1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kmemleak.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/irqbypass.h>
23 #include <linux/sched/stat.h>
24 #include <linux/psci.h>
25 #include <trace/events/kvm.h>
26
27 #define CREATE_TRACE_POINTS
28 #include "trace_arm.h"
29
30 #include <linux/uaccess.h>
31 #include <asm/ptrace.h>
32 #include <asm/mman.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpufeature.h>
36 #include <asm/virt.h>
37 #include <asm/kvm_arm.h>
38 #include <asm/kvm_asm.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_pkvm.h>
41 #include <asm/kvm_emulate.h>
42 #include <asm/sections.h>
43
44 #include <kvm/arm_hypercalls.h>
45 #include <kvm/arm_pmu.h>
46 #include <kvm/arm_psci.h>
47
48 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
49 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
50
51 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
52
53 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55
56 static bool vgic_present;
57
58 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
59 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
60
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)61 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
62 {
63 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
64 }
65
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)66 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
67 struct kvm_enable_cap *cap)
68 {
69 int r;
70
71 if (cap->flags)
72 return -EINVAL;
73
74 switch (cap->cap) {
75 case KVM_CAP_ARM_NISV_TO_USER:
76 r = 0;
77 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
78 &kvm->arch.flags);
79 break;
80 case KVM_CAP_ARM_MTE:
81 mutex_lock(&kvm->lock);
82 if (!system_supports_mte() || kvm->created_vcpus) {
83 r = -EINVAL;
84 } else {
85 r = 0;
86 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
87 }
88 mutex_unlock(&kvm->lock);
89 break;
90 case KVM_CAP_ARM_SYSTEM_SUSPEND:
91 r = 0;
92 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
93 break;
94 default:
95 r = -EINVAL;
96 break;
97 }
98
99 return r;
100 }
101
kvm_arm_default_max_vcpus(void)102 static int kvm_arm_default_max_vcpus(void)
103 {
104 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
105 }
106
set_default_spectre(struct kvm * kvm)107 static void set_default_spectre(struct kvm *kvm)
108 {
109 /*
110 * The default is to expose CSV2 == 1 if the HW isn't affected.
111 * Although this is a per-CPU feature, we make it global because
112 * asymmetric systems are just a nuisance.
113 *
114 * Userspace can override this as long as it doesn't promise
115 * the impossible.
116 */
117 if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
118 kvm->arch.pfr0_csv2 = 1;
119 if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
120 kvm->arch.pfr0_csv3 = 1;
121 }
122
123 /**
124 * kvm_arch_init_vm - initializes a VM data structure
125 * @kvm: pointer to the KVM struct
126 */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)127 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
128 {
129 int ret;
130
131 ret = kvm_share_hyp(kvm, kvm + 1);
132 if (ret)
133 return ret;
134
135 ret = pkvm_init_host_vm(kvm);
136 if (ret)
137 goto err_unshare_kvm;
138
139 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
140 ret = -ENOMEM;
141 goto err_unshare_kvm;
142 }
143 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
144
145 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
146 if (ret)
147 goto err_free_cpumask;
148
149 kvm_vgic_early_init(kvm);
150
151 /* The maximum number of VCPUs is limited by the host's GIC model */
152 kvm->max_vcpus = kvm_arm_default_max_vcpus();
153
154 set_default_spectre(kvm);
155 kvm_arm_init_hypercalls(kvm);
156
157 /*
158 * Initialise the default PMUver before there is a chance to
159 * create an actual PMU.
160 */
161 kvm->arch.dfr0_pmuver.imp = kvm_arm_pmu_get_pmuver_limit();
162
163 return 0;
164
165 err_free_cpumask:
166 free_cpumask_var(kvm->arch.supported_cpus);
167 err_unshare_kvm:
168 kvm_unshare_hyp(kvm, kvm + 1);
169 return ret;
170 }
171
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)172 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
173 {
174 return VM_FAULT_SIGBUS;
175 }
176
177
178 /**
179 * kvm_arch_destroy_vm - destroy the VM data structure
180 * @kvm: pointer to the KVM struct
181 */
kvm_arch_destroy_vm(struct kvm * kvm)182 void kvm_arch_destroy_vm(struct kvm *kvm)
183 {
184 bitmap_free(kvm->arch.pmu_filter);
185 free_cpumask_var(kvm->arch.supported_cpus);
186
187 kvm_vgic_destroy(kvm);
188
189 if (is_protected_kvm_enabled())
190 pkvm_destroy_hyp_vm(kvm);
191
192 kvm_destroy_vcpus(kvm);
193
194 kvm_unshare_hyp(kvm, kvm + 1);
195 }
196
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)197 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 {
199 int r;
200 switch (ext) {
201 case KVM_CAP_IRQCHIP:
202 r = vgic_present;
203 break;
204 case KVM_CAP_IOEVENTFD:
205 case KVM_CAP_DEVICE_CTRL:
206 case KVM_CAP_USER_MEMORY:
207 case KVM_CAP_SYNC_MMU:
208 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
209 case KVM_CAP_ONE_REG:
210 case KVM_CAP_ARM_PSCI:
211 case KVM_CAP_ARM_PSCI_0_2:
212 case KVM_CAP_READONLY_MEM:
213 case KVM_CAP_MP_STATE:
214 case KVM_CAP_IMMEDIATE_EXIT:
215 case KVM_CAP_VCPU_EVENTS:
216 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
217 case KVM_CAP_ARM_NISV_TO_USER:
218 case KVM_CAP_ARM_INJECT_EXT_DABT:
219 case KVM_CAP_SET_GUEST_DEBUG:
220 case KVM_CAP_VCPU_ATTRIBUTES:
221 case KVM_CAP_PTP_KVM:
222 case KVM_CAP_ARM_SYSTEM_SUSPEND:
223 r = 1;
224 break;
225 case KVM_CAP_SET_GUEST_DEBUG2:
226 return KVM_GUESTDBG_VALID_MASK;
227 case KVM_CAP_ARM_SET_DEVICE_ADDR:
228 r = 1;
229 break;
230 case KVM_CAP_NR_VCPUS:
231 /*
232 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
233 * architectures, as it does not always bound it to
234 * KVM_CAP_MAX_VCPUS. It should not matter much because
235 * this is just an advisory value.
236 */
237 r = min_t(unsigned int, num_online_cpus(),
238 kvm_arm_default_max_vcpus());
239 break;
240 case KVM_CAP_MAX_VCPUS:
241 case KVM_CAP_MAX_VCPU_ID:
242 if (kvm)
243 r = kvm->max_vcpus;
244 else
245 r = kvm_arm_default_max_vcpus();
246 break;
247 case KVM_CAP_MSI_DEVID:
248 if (!kvm)
249 r = -EINVAL;
250 else
251 r = kvm->arch.vgic.msis_require_devid;
252 break;
253 case KVM_CAP_ARM_USER_IRQ:
254 /*
255 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
256 * (bump this number if adding more devices)
257 */
258 r = 1;
259 break;
260 case KVM_CAP_ARM_MTE:
261 r = system_supports_mte();
262 break;
263 case KVM_CAP_STEAL_TIME:
264 r = kvm_arm_pvtime_supported();
265 break;
266 case KVM_CAP_ARM_EL1_32BIT:
267 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
268 break;
269 case KVM_CAP_GUEST_DEBUG_HW_BPS:
270 r = get_num_brps();
271 break;
272 case KVM_CAP_GUEST_DEBUG_HW_WPS:
273 r = get_num_wrps();
274 break;
275 case KVM_CAP_ARM_PMU_V3:
276 r = kvm_arm_support_pmu_v3();
277 break;
278 case KVM_CAP_ARM_INJECT_SERROR_ESR:
279 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
280 break;
281 case KVM_CAP_ARM_VM_IPA_SIZE:
282 r = get_kvm_ipa_limit();
283 break;
284 case KVM_CAP_ARM_SVE:
285 r = system_supports_sve();
286 break;
287 case KVM_CAP_ARM_PTRAUTH_ADDRESS:
288 case KVM_CAP_ARM_PTRAUTH_GENERIC:
289 r = system_has_full_ptr_auth();
290 break;
291 default:
292 r = 0;
293 }
294
295 return r;
296 }
297
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)298 long kvm_arch_dev_ioctl(struct file *filp,
299 unsigned int ioctl, unsigned long arg)
300 {
301 return -EINVAL;
302 }
303
kvm_arch_alloc_vm(void)304 struct kvm *kvm_arch_alloc_vm(void)
305 {
306 size_t sz = sizeof(struct kvm);
307
308 if (!has_vhe())
309 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
310
311 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
312 }
313
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)314 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
315 {
316 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
317 return -EBUSY;
318
319 if (id >= kvm->max_vcpus)
320 return -EINVAL;
321
322 return 0;
323 }
324
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)325 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
326 {
327 int err;
328
329 /* Force users to call KVM_ARM_VCPU_INIT */
330 vcpu->arch.target = -1;
331 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
332
333 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
334
335 /*
336 * Default value for the FP state, will be overloaded at load
337 * time if we support FP (pretty likely)
338 */
339 vcpu->arch.fp_state = FP_STATE_FREE;
340
341 /* Set up the timer */
342 kvm_timer_vcpu_init(vcpu);
343
344 kvm_pmu_vcpu_init(vcpu);
345
346 kvm_arm_reset_debug_ptr(vcpu);
347
348 kvm_arm_pvtime_vcpu_init(&vcpu->arch);
349
350 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
351
352 err = kvm_vgic_vcpu_init(vcpu);
353 if (err)
354 return err;
355
356 return kvm_share_hyp(vcpu, vcpu + 1);
357 }
358
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)359 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
360 {
361 }
362
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)363 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
364 {
365 if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
366 static_branch_dec(&userspace_irqchip_in_use);
367
368 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
369 kvm_timer_vcpu_terminate(vcpu);
370 kvm_pmu_vcpu_destroy(vcpu);
371
372 kvm_arm_vcpu_destroy(vcpu);
373 }
374
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)375 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
376 {
377
378 }
379
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)380 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
381 {
382
383 }
384
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)385 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
386 {
387 struct kvm_s2_mmu *mmu;
388 int *last_ran;
389
390 mmu = vcpu->arch.hw_mmu;
391 last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
392
393 /*
394 * We guarantee that both TLBs and I-cache are private to each
395 * vcpu. If detecting that a vcpu from the same VM has
396 * previously run on the same physical CPU, call into the
397 * hypervisor code to nuke the relevant contexts.
398 *
399 * We might get preempted before the vCPU actually runs, but
400 * over-invalidation doesn't affect correctness.
401 */
402 if (*last_ran != vcpu->vcpu_id) {
403 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
404 *last_ran = vcpu->vcpu_id;
405 }
406
407 vcpu->cpu = cpu;
408
409 kvm_vgic_load(vcpu);
410 kvm_timer_vcpu_load(vcpu);
411 if (has_vhe())
412 kvm_vcpu_load_sysregs_vhe(vcpu);
413 kvm_arch_vcpu_load_fp(vcpu);
414 kvm_vcpu_pmu_restore_guest(vcpu);
415 if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
416 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
417
418 if (single_task_running())
419 vcpu_clear_wfx_traps(vcpu);
420 else
421 vcpu_set_wfx_traps(vcpu);
422
423 if (vcpu_has_ptrauth(vcpu))
424 vcpu_ptrauth_disable(vcpu);
425 kvm_arch_vcpu_load_debug_state_flags(vcpu);
426
427 if (!cpumask_test_cpu(smp_processor_id(), vcpu->kvm->arch.supported_cpus))
428 vcpu_set_on_unsupported_cpu(vcpu);
429 }
430
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)431 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
432 {
433 kvm_arch_vcpu_put_debug_state_flags(vcpu);
434 kvm_arch_vcpu_put_fp(vcpu);
435 if (has_vhe())
436 kvm_vcpu_put_sysregs_vhe(vcpu);
437 kvm_timer_vcpu_put(vcpu);
438 kvm_vgic_put(vcpu);
439 kvm_vcpu_pmu_restore_host(vcpu);
440 kvm_arm_vmid_clear_active();
441
442 vcpu_clear_on_unsupported_cpu(vcpu);
443 vcpu->cpu = -1;
444 }
445
kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)446 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
447 {
448 vcpu->arch.mp_state.mp_state = KVM_MP_STATE_STOPPED;
449 kvm_make_request(KVM_REQ_SLEEP, vcpu);
450 kvm_vcpu_kick(vcpu);
451 }
452
kvm_arm_vcpu_stopped(struct kvm_vcpu * vcpu)453 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
454 {
455 return vcpu->arch.mp_state.mp_state == KVM_MP_STATE_STOPPED;
456 }
457
kvm_arm_vcpu_suspend(struct kvm_vcpu * vcpu)458 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
459 {
460 vcpu->arch.mp_state.mp_state = KVM_MP_STATE_SUSPENDED;
461 kvm_make_request(KVM_REQ_SUSPEND, vcpu);
462 kvm_vcpu_kick(vcpu);
463 }
464
kvm_arm_vcpu_suspended(struct kvm_vcpu * vcpu)465 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
466 {
467 return vcpu->arch.mp_state.mp_state == KVM_MP_STATE_SUSPENDED;
468 }
469
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)470 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
471 struct kvm_mp_state *mp_state)
472 {
473 *mp_state = vcpu->arch.mp_state;
474
475 return 0;
476 }
477
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)478 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
479 struct kvm_mp_state *mp_state)
480 {
481 int ret = 0;
482
483 switch (mp_state->mp_state) {
484 case KVM_MP_STATE_RUNNABLE:
485 vcpu->arch.mp_state = *mp_state;
486 break;
487 case KVM_MP_STATE_STOPPED:
488 kvm_arm_vcpu_power_off(vcpu);
489 break;
490 case KVM_MP_STATE_SUSPENDED:
491 kvm_arm_vcpu_suspend(vcpu);
492 break;
493 default:
494 ret = -EINVAL;
495 }
496
497 return ret;
498 }
499
500 /**
501 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
502 * @v: The VCPU pointer
503 *
504 * If the guest CPU is not waiting for interrupts or an interrupt line is
505 * asserted, the CPU is by definition runnable.
506 */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)507 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
508 {
509 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
510 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
511 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
512 }
513
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)514 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
515 {
516 return vcpu_mode_priv(vcpu);
517 }
518
519 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)520 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
521 {
522 return *vcpu_pc(vcpu);
523 }
524 #endif
525
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)526 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
527 {
528 return vcpu->arch.target >= 0;
529 }
530
531 /*
532 * Handle both the initialisation that is being done when the vcpu is
533 * run for the first time, as well as the updates that must be
534 * performed each time we get a new thread dealing with this vcpu.
535 */
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)536 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
537 {
538 struct kvm *kvm = vcpu->kvm;
539 int ret;
540
541 if (!kvm_vcpu_initialized(vcpu))
542 return -ENOEXEC;
543
544 if (!kvm_arm_vcpu_is_finalized(vcpu))
545 return -EPERM;
546
547 ret = kvm_arch_vcpu_run_map_fp(vcpu);
548 if (ret)
549 return ret;
550
551 if (likely(vcpu_has_run_once(vcpu)))
552 return 0;
553
554 kvm_arm_vcpu_init_debug(vcpu);
555
556 if (likely(irqchip_in_kernel(kvm))) {
557 /*
558 * Map the VGIC hardware resources before running a vcpu the
559 * first time on this VM.
560 */
561 ret = kvm_vgic_map_resources(kvm);
562 if (ret)
563 return ret;
564 }
565
566 ret = kvm_timer_enable(vcpu);
567 if (ret)
568 return ret;
569
570 ret = kvm_arm_pmu_v3_enable(vcpu);
571 if (ret)
572 return ret;
573
574 if (is_protected_kvm_enabled()) {
575 ret = pkvm_create_hyp_vm(kvm);
576 if (ret)
577 return ret;
578 }
579
580 if (!irqchip_in_kernel(kvm)) {
581 /*
582 * Tell the rest of the code that there are userspace irqchip
583 * VMs in the wild.
584 */
585 static_branch_inc(&userspace_irqchip_in_use);
586 }
587
588 /*
589 * Initialize traps for protected VMs.
590 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
591 * the code is in place for first run initialization at EL2.
592 */
593 if (kvm_vm_is_protected(kvm))
594 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
595
596 mutex_lock(&kvm->lock);
597 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
598 mutex_unlock(&kvm->lock);
599
600 return ret;
601 }
602
kvm_arch_intc_initialized(struct kvm * kvm)603 bool kvm_arch_intc_initialized(struct kvm *kvm)
604 {
605 return vgic_initialized(kvm);
606 }
607
kvm_arm_halt_guest(struct kvm * kvm)608 void kvm_arm_halt_guest(struct kvm *kvm)
609 {
610 unsigned long i;
611 struct kvm_vcpu *vcpu;
612
613 kvm_for_each_vcpu(i, vcpu, kvm)
614 vcpu->arch.pause = true;
615 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
616 }
617
kvm_arm_resume_guest(struct kvm * kvm)618 void kvm_arm_resume_guest(struct kvm *kvm)
619 {
620 unsigned long i;
621 struct kvm_vcpu *vcpu;
622
623 kvm_for_each_vcpu(i, vcpu, kvm) {
624 vcpu->arch.pause = false;
625 __kvm_vcpu_wake_up(vcpu);
626 }
627 }
628
kvm_vcpu_sleep(struct kvm_vcpu * vcpu)629 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
630 {
631 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
632
633 rcuwait_wait_event(wait,
634 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
635 TASK_INTERRUPTIBLE);
636
637 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
638 /* Awaken to handle a signal, request we sleep again later. */
639 kvm_make_request(KVM_REQ_SLEEP, vcpu);
640 }
641
642 /*
643 * Make sure we will observe a potential reset request if we've
644 * observed a change to the power state. Pairs with the smp_wmb() in
645 * kvm_psci_vcpu_on().
646 */
647 smp_rmb();
648 }
649
650 /**
651 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
652 * @vcpu: The VCPU pointer
653 *
654 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
655 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending
656 * on when a wake event arrives, e.g. there may already be a pending wake event.
657 */
kvm_vcpu_wfi(struct kvm_vcpu * vcpu)658 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
659 {
660 /*
661 * Sync back the state of the GIC CPU interface so that we have
662 * the latest PMR and group enables. This ensures that
663 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
664 * we have pending interrupts, e.g. when determining if the
665 * vCPU should block.
666 *
667 * For the same reason, we want to tell GICv4 that we need
668 * doorbells to be signalled, should an interrupt become pending.
669 */
670 preempt_disable();
671 kvm_vgic_vmcr_sync(vcpu);
672 vgic_v4_put(vcpu, true);
673 preempt_enable();
674
675 kvm_vcpu_halt(vcpu);
676 vcpu_clear_flag(vcpu, IN_WFIT);
677
678 preempt_disable();
679 vgic_v4_load(vcpu);
680 preempt_enable();
681 }
682
kvm_vcpu_suspend(struct kvm_vcpu * vcpu)683 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
684 {
685 if (!kvm_arm_vcpu_suspended(vcpu))
686 return 1;
687
688 kvm_vcpu_wfi(vcpu);
689
690 /*
691 * The suspend state is sticky; we do not leave it until userspace
692 * explicitly marks the vCPU as runnable. Request that we suspend again
693 * later.
694 */
695 kvm_make_request(KVM_REQ_SUSPEND, vcpu);
696
697 /*
698 * Check to make sure the vCPU is actually runnable. If so, exit to
699 * userspace informing it of the wakeup condition.
700 */
701 if (kvm_arch_vcpu_runnable(vcpu)) {
702 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
703 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
704 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
705 return 0;
706 }
707
708 /*
709 * Otherwise, we were unblocked to process a different event, such as a
710 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
711 * process the event.
712 */
713 return 1;
714 }
715
716 /**
717 * check_vcpu_requests - check and handle pending vCPU requests
718 * @vcpu: the VCPU pointer
719 *
720 * Return: 1 if we should enter the guest
721 * 0 if we should exit to userspace
722 * < 0 if we should exit to userspace, where the return value indicates
723 * an error
724 */
check_vcpu_requests(struct kvm_vcpu * vcpu)725 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
726 {
727 if (kvm_request_pending(vcpu)) {
728 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
729 kvm_vcpu_sleep(vcpu);
730
731 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
732 kvm_reset_vcpu(vcpu);
733
734 /*
735 * Clear IRQ_PENDING requests that were made to guarantee
736 * that a VCPU sees new virtual interrupts.
737 */
738 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
739
740 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
741 kvm_update_stolen_time(vcpu);
742
743 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
744 /* The distributor enable bits were changed */
745 preempt_disable();
746 vgic_v4_put(vcpu, false);
747 vgic_v4_load(vcpu);
748 preempt_enable();
749 }
750
751 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
752 kvm_pmu_handle_pmcr(vcpu,
753 __vcpu_sys_reg(vcpu, PMCR_EL0));
754
755 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
756 return kvm_vcpu_suspend(vcpu);
757
758 if (kvm_dirty_ring_check_request(vcpu))
759 return 0;
760 }
761
762 return 1;
763 }
764
vcpu_mode_is_bad_32bit(struct kvm_vcpu * vcpu)765 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
766 {
767 if (likely(!vcpu_mode_is_32bit(vcpu)))
768 return false;
769
770 return !kvm_supports_32bit_el0();
771 }
772
773 /**
774 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
775 * @vcpu: The VCPU pointer
776 * @ret: Pointer to write optional return code
777 *
778 * Returns: true if the VCPU needs to return to a preemptible + interruptible
779 * and skip guest entry.
780 *
781 * This function disambiguates between two different types of exits: exits to a
782 * preemptible + interruptible kernel context and exits to userspace. For an
783 * exit to userspace, this function will write the return code to ret and return
784 * true. For an exit to preemptible + interruptible kernel context (i.e. check
785 * for pending work and re-enter), return true without writing to ret.
786 */
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu,int * ret)787 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
788 {
789 struct kvm_run *run = vcpu->run;
790
791 /*
792 * If we're using a userspace irqchip, then check if we need
793 * to tell a userspace irqchip about timer or PMU level
794 * changes and if so, exit to userspace (the actual level
795 * state gets updated in kvm_timer_update_run and
796 * kvm_pmu_update_run below).
797 */
798 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
799 if (kvm_timer_should_notify_user(vcpu) ||
800 kvm_pmu_should_notify_user(vcpu)) {
801 *ret = -EINTR;
802 run->exit_reason = KVM_EXIT_INTR;
803 return true;
804 }
805 }
806
807 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
808 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
809 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
810 run->fail_entry.cpu = smp_processor_id();
811 *ret = 0;
812 return true;
813 }
814
815 return kvm_request_pending(vcpu) ||
816 xfer_to_guest_mode_work_pending();
817 }
818
819 /*
820 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
821 * the vCPU is running.
822 *
823 * This must be noinstr as instrumentation may make use of RCU, and this is not
824 * safe during the EQS.
825 */
kvm_arm_vcpu_enter_exit(struct kvm_vcpu * vcpu)826 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
827 {
828 int ret;
829
830 guest_state_enter_irqoff();
831 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
832 guest_state_exit_irqoff();
833
834 return ret;
835 }
836
837 /**
838 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
839 * @vcpu: The VCPU pointer
840 *
841 * This function is called through the VCPU_RUN ioctl called from user space. It
842 * will execute VM code in a loop until the time slice for the process is used
843 * or some emulation is needed from user space in which case the function will
844 * return with return value 0 and with the kvm_run structure filled in with the
845 * required data for the requested emulation.
846 */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)847 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
848 {
849 struct kvm_run *run = vcpu->run;
850 int ret;
851
852 if (run->exit_reason == KVM_EXIT_MMIO) {
853 ret = kvm_handle_mmio_return(vcpu);
854 if (ret)
855 return ret;
856 }
857
858 vcpu_load(vcpu);
859
860 if (run->immediate_exit) {
861 ret = -EINTR;
862 goto out;
863 }
864
865 kvm_sigset_activate(vcpu);
866
867 ret = 1;
868 run->exit_reason = KVM_EXIT_UNKNOWN;
869 run->flags = 0;
870 while (ret > 0) {
871 /*
872 * Check conditions before entering the guest
873 */
874 ret = xfer_to_guest_mode_handle_work(vcpu);
875 if (!ret)
876 ret = 1;
877
878 if (ret > 0)
879 ret = check_vcpu_requests(vcpu);
880
881 /*
882 * Preparing the interrupts to be injected also
883 * involves poking the GIC, which must be done in a
884 * non-preemptible context.
885 */
886 preempt_disable();
887
888 /*
889 * The VMID allocator only tracks active VMIDs per
890 * physical CPU, and therefore the VMID allocated may not be
891 * preserved on VMID roll-over if the task was preempted,
892 * making a thread's VMID inactive. So we need to call
893 * kvm_arm_vmid_update() in non-premptible context.
894 */
895 kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
896
897 kvm_pmu_flush_hwstate(vcpu);
898
899 local_irq_disable();
900
901 kvm_vgic_flush_hwstate(vcpu);
902
903 kvm_pmu_update_vcpu_events(vcpu);
904
905 /*
906 * Ensure we set mode to IN_GUEST_MODE after we disable
907 * interrupts and before the final VCPU requests check.
908 * See the comment in kvm_vcpu_exiting_guest_mode() and
909 * Documentation/virt/kvm/vcpu-requests.rst
910 */
911 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
912
913 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
914 vcpu->mode = OUTSIDE_GUEST_MODE;
915 isb(); /* Ensure work in x_flush_hwstate is committed */
916 kvm_pmu_sync_hwstate(vcpu);
917 if (static_branch_unlikely(&userspace_irqchip_in_use))
918 kvm_timer_sync_user(vcpu);
919 kvm_vgic_sync_hwstate(vcpu);
920 local_irq_enable();
921 preempt_enable();
922 continue;
923 }
924
925 kvm_arm_setup_debug(vcpu);
926 kvm_arch_vcpu_ctxflush_fp(vcpu);
927
928 /**************************************************************
929 * Enter the guest
930 */
931 trace_kvm_entry(*vcpu_pc(vcpu));
932 guest_timing_enter_irqoff();
933
934 ret = kvm_arm_vcpu_enter_exit(vcpu);
935
936 vcpu->mode = OUTSIDE_GUEST_MODE;
937 vcpu->stat.exits++;
938 /*
939 * Back from guest
940 *************************************************************/
941
942 kvm_arm_clear_debug(vcpu);
943
944 /*
945 * We must sync the PMU state before the vgic state so
946 * that the vgic can properly sample the updated state of the
947 * interrupt line.
948 */
949 kvm_pmu_sync_hwstate(vcpu);
950
951 /*
952 * Sync the vgic state before syncing the timer state because
953 * the timer code needs to know if the virtual timer
954 * interrupts are active.
955 */
956 kvm_vgic_sync_hwstate(vcpu);
957
958 /*
959 * Sync the timer hardware state before enabling interrupts as
960 * we don't want vtimer interrupts to race with syncing the
961 * timer virtual interrupt state.
962 */
963 if (static_branch_unlikely(&userspace_irqchip_in_use))
964 kvm_timer_sync_user(vcpu);
965
966 kvm_arch_vcpu_ctxsync_fp(vcpu);
967
968 /*
969 * We must ensure that any pending interrupts are taken before
970 * we exit guest timing so that timer ticks are accounted as
971 * guest time. Transiently unmask interrupts so that any
972 * pending interrupts are taken.
973 *
974 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
975 * context synchronization event) is necessary to ensure that
976 * pending interrupts are taken.
977 */
978 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
979 local_irq_enable();
980 isb();
981 local_irq_disable();
982 }
983
984 guest_timing_exit_irqoff();
985
986 local_irq_enable();
987
988 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
989
990 /* Exit types that need handling before we can be preempted */
991 handle_exit_early(vcpu, ret);
992
993 preempt_enable();
994
995 /*
996 * The ARMv8 architecture doesn't give the hypervisor
997 * a mechanism to prevent a guest from dropping to AArch32 EL0
998 * if implemented by the CPU. If we spot the guest in such
999 * state and that we decided it wasn't supposed to do so (like
1000 * with the asymmetric AArch32 case), return to userspace with
1001 * a fatal error.
1002 */
1003 if (vcpu_mode_is_bad_32bit(vcpu)) {
1004 /*
1005 * As we have caught the guest red-handed, decide that
1006 * it isn't fit for purpose anymore by making the vcpu
1007 * invalid. The VMM can try and fix it by issuing a
1008 * KVM_ARM_VCPU_INIT if it really wants to.
1009 */
1010 vcpu->arch.target = -1;
1011 ret = ARM_EXCEPTION_IL;
1012 }
1013
1014 ret = handle_exit(vcpu, ret);
1015 }
1016
1017 /* Tell userspace about in-kernel device output levels */
1018 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1019 kvm_timer_update_run(vcpu);
1020 kvm_pmu_update_run(vcpu);
1021 }
1022
1023 kvm_sigset_deactivate(vcpu);
1024
1025 out:
1026 /*
1027 * In the unlikely event that we are returning to userspace
1028 * with pending exceptions or PC adjustment, commit these
1029 * adjustments in order to give userspace a consistent view of
1030 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1031 * being preempt-safe on VHE.
1032 */
1033 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1034 vcpu_get_flag(vcpu, INCREMENT_PC)))
1035 kvm_call_hyp(__kvm_adjust_pc, vcpu);
1036
1037 vcpu_put(vcpu);
1038 return ret;
1039 }
1040
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)1041 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1042 {
1043 int bit_index;
1044 bool set;
1045 unsigned long *hcr;
1046
1047 if (number == KVM_ARM_IRQ_CPU_IRQ)
1048 bit_index = __ffs(HCR_VI);
1049 else /* KVM_ARM_IRQ_CPU_FIQ */
1050 bit_index = __ffs(HCR_VF);
1051
1052 hcr = vcpu_hcr(vcpu);
1053 if (level)
1054 set = test_and_set_bit(bit_index, hcr);
1055 else
1056 set = test_and_clear_bit(bit_index, hcr);
1057
1058 /*
1059 * If we didn't change anything, no need to wake up or kick other CPUs
1060 */
1061 if (set == level)
1062 return 0;
1063
1064 /*
1065 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1066 * trigger a world-switch round on the running physical CPU to set the
1067 * virtual IRQ/FIQ fields in the HCR appropriately.
1068 */
1069 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1070 kvm_vcpu_kick(vcpu);
1071
1072 return 0;
1073 }
1074
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)1075 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1076 bool line_status)
1077 {
1078 u32 irq = irq_level->irq;
1079 unsigned int irq_type, vcpu_idx, irq_num;
1080 int nrcpus = atomic_read(&kvm->online_vcpus);
1081 struct kvm_vcpu *vcpu = NULL;
1082 bool level = irq_level->level;
1083
1084 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1085 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1086 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1087 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1088
1089 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1090
1091 switch (irq_type) {
1092 case KVM_ARM_IRQ_TYPE_CPU:
1093 if (irqchip_in_kernel(kvm))
1094 return -ENXIO;
1095
1096 if (vcpu_idx >= nrcpus)
1097 return -EINVAL;
1098
1099 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1100 if (!vcpu)
1101 return -EINVAL;
1102
1103 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1104 return -EINVAL;
1105
1106 return vcpu_interrupt_line(vcpu, irq_num, level);
1107 case KVM_ARM_IRQ_TYPE_PPI:
1108 if (!irqchip_in_kernel(kvm))
1109 return -ENXIO;
1110
1111 if (vcpu_idx >= nrcpus)
1112 return -EINVAL;
1113
1114 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1115 if (!vcpu)
1116 return -EINVAL;
1117
1118 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1119 return -EINVAL;
1120
1121 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1122 case KVM_ARM_IRQ_TYPE_SPI:
1123 if (!irqchip_in_kernel(kvm))
1124 return -ENXIO;
1125
1126 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1127 return -EINVAL;
1128
1129 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1130 }
1131
1132 return -EINVAL;
1133 }
1134
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1135 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1136 const struct kvm_vcpu_init *init)
1137 {
1138 unsigned int i, ret;
1139 u32 phys_target = kvm_target_cpu();
1140
1141 if (init->target != phys_target)
1142 return -EINVAL;
1143
1144 /*
1145 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1146 * use the same target.
1147 */
1148 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1149 return -EINVAL;
1150
1151 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1152 for (i = 0; i < sizeof(init->features) * 8; i++) {
1153 bool set = (init->features[i / 32] & (1 << (i % 32)));
1154
1155 if (set && i >= KVM_VCPU_MAX_FEATURES)
1156 return -ENOENT;
1157
1158 /*
1159 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1160 * use the same feature set.
1161 */
1162 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1163 test_bit(i, vcpu->arch.features) != set)
1164 return -EINVAL;
1165
1166 if (set)
1167 set_bit(i, vcpu->arch.features);
1168 }
1169
1170 vcpu->arch.target = phys_target;
1171
1172 /* Now we know what it is, we can reset it. */
1173 ret = kvm_reset_vcpu(vcpu);
1174 if (ret) {
1175 vcpu->arch.target = -1;
1176 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1177 }
1178
1179 return ret;
1180 }
1181
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)1182 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1183 struct kvm_vcpu_init *init)
1184 {
1185 int ret;
1186
1187 ret = kvm_vcpu_set_target(vcpu, init);
1188 if (ret)
1189 return ret;
1190
1191 /*
1192 * Ensure a rebooted VM will fault in RAM pages and detect if the
1193 * guest MMU is turned off and flush the caches as needed.
1194 *
1195 * S2FWB enforces all memory accesses to RAM being cacheable,
1196 * ensuring that the data side is always coherent. We still
1197 * need to invalidate the I-cache though, as FWB does *not*
1198 * imply CTR_EL0.DIC.
1199 */
1200 if (vcpu_has_run_once(vcpu)) {
1201 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1202 stage2_unmap_vm(vcpu->kvm);
1203 else
1204 icache_inval_all_pou();
1205 }
1206
1207 vcpu_reset_hcr(vcpu);
1208 vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1209
1210 /*
1211 * Handle the "start in power-off" case.
1212 */
1213 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1214 kvm_arm_vcpu_power_off(vcpu);
1215 else
1216 vcpu->arch.mp_state.mp_state = KVM_MP_STATE_RUNNABLE;
1217
1218 return 0;
1219 }
1220
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1221 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1222 struct kvm_device_attr *attr)
1223 {
1224 int ret = -ENXIO;
1225
1226 switch (attr->group) {
1227 default:
1228 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1229 break;
1230 }
1231
1232 return ret;
1233 }
1234
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1235 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1236 struct kvm_device_attr *attr)
1237 {
1238 int ret = -ENXIO;
1239
1240 switch (attr->group) {
1241 default:
1242 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1243 break;
1244 }
1245
1246 return ret;
1247 }
1248
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1249 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1250 struct kvm_device_attr *attr)
1251 {
1252 int ret = -ENXIO;
1253
1254 switch (attr->group) {
1255 default:
1256 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1257 break;
1258 }
1259
1260 return ret;
1261 }
1262
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1263 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1264 struct kvm_vcpu_events *events)
1265 {
1266 memset(events, 0, sizeof(*events));
1267
1268 return __kvm_arm_vcpu_get_events(vcpu, events);
1269 }
1270
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1271 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1272 struct kvm_vcpu_events *events)
1273 {
1274 int i;
1275
1276 /* check whether the reserved field is zero */
1277 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1278 if (events->reserved[i])
1279 return -EINVAL;
1280
1281 /* check whether the pad field is zero */
1282 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1283 if (events->exception.pad[i])
1284 return -EINVAL;
1285
1286 return __kvm_arm_vcpu_set_events(vcpu, events);
1287 }
1288
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1289 long kvm_arch_vcpu_ioctl(struct file *filp,
1290 unsigned int ioctl, unsigned long arg)
1291 {
1292 struct kvm_vcpu *vcpu = filp->private_data;
1293 void __user *argp = (void __user *)arg;
1294 struct kvm_device_attr attr;
1295 long r;
1296
1297 switch (ioctl) {
1298 case KVM_ARM_VCPU_INIT: {
1299 struct kvm_vcpu_init init;
1300
1301 r = -EFAULT;
1302 if (copy_from_user(&init, argp, sizeof(init)))
1303 break;
1304
1305 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1306 break;
1307 }
1308 case KVM_SET_ONE_REG:
1309 case KVM_GET_ONE_REG: {
1310 struct kvm_one_reg reg;
1311
1312 r = -ENOEXEC;
1313 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1314 break;
1315
1316 r = -EFAULT;
1317 if (copy_from_user(®, argp, sizeof(reg)))
1318 break;
1319
1320 /*
1321 * We could owe a reset due to PSCI. Handle the pending reset
1322 * here to ensure userspace register accesses are ordered after
1323 * the reset.
1324 */
1325 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1326 kvm_reset_vcpu(vcpu);
1327
1328 if (ioctl == KVM_SET_ONE_REG)
1329 r = kvm_arm_set_reg(vcpu, ®);
1330 else
1331 r = kvm_arm_get_reg(vcpu, ®);
1332 break;
1333 }
1334 case KVM_GET_REG_LIST: {
1335 struct kvm_reg_list __user *user_list = argp;
1336 struct kvm_reg_list reg_list;
1337 unsigned n;
1338
1339 r = -ENOEXEC;
1340 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1341 break;
1342
1343 r = -EPERM;
1344 if (!kvm_arm_vcpu_is_finalized(vcpu))
1345 break;
1346
1347 r = -EFAULT;
1348 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1349 break;
1350 n = reg_list.n;
1351 reg_list.n = kvm_arm_num_regs(vcpu);
1352 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1353 break;
1354 r = -E2BIG;
1355 if (n < reg_list.n)
1356 break;
1357 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1358 break;
1359 }
1360 case KVM_SET_DEVICE_ATTR: {
1361 r = -EFAULT;
1362 if (copy_from_user(&attr, argp, sizeof(attr)))
1363 break;
1364 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1365 break;
1366 }
1367 case KVM_GET_DEVICE_ATTR: {
1368 r = -EFAULT;
1369 if (copy_from_user(&attr, argp, sizeof(attr)))
1370 break;
1371 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1372 break;
1373 }
1374 case KVM_HAS_DEVICE_ATTR: {
1375 r = -EFAULT;
1376 if (copy_from_user(&attr, argp, sizeof(attr)))
1377 break;
1378 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1379 break;
1380 }
1381 case KVM_GET_VCPU_EVENTS: {
1382 struct kvm_vcpu_events events;
1383
1384 if (kvm_arm_vcpu_get_events(vcpu, &events))
1385 return -EINVAL;
1386
1387 if (copy_to_user(argp, &events, sizeof(events)))
1388 return -EFAULT;
1389
1390 return 0;
1391 }
1392 case KVM_SET_VCPU_EVENTS: {
1393 struct kvm_vcpu_events events;
1394
1395 if (copy_from_user(&events, argp, sizeof(events)))
1396 return -EFAULT;
1397
1398 return kvm_arm_vcpu_set_events(vcpu, &events);
1399 }
1400 case KVM_ARM_VCPU_FINALIZE: {
1401 int what;
1402
1403 if (!kvm_vcpu_initialized(vcpu))
1404 return -ENOEXEC;
1405
1406 if (get_user(what, (const int __user *)argp))
1407 return -EFAULT;
1408
1409 return kvm_arm_vcpu_finalize(vcpu, what);
1410 }
1411 default:
1412 r = -EINVAL;
1413 }
1414
1415 return r;
1416 }
1417
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)1418 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1419 {
1420
1421 }
1422
kvm_arch_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)1423 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1424 const struct kvm_memory_slot *memslot)
1425 {
1426 kvm_flush_remote_tlbs(kvm);
1427 }
1428
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1429 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1430 struct kvm_arm_device_addr *dev_addr)
1431 {
1432 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1433 case KVM_ARM_DEVICE_VGIC_V2:
1434 if (!vgic_present)
1435 return -ENXIO;
1436 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1437 default:
1438 return -ENODEV;
1439 }
1440 }
1441
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1442 long kvm_arch_vm_ioctl(struct file *filp,
1443 unsigned int ioctl, unsigned long arg)
1444 {
1445 struct kvm *kvm = filp->private_data;
1446 void __user *argp = (void __user *)arg;
1447
1448 switch (ioctl) {
1449 case KVM_CREATE_IRQCHIP: {
1450 int ret;
1451 if (!vgic_present)
1452 return -ENXIO;
1453 mutex_lock(&kvm->lock);
1454 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1455 mutex_unlock(&kvm->lock);
1456 return ret;
1457 }
1458 case KVM_ARM_SET_DEVICE_ADDR: {
1459 struct kvm_arm_device_addr dev_addr;
1460
1461 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1462 return -EFAULT;
1463 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1464 }
1465 case KVM_ARM_PREFERRED_TARGET: {
1466 struct kvm_vcpu_init init;
1467
1468 kvm_vcpu_preferred_target(&init);
1469
1470 if (copy_to_user(argp, &init, sizeof(init)))
1471 return -EFAULT;
1472
1473 return 0;
1474 }
1475 case KVM_ARM_MTE_COPY_TAGS: {
1476 struct kvm_arm_copy_mte_tags copy_tags;
1477
1478 if (copy_from_user(©_tags, argp, sizeof(copy_tags)))
1479 return -EFAULT;
1480 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags);
1481 }
1482 default:
1483 return -EINVAL;
1484 }
1485 }
1486
nvhe_percpu_size(void)1487 static unsigned long nvhe_percpu_size(void)
1488 {
1489 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1490 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1491 }
1492
nvhe_percpu_order(void)1493 static unsigned long nvhe_percpu_order(void)
1494 {
1495 unsigned long size = nvhe_percpu_size();
1496
1497 return size ? get_order(size) : 0;
1498 }
1499
1500 /* A lookup table holding the hypervisor VA for each vector slot */
1501 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1502
kvm_init_vector_slot(void * base,enum arm64_hyp_spectre_vector slot)1503 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1504 {
1505 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1506 }
1507
kvm_init_vector_slots(void)1508 static int kvm_init_vector_slots(void)
1509 {
1510 int err;
1511 void *base;
1512
1513 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1514 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1515
1516 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1517 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1518
1519 if (kvm_system_needs_idmapped_vectors() &&
1520 !is_protected_kvm_enabled()) {
1521 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1522 __BP_HARDEN_HYP_VECS_SZ, &base);
1523 if (err)
1524 return err;
1525 }
1526
1527 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1528 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1529 return 0;
1530 }
1531
cpu_prepare_hyp_mode(int cpu,u32 hyp_va_bits)1532 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1533 {
1534 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1535 unsigned long tcr;
1536
1537 /*
1538 * Calculate the raw per-cpu offset without a translation from the
1539 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1540 * so that we can use adr_l to access per-cpu variables in EL2.
1541 * Also drop the KASAN tag which gets in the way...
1542 */
1543 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1544 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1545
1546 params->mair_el2 = read_sysreg(mair_el1);
1547
1548 tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1549 tcr &= ~TCR_T0SZ_MASK;
1550 tcr |= TCR_T0SZ(hyp_va_bits);
1551 params->tcr_el2 = tcr;
1552
1553 params->pgd_pa = kvm_mmu_get_httbr();
1554 if (is_protected_kvm_enabled())
1555 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1556 else
1557 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1558 params->vttbr = params->vtcr = 0;
1559
1560 /*
1561 * Flush the init params from the data cache because the struct will
1562 * be read while the MMU is off.
1563 */
1564 kvm_flush_dcache_to_poc(params, sizeof(*params));
1565 }
1566
hyp_install_host_vector(void)1567 static void hyp_install_host_vector(void)
1568 {
1569 struct kvm_nvhe_init_params *params;
1570 struct arm_smccc_res res;
1571
1572 /* Switch from the HYP stub to our own HYP init vector */
1573 __hyp_set_vectors(kvm_get_idmap_vector());
1574
1575 /*
1576 * Call initialization code, and switch to the full blown HYP code.
1577 * If the cpucaps haven't been finalized yet, something has gone very
1578 * wrong, and hyp will crash and burn when it uses any
1579 * cpus_have_const_cap() wrapper.
1580 */
1581 BUG_ON(!system_capabilities_finalized());
1582 params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1583 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1584 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1585 }
1586
cpu_init_hyp_mode(void)1587 static void cpu_init_hyp_mode(void)
1588 {
1589 hyp_install_host_vector();
1590
1591 /*
1592 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1593 * at EL2.
1594 */
1595 if (this_cpu_has_cap(ARM64_SSBS) &&
1596 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1597 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1598 }
1599 }
1600
cpu_hyp_reset(void)1601 static void cpu_hyp_reset(void)
1602 {
1603 if (!is_kernel_in_hyp_mode())
1604 __hyp_reset_vectors();
1605 }
1606
1607 /*
1608 * EL2 vectors can be mapped and rerouted in a number of ways,
1609 * depending on the kernel configuration and CPU present:
1610 *
1611 * - If the CPU is affected by Spectre-v2, the hardening sequence is
1612 * placed in one of the vector slots, which is executed before jumping
1613 * to the real vectors.
1614 *
1615 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1616 * containing the hardening sequence is mapped next to the idmap page,
1617 * and executed before jumping to the real vectors.
1618 *
1619 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1620 * empty slot is selected, mapped next to the idmap page, and
1621 * executed before jumping to the real vectors.
1622 *
1623 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1624 * VHE, as we don't have hypervisor-specific mappings. If the system
1625 * is VHE and yet selects this capability, it will be ignored.
1626 */
cpu_set_hyp_vector(void)1627 static void cpu_set_hyp_vector(void)
1628 {
1629 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1630 void *vector = hyp_spectre_vector_selector[data->slot];
1631
1632 if (!is_protected_kvm_enabled())
1633 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1634 else
1635 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1636 }
1637
cpu_hyp_init_context(void)1638 static void cpu_hyp_init_context(void)
1639 {
1640 kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1641
1642 if (!is_kernel_in_hyp_mode())
1643 cpu_init_hyp_mode();
1644 }
1645
cpu_hyp_init_features(void)1646 static void cpu_hyp_init_features(void)
1647 {
1648 cpu_set_hyp_vector();
1649 kvm_arm_init_debug();
1650
1651 if (is_kernel_in_hyp_mode())
1652 kvm_timer_init_vhe();
1653
1654 if (vgic_present)
1655 kvm_vgic_init_cpu_hardware();
1656 }
1657
cpu_hyp_reinit(void)1658 static void cpu_hyp_reinit(void)
1659 {
1660 cpu_hyp_reset();
1661 cpu_hyp_init_context();
1662 cpu_hyp_init_features();
1663 }
1664
_kvm_arch_hardware_enable(void * discard)1665 static void _kvm_arch_hardware_enable(void *discard)
1666 {
1667 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1668 cpu_hyp_reinit();
1669 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1670 }
1671 }
1672
kvm_arch_hardware_enable(void)1673 int kvm_arch_hardware_enable(void)
1674 {
1675 int was_enabled = __this_cpu_read(kvm_arm_hardware_enabled);
1676
1677 _kvm_arch_hardware_enable(NULL);
1678
1679 if (!was_enabled) {
1680 kvm_vgic_cpu_up();
1681 kvm_timer_cpu_up();
1682 }
1683
1684 return 0;
1685 }
1686
_kvm_arch_hardware_disable(void * discard)1687 static void _kvm_arch_hardware_disable(void *discard)
1688 {
1689 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1690 cpu_hyp_reset();
1691 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1692 }
1693 }
1694
kvm_arch_hardware_disable(void)1695 void kvm_arch_hardware_disable(void)
1696 {
1697 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1698 kvm_timer_cpu_down();
1699 kvm_vgic_cpu_down();
1700 }
1701
1702 if (!is_protected_kvm_enabled())
1703 _kvm_arch_hardware_disable(NULL);
1704 }
1705
1706 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1707 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1708 unsigned long cmd,
1709 void *v)
1710 {
1711 /*
1712 * kvm_arm_hardware_enabled is left with its old value over
1713 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1714 * re-enable hyp.
1715 */
1716 switch (cmd) {
1717 case CPU_PM_ENTER:
1718 if (__this_cpu_read(kvm_arm_hardware_enabled))
1719 /*
1720 * don't update kvm_arm_hardware_enabled here
1721 * so that the hardware will be re-enabled
1722 * when we resume. See below.
1723 */
1724 cpu_hyp_reset();
1725
1726 return NOTIFY_OK;
1727 case CPU_PM_ENTER_FAILED:
1728 case CPU_PM_EXIT:
1729 if (__this_cpu_read(kvm_arm_hardware_enabled))
1730 /* The hardware was enabled before suspend. */
1731 cpu_hyp_reinit();
1732
1733 return NOTIFY_OK;
1734
1735 default:
1736 return NOTIFY_DONE;
1737 }
1738 }
1739
1740 static struct notifier_block hyp_init_cpu_pm_nb = {
1741 .notifier_call = hyp_init_cpu_pm_notifier,
1742 };
1743
hyp_cpu_pm_init(void)1744 static void __init hyp_cpu_pm_init(void)
1745 {
1746 if (!is_protected_kvm_enabled())
1747 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1748 }
hyp_cpu_pm_exit(void)1749 static void __init hyp_cpu_pm_exit(void)
1750 {
1751 if (!is_protected_kvm_enabled())
1752 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1753 }
1754 #else
hyp_cpu_pm_init(void)1755 static inline void __init hyp_cpu_pm_init(void)
1756 {
1757 }
hyp_cpu_pm_exit(void)1758 static inline void __init hyp_cpu_pm_exit(void)
1759 {
1760 }
1761 #endif
1762
init_cpu_logical_map(void)1763 static void __init init_cpu_logical_map(void)
1764 {
1765 unsigned int cpu;
1766
1767 /*
1768 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1769 * Only copy the set of online CPUs whose features have been checked
1770 * against the finalized system capabilities. The hypervisor will not
1771 * allow any other CPUs from the `possible` set to boot.
1772 */
1773 for_each_online_cpu(cpu)
1774 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1775 }
1776
1777 #define init_psci_0_1_impl_state(config, what) \
1778 config.psci_0_1_ ## what ## _implemented = psci_ops.what
1779
init_psci_relay(void)1780 static bool __init init_psci_relay(void)
1781 {
1782 /*
1783 * If PSCI has not been initialized, protected KVM cannot install
1784 * itself on newly booted CPUs.
1785 */
1786 if (!psci_ops.get_version) {
1787 kvm_err("Cannot initialize protected mode without PSCI\n");
1788 return false;
1789 }
1790
1791 kvm_host_psci_config.version = psci_ops.get_version();
1792
1793 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1794 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1795 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1796 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1797 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1798 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1799 }
1800 return true;
1801 }
1802
init_subsystems(void)1803 static int __init init_subsystems(void)
1804 {
1805 int err = 0;
1806
1807 /*
1808 * Enable hardware so that subsystem initialisation can access EL2.
1809 */
1810 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1811
1812 /*
1813 * Register CPU lower-power notifier
1814 */
1815 hyp_cpu_pm_init();
1816
1817 /*
1818 * Init HYP view of VGIC
1819 */
1820 err = kvm_vgic_hyp_init();
1821 switch (err) {
1822 case 0:
1823 vgic_present = true;
1824 break;
1825 case -ENODEV:
1826 case -ENXIO:
1827 vgic_present = false;
1828 err = 0;
1829 break;
1830 default:
1831 goto out;
1832 }
1833
1834 /*
1835 * Init HYP architected timer support
1836 */
1837 err = kvm_timer_hyp_init(vgic_present);
1838 if (err)
1839 goto out;
1840
1841 kvm_register_perf_callbacks(NULL);
1842
1843 out:
1844 if (err)
1845 hyp_cpu_pm_exit();
1846
1847 if (err || !is_protected_kvm_enabled())
1848 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1849
1850 return err;
1851 }
1852
teardown_subsystems(void)1853 static void __init teardown_subsystems(void)
1854 {
1855 kvm_unregister_perf_callbacks();
1856 hyp_cpu_pm_exit();
1857 }
1858
teardown_hyp_mode(void)1859 static void __init teardown_hyp_mode(void)
1860 {
1861 int cpu;
1862
1863 free_hyp_pgds();
1864 for_each_possible_cpu(cpu) {
1865 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1866 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
1867 }
1868 }
1869
do_pkvm_init(u32 hyp_va_bits)1870 static int __init do_pkvm_init(u32 hyp_va_bits)
1871 {
1872 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
1873 int ret;
1874
1875 preempt_disable();
1876 cpu_hyp_init_context();
1877 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1878 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1879 hyp_va_bits);
1880 cpu_hyp_init_features();
1881
1882 /*
1883 * The stub hypercalls are now disabled, so set our local flag to
1884 * prevent a later re-init attempt in kvm_arch_hardware_enable().
1885 */
1886 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1887 preempt_enable();
1888
1889 return ret;
1890 }
1891
kvm_hyp_init_symbols(void)1892 static void kvm_hyp_init_symbols(void)
1893 {
1894 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1895 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1896 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
1897 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1898 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
1899 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1900 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1901 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1902 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
1903 kvm_nvhe_sym(__icache_flags) = __icache_flags;
1904 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
1905 }
1906
kvm_hyp_init_protection(u32 hyp_va_bits)1907 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
1908 {
1909 void *addr = phys_to_virt(hyp_mem_base);
1910 int ret;
1911
1912 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1913 if (ret)
1914 return ret;
1915
1916 ret = do_pkvm_init(hyp_va_bits);
1917 if (ret)
1918 return ret;
1919
1920 free_hyp_pgds();
1921
1922 return 0;
1923 }
1924
1925 /* Inits Hyp-mode on all online CPUs */
init_hyp_mode(void)1926 static int __init init_hyp_mode(void)
1927 {
1928 u32 hyp_va_bits;
1929 int cpu;
1930 int err = -ENOMEM;
1931
1932 /*
1933 * The protected Hyp-mode cannot be initialized if the memory pool
1934 * allocation has failed.
1935 */
1936 if (is_protected_kvm_enabled() && !hyp_mem_base)
1937 goto out_err;
1938
1939 /*
1940 * Allocate Hyp PGD and setup Hyp identity mapping
1941 */
1942 err = kvm_mmu_init(&hyp_va_bits);
1943 if (err)
1944 goto out_err;
1945
1946 /*
1947 * Allocate stack pages for Hypervisor-mode
1948 */
1949 for_each_possible_cpu(cpu) {
1950 unsigned long stack_page;
1951
1952 stack_page = __get_free_page(GFP_KERNEL);
1953 if (!stack_page) {
1954 err = -ENOMEM;
1955 goto out_err;
1956 }
1957
1958 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1959 }
1960
1961 /*
1962 * Allocate and initialize pages for Hypervisor-mode percpu regions.
1963 */
1964 for_each_possible_cpu(cpu) {
1965 struct page *page;
1966 void *page_addr;
1967
1968 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1969 if (!page) {
1970 err = -ENOMEM;
1971 goto out_err;
1972 }
1973
1974 page_addr = page_address(page);
1975 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1976 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
1977 }
1978
1979 /*
1980 * Map the Hyp-code called directly from the host
1981 */
1982 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1983 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1984 if (err) {
1985 kvm_err("Cannot map world-switch code\n");
1986 goto out_err;
1987 }
1988
1989 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1990 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1991 if (err) {
1992 kvm_err("Cannot map .hyp.rodata section\n");
1993 goto out_err;
1994 }
1995
1996 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1997 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1998 if (err) {
1999 kvm_err("Cannot map rodata section\n");
2000 goto out_err;
2001 }
2002
2003 /*
2004 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2005 * section thanks to an assertion in the linker script. Map it RW and
2006 * the rest of .bss RO.
2007 */
2008 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2009 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2010 if (err) {
2011 kvm_err("Cannot map hyp bss section: %d\n", err);
2012 goto out_err;
2013 }
2014
2015 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2016 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2017 if (err) {
2018 kvm_err("Cannot map bss section\n");
2019 goto out_err;
2020 }
2021
2022 /*
2023 * Map the Hyp stack pages
2024 */
2025 for_each_possible_cpu(cpu) {
2026 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2027 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2028 unsigned long hyp_addr;
2029
2030 /*
2031 * Allocate a contiguous HYP private VA range for the stack
2032 * and guard page. The allocation is also aligned based on
2033 * the order of its size.
2034 */
2035 err = hyp_alloc_private_va_range(PAGE_SIZE * 2, &hyp_addr);
2036 if (err) {
2037 kvm_err("Cannot allocate hyp stack guard page\n");
2038 goto out_err;
2039 }
2040
2041 /*
2042 * Since the stack grows downwards, map the stack to the page
2043 * at the higher address and leave the lower guard page
2044 * unbacked.
2045 *
2046 * Any valid stack address now has the PAGE_SHIFT bit as 1
2047 * and addresses corresponding to the guard page have the
2048 * PAGE_SHIFT bit as 0 - this is used for overflow detection.
2049 */
2050 err = __create_hyp_mappings(hyp_addr + PAGE_SIZE, PAGE_SIZE,
2051 __pa(stack_page), PAGE_HYP);
2052 if (err) {
2053 kvm_err("Cannot map hyp stack\n");
2054 goto out_err;
2055 }
2056
2057 /*
2058 * Save the stack PA in nvhe_init_params. This will be needed
2059 * to recreate the stack mapping in protected nVHE mode.
2060 * __hyp_pa() won't do the right thing there, since the stack
2061 * has been mapped in the flexible private VA space.
2062 */
2063 params->stack_pa = __pa(stack_page);
2064
2065 params->stack_hyp_va = hyp_addr + (2 * PAGE_SIZE);
2066 }
2067
2068 for_each_possible_cpu(cpu) {
2069 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2070 char *percpu_end = percpu_begin + nvhe_percpu_size();
2071
2072 /* Map Hyp percpu pages */
2073 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2074 if (err) {
2075 kvm_err("Cannot map hyp percpu region\n");
2076 goto out_err;
2077 }
2078
2079 /* Prepare the CPU initialization parameters */
2080 cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2081 }
2082
2083 kvm_hyp_init_symbols();
2084
2085 if (is_protected_kvm_enabled()) {
2086 init_cpu_logical_map();
2087
2088 if (!init_psci_relay()) {
2089 err = -ENODEV;
2090 goto out_err;
2091 }
2092
2093 err = kvm_hyp_init_protection(hyp_va_bits);
2094 if (err) {
2095 kvm_err("Failed to init hyp memory protection\n");
2096 goto out_err;
2097 }
2098 }
2099
2100 return 0;
2101
2102 out_err:
2103 teardown_hyp_mode();
2104 kvm_err("error initializing Hyp mode: %d\n", err);
2105 return err;
2106 }
2107
_kvm_host_prot_finalize(void * arg)2108 static void __init _kvm_host_prot_finalize(void *arg)
2109 {
2110 int *err = arg;
2111
2112 if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
2113 WRITE_ONCE(*err, -EINVAL);
2114 }
2115
pkvm_drop_host_privileges(void)2116 static int __init pkvm_drop_host_privileges(void)
2117 {
2118 int ret = 0;
2119
2120 /*
2121 * Flip the static key upfront as that may no longer be possible
2122 * once the host stage 2 is installed.
2123 */
2124 static_branch_enable(&kvm_protected_mode_initialized);
2125 on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
2126 return ret;
2127 }
2128
finalize_hyp_mode(void)2129 static int __init finalize_hyp_mode(void)
2130 {
2131 if (!is_protected_kvm_enabled())
2132 return 0;
2133
2134 /*
2135 * Exclude HYP sections from kmemleak so that they don't get peeked
2136 * at, which would end badly once inaccessible.
2137 */
2138 kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2139 kmemleak_free_part_phys(hyp_mem_base, hyp_mem_size);
2140 return pkvm_drop_host_privileges();
2141 }
2142
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)2143 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2144 {
2145 struct kvm_vcpu *vcpu;
2146 unsigned long i;
2147
2148 mpidr &= MPIDR_HWID_BITMASK;
2149 kvm_for_each_vcpu(i, vcpu, kvm) {
2150 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2151 return vcpu;
2152 }
2153 return NULL;
2154 }
2155
kvm_arch_irqchip_in_kernel(struct kvm * kvm)2156 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2157 {
2158 return irqchip_in_kernel(kvm);
2159 }
2160
kvm_arch_has_irq_bypass(void)2161 bool kvm_arch_has_irq_bypass(void)
2162 {
2163 return true;
2164 }
2165
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2166 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2167 struct irq_bypass_producer *prod)
2168 {
2169 struct kvm_kernel_irqfd *irqfd =
2170 container_of(cons, struct kvm_kernel_irqfd, consumer);
2171
2172 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2173 &irqfd->irq_entry);
2174 }
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2175 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2176 struct irq_bypass_producer *prod)
2177 {
2178 struct kvm_kernel_irqfd *irqfd =
2179 container_of(cons, struct kvm_kernel_irqfd, consumer);
2180
2181 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2182 &irqfd->irq_entry);
2183 }
2184
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)2185 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2186 {
2187 struct kvm_kernel_irqfd *irqfd =
2188 container_of(cons, struct kvm_kernel_irqfd, consumer);
2189
2190 kvm_arm_halt_guest(irqfd->kvm);
2191 }
2192
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)2193 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2194 {
2195 struct kvm_kernel_irqfd *irqfd =
2196 container_of(cons, struct kvm_kernel_irqfd, consumer);
2197
2198 kvm_arm_resume_guest(irqfd->kvm);
2199 }
2200
2201 /* Initialize Hyp-mode and memory mappings on all CPUs */
kvm_arm_init(void)2202 static __init int kvm_arm_init(void)
2203 {
2204 int err;
2205 bool in_hyp_mode;
2206
2207 if (!is_hyp_mode_available()) {
2208 kvm_info("HYP mode not available\n");
2209 return -ENODEV;
2210 }
2211
2212 if (kvm_get_mode() == KVM_MODE_NONE) {
2213 kvm_info("KVM disabled from command line\n");
2214 return -ENODEV;
2215 }
2216
2217 err = kvm_sys_reg_table_init();
2218 if (err) {
2219 kvm_info("Error initializing system register tables");
2220 return err;
2221 }
2222
2223 in_hyp_mode = is_kernel_in_hyp_mode();
2224
2225 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2226 cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2227 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2228 "Only trusted guests should be used on this system.\n");
2229
2230 err = kvm_set_ipa_limit();
2231 if (err)
2232 return err;
2233
2234 err = kvm_arm_init_sve();
2235 if (err)
2236 return err;
2237
2238 err = kvm_arm_vmid_alloc_init();
2239 if (err) {
2240 kvm_err("Failed to initialize VMID allocator.\n");
2241 return err;
2242 }
2243
2244 if (!in_hyp_mode) {
2245 err = init_hyp_mode();
2246 if (err)
2247 goto out_err;
2248 }
2249
2250 err = kvm_init_vector_slots();
2251 if (err) {
2252 kvm_err("Cannot initialise vector slots\n");
2253 goto out_hyp;
2254 }
2255
2256 err = init_subsystems();
2257 if (err)
2258 goto out_hyp;
2259
2260 if (!in_hyp_mode) {
2261 err = finalize_hyp_mode();
2262 if (err) {
2263 kvm_err("Failed to finalize Hyp protection\n");
2264 goto out_subs;
2265 }
2266 }
2267
2268 if (is_protected_kvm_enabled()) {
2269 kvm_info("Protected nVHE mode initialized successfully\n");
2270 } else if (in_hyp_mode) {
2271 kvm_info("VHE mode initialized successfully\n");
2272 } else {
2273 kvm_info("Hyp mode initialized successfully\n");
2274 }
2275
2276 /*
2277 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2278 * hypervisor protection is finalized.
2279 */
2280 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2281 if (err)
2282 goto out_subs;
2283
2284 return 0;
2285
2286 out_subs:
2287 teardown_subsystems();
2288 out_hyp:
2289 if (!in_hyp_mode)
2290 teardown_hyp_mode();
2291 out_err:
2292 kvm_arm_vmid_alloc_free();
2293 return err;
2294 }
2295
early_kvm_mode_cfg(char * arg)2296 static int __init early_kvm_mode_cfg(char *arg)
2297 {
2298 if (!arg)
2299 return -EINVAL;
2300
2301 if (strcmp(arg, "none") == 0) {
2302 kvm_mode = KVM_MODE_NONE;
2303 return 0;
2304 }
2305
2306 if (!is_hyp_mode_available()) {
2307 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2308 return 0;
2309 }
2310
2311 if (strcmp(arg, "protected") == 0) {
2312 if (!is_kernel_in_hyp_mode())
2313 kvm_mode = KVM_MODE_PROTECTED;
2314 else
2315 pr_warn_once("Protected KVM not available with VHE\n");
2316
2317 return 0;
2318 }
2319
2320 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2321 kvm_mode = KVM_MODE_DEFAULT;
2322 return 0;
2323 }
2324
2325 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2326 kvm_mode = KVM_MODE_NV;
2327 return 0;
2328 }
2329
2330 return -EINVAL;
2331 }
2332 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2333
kvm_get_mode(void)2334 enum kvm_mode kvm_get_mode(void)
2335 {
2336 return kvm_mode;
2337 }
2338
2339 module_init(kvm_arm_init);
2340