1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kexec: kexec_file_load system call
4 *
5 * Copyright (C) 2014 Red Hat Inc.
6 * Authors:
7 * Vivek Goyal <vgoyal@redhat.com>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha2.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/vmalloc.h>
30 #include "kexec_internal.h"
31
32 #ifdef CONFIG_KEXEC_SIG
33 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
34
set_kexec_sig_enforced(void)35 void set_kexec_sig_enforced(void)
36 {
37 sig_enforce = true;
38 }
39 #endif
40
41 static int kexec_calculate_store_digests(struct kimage *image);
42
43 /* Maximum size in bytes for kernel/initrd files. */
44 #define KEXEC_FILE_SIZE_MAX min_t(s64, 4LL << 30, SSIZE_MAX)
45
46 /*
47 * Currently this is the only default function that is exported as some
48 * architectures need it to do additional handlings.
49 * In the future, other default functions may be exported too if required.
50 */
kexec_image_probe_default(struct kimage * image,void * buf,unsigned long buf_len)51 int kexec_image_probe_default(struct kimage *image, void *buf,
52 unsigned long buf_len)
53 {
54 const struct kexec_file_ops * const *fops;
55 int ret = -ENOEXEC;
56
57 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
58 ret = (*fops)->probe(buf, buf_len);
59 if (!ret) {
60 image->fops = *fops;
61 return ret;
62 }
63 }
64
65 return ret;
66 }
67
kexec_image_load_default(struct kimage * image)68 void *kexec_image_load_default(struct kimage *image)
69 {
70 if (!image->fops || !image->fops->load)
71 return ERR_PTR(-ENOEXEC);
72
73 return image->fops->load(image, image->kernel_buf,
74 image->kernel_buf_len, image->initrd_buf,
75 image->initrd_buf_len, image->cmdline_buf,
76 image->cmdline_buf_len);
77 }
78
kexec_image_post_load_cleanup_default(struct kimage * image)79 int kexec_image_post_load_cleanup_default(struct kimage *image)
80 {
81 if (!image->fops || !image->fops->cleanup)
82 return 0;
83
84 return image->fops->cleanup(image->image_loader_data);
85 }
86
87 /*
88 * Free up memory used by kernel, initrd, and command line. This is temporary
89 * memory allocation which is not needed any more after these buffers have
90 * been loaded into separate segments and have been copied elsewhere.
91 */
kimage_file_post_load_cleanup(struct kimage * image)92 void kimage_file_post_load_cleanup(struct kimage *image)
93 {
94 struct purgatory_info *pi = &image->purgatory_info;
95
96 vfree(image->kernel_buf);
97 image->kernel_buf = NULL;
98
99 vfree(image->initrd_buf);
100 image->initrd_buf = NULL;
101
102 kfree(image->cmdline_buf);
103 image->cmdline_buf = NULL;
104
105 vfree(pi->purgatory_buf);
106 pi->purgatory_buf = NULL;
107
108 vfree(pi->sechdrs);
109 pi->sechdrs = NULL;
110
111 #ifdef CONFIG_IMA_KEXEC
112 vfree(image->ima_buffer);
113 image->ima_buffer = NULL;
114 #endif /* CONFIG_IMA_KEXEC */
115
116 /* See if architecture has anything to cleanup post load */
117 arch_kimage_file_post_load_cleanup(image);
118
119 /*
120 * Above call should have called into bootloader to free up
121 * any data stored in kimage->image_loader_data. It should
122 * be ok now to free it up.
123 */
124 kfree(image->image_loader_data);
125 image->image_loader_data = NULL;
126 }
127
128 #ifdef CONFIG_KEXEC_SIG
129 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
kexec_kernel_verify_pe_sig(const char * kernel,unsigned long kernel_len)130 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
131 {
132 int ret;
133
134 ret = verify_pefile_signature(kernel, kernel_len,
135 VERIFY_USE_SECONDARY_KEYRING,
136 VERIFYING_KEXEC_PE_SIGNATURE);
137 if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
138 ret = verify_pefile_signature(kernel, kernel_len,
139 VERIFY_USE_PLATFORM_KEYRING,
140 VERIFYING_KEXEC_PE_SIGNATURE);
141 }
142 return ret;
143 }
144 #endif
145
kexec_image_verify_sig(struct kimage * image,void * buf,unsigned long buf_len)146 static int kexec_image_verify_sig(struct kimage *image, void *buf,
147 unsigned long buf_len)
148 {
149 if (!image->fops || !image->fops->verify_sig) {
150 pr_debug("kernel loader does not support signature verification.\n");
151 return -EKEYREJECTED;
152 }
153
154 return image->fops->verify_sig(buf, buf_len);
155 }
156
157 static int
kimage_validate_signature(struct kimage * image)158 kimage_validate_signature(struct kimage *image)
159 {
160 int ret;
161
162 ret = kexec_image_verify_sig(image, image->kernel_buf,
163 image->kernel_buf_len);
164 if (ret) {
165
166 if (sig_enforce) {
167 pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
168 return ret;
169 }
170
171 /*
172 * If IMA is guaranteed to appraise a signature on the kexec
173 * image, permit it even if the kernel is otherwise locked
174 * down.
175 */
176 if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
177 security_locked_down(LOCKDOWN_KEXEC))
178 return -EPERM;
179
180 pr_debug("kernel signature verification failed (%d).\n", ret);
181 }
182
183 return 0;
184 }
185 #endif
186
187 /*
188 * In file mode list of segments is prepared by kernel. Copy relevant
189 * data from user space, do error checking, prepare segment list
190 */
191 static int
kimage_file_prepare_segments(struct kimage * image,int kernel_fd,int initrd_fd,const char __user * cmdline_ptr,unsigned long cmdline_len,unsigned flags)192 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
193 const char __user *cmdline_ptr,
194 unsigned long cmdline_len, unsigned flags)
195 {
196 ssize_t ret;
197 void *ldata;
198
199 ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
200 KEXEC_FILE_SIZE_MAX, NULL,
201 READING_KEXEC_IMAGE);
202 if (ret < 0)
203 return ret;
204 image->kernel_buf_len = ret;
205
206 /* Call arch image probe handlers */
207 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
208 image->kernel_buf_len);
209 if (ret)
210 goto out;
211
212 #ifdef CONFIG_KEXEC_SIG
213 ret = kimage_validate_signature(image);
214
215 if (ret)
216 goto out;
217 #endif
218 /* It is possible that there no initramfs is being loaded */
219 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
220 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
221 KEXEC_FILE_SIZE_MAX, NULL,
222 READING_KEXEC_INITRAMFS);
223 if (ret < 0)
224 goto out;
225 image->initrd_buf_len = ret;
226 ret = 0;
227 }
228
229 if (cmdline_len) {
230 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
231 if (IS_ERR(image->cmdline_buf)) {
232 ret = PTR_ERR(image->cmdline_buf);
233 image->cmdline_buf = NULL;
234 goto out;
235 }
236
237 image->cmdline_buf_len = cmdline_len;
238
239 /* command line should be a string with last byte null */
240 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
241 ret = -EINVAL;
242 goto out;
243 }
244
245 ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
246 image->cmdline_buf_len - 1);
247 }
248
249 /* IMA needs to pass the measurement list to the next kernel. */
250 ima_add_kexec_buffer(image);
251
252 /* Call arch image load handlers */
253 ldata = arch_kexec_kernel_image_load(image);
254
255 if (IS_ERR(ldata)) {
256 ret = PTR_ERR(ldata);
257 goto out;
258 }
259
260 image->image_loader_data = ldata;
261 out:
262 /* In case of error, free up all allocated memory in this function */
263 if (ret)
264 kimage_file_post_load_cleanup(image);
265 return ret;
266 }
267
268 static int
kimage_file_alloc_init(struct kimage ** rimage,int kernel_fd,int initrd_fd,const char __user * cmdline_ptr,unsigned long cmdline_len,unsigned long flags)269 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
270 int initrd_fd, const char __user *cmdline_ptr,
271 unsigned long cmdline_len, unsigned long flags)
272 {
273 int ret;
274 struct kimage *image;
275 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
276
277 image = do_kimage_alloc_init();
278 if (!image)
279 return -ENOMEM;
280
281 image->file_mode = 1;
282
283 if (kexec_on_panic) {
284 /* Enable special crash kernel control page alloc policy. */
285 image->control_page = crashk_res.start;
286 image->type = KEXEC_TYPE_CRASH;
287 }
288
289 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
290 cmdline_ptr, cmdline_len, flags);
291 if (ret)
292 goto out_free_image;
293
294 ret = sanity_check_segment_list(image);
295 if (ret)
296 goto out_free_post_load_bufs;
297
298 ret = -ENOMEM;
299 image->control_code_page = kimage_alloc_control_pages(image,
300 get_order(KEXEC_CONTROL_PAGE_SIZE));
301 if (!image->control_code_page) {
302 pr_err("Could not allocate control_code_buffer\n");
303 goto out_free_post_load_bufs;
304 }
305
306 if (!kexec_on_panic) {
307 image->swap_page = kimage_alloc_control_pages(image, 0);
308 if (!image->swap_page) {
309 pr_err("Could not allocate swap buffer\n");
310 goto out_free_control_pages;
311 }
312 }
313
314 *rimage = image;
315 return 0;
316 out_free_control_pages:
317 kimage_free_page_list(&image->control_pages);
318 out_free_post_load_bufs:
319 kimage_file_post_load_cleanup(image);
320 out_free_image:
321 kfree(image);
322 return ret;
323 }
324
SYSCALL_DEFINE5(kexec_file_load,int,kernel_fd,int,initrd_fd,unsigned long,cmdline_len,const char __user *,cmdline_ptr,unsigned long,flags)325 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
326 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
327 unsigned long, flags)
328 {
329 int image_type = (flags & KEXEC_FILE_ON_CRASH) ?
330 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT;
331 struct kimage **dest_image, *image;
332 int ret = 0, i;
333
334 /* We only trust the superuser with rebooting the system. */
335 if (!kexec_load_permitted(image_type))
336 return -EPERM;
337
338 /* Make sure we have a legal set of flags */
339 if (flags != (flags & KEXEC_FILE_FLAGS))
340 return -EINVAL;
341
342 image = NULL;
343
344 if (!kexec_trylock())
345 return -EBUSY;
346
347 if (image_type == KEXEC_TYPE_CRASH) {
348 dest_image = &kexec_crash_image;
349 if (kexec_crash_image)
350 arch_kexec_unprotect_crashkres();
351 } else {
352 dest_image = &kexec_image;
353 }
354
355 if (flags & KEXEC_FILE_UNLOAD)
356 goto exchange;
357
358 /*
359 * In case of crash, new kernel gets loaded in reserved region. It is
360 * same memory where old crash kernel might be loaded. Free any
361 * current crash dump kernel before we corrupt it.
362 */
363 if (flags & KEXEC_FILE_ON_CRASH)
364 kimage_free(xchg(&kexec_crash_image, NULL));
365
366 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
367 cmdline_len, flags);
368 if (ret)
369 goto out;
370
371 ret = machine_kexec_prepare(image);
372 if (ret)
373 goto out;
374
375 /*
376 * Some architecture(like S390) may touch the crash memory before
377 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
378 */
379 ret = kimage_crash_copy_vmcoreinfo(image);
380 if (ret)
381 goto out;
382
383 ret = kexec_calculate_store_digests(image);
384 if (ret)
385 goto out;
386
387 for (i = 0; i < image->nr_segments; i++) {
388 struct kexec_segment *ksegment;
389
390 ksegment = &image->segment[i];
391 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
392 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
393 ksegment->memsz);
394
395 ret = kimage_load_segment(image, &image->segment[i]);
396 if (ret)
397 goto out;
398 }
399
400 kimage_terminate(image);
401
402 ret = machine_kexec_post_load(image);
403 if (ret)
404 goto out;
405
406 /*
407 * Free up any temporary buffers allocated which are not needed
408 * after image has been loaded
409 */
410 kimage_file_post_load_cleanup(image);
411 exchange:
412 image = xchg(dest_image, image);
413 out:
414 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
415 arch_kexec_protect_crashkres();
416
417 kexec_unlock();
418 kimage_free(image);
419 return ret;
420 }
421
locate_mem_hole_top_down(unsigned long start,unsigned long end,struct kexec_buf * kbuf)422 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
423 struct kexec_buf *kbuf)
424 {
425 struct kimage *image = kbuf->image;
426 unsigned long temp_start, temp_end;
427
428 temp_end = min(end, kbuf->buf_max);
429 temp_start = temp_end - kbuf->memsz;
430
431 do {
432 /* align down start */
433 temp_start = temp_start & (~(kbuf->buf_align - 1));
434
435 if (temp_start < start || temp_start < kbuf->buf_min)
436 return 0;
437
438 temp_end = temp_start + kbuf->memsz - 1;
439
440 /*
441 * Make sure this does not conflict with any of existing
442 * segments
443 */
444 if (kimage_is_destination_range(image, temp_start, temp_end)) {
445 temp_start = temp_start - PAGE_SIZE;
446 continue;
447 }
448
449 /* We found a suitable memory range */
450 break;
451 } while (1);
452
453 /* If we are here, we found a suitable memory range */
454 kbuf->mem = temp_start;
455
456 /* Success, stop navigating through remaining System RAM ranges */
457 return 1;
458 }
459
locate_mem_hole_bottom_up(unsigned long start,unsigned long end,struct kexec_buf * kbuf)460 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
461 struct kexec_buf *kbuf)
462 {
463 struct kimage *image = kbuf->image;
464 unsigned long temp_start, temp_end;
465
466 temp_start = max(start, kbuf->buf_min);
467
468 do {
469 temp_start = ALIGN(temp_start, kbuf->buf_align);
470 temp_end = temp_start + kbuf->memsz - 1;
471
472 if (temp_end > end || temp_end > kbuf->buf_max)
473 return 0;
474 /*
475 * Make sure this does not conflict with any of existing
476 * segments
477 */
478 if (kimage_is_destination_range(image, temp_start, temp_end)) {
479 temp_start = temp_start + PAGE_SIZE;
480 continue;
481 }
482
483 /* We found a suitable memory range */
484 break;
485 } while (1);
486
487 /* If we are here, we found a suitable memory range */
488 kbuf->mem = temp_start;
489
490 /* Success, stop navigating through remaining System RAM ranges */
491 return 1;
492 }
493
locate_mem_hole_callback(struct resource * res,void * arg)494 static int locate_mem_hole_callback(struct resource *res, void *arg)
495 {
496 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
497 u64 start = res->start, end = res->end;
498 unsigned long sz = end - start + 1;
499
500 /* Returning 0 will take to next memory range */
501
502 /* Don't use memory that will be detected and handled by a driver. */
503 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
504 return 0;
505
506 if (sz < kbuf->memsz)
507 return 0;
508
509 if (end < kbuf->buf_min || start > kbuf->buf_max)
510 return 0;
511
512 /*
513 * Allocate memory top down with-in ram range. Otherwise bottom up
514 * allocation.
515 */
516 if (kbuf->top_down)
517 return locate_mem_hole_top_down(start, end, kbuf);
518 return locate_mem_hole_bottom_up(start, end, kbuf);
519 }
520
521 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
kexec_walk_memblock(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))522 static int kexec_walk_memblock(struct kexec_buf *kbuf,
523 int (*func)(struct resource *, void *))
524 {
525 int ret = 0;
526 u64 i;
527 phys_addr_t mstart, mend;
528 struct resource res = { };
529
530 if (kbuf->image->type == KEXEC_TYPE_CRASH)
531 return func(&crashk_res, kbuf);
532
533 /*
534 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
535 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
536 * locate_mem_hole_callback().
537 */
538 if (kbuf->top_down) {
539 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
540 &mstart, &mend, NULL) {
541 /*
542 * In memblock, end points to the first byte after the
543 * range while in kexec, end points to the last byte
544 * in the range.
545 */
546 res.start = mstart;
547 res.end = mend - 1;
548 ret = func(&res, kbuf);
549 if (ret)
550 break;
551 }
552 } else {
553 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
554 &mstart, &mend, NULL) {
555 /*
556 * In memblock, end points to the first byte after the
557 * range while in kexec, end points to the last byte
558 * in the range.
559 */
560 res.start = mstart;
561 res.end = mend - 1;
562 ret = func(&res, kbuf);
563 if (ret)
564 break;
565 }
566 }
567
568 return ret;
569 }
570 #else
kexec_walk_memblock(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))571 static int kexec_walk_memblock(struct kexec_buf *kbuf,
572 int (*func)(struct resource *, void *))
573 {
574 return 0;
575 }
576 #endif
577
578 /**
579 * kexec_walk_resources - call func(data) on free memory regions
580 * @kbuf: Context info for the search. Also passed to @func.
581 * @func: Function to call for each memory region.
582 *
583 * Return: The memory walk will stop when func returns a non-zero value
584 * and that value will be returned. If all free regions are visited without
585 * func returning non-zero, then zero will be returned.
586 */
kexec_walk_resources(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))587 static int kexec_walk_resources(struct kexec_buf *kbuf,
588 int (*func)(struct resource *, void *))
589 {
590 if (kbuf->image->type == KEXEC_TYPE_CRASH)
591 return walk_iomem_res_desc(crashk_res.desc,
592 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
593 crashk_res.start, crashk_res.end,
594 kbuf, func);
595 else
596 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
597 }
598
599 /**
600 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
601 * @kbuf: Parameters for the memory search.
602 *
603 * On success, kbuf->mem will have the start address of the memory region found.
604 *
605 * Return: 0 on success, negative errno on error.
606 */
kexec_locate_mem_hole(struct kexec_buf * kbuf)607 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
608 {
609 int ret;
610
611 /* Arch knows where to place */
612 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
613 return 0;
614
615 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
616 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
617 else
618 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
619
620 return ret == 1 ? 0 : -EADDRNOTAVAIL;
621 }
622
623 /**
624 * kexec_add_buffer - place a buffer in a kexec segment
625 * @kbuf: Buffer contents and memory parameters.
626 *
627 * This function assumes that kexec_mutex is held.
628 * On successful return, @kbuf->mem will have the physical address of
629 * the buffer in memory.
630 *
631 * Return: 0 on success, negative errno on error.
632 */
kexec_add_buffer(struct kexec_buf * kbuf)633 int kexec_add_buffer(struct kexec_buf *kbuf)
634 {
635 struct kexec_segment *ksegment;
636 int ret;
637
638 /* Currently adding segment this way is allowed only in file mode */
639 if (!kbuf->image->file_mode)
640 return -EINVAL;
641
642 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
643 return -EINVAL;
644
645 /*
646 * Make sure we are not trying to add buffer after allocating
647 * control pages. All segments need to be placed first before
648 * any control pages are allocated. As control page allocation
649 * logic goes through list of segments to make sure there are
650 * no destination overlaps.
651 */
652 if (!list_empty(&kbuf->image->control_pages)) {
653 WARN_ON(1);
654 return -EINVAL;
655 }
656
657 /* Ensure minimum alignment needed for segments. */
658 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
659 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
660
661 /* Walk the RAM ranges and allocate a suitable range for the buffer */
662 ret = arch_kexec_locate_mem_hole(kbuf);
663 if (ret)
664 return ret;
665
666 /* Found a suitable memory range */
667 ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
668 ksegment->kbuf = kbuf->buffer;
669 ksegment->bufsz = kbuf->bufsz;
670 ksegment->mem = kbuf->mem;
671 ksegment->memsz = kbuf->memsz;
672 kbuf->image->nr_segments++;
673 return 0;
674 }
675
676 /* Calculate and store the digest of segments */
kexec_calculate_store_digests(struct kimage * image)677 static int kexec_calculate_store_digests(struct kimage *image)
678 {
679 struct crypto_shash *tfm;
680 struct shash_desc *desc;
681 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
682 size_t desc_size, nullsz;
683 char *digest;
684 void *zero_buf;
685 struct kexec_sha_region *sha_regions;
686 struct purgatory_info *pi = &image->purgatory_info;
687
688 if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
689 return 0;
690
691 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
692 zero_buf_sz = PAGE_SIZE;
693
694 tfm = crypto_alloc_shash("sha256", 0, 0);
695 if (IS_ERR(tfm)) {
696 ret = PTR_ERR(tfm);
697 goto out;
698 }
699
700 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
701 desc = kzalloc(desc_size, GFP_KERNEL);
702 if (!desc) {
703 ret = -ENOMEM;
704 goto out_free_tfm;
705 }
706
707 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
708 sha_regions = vzalloc(sha_region_sz);
709 if (!sha_regions) {
710 ret = -ENOMEM;
711 goto out_free_desc;
712 }
713
714 desc->tfm = tfm;
715
716 ret = crypto_shash_init(desc);
717 if (ret < 0)
718 goto out_free_sha_regions;
719
720 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
721 if (!digest) {
722 ret = -ENOMEM;
723 goto out_free_sha_regions;
724 }
725
726 for (j = i = 0; i < image->nr_segments; i++) {
727 struct kexec_segment *ksegment;
728
729 ksegment = &image->segment[i];
730 /*
731 * Skip purgatory as it will be modified once we put digest
732 * info in purgatory.
733 */
734 if (ksegment->kbuf == pi->purgatory_buf)
735 continue;
736
737 ret = crypto_shash_update(desc, ksegment->kbuf,
738 ksegment->bufsz);
739 if (ret)
740 break;
741
742 /*
743 * Assume rest of the buffer is filled with zero and
744 * update digest accordingly.
745 */
746 nullsz = ksegment->memsz - ksegment->bufsz;
747 while (nullsz) {
748 unsigned long bytes = nullsz;
749
750 if (bytes > zero_buf_sz)
751 bytes = zero_buf_sz;
752 ret = crypto_shash_update(desc, zero_buf, bytes);
753 if (ret)
754 break;
755 nullsz -= bytes;
756 }
757
758 if (ret)
759 break;
760
761 sha_regions[j].start = ksegment->mem;
762 sha_regions[j].len = ksegment->memsz;
763 j++;
764 }
765
766 if (!ret) {
767 ret = crypto_shash_final(desc, digest);
768 if (ret)
769 goto out_free_digest;
770 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
771 sha_regions, sha_region_sz, 0);
772 if (ret)
773 goto out_free_digest;
774
775 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
776 digest, SHA256_DIGEST_SIZE, 0);
777 if (ret)
778 goto out_free_digest;
779 }
780
781 out_free_digest:
782 kfree(digest);
783 out_free_sha_regions:
784 vfree(sha_regions);
785 out_free_desc:
786 kfree(desc);
787 out_free_tfm:
788 kfree(tfm);
789 out:
790 return ret;
791 }
792
793 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
794 /*
795 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
796 * @pi: Purgatory to be loaded.
797 * @kbuf: Buffer to setup.
798 *
799 * Allocates the memory needed for the buffer. Caller is responsible to free
800 * the memory after use.
801 *
802 * Return: 0 on success, negative errno on error.
803 */
kexec_purgatory_setup_kbuf(struct purgatory_info * pi,struct kexec_buf * kbuf)804 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
805 struct kexec_buf *kbuf)
806 {
807 const Elf_Shdr *sechdrs;
808 unsigned long bss_align;
809 unsigned long bss_sz;
810 unsigned long align;
811 int i, ret;
812
813 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
814 kbuf->buf_align = bss_align = 1;
815 kbuf->bufsz = bss_sz = 0;
816
817 for (i = 0; i < pi->ehdr->e_shnum; i++) {
818 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
819 continue;
820
821 align = sechdrs[i].sh_addralign;
822 if (sechdrs[i].sh_type != SHT_NOBITS) {
823 if (kbuf->buf_align < align)
824 kbuf->buf_align = align;
825 kbuf->bufsz = ALIGN(kbuf->bufsz, align);
826 kbuf->bufsz += sechdrs[i].sh_size;
827 } else {
828 if (bss_align < align)
829 bss_align = align;
830 bss_sz = ALIGN(bss_sz, align);
831 bss_sz += sechdrs[i].sh_size;
832 }
833 }
834 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
835 kbuf->memsz = kbuf->bufsz + bss_sz;
836 if (kbuf->buf_align < bss_align)
837 kbuf->buf_align = bss_align;
838
839 kbuf->buffer = vzalloc(kbuf->bufsz);
840 if (!kbuf->buffer)
841 return -ENOMEM;
842 pi->purgatory_buf = kbuf->buffer;
843
844 ret = kexec_add_buffer(kbuf);
845 if (ret)
846 goto out;
847
848 return 0;
849 out:
850 vfree(pi->purgatory_buf);
851 pi->purgatory_buf = NULL;
852 return ret;
853 }
854
855 /*
856 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
857 * @pi: Purgatory to be loaded.
858 * @kbuf: Buffer prepared to store purgatory.
859 *
860 * Allocates the memory needed for the buffer. Caller is responsible to free
861 * the memory after use.
862 *
863 * Return: 0 on success, negative errno on error.
864 */
kexec_purgatory_setup_sechdrs(struct purgatory_info * pi,struct kexec_buf * kbuf)865 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
866 struct kexec_buf *kbuf)
867 {
868 unsigned long bss_addr;
869 unsigned long offset;
870 Elf_Shdr *sechdrs;
871 int i;
872
873 /*
874 * The section headers in kexec_purgatory are read-only. In order to
875 * have them modifiable make a temporary copy.
876 */
877 sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
878 if (!sechdrs)
879 return -ENOMEM;
880 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
881 pi->ehdr->e_shnum * sizeof(Elf_Shdr));
882 pi->sechdrs = sechdrs;
883
884 offset = 0;
885 bss_addr = kbuf->mem + kbuf->bufsz;
886 kbuf->image->start = pi->ehdr->e_entry;
887
888 for (i = 0; i < pi->ehdr->e_shnum; i++) {
889 unsigned long align;
890 void *src, *dst;
891
892 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
893 continue;
894
895 align = sechdrs[i].sh_addralign;
896 if (sechdrs[i].sh_type == SHT_NOBITS) {
897 bss_addr = ALIGN(bss_addr, align);
898 sechdrs[i].sh_addr = bss_addr;
899 bss_addr += sechdrs[i].sh_size;
900 continue;
901 }
902
903 offset = ALIGN(offset, align);
904 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
905 pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
906 pi->ehdr->e_entry < (sechdrs[i].sh_addr
907 + sechdrs[i].sh_size)) {
908 kbuf->image->start -= sechdrs[i].sh_addr;
909 kbuf->image->start += kbuf->mem + offset;
910 }
911
912 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
913 dst = pi->purgatory_buf + offset;
914 memcpy(dst, src, sechdrs[i].sh_size);
915
916 sechdrs[i].sh_addr = kbuf->mem + offset;
917 sechdrs[i].sh_offset = offset;
918 offset += sechdrs[i].sh_size;
919 }
920
921 return 0;
922 }
923
kexec_apply_relocations(struct kimage * image)924 static int kexec_apply_relocations(struct kimage *image)
925 {
926 int i, ret;
927 struct purgatory_info *pi = &image->purgatory_info;
928 const Elf_Shdr *sechdrs;
929
930 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
931
932 for (i = 0; i < pi->ehdr->e_shnum; i++) {
933 const Elf_Shdr *relsec;
934 const Elf_Shdr *symtab;
935 Elf_Shdr *section;
936
937 relsec = sechdrs + i;
938
939 if (relsec->sh_type != SHT_RELA &&
940 relsec->sh_type != SHT_REL)
941 continue;
942
943 /*
944 * For section of type SHT_RELA/SHT_REL,
945 * ->sh_link contains section header index of associated
946 * symbol table. And ->sh_info contains section header
947 * index of section to which relocations apply.
948 */
949 if (relsec->sh_info >= pi->ehdr->e_shnum ||
950 relsec->sh_link >= pi->ehdr->e_shnum)
951 return -ENOEXEC;
952
953 section = pi->sechdrs + relsec->sh_info;
954 symtab = sechdrs + relsec->sh_link;
955
956 if (!(section->sh_flags & SHF_ALLOC))
957 continue;
958
959 /*
960 * symtab->sh_link contain section header index of associated
961 * string table.
962 */
963 if (symtab->sh_link >= pi->ehdr->e_shnum)
964 /* Invalid section number? */
965 continue;
966
967 /*
968 * Respective architecture needs to provide support for applying
969 * relocations of type SHT_RELA/SHT_REL.
970 */
971 if (relsec->sh_type == SHT_RELA)
972 ret = arch_kexec_apply_relocations_add(pi, section,
973 relsec, symtab);
974 else if (relsec->sh_type == SHT_REL)
975 ret = arch_kexec_apply_relocations(pi, section,
976 relsec, symtab);
977 if (ret)
978 return ret;
979 }
980
981 return 0;
982 }
983
984 /*
985 * kexec_load_purgatory - Load and relocate the purgatory object.
986 * @image: Image to add the purgatory to.
987 * @kbuf: Memory parameters to use.
988 *
989 * Allocates the memory needed for image->purgatory_info.sechdrs and
990 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
991 * to free the memory after use.
992 *
993 * Return: 0 on success, negative errno on error.
994 */
kexec_load_purgatory(struct kimage * image,struct kexec_buf * kbuf)995 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
996 {
997 struct purgatory_info *pi = &image->purgatory_info;
998 int ret;
999
1000 if (kexec_purgatory_size <= 0)
1001 return -EINVAL;
1002
1003 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1004
1005 ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1006 if (ret)
1007 return ret;
1008
1009 ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1010 if (ret)
1011 goto out_free_kbuf;
1012
1013 ret = kexec_apply_relocations(image);
1014 if (ret)
1015 goto out;
1016
1017 return 0;
1018 out:
1019 vfree(pi->sechdrs);
1020 pi->sechdrs = NULL;
1021 out_free_kbuf:
1022 vfree(pi->purgatory_buf);
1023 pi->purgatory_buf = NULL;
1024 return ret;
1025 }
1026
1027 /*
1028 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1029 * @pi: Purgatory to search in.
1030 * @name: Name of the symbol.
1031 *
1032 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1033 */
kexec_purgatory_find_symbol(struct purgatory_info * pi,const char * name)1034 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1035 const char *name)
1036 {
1037 const Elf_Shdr *sechdrs;
1038 const Elf_Ehdr *ehdr;
1039 const Elf_Sym *syms;
1040 const char *strtab;
1041 int i, k;
1042
1043 if (!pi->ehdr)
1044 return NULL;
1045
1046 ehdr = pi->ehdr;
1047 sechdrs = (void *)ehdr + ehdr->e_shoff;
1048
1049 for (i = 0; i < ehdr->e_shnum; i++) {
1050 if (sechdrs[i].sh_type != SHT_SYMTAB)
1051 continue;
1052
1053 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1054 /* Invalid strtab section number */
1055 continue;
1056 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1057 syms = (void *)ehdr + sechdrs[i].sh_offset;
1058
1059 /* Go through symbols for a match */
1060 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1061 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1062 continue;
1063
1064 if (strcmp(strtab + syms[k].st_name, name) != 0)
1065 continue;
1066
1067 if (syms[k].st_shndx == SHN_UNDEF ||
1068 syms[k].st_shndx >= ehdr->e_shnum) {
1069 pr_debug("Symbol: %s has bad section index %d.\n",
1070 name, syms[k].st_shndx);
1071 return NULL;
1072 }
1073
1074 /* Found the symbol we are looking for */
1075 return &syms[k];
1076 }
1077 }
1078
1079 return NULL;
1080 }
1081
kexec_purgatory_get_symbol_addr(struct kimage * image,const char * name)1082 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1083 {
1084 struct purgatory_info *pi = &image->purgatory_info;
1085 const Elf_Sym *sym;
1086 Elf_Shdr *sechdr;
1087
1088 sym = kexec_purgatory_find_symbol(pi, name);
1089 if (!sym)
1090 return ERR_PTR(-EINVAL);
1091
1092 sechdr = &pi->sechdrs[sym->st_shndx];
1093
1094 /*
1095 * Returns the address where symbol will finally be loaded after
1096 * kexec_load_segment()
1097 */
1098 return (void *)(sechdr->sh_addr + sym->st_value);
1099 }
1100
1101 /*
1102 * Get or set value of a symbol. If "get_value" is true, symbol value is
1103 * returned in buf otherwise symbol value is set based on value in buf.
1104 */
kexec_purgatory_get_set_symbol(struct kimage * image,const char * name,void * buf,unsigned int size,bool get_value)1105 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1106 void *buf, unsigned int size, bool get_value)
1107 {
1108 struct purgatory_info *pi = &image->purgatory_info;
1109 const Elf_Sym *sym;
1110 Elf_Shdr *sec;
1111 char *sym_buf;
1112
1113 sym = kexec_purgatory_find_symbol(pi, name);
1114 if (!sym)
1115 return -EINVAL;
1116
1117 if (sym->st_size != size) {
1118 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1119 name, (unsigned long)sym->st_size, size);
1120 return -EINVAL;
1121 }
1122
1123 sec = pi->sechdrs + sym->st_shndx;
1124
1125 if (sec->sh_type == SHT_NOBITS) {
1126 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1127 get_value ? "get" : "set");
1128 return -EINVAL;
1129 }
1130
1131 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1132
1133 if (get_value)
1134 memcpy((void *)buf, sym_buf, size);
1135 else
1136 memcpy((void *)sym_buf, buf, size);
1137
1138 return 0;
1139 }
1140 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1141
crash_exclude_mem_range(struct crash_mem * mem,unsigned long long mstart,unsigned long long mend)1142 int crash_exclude_mem_range(struct crash_mem *mem,
1143 unsigned long long mstart, unsigned long long mend)
1144 {
1145 int i, j;
1146 unsigned long long start, end, p_start, p_end;
1147 struct range temp_range = {0, 0};
1148
1149 for (i = 0; i < mem->nr_ranges; i++) {
1150 start = mem->ranges[i].start;
1151 end = mem->ranges[i].end;
1152 p_start = mstart;
1153 p_end = mend;
1154
1155 if (mstart > end || mend < start)
1156 continue;
1157
1158 /* Truncate any area outside of range */
1159 if (mstart < start)
1160 p_start = start;
1161 if (mend > end)
1162 p_end = end;
1163
1164 /* Found completely overlapping range */
1165 if (p_start == start && p_end == end) {
1166 mem->ranges[i].start = 0;
1167 mem->ranges[i].end = 0;
1168 if (i < mem->nr_ranges - 1) {
1169 /* Shift rest of the ranges to left */
1170 for (j = i; j < mem->nr_ranges - 1; j++) {
1171 mem->ranges[j].start =
1172 mem->ranges[j+1].start;
1173 mem->ranges[j].end =
1174 mem->ranges[j+1].end;
1175 }
1176
1177 /*
1178 * Continue to check if there are another overlapping ranges
1179 * from the current position because of shifting the above
1180 * mem ranges.
1181 */
1182 i--;
1183 mem->nr_ranges--;
1184 continue;
1185 }
1186 mem->nr_ranges--;
1187 return 0;
1188 }
1189
1190 if (p_start > start && p_end < end) {
1191 /* Split original range */
1192 mem->ranges[i].end = p_start - 1;
1193 temp_range.start = p_end + 1;
1194 temp_range.end = end;
1195 } else if (p_start != start)
1196 mem->ranges[i].end = p_start - 1;
1197 else
1198 mem->ranges[i].start = p_end + 1;
1199 break;
1200 }
1201
1202 /* If a split happened, add the split to array */
1203 if (!temp_range.end)
1204 return 0;
1205
1206 /* Split happened */
1207 if (i == mem->max_nr_ranges - 1)
1208 return -ENOMEM;
1209
1210 /* Location where new range should go */
1211 j = i + 1;
1212 if (j < mem->nr_ranges) {
1213 /* Move over all ranges one slot towards the end */
1214 for (i = mem->nr_ranges - 1; i >= j; i--)
1215 mem->ranges[i + 1] = mem->ranges[i];
1216 }
1217
1218 mem->ranges[j].start = temp_range.start;
1219 mem->ranges[j].end = temp_range.end;
1220 mem->nr_ranges++;
1221 return 0;
1222 }
1223
crash_prepare_elf64_headers(struct crash_mem * mem,int need_kernel_map,void ** addr,unsigned long * sz)1224 int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
1225 void **addr, unsigned long *sz)
1226 {
1227 Elf64_Ehdr *ehdr;
1228 Elf64_Phdr *phdr;
1229 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1230 unsigned char *buf;
1231 unsigned int cpu, i;
1232 unsigned long long notes_addr;
1233 unsigned long mstart, mend;
1234
1235 /* extra phdr for vmcoreinfo ELF note */
1236 nr_phdr = nr_cpus + 1;
1237 nr_phdr += mem->nr_ranges;
1238
1239 /*
1240 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1241 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1242 * I think this is required by tools like gdb. So same physical
1243 * memory will be mapped in two ELF headers. One will contain kernel
1244 * text virtual addresses and other will have __va(physical) addresses.
1245 */
1246
1247 nr_phdr++;
1248 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1249 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1250
1251 buf = vzalloc(elf_sz);
1252 if (!buf)
1253 return -ENOMEM;
1254
1255 ehdr = (Elf64_Ehdr *)buf;
1256 phdr = (Elf64_Phdr *)(ehdr + 1);
1257 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1258 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1259 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1260 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1261 ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1262 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1263 ehdr->e_type = ET_CORE;
1264 ehdr->e_machine = ELF_ARCH;
1265 ehdr->e_version = EV_CURRENT;
1266 ehdr->e_phoff = sizeof(Elf64_Ehdr);
1267 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1268 ehdr->e_phentsize = sizeof(Elf64_Phdr);
1269
1270 /* Prepare one phdr of type PT_NOTE for each present CPU */
1271 for_each_present_cpu(cpu) {
1272 phdr->p_type = PT_NOTE;
1273 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1274 phdr->p_offset = phdr->p_paddr = notes_addr;
1275 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1276 (ehdr->e_phnum)++;
1277 phdr++;
1278 }
1279
1280 /* Prepare one PT_NOTE header for vmcoreinfo */
1281 phdr->p_type = PT_NOTE;
1282 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1283 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1284 (ehdr->e_phnum)++;
1285 phdr++;
1286
1287 /* Prepare PT_LOAD type program header for kernel text region */
1288 if (need_kernel_map) {
1289 phdr->p_type = PT_LOAD;
1290 phdr->p_flags = PF_R|PF_W|PF_X;
1291 phdr->p_vaddr = (unsigned long) _text;
1292 phdr->p_filesz = phdr->p_memsz = _end - _text;
1293 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1294 ehdr->e_phnum++;
1295 phdr++;
1296 }
1297
1298 /* Go through all the ranges in mem->ranges[] and prepare phdr */
1299 for (i = 0; i < mem->nr_ranges; i++) {
1300 mstart = mem->ranges[i].start;
1301 mend = mem->ranges[i].end;
1302
1303 phdr->p_type = PT_LOAD;
1304 phdr->p_flags = PF_R|PF_W|PF_X;
1305 phdr->p_offset = mstart;
1306
1307 phdr->p_paddr = mstart;
1308 phdr->p_vaddr = (unsigned long) __va(mstart);
1309 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1310 phdr->p_align = 0;
1311 ehdr->e_phnum++;
1312 pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1313 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1314 ehdr->e_phnum, phdr->p_offset);
1315 phdr++;
1316 }
1317
1318 *addr = buf;
1319 *sz = elf_sz;
1320 return 0;
1321 }
1322