1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/kernfs/dir.c - kernfs directory implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17
18 #include "kernfs-internal.h"
19
20 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
21 /*
22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
24 * will perform wakeups when releasing console_sem. Holding rename_lock
25 * will introduce deadlock if the scheduler reads the kernfs_name in the
26 * wakeup path.
27 */
28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
29 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */
30 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
31
32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
33
__kernfs_active(struct kernfs_node * kn)34 static bool __kernfs_active(struct kernfs_node *kn)
35 {
36 return atomic_read(&kn->active) >= 0;
37 }
38
kernfs_active(struct kernfs_node * kn)39 static bool kernfs_active(struct kernfs_node *kn)
40 {
41 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
42 return __kernfs_active(kn);
43 }
44
kernfs_lockdep(struct kernfs_node * kn)45 static bool kernfs_lockdep(struct kernfs_node *kn)
46 {
47 #ifdef CONFIG_DEBUG_LOCK_ALLOC
48 return kn->flags & KERNFS_LOCKDEP;
49 #else
50 return false;
51 #endif
52 }
53
kernfs_name_locked(struct kernfs_node * kn,char * buf,size_t buflen)54 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
55 {
56 if (!kn)
57 return strlcpy(buf, "(null)", buflen);
58
59 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
60 }
61
62 /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)63 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
64 {
65 size_t depth = 0;
66
67 while (to->parent && to != from) {
68 depth++;
69 to = to->parent;
70 }
71 return depth;
72 }
73
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)74 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
75 struct kernfs_node *b)
76 {
77 size_t da, db;
78 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
79
80 if (ra != rb)
81 return NULL;
82
83 da = kernfs_depth(ra->kn, a);
84 db = kernfs_depth(rb->kn, b);
85
86 while (da > db) {
87 a = a->parent;
88 da--;
89 }
90 while (db > da) {
91 b = b->parent;
92 db--;
93 }
94
95 /* worst case b and a will be the same at root */
96 while (b != a) {
97 b = b->parent;
98 a = a->parent;
99 }
100
101 return a;
102 }
103
104 /**
105 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
106 * where kn_from is treated as root of the path.
107 * @kn_from: kernfs node which should be treated as root for the path
108 * @kn_to: kernfs node to which path is needed
109 * @buf: buffer to copy the path into
110 * @buflen: size of @buf
111 *
112 * We need to handle couple of scenarios here:
113 * [1] when @kn_from is an ancestor of @kn_to at some level
114 * kn_from: /n1/n2/n3
115 * kn_to: /n1/n2/n3/n4/n5
116 * result: /n4/n5
117 *
118 * [2] when @kn_from is on a different hierarchy and we need to find common
119 * ancestor between @kn_from and @kn_to.
120 * kn_from: /n1/n2/n3/n4
121 * kn_to: /n1/n2/n5
122 * result: /../../n5
123 * OR
124 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
125 * kn_to: /n1/n2/n3 [depth=3]
126 * result: /../..
127 *
128 * [3] when @kn_to is %NULL result will be "(null)"
129 *
130 * Return: the length of the full path. If the full length is equal to or
131 * greater than @buflen, @buf contains the truncated path with the trailing
132 * '\0'. On error, -errno is returned.
133 */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)134 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
135 struct kernfs_node *kn_from,
136 char *buf, size_t buflen)
137 {
138 struct kernfs_node *kn, *common;
139 const char parent_str[] = "/..";
140 size_t depth_from, depth_to, len = 0;
141 int i, j;
142
143 if (!kn_to)
144 return strlcpy(buf, "(null)", buflen);
145
146 if (!kn_from)
147 kn_from = kernfs_root(kn_to)->kn;
148
149 if (kn_from == kn_to)
150 return strlcpy(buf, "/", buflen);
151
152 common = kernfs_common_ancestor(kn_from, kn_to);
153 if (WARN_ON(!common))
154 return -EINVAL;
155
156 depth_to = kernfs_depth(common, kn_to);
157 depth_from = kernfs_depth(common, kn_from);
158
159 buf[0] = '\0';
160
161 for (i = 0; i < depth_from; i++)
162 len += strlcpy(buf + len, parent_str,
163 len < buflen ? buflen - len : 0);
164
165 /* Calculate how many bytes we need for the rest */
166 for (i = depth_to - 1; i >= 0; i--) {
167 for (kn = kn_to, j = 0; j < i; j++)
168 kn = kn->parent;
169 len += strlcpy(buf + len, "/",
170 len < buflen ? buflen - len : 0);
171 len += strlcpy(buf + len, kn->name,
172 len < buflen ? buflen - len : 0);
173 }
174
175 return len;
176 }
177
178 /**
179 * kernfs_name - obtain the name of a given node
180 * @kn: kernfs_node of interest
181 * @buf: buffer to copy @kn's name into
182 * @buflen: size of @buf
183 *
184 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
185 * similar to strlcpy().
186 *
187 * Fills buffer with "(null)" if @kn is %NULL.
188 *
189 * Return: the length of @kn's name and if @buf isn't long enough,
190 * it's filled up to @buflen-1 and nul terminated.
191 *
192 * This function can be called from any context.
193 */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)194 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
195 {
196 unsigned long flags;
197 int ret;
198
199 spin_lock_irqsave(&kernfs_rename_lock, flags);
200 ret = kernfs_name_locked(kn, buf, buflen);
201 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
202 return ret;
203 }
204
205 /**
206 * kernfs_path_from_node - build path of node @to relative to @from.
207 * @from: parent kernfs_node relative to which we need to build the path
208 * @to: kernfs_node of interest
209 * @buf: buffer to copy @to's path into
210 * @buflen: size of @buf
211 *
212 * Builds @to's path relative to @from in @buf. @from and @to must
213 * be on the same kernfs-root. If @from is not parent of @to, then a relative
214 * path (which includes '..'s) as needed to reach from @from to @to is
215 * returned.
216 *
217 * Return: the length of the full path. If the full length is equal to or
218 * greater than @buflen, @buf contains the truncated path with the trailing
219 * '\0'. On error, -errno is returned.
220 */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)221 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
222 char *buf, size_t buflen)
223 {
224 unsigned long flags;
225 int ret;
226
227 spin_lock_irqsave(&kernfs_rename_lock, flags);
228 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
229 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
230 return ret;
231 }
232 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
233
234 /**
235 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
236 * @kn: kernfs_node of interest
237 *
238 * This function can be called from any context.
239 */
pr_cont_kernfs_name(struct kernfs_node * kn)240 void pr_cont_kernfs_name(struct kernfs_node *kn)
241 {
242 unsigned long flags;
243
244 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
245
246 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
247 pr_cont("%s", kernfs_pr_cont_buf);
248
249 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
250 }
251
252 /**
253 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
254 * @kn: kernfs_node of interest
255 *
256 * This function can be called from any context.
257 */
pr_cont_kernfs_path(struct kernfs_node * kn)258 void pr_cont_kernfs_path(struct kernfs_node *kn)
259 {
260 unsigned long flags;
261 int sz;
262
263 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
264
265 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
266 sizeof(kernfs_pr_cont_buf));
267 if (sz < 0) {
268 pr_cont("(error)");
269 goto out;
270 }
271
272 if (sz >= sizeof(kernfs_pr_cont_buf)) {
273 pr_cont("(name too long)");
274 goto out;
275 }
276
277 pr_cont("%s", kernfs_pr_cont_buf);
278
279 out:
280 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
281 }
282
283 /**
284 * kernfs_get_parent - determine the parent node and pin it
285 * @kn: kernfs_node of interest
286 *
287 * Determines @kn's parent, pins and returns it. This function can be
288 * called from any context.
289 *
290 * Return: parent node of @kn
291 */
kernfs_get_parent(struct kernfs_node * kn)292 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
293 {
294 struct kernfs_node *parent;
295 unsigned long flags;
296
297 spin_lock_irqsave(&kernfs_rename_lock, flags);
298 parent = kn->parent;
299 kernfs_get(parent);
300 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
301
302 return parent;
303 }
304
305 /**
306 * kernfs_name_hash - calculate hash of @ns + @name
307 * @name: Null terminated string to hash
308 * @ns: Namespace tag to hash
309 *
310 * Return: 31-bit hash of ns + name (so it fits in an off_t)
311 */
kernfs_name_hash(const char * name,const void * ns)312 static unsigned int kernfs_name_hash(const char *name, const void *ns)
313 {
314 unsigned long hash = init_name_hash(ns);
315 unsigned int len = strlen(name);
316 while (len--)
317 hash = partial_name_hash(*name++, hash);
318 hash = end_name_hash(hash);
319 hash &= 0x7fffffffU;
320 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
321 if (hash < 2)
322 hash += 2;
323 if (hash >= INT_MAX)
324 hash = INT_MAX - 1;
325 return hash;
326 }
327
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)328 static int kernfs_name_compare(unsigned int hash, const char *name,
329 const void *ns, const struct kernfs_node *kn)
330 {
331 if (hash < kn->hash)
332 return -1;
333 if (hash > kn->hash)
334 return 1;
335 if (ns < kn->ns)
336 return -1;
337 if (ns > kn->ns)
338 return 1;
339 return strcmp(name, kn->name);
340 }
341
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)342 static int kernfs_sd_compare(const struct kernfs_node *left,
343 const struct kernfs_node *right)
344 {
345 return kernfs_name_compare(left->hash, left->name, left->ns, right);
346 }
347
348 /**
349 * kernfs_link_sibling - link kernfs_node into sibling rbtree
350 * @kn: kernfs_node of interest
351 *
352 * Link @kn into its sibling rbtree which starts from
353 * @kn->parent->dir.children.
354 *
355 * Locking:
356 * kernfs_rwsem held exclusive
357 *
358 * Return:
359 * %0 on success, -EEXIST on failure.
360 */
kernfs_link_sibling(struct kernfs_node * kn)361 static int kernfs_link_sibling(struct kernfs_node *kn)
362 {
363 struct rb_node **node = &kn->parent->dir.children.rb_node;
364 struct rb_node *parent = NULL;
365
366 while (*node) {
367 struct kernfs_node *pos;
368 int result;
369
370 pos = rb_to_kn(*node);
371 parent = *node;
372 result = kernfs_sd_compare(kn, pos);
373 if (result < 0)
374 node = &pos->rb.rb_left;
375 else if (result > 0)
376 node = &pos->rb.rb_right;
377 else
378 return -EEXIST;
379 }
380
381 /* add new node and rebalance the tree */
382 rb_link_node(&kn->rb, parent, node);
383 rb_insert_color(&kn->rb, &kn->parent->dir.children);
384
385 /* successfully added, account subdir number */
386 if (kernfs_type(kn) == KERNFS_DIR)
387 kn->parent->dir.subdirs++;
388 kernfs_inc_rev(kn->parent);
389
390 return 0;
391 }
392
393 /**
394 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
395 * @kn: kernfs_node of interest
396 *
397 * Try to unlink @kn from its sibling rbtree which starts from
398 * kn->parent->dir.children.
399 *
400 * Return: %true if @kn was actually removed,
401 * %false if @kn wasn't on the rbtree.
402 *
403 * Locking:
404 * kernfs_rwsem held exclusive
405 */
kernfs_unlink_sibling(struct kernfs_node * kn)406 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
407 {
408 if (RB_EMPTY_NODE(&kn->rb))
409 return false;
410
411 if (kernfs_type(kn) == KERNFS_DIR)
412 kn->parent->dir.subdirs--;
413 kernfs_inc_rev(kn->parent);
414
415 rb_erase(&kn->rb, &kn->parent->dir.children);
416 RB_CLEAR_NODE(&kn->rb);
417 return true;
418 }
419
420 /**
421 * kernfs_get_active - get an active reference to kernfs_node
422 * @kn: kernfs_node to get an active reference to
423 *
424 * Get an active reference of @kn. This function is noop if @kn
425 * is %NULL.
426 *
427 * Return:
428 * Pointer to @kn on success, %NULL on failure.
429 */
kernfs_get_active(struct kernfs_node * kn)430 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
431 {
432 if (unlikely(!kn))
433 return NULL;
434
435 if (!atomic_inc_unless_negative(&kn->active))
436 return NULL;
437
438 if (kernfs_lockdep(kn))
439 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
440 return kn;
441 }
442
443 /**
444 * kernfs_put_active - put an active reference to kernfs_node
445 * @kn: kernfs_node to put an active reference to
446 *
447 * Put an active reference to @kn. This function is noop if @kn
448 * is %NULL.
449 */
kernfs_put_active(struct kernfs_node * kn)450 void kernfs_put_active(struct kernfs_node *kn)
451 {
452 int v;
453
454 if (unlikely(!kn))
455 return;
456
457 if (kernfs_lockdep(kn))
458 rwsem_release(&kn->dep_map, _RET_IP_);
459 v = atomic_dec_return(&kn->active);
460 if (likely(v != KN_DEACTIVATED_BIAS))
461 return;
462
463 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
464 }
465
466 /**
467 * kernfs_drain - drain kernfs_node
468 * @kn: kernfs_node to drain
469 *
470 * Drain existing usages and nuke all existing mmaps of @kn. Multiple
471 * removers may invoke this function concurrently on @kn and all will
472 * return after draining is complete.
473 */
kernfs_drain(struct kernfs_node * kn)474 static void kernfs_drain(struct kernfs_node *kn)
475 __releases(&kernfs_root(kn)->kernfs_rwsem)
476 __acquires(&kernfs_root(kn)->kernfs_rwsem)
477 {
478 struct kernfs_root *root = kernfs_root(kn);
479
480 lockdep_assert_held_write(&root->kernfs_rwsem);
481 WARN_ON_ONCE(kernfs_active(kn));
482
483 /*
484 * Skip draining if already fully drained. This avoids draining and its
485 * lockdep annotations for nodes which have never been activated
486 * allowing embedding kernfs_remove() in create error paths without
487 * worrying about draining.
488 */
489 if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS &&
490 !kernfs_should_drain_open_files(kn))
491 return;
492
493 up_write(&root->kernfs_rwsem);
494
495 if (kernfs_lockdep(kn)) {
496 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
497 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
498 lock_contended(&kn->dep_map, _RET_IP_);
499 }
500
501 wait_event(root->deactivate_waitq,
502 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
503
504 if (kernfs_lockdep(kn)) {
505 lock_acquired(&kn->dep_map, _RET_IP_);
506 rwsem_release(&kn->dep_map, _RET_IP_);
507 }
508
509 if (kernfs_should_drain_open_files(kn))
510 kernfs_drain_open_files(kn);
511
512 down_write(&root->kernfs_rwsem);
513 }
514
515 /**
516 * kernfs_get - get a reference count on a kernfs_node
517 * @kn: the target kernfs_node
518 */
kernfs_get(struct kernfs_node * kn)519 void kernfs_get(struct kernfs_node *kn)
520 {
521 if (kn) {
522 WARN_ON(!atomic_read(&kn->count));
523 atomic_inc(&kn->count);
524 }
525 }
526 EXPORT_SYMBOL_GPL(kernfs_get);
527
528 /**
529 * kernfs_put - put a reference count on a kernfs_node
530 * @kn: the target kernfs_node
531 *
532 * Put a reference count of @kn and destroy it if it reached zero.
533 */
kernfs_put(struct kernfs_node * kn)534 void kernfs_put(struct kernfs_node *kn)
535 {
536 struct kernfs_node *parent;
537 struct kernfs_root *root;
538
539 if (!kn || !atomic_dec_and_test(&kn->count))
540 return;
541 root = kernfs_root(kn);
542 repeat:
543 /*
544 * Moving/renaming is always done while holding reference.
545 * kn->parent won't change beneath us.
546 */
547 parent = kn->parent;
548
549 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
550 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
551 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
552
553 if (kernfs_type(kn) == KERNFS_LINK)
554 kernfs_put(kn->symlink.target_kn);
555
556 kfree_const(kn->name);
557
558 if (kn->iattr) {
559 simple_xattrs_free(&kn->iattr->xattrs);
560 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
561 }
562 spin_lock(&kernfs_idr_lock);
563 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
564 spin_unlock(&kernfs_idr_lock);
565 kmem_cache_free(kernfs_node_cache, kn);
566
567 kn = parent;
568 if (kn) {
569 if (atomic_dec_and_test(&kn->count))
570 goto repeat;
571 } else {
572 /* just released the root kn, free @root too */
573 idr_destroy(&root->ino_idr);
574 kfree(root);
575 }
576 }
577 EXPORT_SYMBOL_GPL(kernfs_put);
578
579 /**
580 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
581 * @dentry: the dentry in question
582 *
583 * Return: the kernfs_node associated with @dentry. If @dentry is not a
584 * kernfs one, %NULL is returned.
585 *
586 * While the returned kernfs_node will stay accessible as long as @dentry
587 * is accessible, the returned node can be in any state and the caller is
588 * fully responsible for determining what's accessible.
589 */
kernfs_node_from_dentry(struct dentry * dentry)590 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
591 {
592 if (dentry->d_sb->s_op == &kernfs_sops)
593 return kernfs_dentry_node(dentry);
594 return NULL;
595 }
596
__kernfs_new_node(struct kernfs_root * root,struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)597 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
598 struct kernfs_node *parent,
599 const char *name, umode_t mode,
600 kuid_t uid, kgid_t gid,
601 unsigned flags)
602 {
603 struct kernfs_node *kn;
604 u32 id_highbits;
605 int ret;
606
607 name = kstrdup_const(name, GFP_KERNEL);
608 if (!name)
609 return NULL;
610
611 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
612 if (!kn)
613 goto err_out1;
614
615 idr_preload(GFP_KERNEL);
616 spin_lock(&kernfs_idr_lock);
617 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
618 if (ret >= 0 && ret < root->last_id_lowbits)
619 root->id_highbits++;
620 id_highbits = root->id_highbits;
621 root->last_id_lowbits = ret;
622 spin_unlock(&kernfs_idr_lock);
623 idr_preload_end();
624 if (ret < 0)
625 goto err_out2;
626
627 kn->id = (u64)id_highbits << 32 | ret;
628
629 atomic_set(&kn->count, 1);
630 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
631 RB_CLEAR_NODE(&kn->rb);
632
633 kn->name = name;
634 kn->mode = mode;
635 kn->flags = flags;
636
637 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
638 struct iattr iattr = {
639 .ia_valid = ATTR_UID | ATTR_GID,
640 .ia_uid = uid,
641 .ia_gid = gid,
642 };
643
644 ret = __kernfs_setattr(kn, &iattr);
645 if (ret < 0)
646 goto err_out3;
647 }
648
649 if (parent) {
650 ret = security_kernfs_init_security(parent, kn);
651 if (ret)
652 goto err_out3;
653 }
654
655 return kn;
656
657 err_out3:
658 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
659 err_out2:
660 kmem_cache_free(kernfs_node_cache, kn);
661 err_out1:
662 kfree_const(name);
663 return NULL;
664 }
665
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)666 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
667 const char *name, umode_t mode,
668 kuid_t uid, kgid_t gid,
669 unsigned flags)
670 {
671 struct kernfs_node *kn;
672
673 kn = __kernfs_new_node(kernfs_root(parent), parent,
674 name, mode, uid, gid, flags);
675 if (kn) {
676 kernfs_get(parent);
677 kn->parent = parent;
678 }
679 return kn;
680 }
681
682 /*
683 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
684 * @root: the kernfs root
685 * @id: the target node id
686 *
687 * @id's lower 32bits encode ino and upper gen. If the gen portion is
688 * zero, all generations are matched.
689 *
690 * Return: %NULL on failure,
691 * otherwise a kernfs node with reference counter incremented.
692 */
kernfs_find_and_get_node_by_id(struct kernfs_root * root,u64 id)693 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
694 u64 id)
695 {
696 struct kernfs_node *kn;
697 ino_t ino = kernfs_id_ino(id);
698 u32 gen = kernfs_id_gen(id);
699
700 spin_lock(&kernfs_idr_lock);
701
702 kn = idr_find(&root->ino_idr, (u32)ino);
703 if (!kn)
704 goto err_unlock;
705
706 if (sizeof(ino_t) >= sizeof(u64)) {
707 /* we looked up with the low 32bits, compare the whole */
708 if (kernfs_ino(kn) != ino)
709 goto err_unlock;
710 } else {
711 /* 0 matches all generations */
712 if (unlikely(gen && kernfs_gen(kn) != gen))
713 goto err_unlock;
714 }
715
716 /*
717 * We should fail if @kn has never been activated and guarantee success
718 * if the caller knows that @kn is active. Both can be achieved by
719 * __kernfs_active() which tests @kn->active without kernfs_rwsem.
720 */
721 if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count)))
722 goto err_unlock;
723
724 spin_unlock(&kernfs_idr_lock);
725 return kn;
726 err_unlock:
727 spin_unlock(&kernfs_idr_lock);
728 return NULL;
729 }
730
731 /**
732 * kernfs_add_one - add kernfs_node to parent without warning
733 * @kn: kernfs_node to be added
734 *
735 * The caller must already have initialized @kn->parent. This
736 * function increments nlink of the parent's inode if @kn is a
737 * directory and link into the children list of the parent.
738 *
739 * Return:
740 * %0 on success, -EEXIST if entry with the given name already
741 * exists.
742 */
kernfs_add_one(struct kernfs_node * kn)743 int kernfs_add_one(struct kernfs_node *kn)
744 {
745 struct kernfs_node *parent = kn->parent;
746 struct kernfs_root *root = kernfs_root(parent);
747 struct kernfs_iattrs *ps_iattr;
748 bool has_ns;
749 int ret;
750
751 down_write(&root->kernfs_rwsem);
752
753 ret = -EINVAL;
754 has_ns = kernfs_ns_enabled(parent);
755 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
756 has_ns ? "required" : "invalid", parent->name, kn->name))
757 goto out_unlock;
758
759 if (kernfs_type(parent) != KERNFS_DIR)
760 goto out_unlock;
761
762 ret = -ENOENT;
763 if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR))
764 goto out_unlock;
765
766 kn->hash = kernfs_name_hash(kn->name, kn->ns);
767
768 ret = kernfs_link_sibling(kn);
769 if (ret)
770 goto out_unlock;
771
772 /* Update timestamps on the parent */
773 ps_iattr = parent->iattr;
774 if (ps_iattr) {
775 ktime_get_real_ts64(&ps_iattr->ia_ctime);
776 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
777 }
778
779 up_write(&root->kernfs_rwsem);
780
781 /*
782 * Activate the new node unless CREATE_DEACTIVATED is requested.
783 * If not activated here, the kernfs user is responsible for
784 * activating the node with kernfs_activate(). A node which hasn't
785 * been activated is not visible to userland and its removal won't
786 * trigger deactivation.
787 */
788 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
789 kernfs_activate(kn);
790 return 0;
791
792 out_unlock:
793 up_write(&root->kernfs_rwsem);
794 return ret;
795 }
796
797 /**
798 * kernfs_find_ns - find kernfs_node with the given name
799 * @parent: kernfs_node to search under
800 * @name: name to look for
801 * @ns: the namespace tag to use
802 *
803 * Look for kernfs_node with name @name under @parent.
804 *
805 * Return: pointer to the found kernfs_node on success, %NULL on failure.
806 */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)807 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
808 const unsigned char *name,
809 const void *ns)
810 {
811 struct rb_node *node = parent->dir.children.rb_node;
812 bool has_ns = kernfs_ns_enabled(parent);
813 unsigned int hash;
814
815 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
816
817 if (has_ns != (bool)ns) {
818 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
819 has_ns ? "required" : "invalid", parent->name, name);
820 return NULL;
821 }
822
823 hash = kernfs_name_hash(name, ns);
824 while (node) {
825 struct kernfs_node *kn;
826 int result;
827
828 kn = rb_to_kn(node);
829 result = kernfs_name_compare(hash, name, ns, kn);
830 if (result < 0)
831 node = node->rb_left;
832 else if (result > 0)
833 node = node->rb_right;
834 else
835 return kn;
836 }
837 return NULL;
838 }
839
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)840 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
841 const unsigned char *path,
842 const void *ns)
843 {
844 size_t len;
845 char *p, *name;
846
847 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
848
849 spin_lock_irq(&kernfs_pr_cont_lock);
850
851 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
852
853 if (len >= sizeof(kernfs_pr_cont_buf)) {
854 spin_unlock_irq(&kernfs_pr_cont_lock);
855 return NULL;
856 }
857
858 p = kernfs_pr_cont_buf;
859
860 while ((name = strsep(&p, "/")) && parent) {
861 if (*name == '\0')
862 continue;
863 parent = kernfs_find_ns(parent, name, ns);
864 }
865
866 spin_unlock_irq(&kernfs_pr_cont_lock);
867
868 return parent;
869 }
870
871 /**
872 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
873 * @parent: kernfs_node to search under
874 * @name: name to look for
875 * @ns: the namespace tag to use
876 *
877 * Look for kernfs_node with name @name under @parent and get a reference
878 * if found. This function may sleep.
879 *
880 * Return: pointer to the found kernfs_node on success, %NULL on failure.
881 */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)882 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
883 const char *name, const void *ns)
884 {
885 struct kernfs_node *kn;
886 struct kernfs_root *root = kernfs_root(parent);
887
888 down_read(&root->kernfs_rwsem);
889 kn = kernfs_find_ns(parent, name, ns);
890 kernfs_get(kn);
891 up_read(&root->kernfs_rwsem);
892
893 return kn;
894 }
895 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
896
897 /**
898 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
899 * @parent: kernfs_node to search under
900 * @path: path to look for
901 * @ns: the namespace tag to use
902 *
903 * Look for kernfs_node with path @path under @parent and get a reference
904 * if found. This function may sleep.
905 *
906 * Return: pointer to the found kernfs_node on success, %NULL on failure.
907 */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)908 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
909 const char *path, const void *ns)
910 {
911 struct kernfs_node *kn;
912 struct kernfs_root *root = kernfs_root(parent);
913
914 down_read(&root->kernfs_rwsem);
915 kn = kernfs_walk_ns(parent, path, ns);
916 kernfs_get(kn);
917 up_read(&root->kernfs_rwsem);
918
919 return kn;
920 }
921
922 /**
923 * kernfs_create_root - create a new kernfs hierarchy
924 * @scops: optional syscall operations for the hierarchy
925 * @flags: KERNFS_ROOT_* flags
926 * @priv: opaque data associated with the new directory
927 *
928 * Return: the root of the new hierarchy on success, ERR_PTR() value on
929 * failure.
930 */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)931 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
932 unsigned int flags, void *priv)
933 {
934 struct kernfs_root *root;
935 struct kernfs_node *kn;
936
937 root = kzalloc(sizeof(*root), GFP_KERNEL);
938 if (!root)
939 return ERR_PTR(-ENOMEM);
940
941 idr_init(&root->ino_idr);
942 init_rwsem(&root->kernfs_rwsem);
943 INIT_LIST_HEAD(&root->supers);
944
945 /*
946 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
947 * High bits generation. The starting value for both ino and
948 * genenration is 1. Initialize upper 32bit allocation
949 * accordingly.
950 */
951 if (sizeof(ino_t) >= sizeof(u64))
952 root->id_highbits = 0;
953 else
954 root->id_highbits = 1;
955
956 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
957 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
958 KERNFS_DIR);
959 if (!kn) {
960 idr_destroy(&root->ino_idr);
961 kfree(root);
962 return ERR_PTR(-ENOMEM);
963 }
964
965 kn->priv = priv;
966 kn->dir.root = root;
967
968 root->syscall_ops = scops;
969 root->flags = flags;
970 root->kn = kn;
971 init_waitqueue_head(&root->deactivate_waitq);
972
973 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
974 kernfs_activate(kn);
975
976 return root;
977 }
978
979 /**
980 * kernfs_destroy_root - destroy a kernfs hierarchy
981 * @root: root of the hierarchy to destroy
982 *
983 * Destroy the hierarchy anchored at @root by removing all existing
984 * directories and destroying @root.
985 */
kernfs_destroy_root(struct kernfs_root * root)986 void kernfs_destroy_root(struct kernfs_root *root)
987 {
988 /*
989 * kernfs_remove holds kernfs_rwsem from the root so the root
990 * shouldn't be freed during the operation.
991 */
992 kernfs_get(root->kn);
993 kernfs_remove(root->kn);
994 kernfs_put(root->kn); /* will also free @root */
995 }
996
997 /**
998 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
999 * @root: root to use to lookup
1000 *
1001 * Return: @root's kernfs_node
1002 */
kernfs_root_to_node(struct kernfs_root * root)1003 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
1004 {
1005 return root->kn;
1006 }
1007
1008 /**
1009 * kernfs_create_dir_ns - create a directory
1010 * @parent: parent in which to create a new directory
1011 * @name: name of the new directory
1012 * @mode: mode of the new directory
1013 * @uid: uid of the new directory
1014 * @gid: gid of the new directory
1015 * @priv: opaque data associated with the new directory
1016 * @ns: optional namespace tag of the directory
1017 *
1018 * Return: the created node on success, ERR_PTR() value on failure.
1019 */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,void * priv,const void * ns)1020 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1021 const char *name, umode_t mode,
1022 kuid_t uid, kgid_t gid,
1023 void *priv, const void *ns)
1024 {
1025 struct kernfs_node *kn;
1026 int rc;
1027
1028 /* allocate */
1029 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1030 uid, gid, KERNFS_DIR);
1031 if (!kn)
1032 return ERR_PTR(-ENOMEM);
1033
1034 kn->dir.root = parent->dir.root;
1035 kn->ns = ns;
1036 kn->priv = priv;
1037
1038 /* link in */
1039 rc = kernfs_add_one(kn);
1040 if (!rc)
1041 return kn;
1042
1043 kernfs_put(kn);
1044 return ERR_PTR(rc);
1045 }
1046
1047 /**
1048 * kernfs_create_empty_dir - create an always empty directory
1049 * @parent: parent in which to create a new directory
1050 * @name: name of the new directory
1051 *
1052 * Return: the created node on success, ERR_PTR() value on failure.
1053 */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1054 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1055 const char *name)
1056 {
1057 struct kernfs_node *kn;
1058 int rc;
1059
1060 /* allocate */
1061 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1062 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1063 if (!kn)
1064 return ERR_PTR(-ENOMEM);
1065
1066 kn->flags |= KERNFS_EMPTY_DIR;
1067 kn->dir.root = parent->dir.root;
1068 kn->ns = NULL;
1069 kn->priv = NULL;
1070
1071 /* link in */
1072 rc = kernfs_add_one(kn);
1073 if (!rc)
1074 return kn;
1075
1076 kernfs_put(kn);
1077 return ERR_PTR(rc);
1078 }
1079
kernfs_dop_revalidate(struct dentry * dentry,unsigned int flags)1080 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
1081 {
1082 struct kernfs_node *kn;
1083 struct kernfs_root *root;
1084
1085 if (flags & LOOKUP_RCU)
1086 return -ECHILD;
1087
1088 /* Negative hashed dentry? */
1089 if (d_really_is_negative(dentry)) {
1090 struct kernfs_node *parent;
1091
1092 /* If the kernfs parent node has changed discard and
1093 * proceed to ->lookup.
1094 *
1095 * There's nothing special needed here when getting the
1096 * dentry parent, even if a concurrent rename is in
1097 * progress. That's because the dentry is negative so
1098 * it can only be the target of the rename and it will
1099 * be doing a d_move() not a replace. Consequently the
1100 * dentry d_parent won't change over the d_move().
1101 *
1102 * Also kernfs negative dentries transitioning from
1103 * negative to positive during revalidate won't happen
1104 * because they are invalidated on containing directory
1105 * changes and the lookup re-done so that a new positive
1106 * dentry can be properly created.
1107 */
1108 root = kernfs_root_from_sb(dentry->d_sb);
1109 down_read(&root->kernfs_rwsem);
1110 parent = kernfs_dentry_node(dentry->d_parent);
1111 if (parent) {
1112 if (kernfs_dir_changed(parent, dentry)) {
1113 up_read(&root->kernfs_rwsem);
1114 return 0;
1115 }
1116 }
1117 up_read(&root->kernfs_rwsem);
1118
1119 /* The kernfs parent node hasn't changed, leave the
1120 * dentry negative and return success.
1121 */
1122 return 1;
1123 }
1124
1125 kn = kernfs_dentry_node(dentry);
1126 root = kernfs_root(kn);
1127 down_read(&root->kernfs_rwsem);
1128
1129 /* The kernfs node has been deactivated */
1130 if (!kernfs_active(kn))
1131 goto out_bad;
1132
1133 /* The kernfs node has been moved? */
1134 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
1135 goto out_bad;
1136
1137 /* The kernfs node has been renamed */
1138 if (strcmp(dentry->d_name.name, kn->name) != 0)
1139 goto out_bad;
1140
1141 /* The kernfs node has been moved to a different namespace */
1142 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
1143 kernfs_info(dentry->d_sb)->ns != kn->ns)
1144 goto out_bad;
1145
1146 up_read(&root->kernfs_rwsem);
1147 return 1;
1148 out_bad:
1149 up_read(&root->kernfs_rwsem);
1150 return 0;
1151 }
1152
1153 const struct dentry_operations kernfs_dops = {
1154 .d_revalidate = kernfs_dop_revalidate,
1155 };
1156
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1157 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1158 struct dentry *dentry,
1159 unsigned int flags)
1160 {
1161 struct kernfs_node *parent = dir->i_private;
1162 struct kernfs_node *kn;
1163 struct kernfs_root *root;
1164 struct inode *inode = NULL;
1165 const void *ns = NULL;
1166
1167 root = kernfs_root(parent);
1168 down_read(&root->kernfs_rwsem);
1169 if (kernfs_ns_enabled(parent))
1170 ns = kernfs_info(dir->i_sb)->ns;
1171
1172 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1173 /* attach dentry and inode */
1174 if (kn) {
1175 /* Inactive nodes are invisible to the VFS so don't
1176 * create a negative.
1177 */
1178 if (!kernfs_active(kn)) {
1179 up_read(&root->kernfs_rwsem);
1180 return NULL;
1181 }
1182 inode = kernfs_get_inode(dir->i_sb, kn);
1183 if (!inode)
1184 inode = ERR_PTR(-ENOMEM);
1185 }
1186 /*
1187 * Needed for negative dentry validation.
1188 * The negative dentry can be created in kernfs_iop_lookup()
1189 * or transforms from positive dentry in dentry_unlink_inode()
1190 * called from vfs_rmdir().
1191 */
1192 if (!IS_ERR(inode))
1193 kernfs_set_rev(parent, dentry);
1194 up_read(&root->kernfs_rwsem);
1195
1196 /* instantiate and hash (possibly negative) dentry */
1197 return d_splice_alias(inode, dentry);
1198 }
1199
kernfs_iop_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)1200 static int kernfs_iop_mkdir(struct mnt_idmap *idmap,
1201 struct inode *dir, struct dentry *dentry,
1202 umode_t mode)
1203 {
1204 struct kernfs_node *parent = dir->i_private;
1205 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1206 int ret;
1207
1208 if (!scops || !scops->mkdir)
1209 return -EPERM;
1210
1211 if (!kernfs_get_active(parent))
1212 return -ENODEV;
1213
1214 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1215
1216 kernfs_put_active(parent);
1217 return ret;
1218 }
1219
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1220 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1221 {
1222 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1223 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1224 int ret;
1225
1226 if (!scops || !scops->rmdir)
1227 return -EPERM;
1228
1229 if (!kernfs_get_active(kn))
1230 return -ENODEV;
1231
1232 ret = scops->rmdir(kn);
1233
1234 kernfs_put_active(kn);
1235 return ret;
1236 }
1237
kernfs_iop_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1238 static int kernfs_iop_rename(struct mnt_idmap *idmap,
1239 struct inode *old_dir, struct dentry *old_dentry,
1240 struct inode *new_dir, struct dentry *new_dentry,
1241 unsigned int flags)
1242 {
1243 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1244 struct kernfs_node *new_parent = new_dir->i_private;
1245 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1246 int ret;
1247
1248 if (flags)
1249 return -EINVAL;
1250
1251 if (!scops || !scops->rename)
1252 return -EPERM;
1253
1254 if (!kernfs_get_active(kn))
1255 return -ENODEV;
1256
1257 if (!kernfs_get_active(new_parent)) {
1258 kernfs_put_active(kn);
1259 return -ENODEV;
1260 }
1261
1262 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1263
1264 kernfs_put_active(new_parent);
1265 kernfs_put_active(kn);
1266 return ret;
1267 }
1268
1269 const struct inode_operations kernfs_dir_iops = {
1270 .lookup = kernfs_iop_lookup,
1271 .permission = kernfs_iop_permission,
1272 .setattr = kernfs_iop_setattr,
1273 .getattr = kernfs_iop_getattr,
1274 .listxattr = kernfs_iop_listxattr,
1275
1276 .mkdir = kernfs_iop_mkdir,
1277 .rmdir = kernfs_iop_rmdir,
1278 .rename = kernfs_iop_rename,
1279 };
1280
kernfs_leftmost_descendant(struct kernfs_node * pos)1281 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1282 {
1283 struct kernfs_node *last;
1284
1285 while (true) {
1286 struct rb_node *rbn;
1287
1288 last = pos;
1289
1290 if (kernfs_type(pos) != KERNFS_DIR)
1291 break;
1292
1293 rbn = rb_first(&pos->dir.children);
1294 if (!rbn)
1295 break;
1296
1297 pos = rb_to_kn(rbn);
1298 }
1299
1300 return last;
1301 }
1302
1303 /**
1304 * kernfs_next_descendant_post - find the next descendant for post-order walk
1305 * @pos: the current position (%NULL to initiate traversal)
1306 * @root: kernfs_node whose descendants to walk
1307 *
1308 * Find the next descendant to visit for post-order traversal of @root's
1309 * descendants. @root is included in the iteration and the last node to be
1310 * visited.
1311 *
1312 * Return: the next descendant to visit or %NULL when done.
1313 */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1314 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1315 struct kernfs_node *root)
1316 {
1317 struct rb_node *rbn;
1318
1319 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
1320
1321 /* if first iteration, visit leftmost descendant which may be root */
1322 if (!pos)
1323 return kernfs_leftmost_descendant(root);
1324
1325 /* if we visited @root, we're done */
1326 if (pos == root)
1327 return NULL;
1328
1329 /* if there's an unvisited sibling, visit its leftmost descendant */
1330 rbn = rb_next(&pos->rb);
1331 if (rbn)
1332 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1333
1334 /* no sibling left, visit parent */
1335 return pos->parent;
1336 }
1337
kernfs_activate_one(struct kernfs_node * kn)1338 static void kernfs_activate_one(struct kernfs_node *kn)
1339 {
1340 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1341
1342 kn->flags |= KERNFS_ACTIVATED;
1343
1344 if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING)))
1345 return;
1346
1347 WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb));
1348 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1349
1350 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
1351 }
1352
1353 /**
1354 * kernfs_activate - activate a node which started deactivated
1355 * @kn: kernfs_node whose subtree is to be activated
1356 *
1357 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1358 * needs to be explicitly activated. A node which hasn't been activated
1359 * isn't visible to userland and deactivation is skipped during its
1360 * removal. This is useful to construct atomic init sequences where
1361 * creation of multiple nodes should either succeed or fail atomically.
1362 *
1363 * The caller is responsible for ensuring that this function is not called
1364 * after kernfs_remove*() is invoked on @kn.
1365 */
kernfs_activate(struct kernfs_node * kn)1366 void kernfs_activate(struct kernfs_node *kn)
1367 {
1368 struct kernfs_node *pos;
1369 struct kernfs_root *root = kernfs_root(kn);
1370
1371 down_write(&root->kernfs_rwsem);
1372
1373 pos = NULL;
1374 while ((pos = kernfs_next_descendant_post(pos, kn)))
1375 kernfs_activate_one(pos);
1376
1377 up_write(&root->kernfs_rwsem);
1378 }
1379
1380 /**
1381 * kernfs_show - show or hide a node
1382 * @kn: kernfs_node to show or hide
1383 * @show: whether to show or hide
1384 *
1385 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is
1386 * ignored in future activaitons. If %true, the mark is removed and activation
1387 * state is restored. This function won't implicitly activate a new node in a
1388 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet.
1389 *
1390 * To avoid recursion complexities, directories aren't supported for now.
1391 */
kernfs_show(struct kernfs_node * kn,bool show)1392 void kernfs_show(struct kernfs_node *kn, bool show)
1393 {
1394 struct kernfs_root *root = kernfs_root(kn);
1395
1396 if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR))
1397 return;
1398
1399 down_write(&root->kernfs_rwsem);
1400
1401 if (show) {
1402 kn->flags &= ~KERNFS_HIDDEN;
1403 if (kn->flags & KERNFS_ACTIVATED)
1404 kernfs_activate_one(kn);
1405 } else {
1406 kn->flags |= KERNFS_HIDDEN;
1407 if (kernfs_active(kn))
1408 atomic_add(KN_DEACTIVATED_BIAS, &kn->active);
1409 kernfs_drain(kn);
1410 }
1411
1412 up_write(&root->kernfs_rwsem);
1413 }
1414
__kernfs_remove(struct kernfs_node * kn)1415 static void __kernfs_remove(struct kernfs_node *kn)
1416 {
1417 struct kernfs_node *pos;
1418
1419 /* Short-circuit if non-root @kn has already finished removal. */
1420 if (!kn)
1421 return;
1422
1423 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1424
1425 /*
1426 * This is for kernfs_remove_self() which plays with active ref
1427 * after removal.
1428 */
1429 if (kn->parent && RB_EMPTY_NODE(&kn->rb))
1430 return;
1431
1432 pr_debug("kernfs %s: removing\n", kn->name);
1433
1434 /* prevent new usage by marking all nodes removing and deactivating */
1435 pos = NULL;
1436 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1437 pos->flags |= KERNFS_REMOVING;
1438 if (kernfs_active(pos))
1439 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1440 }
1441
1442 /* deactivate and unlink the subtree node-by-node */
1443 do {
1444 pos = kernfs_leftmost_descendant(kn);
1445
1446 /*
1447 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's
1448 * base ref could have been put by someone else by the time
1449 * the function returns. Make sure it doesn't go away
1450 * underneath us.
1451 */
1452 kernfs_get(pos);
1453
1454 kernfs_drain(pos);
1455
1456 /*
1457 * kernfs_unlink_sibling() succeeds once per node. Use it
1458 * to decide who's responsible for cleanups.
1459 */
1460 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1461 struct kernfs_iattrs *ps_iattr =
1462 pos->parent ? pos->parent->iattr : NULL;
1463
1464 /* update timestamps on the parent */
1465 if (ps_iattr) {
1466 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1467 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1468 }
1469
1470 kernfs_put(pos);
1471 }
1472
1473 kernfs_put(pos);
1474 } while (pos != kn);
1475 }
1476
1477 /**
1478 * kernfs_remove - remove a kernfs_node recursively
1479 * @kn: the kernfs_node to remove
1480 *
1481 * Remove @kn along with all its subdirectories and files.
1482 */
kernfs_remove(struct kernfs_node * kn)1483 void kernfs_remove(struct kernfs_node *kn)
1484 {
1485 struct kernfs_root *root;
1486
1487 if (!kn)
1488 return;
1489
1490 root = kernfs_root(kn);
1491
1492 down_write(&root->kernfs_rwsem);
1493 __kernfs_remove(kn);
1494 up_write(&root->kernfs_rwsem);
1495 }
1496
1497 /**
1498 * kernfs_break_active_protection - break out of active protection
1499 * @kn: the self kernfs_node
1500 *
1501 * The caller must be running off of a kernfs operation which is invoked
1502 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1503 * this function must also be matched with an invocation of
1504 * kernfs_unbreak_active_protection().
1505 *
1506 * This function releases the active reference of @kn the caller is
1507 * holding. Once this function is called, @kn may be removed at any point
1508 * and the caller is solely responsible for ensuring that the objects it
1509 * dereferences are accessible.
1510 */
kernfs_break_active_protection(struct kernfs_node * kn)1511 void kernfs_break_active_protection(struct kernfs_node *kn)
1512 {
1513 /*
1514 * Take out ourself out of the active ref dependency chain. If
1515 * we're called without an active ref, lockdep will complain.
1516 */
1517 kernfs_put_active(kn);
1518 }
1519
1520 /**
1521 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1522 * @kn: the self kernfs_node
1523 *
1524 * If kernfs_break_active_protection() was called, this function must be
1525 * invoked before finishing the kernfs operation. Note that while this
1526 * function restores the active reference, it doesn't and can't actually
1527 * restore the active protection - @kn may already or be in the process of
1528 * being removed. Once kernfs_break_active_protection() is invoked, that
1529 * protection is irreversibly gone for the kernfs operation instance.
1530 *
1531 * While this function may be called at any point after
1532 * kernfs_break_active_protection() is invoked, its most useful location
1533 * would be right before the enclosing kernfs operation returns.
1534 */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1535 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1536 {
1537 /*
1538 * @kn->active could be in any state; however, the increment we do
1539 * here will be undone as soon as the enclosing kernfs operation
1540 * finishes and this temporary bump can't break anything. If @kn
1541 * is alive, nothing changes. If @kn is being deactivated, the
1542 * soon-to-follow put will either finish deactivation or restore
1543 * deactivated state. If @kn is already removed, the temporary
1544 * bump is guaranteed to be gone before @kn is released.
1545 */
1546 atomic_inc(&kn->active);
1547 if (kernfs_lockdep(kn))
1548 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1549 }
1550
1551 /**
1552 * kernfs_remove_self - remove a kernfs_node from its own method
1553 * @kn: the self kernfs_node to remove
1554 *
1555 * The caller must be running off of a kernfs operation which is invoked
1556 * with an active reference - e.g. one of kernfs_ops. This can be used to
1557 * implement a file operation which deletes itself.
1558 *
1559 * For example, the "delete" file for a sysfs device directory can be
1560 * implemented by invoking kernfs_remove_self() on the "delete" file
1561 * itself. This function breaks the circular dependency of trying to
1562 * deactivate self while holding an active ref itself. It isn't necessary
1563 * to modify the usual removal path to use kernfs_remove_self(). The
1564 * "delete" implementation can simply invoke kernfs_remove_self() on self
1565 * before proceeding with the usual removal path. kernfs will ignore later
1566 * kernfs_remove() on self.
1567 *
1568 * kernfs_remove_self() can be called multiple times concurrently on the
1569 * same kernfs_node. Only the first one actually performs removal and
1570 * returns %true. All others will wait until the kernfs operation which
1571 * won self-removal finishes and return %false. Note that the losers wait
1572 * for the completion of not only the winning kernfs_remove_self() but also
1573 * the whole kernfs_ops which won the arbitration. This can be used to
1574 * guarantee, for example, all concurrent writes to a "delete" file to
1575 * finish only after the whole operation is complete.
1576 *
1577 * Return: %true if @kn is removed by this call, otherwise %false.
1578 */
kernfs_remove_self(struct kernfs_node * kn)1579 bool kernfs_remove_self(struct kernfs_node *kn)
1580 {
1581 bool ret;
1582 struct kernfs_root *root = kernfs_root(kn);
1583
1584 down_write(&root->kernfs_rwsem);
1585 kernfs_break_active_protection(kn);
1586
1587 /*
1588 * SUICIDAL is used to arbitrate among competing invocations. Only
1589 * the first one will actually perform removal. When the removal
1590 * is complete, SUICIDED is set and the active ref is restored
1591 * while kernfs_rwsem for held exclusive. The ones which lost
1592 * arbitration waits for SUICIDED && drained which can happen only
1593 * after the enclosing kernfs operation which executed the winning
1594 * instance of kernfs_remove_self() finished.
1595 */
1596 if (!(kn->flags & KERNFS_SUICIDAL)) {
1597 kn->flags |= KERNFS_SUICIDAL;
1598 __kernfs_remove(kn);
1599 kn->flags |= KERNFS_SUICIDED;
1600 ret = true;
1601 } else {
1602 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1603 DEFINE_WAIT(wait);
1604
1605 while (true) {
1606 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1607
1608 if ((kn->flags & KERNFS_SUICIDED) &&
1609 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1610 break;
1611
1612 up_write(&root->kernfs_rwsem);
1613 schedule();
1614 down_write(&root->kernfs_rwsem);
1615 }
1616 finish_wait(waitq, &wait);
1617 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1618 ret = false;
1619 }
1620
1621 /*
1622 * This must be done while kernfs_rwsem held exclusive; otherwise,
1623 * waiting for SUICIDED && deactivated could finish prematurely.
1624 */
1625 kernfs_unbreak_active_protection(kn);
1626
1627 up_write(&root->kernfs_rwsem);
1628 return ret;
1629 }
1630
1631 /**
1632 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1633 * @parent: parent of the target
1634 * @name: name of the kernfs_node to remove
1635 * @ns: namespace tag of the kernfs_node to remove
1636 *
1637 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1638 *
1639 * Return: %0 on success, -ENOENT if such entry doesn't exist.
1640 */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1641 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1642 const void *ns)
1643 {
1644 struct kernfs_node *kn;
1645 struct kernfs_root *root;
1646
1647 if (!parent) {
1648 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1649 name);
1650 return -ENOENT;
1651 }
1652
1653 root = kernfs_root(parent);
1654 down_write(&root->kernfs_rwsem);
1655
1656 kn = kernfs_find_ns(parent, name, ns);
1657 if (kn) {
1658 kernfs_get(kn);
1659 __kernfs_remove(kn);
1660 kernfs_put(kn);
1661 }
1662
1663 up_write(&root->kernfs_rwsem);
1664
1665 if (kn)
1666 return 0;
1667 else
1668 return -ENOENT;
1669 }
1670
1671 /**
1672 * kernfs_rename_ns - move and rename a kernfs_node
1673 * @kn: target node
1674 * @new_parent: new parent to put @sd under
1675 * @new_name: new name
1676 * @new_ns: new namespace tag
1677 *
1678 * Return: %0 on success, -errno on failure.
1679 */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1680 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1681 const char *new_name, const void *new_ns)
1682 {
1683 struct kernfs_node *old_parent;
1684 struct kernfs_root *root;
1685 const char *old_name = NULL;
1686 int error;
1687
1688 /* can't move or rename root */
1689 if (!kn->parent)
1690 return -EINVAL;
1691
1692 root = kernfs_root(kn);
1693 down_write(&root->kernfs_rwsem);
1694
1695 error = -ENOENT;
1696 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1697 (new_parent->flags & KERNFS_EMPTY_DIR))
1698 goto out;
1699
1700 error = 0;
1701 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1702 (strcmp(kn->name, new_name) == 0))
1703 goto out; /* nothing to rename */
1704
1705 error = -EEXIST;
1706 if (kernfs_find_ns(new_parent, new_name, new_ns))
1707 goto out;
1708
1709 /* rename kernfs_node */
1710 if (strcmp(kn->name, new_name) != 0) {
1711 error = -ENOMEM;
1712 new_name = kstrdup_const(new_name, GFP_KERNEL);
1713 if (!new_name)
1714 goto out;
1715 } else {
1716 new_name = NULL;
1717 }
1718
1719 /*
1720 * Move to the appropriate place in the appropriate directories rbtree.
1721 */
1722 kernfs_unlink_sibling(kn);
1723 kernfs_get(new_parent);
1724
1725 /* rename_lock protects ->parent and ->name accessors */
1726 spin_lock_irq(&kernfs_rename_lock);
1727
1728 old_parent = kn->parent;
1729 kn->parent = new_parent;
1730
1731 kn->ns = new_ns;
1732 if (new_name) {
1733 old_name = kn->name;
1734 kn->name = new_name;
1735 }
1736
1737 spin_unlock_irq(&kernfs_rename_lock);
1738
1739 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1740 kernfs_link_sibling(kn);
1741
1742 kernfs_put(old_parent);
1743 kfree_const(old_name);
1744
1745 error = 0;
1746 out:
1747 up_write(&root->kernfs_rwsem);
1748 return error;
1749 }
1750
1751 /* Relationship between mode and the DT_xxx types */
dt_type(struct kernfs_node * kn)1752 static inline unsigned char dt_type(struct kernfs_node *kn)
1753 {
1754 return (kn->mode >> 12) & 15;
1755 }
1756
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1757 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1758 {
1759 kernfs_put(filp->private_data);
1760 return 0;
1761 }
1762
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1763 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1764 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1765 {
1766 if (pos) {
1767 int valid = kernfs_active(pos) &&
1768 pos->parent == parent && hash == pos->hash;
1769 kernfs_put(pos);
1770 if (!valid)
1771 pos = NULL;
1772 }
1773 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1774 struct rb_node *node = parent->dir.children.rb_node;
1775 while (node) {
1776 pos = rb_to_kn(node);
1777
1778 if (hash < pos->hash)
1779 node = node->rb_left;
1780 else if (hash > pos->hash)
1781 node = node->rb_right;
1782 else
1783 break;
1784 }
1785 }
1786 /* Skip over entries which are dying/dead or in the wrong namespace */
1787 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1788 struct rb_node *node = rb_next(&pos->rb);
1789 if (!node)
1790 pos = NULL;
1791 else
1792 pos = rb_to_kn(node);
1793 }
1794 return pos;
1795 }
1796
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1797 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1798 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1799 {
1800 pos = kernfs_dir_pos(ns, parent, ino, pos);
1801 if (pos) {
1802 do {
1803 struct rb_node *node = rb_next(&pos->rb);
1804 if (!node)
1805 pos = NULL;
1806 else
1807 pos = rb_to_kn(node);
1808 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1809 }
1810 return pos;
1811 }
1812
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1813 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1814 {
1815 struct dentry *dentry = file->f_path.dentry;
1816 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1817 struct kernfs_node *pos = file->private_data;
1818 struct kernfs_root *root;
1819 const void *ns = NULL;
1820
1821 if (!dir_emit_dots(file, ctx))
1822 return 0;
1823
1824 root = kernfs_root(parent);
1825 down_read(&root->kernfs_rwsem);
1826
1827 if (kernfs_ns_enabled(parent))
1828 ns = kernfs_info(dentry->d_sb)->ns;
1829
1830 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1831 pos;
1832 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1833 const char *name = pos->name;
1834 unsigned int type = dt_type(pos);
1835 int len = strlen(name);
1836 ino_t ino = kernfs_ino(pos);
1837
1838 ctx->pos = pos->hash;
1839 file->private_data = pos;
1840 kernfs_get(pos);
1841
1842 up_read(&root->kernfs_rwsem);
1843 if (!dir_emit(ctx, name, len, ino, type))
1844 return 0;
1845 down_read(&root->kernfs_rwsem);
1846 }
1847 up_read(&root->kernfs_rwsem);
1848 file->private_data = NULL;
1849 ctx->pos = INT_MAX;
1850 return 0;
1851 }
1852
1853 const struct file_operations kernfs_dir_fops = {
1854 .read = generic_read_dir,
1855 .iterate_shared = kernfs_fop_readdir,
1856 .release = kernfs_dir_fop_release,
1857 .llseek = generic_file_llseek,
1858 };
1859