1 /*
2 * Copyright 2014-2018 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22 #include "amdgpu.h"
23 #include "amdgpu_amdkfd.h"
24 #include "gc/gc_9_0_offset.h"
25 #include "gc/gc_9_0_sh_mask.h"
26 #include "vega10_enum.h"
27 #include "sdma0/sdma0_4_0_offset.h"
28 #include "sdma0/sdma0_4_0_sh_mask.h"
29 #include "sdma1/sdma1_4_0_offset.h"
30 #include "sdma1/sdma1_4_0_sh_mask.h"
31 #include "athub/athub_1_0_offset.h"
32 #include "athub/athub_1_0_sh_mask.h"
33 #include "oss/osssys_4_0_offset.h"
34 #include "oss/osssys_4_0_sh_mask.h"
35 #include "soc15_common.h"
36 #include "v9_structs.h"
37 #include "soc15.h"
38 #include "soc15d.h"
39 #include "gfx_v9_0.h"
40 #include "amdgpu_amdkfd_gfx_v9.h"
41
42 enum hqd_dequeue_request_type {
43 NO_ACTION = 0,
44 DRAIN_PIPE,
45 RESET_WAVES,
46 SAVE_WAVES
47 };
48
lock_srbm(struct amdgpu_device * adev,uint32_t mec,uint32_t pipe,uint32_t queue,uint32_t vmid)49 static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
50 uint32_t queue, uint32_t vmid)
51 {
52 mutex_lock(&adev->srbm_mutex);
53 soc15_grbm_select(adev, mec, pipe, queue, vmid);
54 }
55
unlock_srbm(struct amdgpu_device * adev)56 static void unlock_srbm(struct amdgpu_device *adev)
57 {
58 soc15_grbm_select(adev, 0, 0, 0, 0);
59 mutex_unlock(&adev->srbm_mutex);
60 }
61
acquire_queue(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t queue_id)62 static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
63 uint32_t queue_id)
64 {
65 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
66 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
67
68 lock_srbm(adev, mec, pipe, queue_id, 0);
69 }
70
get_queue_mask(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t queue_id)71 static uint64_t get_queue_mask(struct amdgpu_device *adev,
72 uint32_t pipe_id, uint32_t queue_id)
73 {
74 unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
75 queue_id;
76
77 return 1ull << bit;
78 }
79
release_queue(struct amdgpu_device * adev)80 static void release_queue(struct amdgpu_device *adev)
81 {
82 unlock_srbm(adev);
83 }
84
kgd_gfx_v9_program_sh_mem_settings(struct amdgpu_device * adev,uint32_t vmid,uint32_t sh_mem_config,uint32_t sh_mem_ape1_base,uint32_t sh_mem_ape1_limit,uint32_t sh_mem_bases)85 void kgd_gfx_v9_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
86 uint32_t sh_mem_config,
87 uint32_t sh_mem_ape1_base,
88 uint32_t sh_mem_ape1_limit,
89 uint32_t sh_mem_bases)
90 {
91 lock_srbm(adev, 0, 0, 0, vmid);
92
93 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_CONFIG), sh_mem_config);
94 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_BASES), sh_mem_bases);
95 /* APE1 no longer exists on GFX9 */
96
97 unlock_srbm(adev);
98 }
99
kgd_gfx_v9_set_pasid_vmid_mapping(struct amdgpu_device * adev,u32 pasid,unsigned int vmid)100 int kgd_gfx_v9_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
101 unsigned int vmid)
102 {
103 /*
104 * We have to assume that there is no outstanding mapping.
105 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
106 * a mapping is in progress or because a mapping finished
107 * and the SW cleared it.
108 * So the protocol is to always wait & clear.
109 */
110 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
111 ATC_VMID0_PASID_MAPPING__VALID_MASK;
112
113 /*
114 * need to do this twice, once for gfx and once for mmhub
115 * for ATC add 16 to VMID for mmhub, for IH different registers.
116 * ATC_VMID0..15 registers are separate from ATC_VMID16..31.
117 */
118
119 WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
120 pasid_mapping);
121
122 while (!(RREG32(SOC15_REG_OFFSET(
123 ATHUB, 0,
124 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
125 (1U << vmid)))
126 cpu_relax();
127
128 WREG32(SOC15_REG_OFFSET(ATHUB, 0,
129 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
130 1U << vmid);
131
132 /* Mapping vmid to pasid also for IH block */
133 WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
134 pasid_mapping);
135
136 WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid,
137 pasid_mapping);
138
139 while (!(RREG32(SOC15_REG_OFFSET(
140 ATHUB, 0,
141 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
142 (1U << (vmid + 16))))
143 cpu_relax();
144
145 WREG32(SOC15_REG_OFFSET(ATHUB, 0,
146 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
147 1U << (vmid + 16));
148
149 /* Mapping vmid to pasid also for IH block */
150 WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid,
151 pasid_mapping);
152 return 0;
153 }
154
155 /* TODO - RING0 form of field is obsolete, seems to date back to SI
156 * but still works
157 */
158
kgd_gfx_v9_init_interrupts(struct amdgpu_device * adev,uint32_t pipe_id)159 int kgd_gfx_v9_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id)
160 {
161 uint32_t mec;
162 uint32_t pipe;
163
164 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
165 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
166
167 lock_srbm(adev, mec, pipe, 0, 0);
168
169 WREG32_SOC15(GC, 0, mmCPC_INT_CNTL,
170 CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
171 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
172
173 unlock_srbm(adev);
174
175 return 0;
176 }
177
get_sdma_rlc_reg_offset(struct amdgpu_device * adev,unsigned int engine_id,unsigned int queue_id)178 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
179 unsigned int engine_id,
180 unsigned int queue_id)
181 {
182 uint32_t sdma_engine_reg_base = 0;
183 uint32_t sdma_rlc_reg_offset;
184
185 switch (engine_id) {
186 default:
187 dev_warn(adev->dev,
188 "Invalid sdma engine id (%d), using engine id 0\n",
189 engine_id);
190 fallthrough;
191 case 0:
192 sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
193 mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
194 break;
195 case 1:
196 sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0,
197 mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
198 break;
199 }
200
201 sdma_rlc_reg_offset = sdma_engine_reg_base
202 + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
203
204 pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
205 queue_id, sdma_rlc_reg_offset);
206
207 return sdma_rlc_reg_offset;
208 }
209
get_mqd(void * mqd)210 static inline struct v9_mqd *get_mqd(void *mqd)
211 {
212 return (struct v9_mqd *)mqd;
213 }
214
get_sdma_mqd(void * mqd)215 static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
216 {
217 return (struct v9_sdma_mqd *)mqd;
218 }
219
kgd_gfx_v9_hqd_load(struct amdgpu_device * adev,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t __user * wptr,uint32_t wptr_shift,uint32_t wptr_mask,struct mm_struct * mm)220 int kgd_gfx_v9_hqd_load(struct amdgpu_device *adev, void *mqd,
221 uint32_t pipe_id, uint32_t queue_id,
222 uint32_t __user *wptr, uint32_t wptr_shift,
223 uint32_t wptr_mask, struct mm_struct *mm)
224 {
225 struct v9_mqd *m;
226 uint32_t *mqd_hqd;
227 uint32_t reg, hqd_base, data;
228
229 m = get_mqd(mqd);
230
231 acquire_queue(adev, pipe_id, queue_id);
232
233 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
234 mqd_hqd = &m->cp_mqd_base_addr_lo;
235 hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
236
237 for (reg = hqd_base;
238 reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
239 WREG32_RLC(reg, mqd_hqd[reg - hqd_base]);
240
241
242 /* Activate doorbell logic before triggering WPTR poll. */
243 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
244 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
245 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL), data);
246
247 if (wptr) {
248 /* Don't read wptr with get_user because the user
249 * context may not be accessible (if this function
250 * runs in a work queue). Instead trigger a one-shot
251 * polling read from memory in the CP. This assumes
252 * that wptr is GPU-accessible in the queue's VMID via
253 * ATC or SVM. WPTR==RPTR before starting the poll so
254 * the CP starts fetching new commands from the right
255 * place.
256 *
257 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
258 * tricky. Assume that the queue didn't overflow. The
259 * number of valid bits in the 32-bit RPTR depends on
260 * the queue size. The remaining bits are taken from
261 * the saved 64-bit WPTR. If the WPTR wrapped, add the
262 * queue size.
263 */
264 uint32_t queue_size =
265 2 << REG_GET_FIELD(m->cp_hqd_pq_control,
266 CP_HQD_PQ_CONTROL, QUEUE_SIZE);
267 uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
268
269 if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
270 guessed_wptr += queue_size;
271 guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
272 guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
273
274 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_LO),
275 lower_32_bits(guessed_wptr));
276 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI),
277 upper_32_bits(guessed_wptr));
278 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR),
279 lower_32_bits((uintptr_t)wptr));
280 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
281 upper_32_bits((uintptr_t)wptr));
282 WREG32_SOC15(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1,
283 (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
284 }
285
286 /* Start the EOP fetcher */
287 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_EOP_RPTR),
288 REG_SET_FIELD(m->cp_hqd_eop_rptr,
289 CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
290
291 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
292 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE), data);
293
294 release_queue(adev);
295
296 return 0;
297 }
298
kgd_gfx_v9_hiq_mqd_load(struct amdgpu_device * adev,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t doorbell_off)299 int kgd_gfx_v9_hiq_mqd_load(struct amdgpu_device *adev, void *mqd,
300 uint32_t pipe_id, uint32_t queue_id,
301 uint32_t doorbell_off)
302 {
303 struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring;
304 struct v9_mqd *m;
305 uint32_t mec, pipe;
306 int r;
307
308 m = get_mqd(mqd);
309
310 acquire_queue(adev, pipe_id, queue_id);
311
312 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
313 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
314
315 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
316 mec, pipe, queue_id);
317
318 spin_lock(&adev->gfx.kiq.ring_lock);
319 r = amdgpu_ring_alloc(kiq_ring, 7);
320 if (r) {
321 pr_err("Failed to alloc KIQ (%d).\n", r);
322 goto out_unlock;
323 }
324
325 amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
326 amdgpu_ring_write(kiq_ring,
327 PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
328 PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
329 PACKET3_MAP_QUEUES_QUEUE(queue_id) |
330 PACKET3_MAP_QUEUES_PIPE(pipe) |
331 PACKET3_MAP_QUEUES_ME((mec - 1)) |
332 PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
333 PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
334 PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
335 PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
336 amdgpu_ring_write(kiq_ring,
337 PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
338 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
339 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
340 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
341 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
342 amdgpu_ring_commit(kiq_ring);
343
344 out_unlock:
345 spin_unlock(&adev->gfx.kiq.ring_lock);
346 release_queue(adev);
347
348 return r;
349 }
350
kgd_gfx_v9_hqd_dump(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)351 int kgd_gfx_v9_hqd_dump(struct amdgpu_device *adev,
352 uint32_t pipe_id, uint32_t queue_id,
353 uint32_t (**dump)[2], uint32_t *n_regs)
354 {
355 uint32_t i = 0, reg;
356 #define HQD_N_REGS 56
357 #define DUMP_REG(addr) do { \
358 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
359 break; \
360 (*dump)[i][0] = (addr) << 2; \
361 (*dump)[i++][1] = RREG32(addr); \
362 } while (0)
363
364 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
365 if (*dump == NULL)
366 return -ENOMEM;
367
368 acquire_queue(adev, pipe_id, queue_id);
369
370 for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
371 reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
372 DUMP_REG(reg);
373
374 release_queue(adev);
375
376 WARN_ON_ONCE(i != HQD_N_REGS);
377 *n_regs = i;
378
379 return 0;
380 }
381
kgd_hqd_sdma_load(struct amdgpu_device * adev,void * mqd,uint32_t __user * wptr,struct mm_struct * mm)382 static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
383 uint32_t __user *wptr, struct mm_struct *mm)
384 {
385 struct v9_sdma_mqd *m;
386 uint32_t sdma_rlc_reg_offset;
387 unsigned long end_jiffies;
388 uint32_t data;
389 uint64_t data64;
390 uint64_t __user *wptr64 = (uint64_t __user *)wptr;
391
392 m = get_sdma_mqd(mqd);
393 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
394 m->sdma_queue_id);
395
396 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
397 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
398
399 end_jiffies = msecs_to_jiffies(2000) + jiffies;
400 while (true) {
401 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
402 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
403 break;
404 if (time_after(jiffies, end_jiffies)) {
405 pr_err("SDMA RLC not idle in %s\n", __func__);
406 return -ETIME;
407 }
408 usleep_range(500, 1000);
409 }
410
411 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
412 m->sdmax_rlcx_doorbell_offset);
413
414 data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
415 ENABLE, 1);
416 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
417 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
418 m->sdmax_rlcx_rb_rptr);
419 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
420 m->sdmax_rlcx_rb_rptr_hi);
421
422 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
423 if (read_user_wptr(mm, wptr64, data64)) {
424 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
425 lower_32_bits(data64));
426 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
427 upper_32_bits(data64));
428 } else {
429 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
430 m->sdmax_rlcx_rb_rptr);
431 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
432 m->sdmax_rlcx_rb_rptr_hi);
433 }
434 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
435
436 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
437 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
438 m->sdmax_rlcx_rb_base_hi);
439 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
440 m->sdmax_rlcx_rb_rptr_addr_lo);
441 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
442 m->sdmax_rlcx_rb_rptr_addr_hi);
443
444 data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
445 RB_ENABLE, 1);
446 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
447
448 return 0;
449 }
450
kgd_hqd_sdma_dump(struct amdgpu_device * adev,uint32_t engine_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)451 static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
452 uint32_t engine_id, uint32_t queue_id,
453 uint32_t (**dump)[2], uint32_t *n_regs)
454 {
455 uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
456 engine_id, queue_id);
457 uint32_t i = 0, reg;
458 #undef HQD_N_REGS
459 #define HQD_N_REGS (19+6+7+10)
460
461 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
462 if (*dump == NULL)
463 return -ENOMEM;
464
465 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
466 DUMP_REG(sdma_rlc_reg_offset + reg);
467 for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
468 DUMP_REG(sdma_rlc_reg_offset + reg);
469 for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
470 reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
471 DUMP_REG(sdma_rlc_reg_offset + reg);
472 for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
473 reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
474 DUMP_REG(sdma_rlc_reg_offset + reg);
475
476 WARN_ON_ONCE(i != HQD_N_REGS);
477 *n_regs = i;
478
479 return 0;
480 }
481
kgd_gfx_v9_hqd_is_occupied(struct amdgpu_device * adev,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id)482 bool kgd_gfx_v9_hqd_is_occupied(struct amdgpu_device *adev,
483 uint64_t queue_address, uint32_t pipe_id,
484 uint32_t queue_id)
485 {
486 uint32_t act;
487 bool retval = false;
488 uint32_t low, high;
489
490 acquire_queue(adev, pipe_id, queue_id);
491 act = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE);
492 if (act) {
493 low = lower_32_bits(queue_address >> 8);
494 high = upper_32_bits(queue_address >> 8);
495
496 if (low == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE) &&
497 high == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE_HI))
498 retval = true;
499 }
500 release_queue(adev);
501 return retval;
502 }
503
kgd_hqd_sdma_is_occupied(struct amdgpu_device * adev,void * mqd)504 static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
505 {
506 struct v9_sdma_mqd *m;
507 uint32_t sdma_rlc_reg_offset;
508 uint32_t sdma_rlc_rb_cntl;
509
510 m = get_sdma_mqd(mqd);
511 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
512 m->sdma_queue_id);
513
514 sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
515
516 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
517 return true;
518
519 return false;
520 }
521
kgd_gfx_v9_hqd_destroy(struct amdgpu_device * adev,void * mqd,enum kfd_preempt_type reset_type,unsigned int utimeout,uint32_t pipe_id,uint32_t queue_id)522 int kgd_gfx_v9_hqd_destroy(struct amdgpu_device *adev, void *mqd,
523 enum kfd_preempt_type reset_type,
524 unsigned int utimeout, uint32_t pipe_id,
525 uint32_t queue_id)
526 {
527 enum hqd_dequeue_request_type type;
528 unsigned long end_jiffies;
529 uint32_t temp;
530 struct v9_mqd *m = get_mqd(mqd);
531
532 if (amdgpu_in_reset(adev))
533 return -EIO;
534
535 acquire_queue(adev, pipe_id, queue_id);
536
537 if (m->cp_hqd_vmid == 0)
538 WREG32_FIELD15_RLC(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
539
540 switch (reset_type) {
541 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
542 type = DRAIN_PIPE;
543 break;
544 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
545 type = RESET_WAVES;
546 break;
547 case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
548 type = SAVE_WAVES;
549 break;
550 default:
551 type = DRAIN_PIPE;
552 break;
553 }
554
555 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_DEQUEUE_REQUEST), type);
556
557 end_jiffies = (utimeout * HZ / 1000) + jiffies;
558 while (true) {
559 temp = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE);
560 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
561 break;
562 if (time_after(jiffies, end_jiffies)) {
563 pr_err("cp queue preemption time out.\n");
564 release_queue(adev);
565 return -ETIME;
566 }
567 usleep_range(500, 1000);
568 }
569
570 release_queue(adev);
571 return 0;
572 }
573
kgd_hqd_sdma_destroy(struct amdgpu_device * adev,void * mqd,unsigned int utimeout)574 static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
575 unsigned int utimeout)
576 {
577 struct v9_sdma_mqd *m;
578 uint32_t sdma_rlc_reg_offset;
579 uint32_t temp;
580 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
581
582 m = get_sdma_mqd(mqd);
583 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
584 m->sdma_queue_id);
585
586 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
587 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
588 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
589
590 while (true) {
591 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
592 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
593 break;
594 if (time_after(jiffies, end_jiffies)) {
595 pr_err("SDMA RLC not idle in %s\n", __func__);
596 return -ETIME;
597 }
598 usleep_range(500, 1000);
599 }
600
601 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
602 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
603 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
604 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
605
606 m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
607 m->sdmax_rlcx_rb_rptr_hi =
608 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
609
610 return 0;
611 }
612
kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct amdgpu_device * adev,uint8_t vmid,uint16_t * p_pasid)613 bool kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
614 uint8_t vmid, uint16_t *p_pasid)
615 {
616 uint32_t value;
617
618 value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
619 + vmid);
620 *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
621
622 return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
623 }
624
kgd_gfx_v9_wave_control_execute(struct amdgpu_device * adev,uint32_t gfx_index_val,uint32_t sq_cmd)625 int kgd_gfx_v9_wave_control_execute(struct amdgpu_device *adev,
626 uint32_t gfx_index_val,
627 uint32_t sq_cmd)
628 {
629 uint32_t data = 0;
630
631 mutex_lock(&adev->grbm_idx_mutex);
632
633 WREG32_SOC15_RLC_SHADOW(GC, 0, mmGRBM_GFX_INDEX, gfx_index_val);
634 WREG32_SOC15(GC, 0, mmSQ_CMD, sq_cmd);
635
636 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
637 INSTANCE_BROADCAST_WRITES, 1);
638 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
639 SH_BROADCAST_WRITES, 1);
640 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
641 SE_BROADCAST_WRITES, 1);
642
643 WREG32_SOC15_RLC_SHADOW(GC, 0, mmGRBM_GFX_INDEX, data);
644 mutex_unlock(&adev->grbm_idx_mutex);
645
646 return 0;
647 }
648
kgd_gfx_v9_set_vm_context_page_table_base(struct amdgpu_device * adev,uint32_t vmid,uint64_t page_table_base)649 void kgd_gfx_v9_set_vm_context_page_table_base(struct amdgpu_device *adev,
650 uint32_t vmid, uint64_t page_table_base)
651 {
652 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
653 pr_err("trying to set page table base for wrong VMID %u\n",
654 vmid);
655 return;
656 }
657
658 adev->mmhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
659
660 adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
661 }
662
lock_spi_csq_mutexes(struct amdgpu_device * adev)663 static void lock_spi_csq_mutexes(struct amdgpu_device *adev)
664 {
665 mutex_lock(&adev->srbm_mutex);
666 mutex_lock(&adev->grbm_idx_mutex);
667
668 }
669
unlock_spi_csq_mutexes(struct amdgpu_device * adev)670 static void unlock_spi_csq_mutexes(struct amdgpu_device *adev)
671 {
672 mutex_unlock(&adev->grbm_idx_mutex);
673 mutex_unlock(&adev->srbm_mutex);
674 }
675
676 /**
677 * get_wave_count: Read device registers to get number of waves in flight for
678 * a particular queue. The method also returns the VMID associated with the
679 * queue.
680 *
681 * @adev: Handle of device whose registers are to be read
682 * @queue_idx: Index of queue in the queue-map bit-field
683 * @wave_cnt: Output parameter updated with number of waves in flight
684 * @vmid: Output parameter updated with VMID of queue whose wave count
685 * is being collected
686 */
get_wave_count(struct amdgpu_device * adev,int queue_idx,int * wave_cnt,int * vmid)687 static void get_wave_count(struct amdgpu_device *adev, int queue_idx,
688 int *wave_cnt, int *vmid)
689 {
690 int pipe_idx;
691 int queue_slot;
692 unsigned int reg_val;
693
694 /*
695 * Program GRBM with appropriate MEID, PIPEID, QUEUEID and VMID
696 * parameters to read out waves in flight. Get VMID if there are
697 * non-zero waves in flight.
698 */
699 *vmid = 0xFF;
700 *wave_cnt = 0;
701 pipe_idx = queue_idx / adev->gfx.mec.num_queue_per_pipe;
702 queue_slot = queue_idx % adev->gfx.mec.num_queue_per_pipe;
703 soc15_grbm_select(adev, 1, pipe_idx, queue_slot, 0);
704 reg_val = RREG32_SOC15_IP(GC, SOC15_REG_OFFSET(GC, 0, mmSPI_CSQ_WF_ACTIVE_COUNT_0) +
705 queue_slot);
706 *wave_cnt = reg_val & SPI_CSQ_WF_ACTIVE_COUNT_0__COUNT_MASK;
707 if (*wave_cnt != 0)
708 *vmid = (RREG32_SOC15(GC, 0, mmCP_HQD_VMID) &
709 CP_HQD_VMID__VMID_MASK) >> CP_HQD_VMID__VMID__SHIFT;
710 }
711
712 /**
713 * kgd_gfx_v9_get_cu_occupancy: Reads relevant registers associated with each
714 * shader engine and aggregates the number of waves that are in flight for the
715 * process whose pasid is provided as a parameter. The process could have ZERO
716 * or more queues running and submitting waves to compute units.
717 *
718 * @adev: Handle of device from which to get number of waves in flight
719 * @pasid: Identifies the process for which this query call is invoked
720 * @pasid_wave_cnt: Output parameter updated with number of waves in flight that
721 * belong to process with given pasid
722 * @max_waves_per_cu: Output parameter updated with maximum number of waves
723 * possible per Compute Unit
724 *
725 * Note: It's possible that the device has too many queues (oversubscription)
726 * in which case a VMID could be remapped to a different PASID. This could lead
727 * to an inaccurate wave count. Following is a high-level sequence:
728 * Time T1: vmid = getVmid(); vmid is associated with Pasid P1
729 * Time T2: passId = getPasId(vmid); vmid is associated with Pasid P2
730 * In the sequence above wave count obtained from time T1 will be incorrectly
731 * lost or added to total wave count.
732 *
733 * The registers that provide the waves in flight are:
734 *
735 * SPI_CSQ_WF_ACTIVE_STATUS - bit-map of queues per pipe. The bit is ON if a
736 * queue is slotted, OFF if there is no queue. A process could have ZERO or
737 * more queues slotted and submitting waves to be run on compute units. Even
738 * when there is a queue it is possible there could be zero wave fronts, this
739 * can happen when queue is waiting on top-of-pipe events - e.g. waitRegMem
740 * command
741 *
742 * For each bit that is ON from above:
743 *
744 * Read (SPI_CSQ_WF_ACTIVE_COUNT_0 + queue_idx) register. It provides the
745 * number of waves that are in flight for the queue at specified index. The
746 * index ranges from 0 to 7.
747 *
748 * If non-zero waves are in flight, read CP_HQD_VMID register to obtain VMID
749 * of the wave(s).
750 *
751 * Determine if VMID from above step maps to pasid provided as parameter. If
752 * it matches agrregate the wave count. That the VMID will not match pasid is
753 * a normal condition i.e. a device is expected to support multiple queues
754 * from multiple proceses.
755 *
756 * Reading registers referenced above involves programming GRBM appropriately
757 */
kgd_gfx_v9_get_cu_occupancy(struct amdgpu_device * adev,int pasid,int * pasid_wave_cnt,int * max_waves_per_cu)758 void kgd_gfx_v9_get_cu_occupancy(struct amdgpu_device *adev, int pasid,
759 int *pasid_wave_cnt, int *max_waves_per_cu)
760 {
761 int qidx;
762 int vmid;
763 int se_idx;
764 int sh_idx;
765 int se_cnt;
766 int sh_cnt;
767 int wave_cnt;
768 int queue_map;
769 int pasid_tmp;
770 int max_queue_cnt;
771 int vmid_wave_cnt = 0;
772 DECLARE_BITMAP(cp_queue_bitmap, KGD_MAX_QUEUES);
773
774 lock_spi_csq_mutexes(adev);
775 soc15_grbm_select(adev, 1, 0, 0, 0);
776
777 /*
778 * Iterate through the shader engines and arrays of the device
779 * to get number of waves in flight
780 */
781 bitmap_complement(cp_queue_bitmap, adev->gfx.mec.queue_bitmap,
782 KGD_MAX_QUEUES);
783 max_queue_cnt = adev->gfx.mec.num_pipe_per_mec *
784 adev->gfx.mec.num_queue_per_pipe;
785 sh_cnt = adev->gfx.config.max_sh_per_se;
786 se_cnt = adev->gfx.config.max_shader_engines;
787 for (se_idx = 0; se_idx < se_cnt; se_idx++) {
788 for (sh_idx = 0; sh_idx < sh_cnt; sh_idx++) {
789
790 amdgpu_gfx_select_se_sh(adev, se_idx, sh_idx, 0xffffffff);
791 queue_map = RREG32_SOC15(GC, 0, mmSPI_CSQ_WF_ACTIVE_STATUS);
792
793 /*
794 * Assumption: queue map encodes following schema: four
795 * pipes per each micro-engine, with each pipe mapping
796 * eight queues. This schema is true for GFX9 devices
797 * and must be verified for newer device families
798 */
799 for (qidx = 0; qidx < max_queue_cnt; qidx++) {
800
801 /* Skip qeueus that are not associated with
802 * compute functions
803 */
804 if (!test_bit(qidx, cp_queue_bitmap))
805 continue;
806
807 if (!(queue_map & (1 << qidx)))
808 continue;
809
810 /* Get number of waves in flight and aggregate them */
811 get_wave_count(adev, qidx, &wave_cnt, &vmid);
812 if (wave_cnt != 0) {
813 pasid_tmp =
814 RREG32(SOC15_REG_OFFSET(OSSSYS, 0,
815 mmIH_VMID_0_LUT) + vmid);
816 if (pasid_tmp == pasid)
817 vmid_wave_cnt += wave_cnt;
818 }
819 }
820 }
821 }
822
823 amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
824 soc15_grbm_select(adev, 0, 0, 0, 0);
825 unlock_spi_csq_mutexes(adev);
826
827 /* Update the output parameters and return */
828 *pasid_wave_cnt = vmid_wave_cnt;
829 *max_waves_per_cu = adev->gfx.cu_info.simd_per_cu *
830 adev->gfx.cu_info.max_waves_per_simd;
831 }
832
kgd_gfx_v9_program_trap_handler_settings(struct amdgpu_device * adev,uint32_t vmid,uint64_t tba_addr,uint64_t tma_addr)833 void kgd_gfx_v9_program_trap_handler_settings(struct amdgpu_device *adev,
834 uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr)
835 {
836 lock_srbm(adev, 0, 0, 0, vmid);
837
838 /*
839 * Program TBA registers
840 */
841 WREG32_SOC15(GC, 0, mmSQ_SHADER_TBA_LO,
842 lower_32_bits(tba_addr >> 8));
843 WREG32_SOC15(GC, 0, mmSQ_SHADER_TBA_HI,
844 upper_32_bits(tba_addr >> 8));
845
846 /*
847 * Program TMA registers
848 */
849 WREG32_SOC15(GC, 0, mmSQ_SHADER_TMA_LO,
850 lower_32_bits(tma_addr >> 8));
851 WREG32_SOC15(GC, 0, mmSQ_SHADER_TMA_HI,
852 upper_32_bits(tma_addr >> 8));
853
854 unlock_srbm(adev);
855 }
856
857 const struct kfd2kgd_calls gfx_v9_kfd2kgd = {
858 .program_sh_mem_settings = kgd_gfx_v9_program_sh_mem_settings,
859 .set_pasid_vmid_mapping = kgd_gfx_v9_set_pasid_vmid_mapping,
860 .init_interrupts = kgd_gfx_v9_init_interrupts,
861 .hqd_load = kgd_gfx_v9_hqd_load,
862 .hiq_mqd_load = kgd_gfx_v9_hiq_mqd_load,
863 .hqd_sdma_load = kgd_hqd_sdma_load,
864 .hqd_dump = kgd_gfx_v9_hqd_dump,
865 .hqd_sdma_dump = kgd_hqd_sdma_dump,
866 .hqd_is_occupied = kgd_gfx_v9_hqd_is_occupied,
867 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
868 .hqd_destroy = kgd_gfx_v9_hqd_destroy,
869 .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
870 .wave_control_execute = kgd_gfx_v9_wave_control_execute,
871 .get_atc_vmid_pasid_mapping_info =
872 kgd_gfx_v9_get_atc_vmid_pasid_mapping_info,
873 .set_vm_context_page_table_base = kgd_gfx_v9_set_vm_context_page_table_base,
874 .get_cu_occupancy = kgd_gfx_v9_get_cu_occupancy,
875 .program_trap_handler_settings = kgd_gfx_v9_program_trap_handler_settings,
876 };
877