ops->owner;
650
651 if (inode)
652 inode_lock(inode);
653 sock->ops->release(sock);
654 sock->sk = NULL;
655 if (inode)
656 inode_unlock(inode);
657 sock->ops = NULL;
658 module_put(owner);
659 }
660
661 if (sock->wq.fasync_list)
662 pr_err("%s: fasync list not empty!\n", __func__);
663
664 if (!sock->file) {
665 iput(SOCK_INODE(sock));
666 return;
667 }
668 sock->file = NULL;
669 }
670
671 /**
672 * sock_release - close a socket
673 * @sock: socket to close
674 *
675 * The socket is released from the protocol stack if it has a release
676 * callback, and the inode is then released if the socket is bound to
677 * an inode not a file.
678 */
sock_release(struct socket * sock)679 void sock_release(struct socket *sock)
680 {
681 __sock_release(sock, NULL);
682 }
683 EXPORT_SYMBOL(sock_release);
684
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)685 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
686 {
687 u8 flags = *tx_flags;
688
689 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
690 flags |= SKBTX_HW_TSTAMP;
691
692 /* PTP hardware clocks can provide a free running cycle counter
693 * as a time base for virtual clocks. Tell driver to use the
694 * free running cycle counter for timestamp if socket is bound
695 * to virtual clock.
696 */
697 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
698 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
699 }
700
701 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
702 flags |= SKBTX_SW_TSTAMP;
703
704 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
705 flags |= SKBTX_SCHED_TSTAMP;
706
707 *tx_flags = flags;
708 }
709 EXPORT_SYMBOL(__sock_tx_timestamp);
710
711 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
712 size_t));
713 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
714 size_t));
715
call_trace_sock_send_length(struct sock * sk,int ret,int flags)716 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
717 int flags)
718 {
719 trace_sock_send_length(sk, ret, 0);
720 }
721
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)722 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
723 {
724 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
725 inet_sendmsg, sock, msg,
726 msg_data_left(msg));
727 BUG_ON(ret == -EIOCBQUEUED);
728
729 if (trace_sock_send_length_enabled())
730 call_trace_sock_send_length(sock->sk, ret, 0);
731 return ret;
732 }
733
734 /**
735 * sock_sendmsg - send a message through @sock
736 * @sock: socket
737 * @msg: message to send
738 *
739 * Sends @msg through @sock, passing through LSM.
740 * Returns the number of bytes sent, or an error code.
741 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)742 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
743 {
744 int err = security_socket_sendmsg(sock, msg,
745 msg_data_left(msg));
746
747 return err ?: sock_sendmsg_nosec(sock, msg);
748 }
749 EXPORT_SYMBOL(sock_sendmsg);
750
751 /**
752 * kernel_sendmsg - send a message through @sock (kernel-space)
753 * @sock: socket
754 * @msg: message header
755 * @vec: kernel vec
756 * @num: vec array length
757 * @size: total message data size
758 *
759 * Builds the message data with @vec and sends it through @sock.
760 * Returns the number of bytes sent, or an error code.
761 */
762
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)763 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
764 struct kvec *vec, size_t num, size_t size)
765 {
766 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
767 return sock_sendmsg(sock, msg);
768 }
769 EXPORT_SYMBOL(kernel_sendmsg);
770
771 /**
772 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
773 * @sk: sock
774 * @msg: message header
775 * @vec: output s/g array
776 * @num: output s/g array length
777 * @size: total message data size
778 *
779 * Builds the message data with @vec and sends it through @sock.
780 * Returns the number of bytes sent, or an error code.
781 * Caller must hold @sk.
782 */
783
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)784 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
785 struct kvec *vec, size_t num, size_t size)
786 {
787 struct socket *sock = sk->sk_socket;
788
789 if (!sock->ops->sendmsg_locked)
790 return sock_no_sendmsg_locked(sk, msg, size);
791
792 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
793
794 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
795 }
796 EXPORT_SYMBOL(kernel_sendmsg_locked);
797
skb_is_err_queue(const struct sk_buff * skb)798 static bool skb_is_err_queue(const struct sk_buff *skb)
799 {
800 /* pkt_type of skbs enqueued on the error queue are set to
801 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
802 * in recvmsg, since skbs received on a local socket will never
803 * have a pkt_type of PACKET_OUTGOING.
804 */
805 return skb->pkt_type == PACKET_OUTGOING;
806 }
807
808 /* On transmit, software and hardware timestamps are returned independently.
809 * As the two skb clones share the hardware timestamp, which may be updated
810 * before the software timestamp is received, a hardware TX timestamp may be
811 * returned only if there is no software TX timestamp. Ignore false software
812 * timestamps, which may be made in the __sock_recv_timestamp() call when the
813 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
814 * hardware timestamp.
815 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)816 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
817 {
818 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
819 }
820
get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)821 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
822 {
823 bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
824 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
825 struct net_device *orig_dev;
826 ktime_t hwtstamp;
827
828 rcu_read_lock();
829 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
830 if (orig_dev) {
831 *if_index = orig_dev->ifindex;
832 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
833 } else {
834 hwtstamp = shhwtstamps->hwtstamp;
835 }
836 rcu_read_unlock();
837
838 return hwtstamp;
839 }
840
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)841 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
842 int if_index)
843 {
844 struct scm_ts_pktinfo ts_pktinfo;
845 struct net_device *orig_dev;
846
847 if (!skb_mac_header_was_set(skb))
848 return;
849
850 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
851
852 if (!if_index) {
853 rcu_read_lock();
854 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
855 if (orig_dev)
856 if_index = orig_dev->ifindex;
857 rcu_read_unlock();
858 }
859 ts_pktinfo.if_index = if_index;
860
861 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
862 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
863 sizeof(ts_pktinfo), &ts_pktinfo);
864 }
865
866 /*
867 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
868 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)869 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
870 struct sk_buff *skb)
871 {
872 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
873 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
874 struct scm_timestamping_internal tss;
875
876 int empty = 1, false_tstamp = 0;
877 struct skb_shared_hwtstamps *shhwtstamps =
878 skb_hwtstamps(skb);
879 int if_index;
880 ktime_t hwtstamp;
881
882 /* Race occurred between timestamp enabling and packet
883 receiving. Fill in the current time for now. */
884 if (need_software_tstamp && skb->tstamp == 0) {
885 __net_timestamp(skb);
886 false_tstamp = 1;
887 }
888
889 if (need_software_tstamp) {
890 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
891 if (new_tstamp) {
892 struct __kernel_sock_timeval tv;
893
894 skb_get_new_timestamp(skb, &tv);
895 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
896 sizeof(tv), &tv);
897 } else {
898 struct __kernel_old_timeval tv;
899
900 skb_get_timestamp(skb, &tv);
901 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
902 sizeof(tv), &tv);
903 }
904 } else {
905 if (new_tstamp) {
906 struct __kernel_timespec ts;
907
908 skb_get_new_timestampns(skb, &ts);
909 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
910 sizeof(ts), &ts);
911 } else {
912 struct __kernel_old_timespec ts;
913
914 skb_get_timestampns(skb, &ts);
915 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
916 sizeof(ts), &ts);
917 }
918 }
919 }
920
921 memset(&tss, 0, sizeof(tss));
922 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
923 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
924 empty = 0;
925 if (shhwtstamps &&
926 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
927 !skb_is_swtx_tstamp(skb, false_tstamp)) {
928 if_index = 0;
929 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
930 hwtstamp = get_timestamp(sk, skb, &if_index);
931 else
932 hwtstamp = shhwtstamps->hwtstamp;
933
934 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
935 hwtstamp = ptp_convert_timestamp(&hwtstamp,
936 sk->sk_bind_phc);
937
938 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
939 empty = 0;
940
941 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
942 !skb_is_err_queue(skb))
943 put_ts_pktinfo(msg, skb, if_index);
944 }
945 }
946 if (!empty) {
947 if (sock_flag(sk, SOCK_TSTAMP_NEW))
948 put_cmsg_scm_timestamping64(msg, &tss);
949 else
950 put_cmsg_scm_timestamping(msg, &tss);
951
952 if (skb_is_err_queue(skb) && skb->len &&
953 SKB_EXT_ERR(skb)->opt_stats)
954 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
955 skb->len, skb->data);
956 }
957 }
958 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
959
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)960 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
961 struct sk_buff *skb)
962 {
963 int ack;
964
965 if (!sock_flag(sk, SOCK_WIFI_STATUS))
966 return;
967 if (!skb->wifi_acked_valid)
968 return;
969
970 ack = skb->wifi_acked;
971
972 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
973 }
974 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
975
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)976 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
977 struct sk_buff *skb)
978 {
979 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
980 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
981 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
982 }
983
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)984 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
985 struct sk_buff *skb)
986 {
987 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
988 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
989 __u32 mark = skb->mark;
990
991 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
992 }
993 }
994
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)995 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
996 struct sk_buff *skb)
997 {
998 sock_recv_timestamp(msg, sk, skb);
999 sock_recv_drops(msg, sk, skb);
1000 sock_recv_mark(msg, sk, skb);
1001 }
1002 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1003
1004 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1005 size_t, int));
1006 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1007 size_t, int));
1008
call_trace_sock_recv_length(struct sock * sk,int ret,int flags)1009 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1010 {
1011 trace_sock_recv_length(sk, ret, flags);
1012 }
1013
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1014 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1015 int flags)
1016 {
1017 int ret = INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
1018 inet_recvmsg, sock, msg,
1019 msg_data_left(msg), flags);
1020 if (trace_sock_recv_length_enabled())
1021 call_trace_sock_recv_length(sock->sk, ret, flags);
1022 return ret;
1023 }
1024
1025 /**
1026 * sock_recvmsg - receive a message from @sock
1027 * @sock: socket
1028 * @msg: message to receive
1029 * @flags: message flags
1030 *
1031 * Receives @msg from @sock, passing through LSM. Returns the total number
1032 * of bytes received, or an error.
1033 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1034 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1035 {
1036 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1037
1038 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1039 }
1040 EXPORT_SYMBOL(sock_recvmsg);
1041
1042 /**
1043 * kernel_recvmsg - Receive a message from a socket (kernel space)
1044 * @sock: The socket to receive the message from
1045 * @msg: Received message
1046 * @vec: Input s/g array for message data
1047 * @num: Size of input s/g array
1048 * @size: Number of bytes to read
1049 * @flags: Message flags (MSG_DONTWAIT, etc...)
1050 *
1051 * On return the msg structure contains the scatter/gather array passed in the
1052 * vec argument. The array is modified so that it consists of the unfilled
1053 * portion of the original array.
1054 *
1055 * The returned value is the total number of bytes received, or an error.
1056 */
1057
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1058 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1059 struct kvec *vec, size_t num, size_t size, int flags)
1060 {
1061 msg->msg_control_is_user = false;
1062 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1063 return sock_recvmsg(sock, msg, flags);
1064 }
1065 EXPORT_SYMBOL(kernel_recvmsg);
1066
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)1067 static ssize_t sock_sendpage(struct file *file, struct page *page,
1068 int offset, size_t size, loff_t *ppos, int more)
1069 {
1070 struct socket *sock;
1071 int flags;
1072 int ret;
1073
1074 sock = file->private_data;
1075
1076 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1077 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1078 flags |= more;
1079
1080 ret = kernel_sendpage(sock, page, offset, size, flags);
1081
1082 if (trace_sock_send_length_enabled())
1083 call_trace_sock_send_length(sock->sk, ret, 0);
1084 return ret;
1085 }
1086
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1087 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1088 struct pipe_inode_info *pipe, size_t len,
1089 unsigned int flags)
1090 {
1091 struct socket *sock = file->private_data;
1092
1093 if (unlikely(!sock->ops->splice_read))
1094 return generic_file_splice_read(file, ppos, pipe, len, flags);
1095
1096 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1097 }
1098
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1099 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1100 {
1101 struct file *file = iocb->ki_filp;
1102 struct socket *sock = file->private_data;
1103 struct msghdr msg = {.msg_iter = *to,
1104 .msg_iocb = iocb};
1105 ssize_t res;
1106
1107 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1108 msg.msg_flags = MSG_DONTWAIT;
1109
1110 if (iocb->ki_pos != 0)
1111 return -ESPIPE;
1112
1113 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1114 return 0;
1115
1116 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1117 *to = msg.msg_iter;
1118 return res;
1119 }
1120
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1122 {
1123 struct file *file = iocb->ki_filp;
1124 struct socket *sock = file->private_data;
1125 struct msghdr msg = {.msg_iter = *from,
1126 .msg_iocb = iocb};
1127 ssize_t res;
1128
1129 if (iocb->ki_pos != 0)
1130 return -ESPIPE;
1131
1132 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1133 msg.msg_flags = MSG_DONTWAIT;
1134
1135 if (sock->type == SOCK_SEQPACKET)
1136 msg.msg_flags |= MSG_EOR;
1137
1138 res = sock_sendmsg(sock, &msg);
1139 *from = msg.msg_iter;
1140 return res;
1141 }
1142
1143 /*
1144 * Atomic setting of ioctl hooks to avoid race
1145 * with module unload.
1146 */
1147
1148 static DEFINE_MUTEX(br_ioctl_mutex);
1149 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1150 unsigned int cmd, struct ifreq *ifr,
1151 void __user *uarg);
1152
brioctl_set(int (* hook)(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg))1153 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1154 unsigned int cmd, struct ifreq *ifr,
1155 void __user *uarg))
1156 {
1157 mutex_lock(&br_ioctl_mutex);
1158 br_ioctl_hook = hook;
1159 mutex_unlock(&br_ioctl_mutex);
1160 }
1161 EXPORT_SYMBOL(brioctl_set);
1162
br_ioctl_call(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg)1163 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1164 struct ifreq *ifr, void __user *uarg)
1165 {
1166 int err = -ENOPKG;
1167
1168 if (!br_ioctl_hook)
1169 request_module("bridge");
1170
1171 mutex_lock(&br_ioctl_mutex);
1172 if (br_ioctl_hook)
1173 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1174 mutex_unlock(&br_ioctl_mutex);
1175
1176 return err;
1177 }
1178
1179 static DEFINE_MUTEX(vlan_ioctl_mutex);
1180 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1181
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1182 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1183 {
1184 mutex_lock(&vlan_ioctl_mutex);
1185 vlan_ioctl_hook = hook;
1186 mutex_unlock(&vlan_ioctl_mutex);
1187 }
1188 EXPORT_SYMBOL(vlan_ioctl_set);
1189
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1190 static long sock_do_ioctl(struct net *net, struct socket *sock,
1191 unsigned int cmd, unsigned long arg)
1192 {
1193 struct ifreq ifr;
1194 bool need_copyout;
1195 int err;
1196 void __user *argp = (void __user *)arg;
1197 void __user *data;
1198
1199 err = sock->ops->ioctl(sock, cmd, arg);
1200
1201 /*
1202 * If this ioctl is unknown try to hand it down
1203 * to the NIC driver.
1204 */
1205 if (err != -ENOIOCTLCMD)
1206 return err;
1207
1208 if (!is_socket_ioctl_cmd(cmd))
1209 return -ENOTTY;
1210
1211 if (get_user_ifreq(&ifr, &data, argp))
1212 return -EFAULT;
1213 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1214 if (!err && need_copyout)
1215 if (put_user_ifreq(&ifr, argp))
1216 return -EFAULT;
1217
1218 return err;
1219 }
1220
1221 /*
1222 * With an ioctl, arg may well be a user mode pointer, but we don't know
1223 * what to do with it - that's up to the protocol still.
1224 */
1225
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1226 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1227 {
1228 struct socket *sock;
1229 struct sock *sk;
1230 void __user *argp = (void __user *)arg;
1231 int pid, err;
1232 struct net *net;
1233
1234 sock = file->private_data;
1235 sk = sock->sk;
1236 net = sock_net(sk);
1237 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1238 struct ifreq ifr;
1239 void __user *data;
1240 bool need_copyout;
1241 if (get_user_ifreq(&ifr, &data, argp))
1242 return -EFAULT;
1243 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1244 if (!err && need_copyout)
1245 if (put_user_ifreq(&ifr, argp))
1246 return -EFAULT;
1247 } else
1248 #ifdef CONFIG_WEXT_CORE
1249 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1250 err = wext_handle_ioctl(net, cmd, argp);
1251 } else
1252 #endif
1253 switch (cmd) {
1254 case FIOSETOWN:
1255 case SIOCSPGRP:
1256 err = -EFAULT;
1257 if (get_user(pid, (int __user *)argp))
1258 break;
1259 err = f_setown(sock->file, pid, 1);
1260 break;
1261 case FIOGETOWN:
1262 case SIOCGPGRP:
1263 err = put_user(f_getown(sock->file),
1264 (int __user *)argp);
1265 break;
1266 case SIOCGIFBR:
1267 case SIOCSIFBR:
1268 case SIOCBRADDBR:
1269 case SIOCBRDELBR:
1270 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1271 break;
1272 case SIOCGIFVLAN:
1273 case SIOCSIFVLAN:
1274 err = -ENOPKG;
1275 if (!vlan_ioctl_hook)
1276 request_module("8021q");
1277
1278 mutex_lock(&vlan_ioctl_mutex);
1279 if (vlan_ioctl_hook)
1280 err = vlan_ioctl_hook(net, argp);
1281 mutex_unlock(&vlan_ioctl_mutex);
1282 break;
1283 case SIOCGSKNS:
1284 err = -EPERM;
1285 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1286 break;
1287
1288 err = open_related_ns(&net->ns, get_net_ns);
1289 break;
1290 case SIOCGSTAMP_OLD:
1291 case SIOCGSTAMPNS_OLD:
1292 if (!sock->ops->gettstamp) {
1293 err = -ENOIOCTLCMD;
1294 break;
1295 }
1296 err = sock->ops->gettstamp(sock, argp,
1297 cmd == SIOCGSTAMP_OLD,
1298 !IS_ENABLED(CONFIG_64BIT));
1299 break;
1300 case SIOCGSTAMP_NEW:
1301 case SIOCGSTAMPNS_NEW:
1302 if (!sock->ops->gettstamp) {
1303 err = -ENOIOCTLCMD;
1304 break;
1305 }
1306 err = sock->ops->gettstamp(sock, argp,
1307 cmd == SIOCGSTAMP_NEW,
1308 false);
1309 break;
1310
1311 case SIOCGIFCONF:
1312 err = dev_ifconf(net, argp);
1313 break;
1314
1315 default:
1316 err = sock_do_ioctl(net, sock, cmd, arg);
1317 break;
1318 }
1319 return err;
1320 }
1321
1322 /**
1323 * sock_create_lite - creates a socket
1324 * @family: protocol family (AF_INET, ...)
1325 * @type: communication type (SOCK_STREAM, ...)
1326 * @protocol: protocol (0, ...)
1327 * @res: new socket
1328 *
1329 * Creates a new socket and assigns it to @res, passing through LSM.
1330 * The new socket initialization is not complete, see kernel_accept().
1331 * Returns 0 or an error. On failure @res is set to %NULL.
1332 * This function internally uses GFP_KERNEL.
1333 */
1334
sock_create_lite(int family,int type,int protocol,struct socket ** res)1335 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1336 {
1337 int err;
1338 struct socket *sock = NULL;
1339
1340 err = security_socket_create(family, type, protocol, 1);
1341 if (err)
1342 goto out;
1343
1344 sock = sock_alloc();
1345 if (!sock) {
1346 err = -ENOMEM;
1347 goto out;
1348 }
1349
1350 sock->type = type;
1351 err = security_socket_post_create(sock, family, type, protocol, 1);
1352 if (err)
1353 goto out_release;
1354
1355 out:
1356 *res = sock;
1357 return err;
1358 out_release:
1359 sock_release(sock);
1360 sock = NULL;
1361 goto out;
1362 }
1363 EXPORT_SYMBOL(sock_create_lite);
1364
1365 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1366 static __poll_t sock_poll(struct file *file, poll_table *wait)
1367 {
1368 struct socket *sock = file->private_data;
1369 __poll_t events = poll_requested_events(wait), flag = 0;
1370
1371 if (!sock->ops->poll)
1372 return 0;
1373
1374 if (sk_can_busy_loop(sock->sk)) {
1375 /* poll once if requested by the syscall */
1376 if (events & POLL_BUSY_LOOP)
1377 sk_busy_loop(sock->sk, 1);
1378
1379 /* if this socket can poll_ll, tell the system call */
1380 flag = POLL_BUSY_LOOP;
1381 }
1382
1383 return sock->ops->poll(file, sock, wait) | flag;
1384 }
1385
sock_mmap(struct file * file,struct vm_area_struct * vma)1386 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1387 {
1388 struct socket *sock = file->private_data;
1389
1390 return sock->ops->mmap(file, sock, vma);
1391 }
1392
sock_close(struct inode * inode,struct file * filp)1393 static int sock_close(struct inode *inode, struct file *filp)
1394 {
1395 __sock_release(SOCKET_I(inode), inode);
1396 return 0;
1397 }
1398
1399 /*
1400 * Update the socket async list
1401 *
1402 * Fasync_list locking strategy.
1403 *
1404 * 1. fasync_list is modified only under process context socket lock
1405 * i.e. under semaphore.
1406 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1407 * or under socket lock
1408 */
1409
sock_fasync(int fd,struct file * filp,int on)1410 static int sock_fasync(int fd, struct file *filp, int on)
1411 {
1412 struct socket *sock = filp->private_data;
1413 struct sock *sk = sock->sk;
1414 struct socket_wq *wq = &sock->wq;
1415
1416 if (sk == NULL)
1417 return -EINVAL;
1418
1419 lock_sock(sk);
1420 fasync_helper(fd, filp, on, &wq->fasync_list);
1421
1422 if (!wq->fasync_list)
1423 sock_reset_flag(sk, SOCK_FASYNC);
1424 else
1425 sock_set_flag(sk, SOCK_FASYNC);
1426
1427 release_sock(sk);
1428 return 0;
1429 }
1430
1431 /* This function may be called only under rcu_lock */
1432
sock_wake_async(struct socket_wq * wq,int how,int band)1433 int sock_wake_async(struct socket_wq *wq, int how, int band)
1434 {
1435 if (!wq || !wq->fasync_list)
1436 return -1;
1437
1438 switch (how) {
1439 case SOCK_WAKE_WAITD:
1440 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1441 break;
1442 goto call_kill;
1443 case SOCK_WAKE_SPACE:
1444 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1445 break;
1446 fallthrough;
1447 case SOCK_WAKE_IO:
1448 call_kill:
1449 kill_fasync(&wq->fasync_list, SIGIO, band);
1450 break;
1451 case SOCK_WAKE_URG:
1452 kill_fasync(&wq->fasync_list, SIGURG, band);
1453 }
1454
1455 return 0;
1456 }
1457 EXPORT_SYMBOL(sock_wake_async);
1458
1459 /**
1460 * __sock_create - creates a socket
1461 * @net: net namespace
1462 * @family: protocol family (AF_INET, ...)
1463 * @type: communication type (SOCK_STREAM, ...)
1464 * @protocol: protocol (0, ...)
1465 * @res: new socket
1466 * @kern: boolean for kernel space sockets
1467 *
1468 * Creates a new socket and assigns it to @res, passing through LSM.
1469 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1470 * be set to true if the socket resides in kernel space.
1471 * This function internally uses GFP_KERNEL.
1472 */
1473
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1474 int __sock_create(struct net *net, int family, int type, int protocol,
1475 struct socket **res, int kern)
1476 {
1477 int err;
1478 struct socket *sock;
1479 const struct net_proto_family *pf;
1480
1481 /*
1482 * Check protocol is in range
1483 */
1484 if (family < 0 || family >= NPROTO)
1485 return -EAFNOSUPPORT;
1486 if (type < 0 || type >= SOCK_MAX)
1487 return -EINVAL;
1488
1489 /* Compatibility.
1490
1491 This uglymoron is moved from INET layer to here to avoid
1492 deadlock in module load.
1493 */
1494 if (family == PF_INET && type == SOCK_PACKET) {
1495 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1496 current->comm);
1497 family = PF_PACKET;
1498 }
1499
1500 err = security_socket_create(family, type, protocol, kern);
1501 if (err)
1502 return err;
1503
1504 /*
1505 * Allocate the socket and allow the family to set things up. if
1506 * the protocol is 0, the family is instructed to select an appropriate
1507 * default.
1508 */
1509 sock = sock_alloc();
1510 if (!sock) {
1511 net_warn_ratelimited("socket: no more sockets\n");
1512 return -ENFILE; /* Not exactly a match, but its the
1513 closest posix thing */
1514 }
1515
1516 sock->type = type;
1517
1518 #ifdef CONFIG_MODULES
1519 /* Attempt to load a protocol module if the find failed.
1520 *
1521 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1522 * requested real, full-featured networking support upon configuration.
1523 * Otherwise module support will break!
1524 */
1525 if (rcu_access_pointer(net_families[family]) == NULL)
1526 request_module("net-pf-%d", family);
1527 #endif
1528
1529 rcu_read_lock();
1530 pf = rcu_dereference(net_families[family]);
1531 err = -EAFNOSUPPORT;
1532 if (!pf)
1533 goto out_release;
1534
1535 /*
1536 * We will call the ->create function, that possibly is in a loadable
1537 * module, so we have to bump that loadable module refcnt first.
1538 */
1539 if (!try_module_get(pf->owner))
1540 goto out_release;
1541
1542 /* Now protected by module ref count */
1543 rcu_read_unlock();
1544
1545 err = pf->create(net, sock, protocol, kern);
1546 if (err < 0)
1547 goto out_module_put;
1548
1549 /*
1550 * Now to bump the refcnt of the [loadable] module that owns this
1551 * socket at sock_release time we decrement its refcnt.
1552 */
1553 if (!try_module_get(sock->ops->owner))
1554 goto out_module_busy;
1555
1556 /*
1557 * Now that we're done with the ->create function, the [loadable]
1558 * module can have its refcnt decremented
1559 */
1560 module_put(pf->owner);
1561 err = security_socket_post_create(sock, family, type, protocol, kern);
1562 if (err)
1563 goto out_sock_release;
1564 *res = sock;
1565
1566 return 0;
1567
1568 out_module_busy:
1569 err = -EAFNOSUPPORT;
1570 out_module_put:
1571 sock->ops = NULL;
1572 module_put(pf->owner);
1573 out_sock_release:
1574 sock_release(sock);
1575 return err;
1576
1577 out_release:
1578 rcu_read_unlock();
1579 goto out_sock_release;
1580 }
1581 EXPORT_SYMBOL(__sock_create);
1582
1583 /**
1584 * sock_create - creates a socket
1585 * @family: protocol family (AF_INET, ...)
1586 * @type: communication type (SOCK_STREAM, ...)
1587 * @protocol: protocol (0, ...)
1588 * @res: new socket
1589 *
1590 * A wrapper around __sock_create().
1591 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1592 */
1593
sock_create(int family,int type,int protocol,struct socket ** res)1594 int sock_create(int family, int type, int protocol, struct socket **res)
1595 {
1596 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1597 }
1598 EXPORT_SYMBOL(sock_create);
1599
1600 /**
1601 * sock_create_kern - creates a socket (kernel space)
1602 * @net: net namespace
1603 * @family: protocol family (AF_INET, ...)
1604 * @type: communication type (SOCK_STREAM, ...)
1605 * @protocol: protocol (0, ...)
1606 * @res: new socket
1607 *
1608 * A wrapper around __sock_create().
1609 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1610 */
1611
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1612 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1613 {
1614 return __sock_create(net, family, type, protocol, res, 1);
1615 }
1616 EXPORT_SYMBOL(sock_create_kern);
1617
__sys_socket_create(int family,int type,int protocol)1618 static struct socket *__sys_socket_create(int family, int type, int protocol)
1619 {
1620 struct socket *sock;
1621 int retval;
1622
1623 /* Check the SOCK_* constants for consistency. */
1624 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1625 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1626 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1627 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1628
1629 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1630 return ERR_PTR(-EINVAL);
1631 type &= SOCK_TYPE_MASK;
1632
1633 retval = sock_create(family, type, protocol, &sock);
1634 if (retval < 0)
1635 return ERR_PTR(retval);
1636
1637 return sock;
1638 }
1639
__sys_socket_file(int family,int type,int protocol)1640 struct file *__sys_socket_file(int family, int type, int protocol)
1641 {
1642 struct socket *sock;
1643 int flags;
1644
1645 sock = __sys_socket_create(family, type, protocol);
1646 if (IS_ERR(sock))
1647 return ERR_CAST(sock);
1648
1649 flags = type & ~SOCK_TYPE_MASK;
1650 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1651 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1652
1653 return sock_alloc_file(sock, flags, NULL);
1654 }
1655
__sys_socket(int family,int type,int protocol)1656 int __sys_socket(int family, int type, int protocol)
1657 {
1658 struct socket *sock;
1659 int flags;
1660
1661 sock = __sys_socket_create(family, type, protocol);
1662 if (IS_ERR(sock))
1663 return PTR_ERR(sock);
1664
1665 flags = type & ~SOCK_TYPE_MASK;
1666 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1667 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1668
1669 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1670 }
1671
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1672 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1673 {
1674 return __sys_socket(family, type, protocol);
1675 }
1676
1677 /*
1678 * Create a pair of connected sockets.
1679 */
1680
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1681 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1682 {
1683 struct socket *sock1, *sock2;
1684 int fd1, fd2, err;
1685 struct file *newfile1, *newfile2;
1686 int flags;
1687
1688 flags = type & ~SOCK_TYPE_MASK;
1689 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1690 return -EINVAL;
1691 type &= SOCK_TYPE_MASK;
1692
1693 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1694 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1695
1696 /*
1697 * reserve descriptors and make sure we won't fail
1698 * to return them to userland.
1699 */
1700 fd1 = get_unused_fd_flags(flags);
1701 if (unlikely(fd1 < 0))
1702 return fd1;
1703
1704 fd2 = get_unused_fd_flags(flags);
1705 if (unlikely(fd2 < 0)) {
1706 put_unused_fd(fd1);
1707 return fd2;
1708 }
1709
1710 err = put_user(fd1, &usockvec[0]);
1711 if (err)
1712 goto out;
1713
1714 err = put_user(fd2, &usockvec[1]);
1715 if (err)
1716 goto out;
1717
1718 /*
1719 * Obtain the first socket and check if the underlying protocol
1720 * supports the socketpair call.
1721 */
1722
1723 err = sock_create(family, type, protocol, &sock1);
1724 if (unlikely(err < 0))
1725 goto out;
1726
1727 err = sock_create(family, type, protocol, &sock2);
1728 if (unlikely(err < 0)) {
1729 sock_release(sock1);
1730 goto out;
1731 }
1732
1733 err = security_socket_socketpair(sock1, sock2);
1734 if (unlikely(err)) {
1735 sock_release(sock2);
1736 sock_release(sock1);
1737 goto out;
1738 }
1739
1740 err = sock1->ops->socketpair(sock1, sock2);
1741 if (unlikely(err < 0)) {
1742 sock_release(sock2);
1743 sock_release(sock1);
1744 goto out;
1745 }
1746
1747 newfile1 = sock_alloc_file(sock1, flags, NULL);
1748 if (IS_ERR(newfile1)) {
1749 err = PTR_ERR(newfile1);
1750 sock_release(sock2);
1751 goto out;
1752 }
1753
1754 newfile2 = sock_alloc_file(sock2, flags, NULL);
1755 if (IS_ERR(newfile2)) {
1756 err = PTR_ERR(newfile2);
1757 fput(newfile1);
1758 goto out;
1759 }
1760
1761 audit_fd_pair(fd1, fd2);
1762
1763 fd_install(fd1, newfile1);
1764 fd_install(fd2, newfile2);
1765 return 0;
1766
1767 out:
1768 put_unused_fd(fd2);
1769 put_unused_fd(fd1);
1770 return err;
1771 }
1772
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1773 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1774 int __user *, usockvec)
1775 {
1776 return __sys_socketpair(family, type, protocol, usockvec);
1777 }
1778
1779 /*
1780 * Bind a name to a socket. Nothing much to do here since it's
1781 * the protocol's responsibility to handle the local address.
1782 *
1783 * We move the socket address to kernel space before we call
1784 * the protocol layer (having also checked the address is ok).
1785 */
1786
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1787 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1788 {
1789 struct socket *sock;
1790 struct sockaddr_storage address;
1791 int err, fput_needed;
1792
1793 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1794 if (sock) {
1795 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1796 if (!err) {
1797 err = security_socket_bind(sock,
1798 (struct sockaddr *)&address,
1799 addrlen);
1800 if (!err)
1801 err = sock->ops->bind(sock,
1802 (struct sockaddr *)
1803 &address, addrlen);
1804 }
1805 fput_light(sock->file, fput_needed);
1806 }
1807 return err;
1808 }
1809
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1810 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1811 {
1812 return __sys_bind(fd, umyaddr, addrlen);
1813 }
1814
1815 /*
1816 * Perform a listen. Basically, we allow the protocol to do anything
1817 * necessary for a listen, and if that works, we mark the socket as
1818 * ready for listening.
1819 */
1820
__sys_listen(int fd,int backlog)1821 int __sys_listen(int fd, int backlog)
1822 {
1823 struct socket *sock;
1824 int err, fput_needed;
1825 int somaxconn;
1826
1827 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1828 if (sock) {
1829 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1830 if ((unsigned int)backlog > somaxconn)
1831 backlog = somaxconn;
1832
1833 err = security_socket_listen(sock, backlog);
1834 if (!err)
1835 err = sock->ops->listen(sock, backlog);
1836
1837 fput_light(sock->file, fput_needed);
1838 }
1839 return err;
1840 }
1841
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1842 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1843 {
1844 return __sys_listen(fd, backlog);
1845 }
1846
do_accept(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1847 struct file *do_accept(struct file *file, unsigned file_flags,
1848 struct sockaddr __user *upeer_sockaddr,
1849 int __user *upeer_addrlen, int flags)
1850 {
1851 struct socket *sock, *newsock;
1852 struct file *newfile;
1853 int err, len;
1854 struct sockaddr_storage address;
1855
1856 sock = sock_from_file(file);
1857 if (!sock)
1858 return ERR_PTR(-ENOTSOCK);
1859
1860 newsock = sock_alloc();
1861 if (!newsock)
1862 return ERR_PTR(-ENFILE);
1863
1864 newsock->type = sock->type;
1865 newsock->ops = sock->ops;
1866
1867 /*
1868 * We don't need try_module_get here, as the listening socket (sock)
1869 * has the protocol module (sock->ops->owner) held.
1870 */
1871 __module_get(newsock->ops->owner);
1872
1873 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1874 if (IS_ERR(newfile))
1875 return newfile;
1876
1877 err = security_socket_accept(sock, newsock);
1878 if (err)
1879 goto out_fd;
1880
1881 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1882 false);
1883 if (err < 0)
1884 goto out_fd;
1885
1886 if (upeer_sockaddr) {
1887 len = newsock->ops->getname(newsock,
1888 (struct sockaddr *)&address, 2);
1889 if (len < 0) {
1890 err = -ECONNABORTED;
1891 goto out_fd;
1892 }
1893 err = move_addr_to_user(&address,
1894 len, upeer_sockaddr, upeer_addrlen);
1895 if (err < 0)
1896 goto out_fd;
1897 }
1898
1899 /* File flags are not inherited via accept() unlike another OSes. */
1900 return newfile;
1901 out_fd:
1902 fput(newfile);
1903 return ERR_PTR(err);
1904 }
1905
__sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1906 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1907 int __user *upeer_addrlen, int flags)
1908 {
1909 struct file *newfile;
1910 int newfd;
1911
1912 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1913 return -EINVAL;
1914
1915 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1916 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1917
1918 newfd = get_unused_fd_flags(flags);
1919 if (unlikely(newfd < 0))
1920 return newfd;
1921
1922 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1923 flags);
1924 if (IS_ERR(newfile)) {
1925 put_unused_fd(newfd);
1926 return PTR_ERR(newfile);
1927 }
1928 fd_install(newfd, newfile);
1929 return newfd;
1930 }
1931
1932 /*
1933 * For accept, we attempt to create a new socket, set up the link
1934 * with the client, wake up the client, then return the new
1935 * connected fd. We collect the address of the connector in kernel
1936 * space and move it to user at the very end. This is unclean because
1937 * we open the socket then return an error.
1938 *
1939 * 1003.1g adds the ability to recvmsg() to query connection pending
1940 * status to recvmsg. We need to add that support in a way thats
1941 * clean when we restructure accept also.
1942 */
1943
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1944 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1945 int __user *upeer_addrlen, int flags)
1946 {
1947 int ret = -EBADF;
1948 struct fd f;
1949
1950 f = fdget(fd);
1951 if (f.file) {
1952 ret = __sys_accept4_file(f.file, upeer_sockaddr,
1953 upeer_addrlen, flags);
1954 fdput(f);
1955 }
1956
1957 return ret;
1958 }
1959
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1960 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1961 int __user *, upeer_addrlen, int, flags)
1962 {
1963 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1964 }
1965
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1966 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1967 int __user *, upeer_addrlen)
1968 {
1969 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1970 }
1971
1972 /*
1973 * Attempt to connect to a socket with the server address. The address
1974 * is in user space so we verify it is OK and move it to kernel space.
1975 *
1976 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1977 * break bindings
1978 *
1979 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1980 * other SEQPACKET protocols that take time to connect() as it doesn't
1981 * include the -EINPROGRESS status for such sockets.
1982 */
1983
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)1984 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1985 int addrlen, int file_flags)
1986 {
1987 struct socket *sock;
1988 int err;
1989
1990 sock = sock_from_file(file);
1991 if (!sock) {
1992 err = -ENOTSOCK;
1993 goto out;
1994 }
1995
1996 err =
1997 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1998 if (err)
1999 goto out;
2000
2001 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
2002 sock->file->f_flags | file_flags);
2003 out:
2004 return err;
2005 }
2006
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2007 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2008 {
2009 int ret = -EBADF;
2010 struct fd f;
2011
2012 f = fdget(fd);
2013 if (f.file) {
2014 struct sockaddr_storage address;
2015
2016 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2017 if (!ret)
2018 ret = __sys_connect_file(f.file, &address, addrlen, 0);
2019 fdput(f);
2020 }
2021
2022 return ret;
2023 }
2024
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2025 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2026 int, addrlen)
2027 {
2028 return __sys_connect(fd, uservaddr, addrlen);
2029 }
2030
2031 /*
2032 * Get the local address ('name') of a socket object. Move the obtained
2033 * name to user space.
2034 */
2035
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2036 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2037 int __user *usockaddr_len)
2038 {
2039 struct socket *sock;
2040 struct sockaddr_storage address;
2041 int err, fput_needed;
2042
2043 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2044 if (!sock)
2045 goto out;
2046
2047 err = security_socket_getsockname(sock);
2048 if (err)
2049 goto out_put;
2050
2051 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2052 if (err < 0)
2053 goto out_put;
2054 /* "err" is actually length in this case */
2055 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2056
2057 out_put:
2058 fput_light(sock->file, fput_needed);
2059 out:
2060 return err;
2061 }
2062
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2063 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2064 int __user *, usockaddr_len)
2065 {
2066 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2067 }
2068
2069 /*
2070 * Get the remote address ('name') of a socket object. Move the obtained
2071 * name to user space.
2072 */
2073
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2074 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2075 int __user *usockaddr_len)
2076 {
2077 struct socket *sock;
2078 struct sockaddr_storage address;
2079 int err, fput_needed;
2080
2081 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2082 if (sock != NULL) {
2083 err = security_socket_getpeername(sock);
2084 if (err) {
2085 fput_light(sock->file, fput_needed);
2086 return err;
2087 }
2088
2089 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2090 if (err >= 0)
2091 /* "err" is actually length in this case */
2092 err = move_addr_to_user(&address, err, usockaddr,
2093 usockaddr_len);
2094 fput_light(sock->file, fput_needed);
2095 }
2096 return err;
2097 }
2098
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2099 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2100 int __user *, usockaddr_len)
2101 {
2102 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2103 }
2104
2105 /*
2106 * Send a datagram to a given address. We move the address into kernel
2107 * space and check the user space data area is readable before invoking
2108 * the protocol.
2109 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2110 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2111 struct sockaddr __user *addr, int addr_len)
2112 {
2113 struct socket *sock;
2114 struct sockaddr_storage address;
2115 int err;
2116 struct msghdr msg;
2117 struct iovec iov;
2118 int fput_needed;
2119
2120 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2121 if (unlikely(err))
2122 return err;
2123 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2124 if (!sock)
2125 goto out;
2126
2127 msg.msg_name = NULL;
2128 msg.msg_control = NULL;
2129 msg.msg_controllen = 0;
2130 msg.msg_namelen = 0;
2131 msg.msg_ubuf = NULL;
2132 if (addr) {
2133 err = move_addr_to_kernel(addr, addr_len, &address);
2134 if (err < 0)
2135 goto out_put;
2136 msg.msg_name = (struct sockaddr *)&address;
2137 msg.msg_namelen = addr_len;
2138 }
2139 if (sock->file->f_flags & O_NONBLOCK)
2140 flags |= MSG_DONTWAIT;
2141 msg.msg_flags = flags;
2142 err = sock_sendmsg(sock, &msg);
2143
2144 out_put:
2145 fput_light(sock->file, fput_needed);
2146 out:
2147 return err;
2148 }
2149
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2150 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2151 unsigned int, flags, struct sockaddr __user *, addr,
2152 int, addr_len)
2153 {
2154 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2155 }
2156
2157 /*
2158 * Send a datagram down a socket.
2159 */
2160
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2161 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2162 unsigned int, flags)
2163 {
2164 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2165 }
2166
2167 /*
2168 * Receive a frame from the socket and optionally record the address of the
2169 * sender. We verify the buffers are writable and if needed move the
2170 * sender address from kernel to user space.
2171 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2172 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2173 struct sockaddr __user *addr, int __user *addr_len)
2174 {
2175 struct sockaddr_storage address;
2176 struct msghdr msg = {
2177 /* Save some cycles and don't copy the address if not needed */
2178 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2179 };
2180 struct socket *sock;
2181 struct iovec iov;
2182 int err, err2;
2183 int fput_needed;
2184
2185 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2186 if (unlikely(err))
2187 return err;
2188 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2189 if (!sock)
2190 goto out;
2191
2192 if (sock->file->f_flags & O_NONBLOCK)
2193 flags |= MSG_DONTWAIT;
2194 err = sock_recvmsg(sock, &msg, flags);
2195
2196 if (err >= 0 && addr != NULL) {
2197 err2 = move_addr_to_user(&address,
2198 msg.msg_namelen, addr, addr_len);
2199 if (err2 < 0)
2200 err = err2;
2201 }
2202
2203 fput_light(sock->file, fput_needed);
2204 out:
2205 return err;
2206 }
2207
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2208 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2209 unsigned int, flags, struct sockaddr __user *, addr,
2210 int __user *, addr_len)
2211 {
2212 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2213 }
2214
2215 /*
2216 * Receive a datagram from a socket.
2217 */
2218
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2219 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2220 unsigned int, flags)
2221 {
2222 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2223 }
2224
sock_use_custom_sol_socket(const struct socket * sock)2225 static bool sock_use_custom_sol_socket(const struct socket *sock)
2226 {
2227 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2228 }
2229
2230 /*
2231 * Set a socket option. Because we don't know the option lengths we have
2232 * to pass the user mode parameter for the protocols to sort out.
2233 */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2234 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2235 int optlen)
2236 {
2237 sockptr_t optval = USER_SOCKPTR(user_optval);
2238 char *kernel_optval = NULL;
2239 int err, fput_needed;
2240 struct socket *sock;
2241
2242 if (optlen < 0)
2243 return -EINVAL;
2244
2245 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2246 if (!sock)
2247 return err;
2248
2249 err = security_socket_setsockopt(sock, level, optname);
2250 if (err)
2251 goto out_put;
2252
2253 if (!in_compat_syscall())
2254 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2255 user_optval, &optlen,
2256 &kernel_optval);
2257 if (err < 0)
2258 goto out_put;
2259 if (err > 0) {
2260 err = 0;
2261 goto out_put;
2262 }
2263
2264 if (kernel_optval)
2265 optval = KERNEL_SOCKPTR(kernel_optval);
2266 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2267 err = sock_setsockopt(sock, level, optname, optval, optlen);
2268 else if (unlikely(!sock->ops->setsockopt))
2269 err = -EOPNOTSUPP;
2270 else
2271 err = sock->ops->setsockopt(sock, level, optname, optval,
2272 optlen);
2273 kfree(kernel_optval);
2274 out_put:
2275 fput_light(sock->file, fput_needed);
2276 return err;
2277 }
2278
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2279 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2280 char __user *, optval, int, optlen)
2281 {
2282 return __sys_setsockopt(fd, level, optname, optval, optlen);
2283 }
2284
2285 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2286 int optname));
2287
2288 /*
2289 * Get a socket option. Because we don't know the option lengths we have
2290 * to pass a user mode parameter for the protocols to sort out.
2291 */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2292 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2293 int __user *optlen)
2294 {
2295 int err, fput_needed;
2296 struct socket *sock;
2297 int max_optlen;
2298
2299 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2300 if (!sock)
2301 return err;
2302
2303 err = security_socket_getsockopt(sock, level, optname);
2304 if (err)
2305 goto out_put;
2306
2307 if (!in_compat_syscall())
2308 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2309
2310 if (level == SOL_SOCKET)
2311 err = sock_getsockopt(sock, level, optname, optval, optlen);
2312 else if (unlikely(!sock->ops->getsockopt))
2313 err = -EOPNOTSUPP;
2314 else
2315 err = sock->ops->getsockopt(sock, level, optname, optval,
2316 optlen);
2317
2318 if (!in_compat_syscall())
2319 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2320 optval, optlen, max_optlen,
2321 err);
2322 out_put:
2323 fput_light(sock->file, fput_needed);
2324 return err;
2325 }
2326
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2327 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2328 char __user *, optval, int __user *, optlen)
2329 {
2330 return __sys_getsockopt(fd, level, optname, optval, optlen);
2331 }
2332
2333 /*
2334 * Shutdown a socket.
2335 */
2336
__sys_shutdown_sock(struct socket * sock,int how)2337 int __sys_shutdown_sock(struct socket *sock, int how)
2338 {
2339 int err;
2340
2341 err = security_socket_shutdown(sock, how);
2342 if (!err)
2343 err = sock->ops->shutdown(sock, how);
2344
2345 return err;
2346 }
2347
__sys_shutdown(int fd,int how)2348 int __sys_shutdown(int fd, int how)
2349 {
2350 int err, fput_needed;
2351 struct socket *sock;
2352
2353 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2354 if (sock != NULL) {
2355 err = __sys_shutdown_sock(sock, how);
2356 fput_light(sock->file, fput_needed);
2357 }
2358 return err;
2359 }
2360
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2361 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2362 {
2363 return __sys_shutdown(fd, how);
2364 }
2365
2366 /* A couple of helpful macros for getting the address of the 32/64 bit
2367 * fields which are the same type (int / unsigned) on our platforms.
2368 */
2369 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2370 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2371 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2372
2373 struct used_address {
2374 struct sockaddr_storage name;
2375 unsigned int name_len;
2376 };
2377
__copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2378 int __copy_msghdr(struct msghdr *kmsg,
2379 struct user_msghdr *msg,
2380 struct sockaddr __user **save_addr)
2381 {
2382 ssize_t err;
2383
2384 kmsg->msg_control_is_user = true;
2385 kmsg->msg_get_inq = 0;
2386 kmsg->msg_control_user = msg->msg_control;
2387 kmsg->msg_controllen = msg->msg_controllen;
2388 kmsg->msg_flags = msg->msg_flags;
2389
2390 kmsg->msg_namelen = msg->msg_namelen;
2391 if (!msg->msg_name)
2392 kmsg->msg_namelen = 0;
2393
2394 if (kmsg->msg_namelen < 0)
2395 return -EINVAL;
2396
2397 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2398 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2399
2400 if (save_addr)
2401 *save_addr = msg->msg_name;
2402
2403 if (msg->msg_name && kmsg->msg_namelen) {
2404 if (!save_addr) {
2405 err = move_addr_to_kernel(msg->msg_name,
2406 kmsg->msg_namelen,
2407 kmsg->msg_name);
2408 if (err < 0)
2409 return err;
2410 }
2411 } else {
2412 kmsg->msg_name = NULL;
2413 kmsg->msg_namelen = 0;
2414 }
2415
2416 if (msg->msg_iovlen > UIO_MAXIOV)
2417 return -EMSGSIZE;
2418
2419 kmsg->msg_iocb = NULL;
2420 kmsg->msg_ubuf = NULL;
2421 return 0;
2422 }
2423
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2424 static int copy_msghdr_from_user(struct msghdr *kmsg,
2425 struct user_msghdr __user *umsg,
2426 struct sockaddr __user **save_addr,
2427 struct iovec **iov)
2428 {
2429 struct user_msghdr msg;
2430 ssize_t err;
2431
2432 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2433 return -EFAULT;
2434
2435 err = __copy_msghdr(kmsg, &msg, save_addr);
2436 if (err)
2437 return err;
2438
2439 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2440 msg.msg_iov, msg.msg_iovlen,
2441 UIO_FASTIOV, iov, &kmsg->msg_iter);
2442 return err < 0 ? err : 0;
2443 }
2444
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2445 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2446 unsigned int flags, struct used_address *used_address,
2447 unsigned int allowed_msghdr_flags)
2448 {
2449 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2450 __aligned(sizeof(__kernel_size_t));
2451 /* 20 is size of ipv6_pktinfo */
2452 unsigned char *ctl_buf = ctl;
2453 int ctl_len;
2454 ssize_t err;
2455
2456 err = -ENOBUFS;
2457
2458 if (msg_sys->msg_controllen > INT_MAX)
2459 goto out;
2460 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2461 ctl_len = msg_sys->msg_controllen;
2462 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2463 err =
2464 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2465 sizeof(ctl));
2466 if (err)
2467 goto out;
2468 ctl_buf = msg_sys->msg_control;
2469 ctl_len = msg_sys->msg_controllen;
2470 } else if (ctl_len) {
2471 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2472 CMSG_ALIGN(sizeof(struct cmsghdr)));
2473 if (ctl_len > sizeof(ctl)) {
2474 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2475 if (ctl_buf == NULL)
2476 goto out;
2477 }
2478 err = -EFAULT;
2479 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2480 goto out_freectl;
2481 msg_sys->msg_control = ctl_buf;
2482 msg_sys->msg_control_is_user = false;
2483 }
2484 msg_sys->msg_flags = flags;
2485
2486 if (sock->file->f_flags & O_NONBLOCK)
2487 msg_sys->msg_flags |= MSG_DONTWAIT;
2488 /*
2489 * If this is sendmmsg() and current destination address is same as
2490 * previously succeeded address, omit asking LSM's decision.
2491 * used_address->name_len is initialized to UINT_MAX so that the first
2492 * destination address never matches.
2493 */
2494 if (used_address && msg_sys->msg_name &&
2495 used_address->name_len == msg_sys->msg_namelen &&
2496 !memcmp(&used_address->name, msg_sys->msg_name,
2497 used_address->name_len)) {
2498 err = sock_sendmsg_nosec(sock, msg_sys);
2499 goto out_freectl;
2500 }
2501 err = sock_sendmsg(sock, msg_sys);
2502 /*
2503 * If this is sendmmsg() and sending to current destination address was
2504 * successful, remember it.
2505 */
2506 if (used_address && err >= 0) {
2507 used_address->name_len = msg_sys->msg_namelen;
2508 if (msg_sys->msg_name)
2509 memcpy(&used_address->name, msg_sys->msg_name,
2510 used_address->name_len);
2511 }
2512
2513 out_freectl:
2514 if (ctl_buf != ctl)
2515 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2516 out:
2517 return err;
2518 }
2519
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2520 int sendmsg_copy_msghdr(struct msghdr *msg,
2521 struct user_msghdr __user *umsg, unsigned flags,
2522 struct iovec **iov)
2523 {
2524 int err;
2525
2526 if (flags & MSG_CMSG_COMPAT) {
2527 struct compat_msghdr __user *msg_compat;
2528
2529 msg_compat = (struct compat_msghdr __user *) umsg;
2530 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2531 } else {
2532 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2533 }
2534 if (err < 0)
2535 return err;
2536
2537 return 0;
2538 }
2539
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2540 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2541 struct msghdr *msg_sys, unsigned int flags,
2542 struct used_address *used_address,
2543 unsigned int allowed_msghdr_flags)
2544 {
2545 struct sockaddr_storage address;
2546 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2547 ssize_t err;
2548
2549 msg_sys->msg_name = &address;
2550
2551 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2552 if (err < 0)
2553 return err;
2554
2555 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2556 allowed_msghdr_flags);
2557 kfree(iov);
2558 return err;
2559 }
2560
2561 /*
2562 * BSD sendmsg interface
2563 */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2564 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2565 unsigned int flags)
2566 {
2567 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2568 }
2569
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2570 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2571 bool forbid_cmsg_compat)
2572 {
2573 int fput_needed, err;
2574 struct msghdr msg_sys;
2575 struct socket *sock;
2576
2577 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2578 return -EINVAL;
2579
2580 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2581 if (!sock)
2582 goto out;
2583
2584 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2585
2586 fput_light(sock->file, fput_needed);
2587 out:
2588 return err;
2589 }
2590
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2591 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2592 {
2593 return __sys_sendmsg(fd, msg, flags, true);
2594 }
2595
2596 /*
2597 * Linux sendmmsg interface
2598 */
2599
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2600 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2601 unsigned int flags, bool forbid_cmsg_compat)
2602 {
2603 int fput_needed, err, datagrams;
2604 struct socket *sock;
2605 struct mmsghdr __user *entry;
2606 struct compat_mmsghdr __user *compat_entry;
2607 struct msghdr msg_sys;
2608 struct used_address used_address;
2609 unsigned int oflags = flags;
2610
2611 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2612 return -EINVAL;
2613
2614 if (vlen > UIO_MAXIOV)
2615 vlen = UIO_MAXIOV;
2616
2617 datagrams = 0;
2618
2619 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2620 if (!sock)
2621 return err;
2622
2623 used_address.name_len = UINT_MAX;
2624 entry = mmsg;
2625 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2626 err = 0;
2627 flags |= MSG_BATCH;
2628
2629 while (datagrams < vlen) {
2630 if (datagrams == vlen - 1)
2631 flags = oflags;
2632
2633 if (MSG_CMSG_COMPAT & flags) {
2634 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2635 &msg_sys, flags, &used_address, MSG_EOR);
2636 if (err < 0)
2637 break;
2638 err = __put_user(err, &compat_entry->msg_len);
2639 ++compat_entry;
2640 } else {
2641 err = ___sys_sendmsg(sock,
2642 (struct user_msghdr __user *)entry,
2643 &msg_sys, flags, &used_address, MSG_EOR);
2644 if (err < 0)
2645 break;
2646 err = put_user(err, &entry->msg_len);
2647 ++entry;
2648 }
2649
2650 if (err)
2651 break;
2652 ++datagrams;
2653 if (msg_data_left(&msg_sys))
2654 break;
2655 cond_resched();
2656 }
2657
2658 fput_light(sock->file, fput_needed);
2659
2660 /* We only return an error if no datagrams were able to be sent */
2661 if (datagrams != 0)
2662 return datagrams;
2663
2664 return err;
2665 }
2666
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2667 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2668 unsigned int, vlen, unsigned int, flags)
2669 {
2670 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2671 }
2672
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2673 int recvmsg_copy_msghdr(struct msghdr *msg,
2674 struct user_msghdr __user *umsg, unsigned flags,
2675 struct sockaddr __user **uaddr,
2676 struct iovec **iov)
2677 {
2678 ssize_t err;
2679
2680 if (MSG_CMSG_COMPAT & flags) {
2681 struct compat_msghdr __user *msg_compat;
2682
2683 msg_compat = (struct compat_msghdr __user *) umsg;
2684 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2685 } else {
2686 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2687 }
2688 if (err < 0)
2689 return err;
2690
2691 return 0;
2692 }
2693
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2694 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2695 struct user_msghdr __user *msg,
2696 struct sockaddr __user *uaddr,
2697 unsigned int flags, int nosec)
2698 {
2699 struct compat_msghdr __user *msg_compat =
2700 (struct compat_msghdr __user *) msg;
2701 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2702 struct sockaddr_storage addr;
2703 unsigned long cmsg_ptr;
2704 int len;
2705 ssize_t err;
2706
2707 msg_sys->msg_name = &addr;
2708 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2709 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2710
2711 /* We assume all kernel code knows the size of sockaddr_storage */
2712 msg_sys->msg_namelen = 0;
2713
2714 if (sock->file->f_flags & O_NONBLOCK)
2715 flags |= MSG_DONTWAIT;
2716
2717 if (unlikely(nosec))
2718 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2719 else
2720 err = sock_recvmsg(sock, msg_sys, flags);
2721
2722 if (err < 0)
2723 goto out;
2724 len = err;
2725
2726 if (uaddr != NULL) {
2727 err = move_addr_to_user(&addr,
2728 msg_sys->msg_namelen, uaddr,
2729 uaddr_len);
2730 if (err < 0)
2731 goto out;
2732 }
2733 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2734 COMPAT_FLAGS(msg));
2735 if (err)
2736 goto out;
2737 if (MSG_CMSG_COMPAT & flags)
2738 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2739 &msg_compat->msg_controllen);
2740 else
2741 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2742 &msg->msg_controllen);
2743 if (err)
2744 goto out;
2745 err = len;
2746 out:
2747 return err;
2748 }
2749
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2750 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2751 struct msghdr *msg_sys, unsigned int flags, int nosec)
2752 {
2753 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2754 /* user mode address pointers */
2755 struct sockaddr __user *uaddr;
2756 ssize_t err;
2757
2758 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2759 if (err < 0)
2760 return err;
2761
2762 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2763 kfree(iov);
2764 return err;
2765 }
2766
2767 /*
2768 * BSD recvmsg interface
2769 */
2770
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2771 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2772 struct user_msghdr __user *umsg,
2773 struct sockaddr __user *uaddr, unsigned int flags)
2774 {
2775 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2776 }
2777
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2778 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2779 bool forbid_cmsg_compat)
2780 {
2781 int fput_needed, err;
2782 struct msghdr msg_sys;
2783 struct socket *sock;
2784
2785 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2786 return -EINVAL;
2787
2788 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2789 if (!sock)
2790 goto out;
2791
2792 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2793
2794 fput_light(sock->file, fput_needed);
2795 out:
2796 return err;
2797 }
2798
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2799 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2800 unsigned int, flags)
2801 {
2802 return __sys_recvmsg(fd, msg, flags, true);
2803 }
2804
2805 /*
2806 * Linux recvmmsg interface
2807 */
2808
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2809 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2810 unsigned int vlen, unsigned int flags,
2811 struct timespec64 *timeout)
2812 {
2813 int fput_needed, err, datagrams;
2814 struct socket *sock;
2815 struct mmsghdr __user *entry;
2816 struct compat_mmsghdr __user *compat_entry;
2817 struct msghdr msg_sys;
2818 struct timespec64 end_time;
2819 struct timespec64 timeout64;
2820
2821 if (timeout &&
2822 poll_select_set_timeout(&end_time, timeout->tv_sec,
2823 timeout->tv_nsec))
2824 return -EINVAL;
2825
2826 datagrams = 0;
2827
2828 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2829 if (!sock)
2830 return err;
2831
2832 if (likely(!(flags & MSG_ERRQUEUE))) {
2833 err = sock_error(sock->sk);
2834 if (err) {
2835 datagrams = err;
2836 goto out_put;
2837 }
2838 }
2839
2840 entry = mmsg;
2841 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2842
2843 while (datagrams < vlen) {
2844 /*
2845 * No need to ask LSM for more than the first datagram.
2846 */
2847 if (MSG_CMSG_COMPAT & flags) {
2848 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2849 &msg_sys, flags & ~MSG_WAITFORONE,
2850 datagrams);
2851 if (err < 0)
2852 break;
2853 err = __put_user(err, &compat_entry->msg_len);
2854 ++compat_entry;
2855 } else {
2856 err = ___sys_recvmsg(sock,
2857 (struct user_msghdr __user *)entry,
2858 &msg_sys, flags & ~MSG_WAITFORONE,
2859 datagrams);
2860 if (err < 0)
2861 break;
2862 err = put_user(err, &entry->msg_len);
2863 ++entry;
2864 }
2865
2866 if (err)
2867 break;
2868 ++datagrams;
2869
2870 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2871 if (flags & MSG_WAITFORONE)
2872 flags |= MSG_DONTWAIT;
2873
2874 if (timeout) {
2875 ktime_get_ts64(&timeout64);
2876 *timeout = timespec64_sub(end_time, timeout64);
2877 if (timeout->tv_sec < 0) {
2878 timeout->tv_sec = timeout->tv_nsec = 0;
2879 break;
2880 }
2881
2882 /* Timeout, return less than vlen datagrams */
2883 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2884 break;
2885 }
2886
2887 /* Out of band data, return right away */
2888 if (msg_sys.msg_flags & MSG_OOB)
2889 break;
2890 cond_resched();
2891 }
2892
2893 if (err == 0)
2894 goto out_put;
2895
2896 if (datagrams == 0) {
2897 datagrams = err;
2898 goto out_put;
2899 }
2900
2901 /*
2902 * We may return less entries than requested (vlen) if the
2903 * sock is non block and there aren't enough datagrams...
2904 */
2905 if (err != -EAGAIN) {
2906 /*
2907 * ... or if recvmsg returns an error after we
2908 * received some datagrams, where we record the
2909 * error to return on the next call or if the
2910 * app asks about it using getsockopt(SO_ERROR).
2911 */
2912 sock->sk->sk_err = -err;
2913 }
2914 out_put:
2915 fput_light(sock->file, fput_needed);
2916
2917 return datagrams;
2918 }
2919
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2920 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2921 unsigned int vlen, unsigned int flags,
2922 struct __kernel_timespec __user *timeout,
2923 struct old_timespec32 __user *timeout32)
2924 {
2925 int datagrams;
2926 struct timespec64 timeout_sys;
2927
2928 if (timeout && get_timespec64(&timeout_sys, timeout))
2929 return -EFAULT;
2930
2931 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2932 return -EFAULT;
2933
2934 if (!timeout && !timeout32)
2935 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2936
2937 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2938
2939 if (datagrams <= 0)
2940 return datagrams;
2941
2942 if (timeout && put_timespec64(&timeout_sys, timeout))
2943 datagrams = -EFAULT;
2944
2945 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2946 datagrams = -EFAULT;
2947
2948 return datagrams;
2949 }
2950
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)2951 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2952 unsigned int, vlen, unsigned int, flags,
2953 struct __kernel_timespec __user *, timeout)
2954 {
2955 if (flags & MSG_CMSG_COMPAT)
2956 return -EINVAL;
2957
2958 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2959 }
2960
2961 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)2962 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2963 unsigned int, vlen, unsigned int, flags,
2964 struct old_timespec32 __user *, timeout)
2965 {
2966 if (flags & MSG_CMSG_COMPAT)
2967 return -EINVAL;
2968
2969 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2970 }
2971 #endif
2972
2973 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2974 /* Argument list sizes for sys_socketcall */
2975 #define AL(x) ((x) * sizeof(unsigned long))
2976 static const unsigned char nargs[21] = {
2977 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2978 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2979 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2980 AL(4), AL(5), AL(4)
2981 };
2982
2983 #undef AL
2984
2985 /*
2986 * System call vectors.
2987 *
2988 * Argument checking cleaned up. Saved 20% in size.
2989 * This function doesn't need to set the kernel lock because
2990 * it is set by the callees.
2991 */
2992
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2993 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2994 {
2995 unsigned long a[AUDITSC_ARGS];
2996 unsigned long a0, a1;
2997 int err;
2998 unsigned int len;
2999
3000 if (call < 1 || call > SYS_SENDMMSG)
3001 return -EINVAL;
3002 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3003
3004 len = nargs[call];
3005 if (len > sizeof(a))
3006 return -EINVAL;
3007
3008 /* copy_from_user should be SMP safe. */
3009 if (copy_from_user(a, args, len))
3010 return -EFAULT;
3011
3012 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3013 if (err)
3014 return err;
3015
3016 a0 = a[0];
3017 a1 = a[1];
3018
3019 switch (call) {
3020 case SYS_SOCKET:
3021 err = __sys_socket(a0, a1, a[2]);
3022 break;
3023 case SYS_BIND:
3024 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3025 break;
3026 case SYS_CONNECT:
3027 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3028 break;
3029 case SYS_LISTEN:
3030 err = __sys_listen(a0, a1);
3031 break;
3032 case SYS_ACCEPT:
3033 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3034 (int __user *)a[2], 0);
3035 break;
3036 case SYS_GETSOCKNAME:
3037 err =
3038 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3039 (int __user *)a[2]);
3040 break;
3041 case SYS_GETPEERNAME:
3042 err =
3043 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3044 (int __user *)a[2]);
3045 break;
3046 case SYS_SOCKETPAIR:
3047 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3048 break;
3049 case SYS_SEND:
3050 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3051 NULL, 0);
3052 break;
3053 case SYS_SENDTO:
3054 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3055 (struct sockaddr __user *)a[4], a[5]);
3056 break;
3057 case SYS_RECV:
3058 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3059 NULL, NULL);
3060 break;
3061 case SYS_RECVFROM:
3062 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3063 (struct sockaddr __user *)a[4],
3064 (int __user *)a[5]);
3065 break;
3066 case SYS_SHUTDOWN:
3067 err = __sys_shutdown(a0, a1);
3068 break;
3069 case SYS_SETSOCKOPT:
3070 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3071 a[4]);
3072 break;
3073 case SYS_GETSOCKOPT:
3074 err =
3075 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3076 (int __user *)a[4]);
3077 break;
3078 case SYS_SENDMSG:
3079 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3080 a[2], true);
3081 break;
3082 case SYS_SENDMMSG:
3083 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3084 a[3], true);
3085 break;
3086 case SYS_RECVMSG:
3087 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3088 a[2], true);
3089 break;
3090 case SYS_RECVMMSG:
3091 if (IS_ENABLED(CONFIG_64BIT))
3092 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3093 a[2], a[3],
3094 (struct __kernel_timespec __user *)a[4],
3095 NULL);
3096 else
3097 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3098 a[2], a[3], NULL,
3099 (struct old_timespec32 __user *)a[4]);
3100 break;
3101 case SYS_ACCEPT4:
3102 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3103 (int __user *)a[2], a[3]);
3104 break;
3105 default:
3106 err = -EINVAL;
3107 break;
3108 }
3109 return err;
3110 }
3111
3112 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3113
3114 /**
3115 * sock_register - add a socket protocol handler
3116 * @ops: description of protocol
3117 *
3118 * This function is called by a protocol handler that wants to
3119 * advertise its address family, and have it linked into the
3120 * socket interface. The value ops->family corresponds to the
3121 * socket system call protocol family.
3122 */
sock_register(const struct net_proto_family * ops)3123 int sock_register(const struct net_proto_family *ops)
3124 {
3125 int err;
3126
3127 if (ops->family >= NPROTO) {
3128 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3129 return -ENOBUFS;
3130 }
3131
3132 spin_lock(&net_family_lock);
3133 if (rcu_dereference_protected(net_families[ops->family],
3134 lockdep_is_held(&net_family_lock)))
3135 err = -EEXIST;
3136 else {
3137 rcu_assign_pointer(net_families[ops->family], ops);
3138 err = 0;
3139 }
3140 spin_unlock(&net_family_lock);
3141
3142 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3143 return err;
3144 }
3145 EXPORT_SYMBOL(sock_register);
3146
3147 /**
3148 * sock_unregister - remove a protocol handler
3149 * @family: protocol family to remove
3150 *
3151 * This function is called by a protocol handler that wants to
3152 * remove its address family, and have it unlinked from the
3153 * new socket creation.
3154 *
3155 * If protocol handler is a module, then it can use module reference
3156 * counts to protect against new references. If protocol handler is not
3157 * a module then it needs to provide its own protection in
3158 * the ops->create routine.
3159 */
sock_unregister(int family)3160 void sock_unregister(int family)
3161 {
3162 BUG_ON(family < 0 || family >= NPROTO);
3163
3164 spin_lock(&net_family_lock);
3165 RCU_INIT_POINTER(net_families[family], NULL);
3166 spin_unlock(&net_family_lock);
3167
3168 synchronize_rcu();
3169
3170 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3171 }
3172 EXPORT_SYMBOL(sock_unregister);
3173
sock_is_registered(int family)3174 bool sock_is_registered(int family)
3175 {
3176 return family < NPROTO && rcu_access_pointer(net_families[family]);
3177 }
3178
sock_init(void)3179 static int __init sock_init(void)
3180 {
3181 int err;
3182 /*
3183 * Initialize the network sysctl infrastructure.
3184 */
3185 err = net_sysctl_init();
3186 if (err)
3187 goto out;
3188
3189 /*
3190 * Initialize skbuff SLAB cache
3191 */
3192 skb_init();
3193
3194 /*
3195 * Initialize the protocols module.
3196 */
3197
3198 init_inodecache();
3199
3200 err = register_filesystem(&sock_fs_type);
3201 if (err)
3202 goto out;
3203 sock_mnt = kern_mount(&sock_fs_type);
3204 if (IS_ERR(sock_mnt)) {
3205 err = PTR_ERR(sock_mnt);
3206 goto out_mount;
3207 }
3208
3209 /* The real protocol initialization is performed in later initcalls.
3210 */
3211
3212 #ifdef CONFIG_NETFILTER
3213 err = netfilter_init();
3214 if (err)
3215 goto out;
3216 #endif
3217
3218 ptp_classifier_init();
3219
3220 out:
3221 return err;
3222
3223 out_mount:
3224 unregister_filesystem(&sock_fs_type);
3225 goto out;
3226 }
3227
3228 core_initcall(sock_init); /* early initcall */
3229
3230 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3231 void socket_seq_show(struct seq_file *seq)
3232 {
3233 seq_printf(seq, "sockets: used %d\n",
3234 sock_inuse_get(seq->private));
3235 }
3236 #endif /* CONFIG_PROC_FS */
3237
3238 /* Handle the fact that while struct ifreq has the same *layout* on
3239 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3240 * which are handled elsewhere, it still has different *size* due to
3241 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3242 * resulting in struct ifreq being 32 and 40 bytes respectively).
3243 * As a result, if the struct happens to be at the end of a page and
3244 * the next page isn't readable/writable, we get a fault. To prevent
3245 * that, copy back and forth to the full size.
3246 */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3247 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3248 {
3249 if (in_compat_syscall()) {
3250 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3251
3252 memset(ifr, 0, sizeof(*ifr));
3253 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3254 return -EFAULT;
3255
3256 if (ifrdata)
3257 *ifrdata = compat_ptr(ifr32->ifr_data);
3258
3259 return 0;
3260 }
3261
3262 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3263 return -EFAULT;
3264
3265 if (ifrdata)
3266 *ifrdata = ifr->ifr_data;
3267
3268 return 0;
3269 }
3270 EXPORT_SYMBOL(get_user_ifreq);
3271
put_user_ifreq(struct ifreq * ifr,void __user * arg)3272 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3273 {
3274 size_t size = sizeof(*ifr);
3275
3276 if (in_compat_syscall())
3277 size = sizeof(struct compat_ifreq);
3278
3279 if (copy_to_user(arg, ifr, size))
3280 return -EFAULT;
3281
3282 return 0;
3283 }
3284 EXPORT_SYMBOL(put_user_ifreq);
3285
3286 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3287 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3288 {
3289 compat_uptr_t uptr32;
3290 struct ifreq ifr;
3291 void __user *saved;
3292 int err;
3293
3294 if (get_user_ifreq(&ifr, NULL, uifr32))
3295 return -EFAULT;
3296
3297 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3298 return -EFAULT;
3299
3300 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3301 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3302
3303 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3304 if (!err) {
3305 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3306 if (put_user_ifreq(&ifr, uifr32))
3307 err = -EFAULT;
3308 }
3309 return err;
3310 }
3311
3312 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3313 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3314 struct compat_ifreq __user *u_ifreq32)
3315 {
3316 struct ifreq ifreq;
3317 void __user *data;
3318
3319 if (!is_socket_ioctl_cmd(cmd))
3320 return -ENOTTY;
3321 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3322 return -EFAULT;
3323 ifreq.ifr_data = data;
3324
3325 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3326 }
3327
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3328 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3329 unsigned int cmd, unsigned long arg)
3330 {
3331 void __user *argp = compat_ptr(arg);
3332 struct sock *sk = sock->sk;
3333 struct net *net = sock_net(sk);
3334
3335 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3336 return sock_ioctl(file, cmd, (unsigned long)argp);
3337
3338 switch (cmd) {
3339 case SIOCWANDEV:
3340 return compat_siocwandev(net, argp);
3341 case SIOCGSTAMP_OLD:
3342 case SIOCGSTAMPNS_OLD:
3343 if (!sock->ops->gettstamp)
3344 return -ENOIOCTLCMD;
3345 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3346 !COMPAT_USE_64BIT_TIME);
3347
3348 case SIOCETHTOOL:
3349 case SIOCBONDSLAVEINFOQUERY:
3350 case SIOCBONDINFOQUERY:
3351 case SIOCSHWTSTAMP:
3352 case SIOCGHWTSTAMP:
3353 return compat_ifr_data_ioctl(net, cmd, argp);
3354
3355 case FIOSETOWN:
3356 case SIOCSPGRP:
3357 case FIOGETOWN:
3358 case SIOCGPGRP:
3359 case SIOCBRADDBR:
3360 case SIOCBRDELBR:
3361 case SIOCGIFVLAN:
3362 case SIOCSIFVLAN:
3363 case SIOCGSKNS:
3364 case SIOCGSTAMP_NEW:
3365 case SIOCGSTAMPNS_NEW:
3366 case SIOCGIFCONF:
3367 case SIOCSIFBR:
3368 case SIOCGIFBR:
3369 return sock_ioctl(file, cmd, arg);
3370
3371 case SIOCGIFFLAGS:
3372 case SIOCSIFFLAGS:
3373 case SIOCGIFMAP:
3374 case SIOCSIFMAP:
3375 case SIOCGIFMETRIC:
3376 case SIOCSIFMETRIC:
3377 case SIOCGIFMTU:
3378 case SIOCSIFMTU:
3379 case SIOCGIFMEM:
3380 case SIOCSIFMEM:
3381 case SIOCGIFHWADDR:
3382 case SIOCSIFHWADDR:
3383 case SIOCADDMULTI:
3384 case SIOCDELMULTI:
3385 case SIOCGIFINDEX:
3386 case SIOCGIFADDR:
3387 case SIOCSIFADDR:
3388 case SIOCSIFHWBROADCAST:
3389 case SIOCDIFADDR:
3390 case SIOCGIFBRDADDR:
3391 case SIOCSIFBRDADDR:
3392 case SIOCGIFDSTADDR:
3393 case SIOCSIFDSTADDR:
3394 case SIOCGIFNETMASK:
3395 case SIOCSIFNETMASK:
3396 case SIOCSIFPFLAGS:
3397 case SIOCGIFPFLAGS:
3398 case SIOCGIFTXQLEN:
3399 case SIOCSIFTXQLEN:
3400 case SIOCBRADDIF:
3401 case SIOCBRDELIF:
3402 case SIOCGIFNAME:
3403 case SIOCSIFNAME:
3404 case SIOCGMIIPHY:
3405 case SIOCGMIIREG:
3406 case SIOCSMIIREG:
3407 case SIOCBONDENSLAVE:
3408 case SIOCBONDRELEASE:
3409 case SIOCBONDSETHWADDR:
3410 case SIOCBONDCHANGEACTIVE:
3411 case SIOCSARP:
3412 case SIOCGARP:
3413 case SIOCDARP:
3414 case SIOCOUTQ:
3415 case SIOCOUTQNSD:
3416 case SIOCATMARK:
3417 return sock_do_ioctl(net, sock, cmd, arg);
3418 }
3419
3420 return -ENOIOCTLCMD;
3421 }
3422
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3423 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3424 unsigned long arg)
3425 {
3426 struct socket *sock = file->private_data;
3427 int ret = -ENOIOCTLCMD;
3428 struct sock *sk;
3429 struct net *net;
3430
3431 sk = sock->sk;
3432 net = sock_net(sk);
3433
3434 if (sock->ops->compat_ioctl)
3435 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3436
3437 if (ret == -ENOIOCTLCMD &&
3438 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3439 ret = compat_wext_handle_ioctl(net, cmd, arg);
3440
3441 if (ret == -ENOIOCTLCMD)
3442 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3443
3444 return ret;
3445 }
3446 #endif
3447
3448 /**
3449 * kernel_bind - bind an address to a socket (kernel space)
3450 * @sock: socket
3451 * @addr: address
3452 * @addrlen: length of address
3453 *
3454 * Returns 0 or an error.
3455 */
3456
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3457 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3458 {
3459 return sock->ops->bind(sock, addr, addrlen);
3460 }
3461 EXPORT_SYMBOL(kernel_bind);
3462
3463 /**
3464 * kernel_listen - move socket to listening state (kernel space)
3465 * @sock: socket
3466 * @backlog: pending connections queue size
3467 *
3468 * Returns 0 or an error.
3469 */
3470
kernel_listen(struct socket * sock,int backlog)3471 int kernel_listen(struct socket *sock, int backlog)
3472 {
3473 return sock->ops->listen(sock, backlog);
3474 }
3475 EXPORT_SYMBOL(kernel_listen);
3476
3477 /**
3478 * kernel_accept - accept a connection (kernel space)
3479 * @sock: listening socket
3480 * @newsock: new connected socket
3481 * @flags: flags
3482 *
3483 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3484 * If it fails, @newsock is guaranteed to be %NULL.
3485 * Returns 0 or an error.
3486 */
3487
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3488 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3489 {
3490 struct sock *sk = sock->sk;
3491 int err;
3492
3493 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3494 newsock);
3495 if (err < 0)
3496 goto done;
3497
3498 err = sock->ops->accept(sock, *newsock, flags, true);
3499 if (err < 0) {
3500 sock_release(*newsock);
3501 *newsock = NULL;
3502 goto done;
3503 }
3504
3505 (*newsock)->ops = sock->ops;
3506 __module_get((*newsock)->ops->owner);
3507
3508 done:
3509 return err;
3510 }
3511 EXPORT_SYMBOL(kernel_accept);
3512
3513 /**
3514 * kernel_connect - connect a socket (kernel space)
3515 * @sock: socket
3516 * @addr: address
3517 * @addrlen: address length
3518 * @flags: flags (O_NONBLOCK, ...)
3519 *
3520 * For datagram sockets, @addr is the address to which datagrams are sent
3521 * by default, and the only address from which datagrams are received.
3522 * For stream sockets, attempts to connect to @addr.
3523 * Returns 0 or an error code.
3524 */
3525
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3526 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3527 int flags)
3528 {
3529 return sock->ops->connect(sock, addr, addrlen, flags);
3530 }
3531 EXPORT_SYMBOL(kernel_connect);
3532
3533 /**
3534 * kernel_getsockname - get the address which the socket is bound (kernel space)
3535 * @sock: socket
3536 * @addr: address holder
3537 *
3538 * Fills the @addr pointer with the address which the socket is bound.
3539 * Returns the length of the address in bytes or an error code.
3540 */
3541
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3542 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3543 {
3544 return sock->ops->getname(sock, addr, 0);
3545 }
3546 EXPORT_SYMBOL(kernel_getsockname);
3547
3548 /**
3549 * kernel_getpeername - get the address which the socket is connected (kernel space)
3550 * @sock: socket
3551 * @addr: address holder
3552 *
3553 * Fills the @addr pointer with the address which the socket is connected.
3554 * Returns the length of the address in bytes or an error code.
3555 */
3556
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3557 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3558 {
3559 return sock->ops->getname(sock, addr, 1);
3560 }
3561 EXPORT_SYMBOL(kernel_getpeername);
3562
3563 /**
3564 * kernel_sendpage - send a &page through a socket (kernel space)
3565 * @sock: socket
3566 * @page: page
3567 * @offset: page offset
3568 * @size: total size in bytes
3569 * @flags: flags (MSG_DONTWAIT, ...)
3570 *
3571 * Returns the total amount sent in bytes or an error.
3572 */
3573
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3574 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3575 size_t size, int flags)
3576 {
3577 if (sock->ops->sendpage) {
3578 /* Warn in case the improper page to zero-copy send */
3579 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3580 return sock->ops->sendpage(sock, page, offset, size, flags);
3581 }
3582 return sock_no_sendpage(sock, page, offset, size, flags);
3583 }
3584 EXPORT_SYMBOL(kernel_sendpage);
3585
3586 /**
3587 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3588 * @sk: sock
3589 * @page: page
3590 * @offset: page offset
3591 * @size: total size in bytes
3592 * @flags: flags (MSG_DONTWAIT, ...)
3593 *
3594 * Returns the total amount sent in bytes or an error.
3595 * Caller must hold @sk.
3596 */
3597
kernel_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)3598 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3599 size_t size, int flags)
3600 {
3601 struct socket *sock = sk->sk_socket;
3602
3603 if (sock->ops->sendpage_locked)
3604 return sock->ops->sendpage_locked(sk, page, offset, size,
3605 flags);
3606
3607 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3608 }
3609 EXPORT_SYMBOL(kernel_sendpage_locked);
3610
3611 /**
3612 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3613 * @sock: socket
3614 * @how: connection part
3615 *
3616 * Returns 0 or an error.
3617 */
3618
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3619 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3620 {
3621 return sock->ops->shutdown(sock, how);
3622 }
3623 EXPORT_SYMBOL(kernel_sock_shutdown);
3624
3625 /**
3626 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3627 * @sk: socket
3628 *
3629 * This routine returns the IP overhead imposed by a socket i.e.
3630 * the length of the underlying IP header, depending on whether
3631 * this is an IPv4 or IPv6 socket and the length from IP options turned
3632 * on at the socket. Assumes that the caller has a lock on the socket.
3633 */
3634
kernel_sock_ip_overhead(struct sock * sk)3635 u32 kernel_sock_ip_overhead(struct sock *sk)
3636 {
3637 struct inet_sock *inet;
3638 struct ip_options_rcu *opt;
3639 u32 overhead = 0;
3640 #if IS_ENABLED(CONFIG_IPV6)
3641 struct ipv6_pinfo *np;
3642 struct ipv6_txoptions *optv6 = NULL;
3643 #endif /* IS_ENABLED(CONFIG_IPV6) */
3644
3645 if (!sk)
3646 return overhead;
3647
3648 switch (sk->sk_family) {
3649 case AF_INET:
3650 inet = inet_sk(sk);
3651 overhead += sizeof(struct iphdr);
3652 opt = rcu_dereference_protected(inet->inet_opt,
3653 sock_owned_by_user(sk));
3654 if (opt)
3655 overhead += opt->opt.optlen;
3656 return overhead;
3657 #if IS_ENABLED(CONFIG_IPV6)
3658 case AF_INET6:
3659 np = inet6_sk(sk);
3660 overhead += sizeof(struct ipv6hdr);
3661 if (np)
3662 optv6 = rcu_dereference_protected(np->opt,
3663 sock_owned_by_user(sk));
3664 if (optv6)
3665 overhead += (optv6->opt_flen + optv6->opt_nflen);
3666 return overhead;
3667 #endif /* IS_ENABLED(CONFIG_IPV6) */
3668 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3669 return overhead;
3670 }
3671 }
3672 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3673