1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/x86_64/processor.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8 #include "test_util.h"
9 #include "kvm_util.h"
10 #include "processor.h"
11
12 #ifndef NUM_INTERRUPTS
13 #define NUM_INTERRUPTS 256
14 #endif
15
16 #define DEFAULT_CODE_SELECTOR 0x8
17 #define DEFAULT_DATA_SELECTOR 0x10
18
19 #define MAX_NR_CPUID_ENTRIES 100
20
21 vm_vaddr_t exception_handlers;
22 bool host_cpu_is_amd;
23 bool host_cpu_is_intel;
24
regs_dump(FILE * stream,struct kvm_regs * regs,uint8_t indent)25 static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent)
26 {
27 fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
28 "rcx: 0x%.16llx rdx: 0x%.16llx\n",
29 indent, "",
30 regs->rax, regs->rbx, regs->rcx, regs->rdx);
31 fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
32 "rsp: 0x%.16llx rbp: 0x%.16llx\n",
33 indent, "",
34 regs->rsi, regs->rdi, regs->rsp, regs->rbp);
35 fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx "
36 "r10: 0x%.16llx r11: 0x%.16llx\n",
37 indent, "",
38 regs->r8, regs->r9, regs->r10, regs->r11);
39 fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
40 "r14: 0x%.16llx r15: 0x%.16llx\n",
41 indent, "",
42 regs->r12, regs->r13, regs->r14, regs->r15);
43 fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
44 indent, "",
45 regs->rip, regs->rflags);
46 }
47
segment_dump(FILE * stream,struct kvm_segment * segment,uint8_t indent)48 static void segment_dump(FILE *stream, struct kvm_segment *segment,
49 uint8_t indent)
50 {
51 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
52 "selector: 0x%.4x type: 0x%.2x\n",
53 indent, "", segment->base, segment->limit,
54 segment->selector, segment->type);
55 fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
56 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
57 indent, "", segment->present, segment->dpl,
58 segment->db, segment->s, segment->l);
59 fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
60 "unusable: 0x%.2x padding: 0x%.2x\n",
61 indent, "", segment->g, segment->avl,
62 segment->unusable, segment->padding);
63 }
64
dtable_dump(FILE * stream,struct kvm_dtable * dtable,uint8_t indent)65 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
66 uint8_t indent)
67 {
68 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
69 "padding: 0x%.4x 0x%.4x 0x%.4x\n",
70 indent, "", dtable->base, dtable->limit,
71 dtable->padding[0], dtable->padding[1], dtable->padding[2]);
72 }
73
sregs_dump(FILE * stream,struct kvm_sregs * sregs,uint8_t indent)74 static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent)
75 {
76 unsigned int i;
77
78 fprintf(stream, "%*scs:\n", indent, "");
79 segment_dump(stream, &sregs->cs, indent + 2);
80 fprintf(stream, "%*sds:\n", indent, "");
81 segment_dump(stream, &sregs->ds, indent + 2);
82 fprintf(stream, "%*ses:\n", indent, "");
83 segment_dump(stream, &sregs->es, indent + 2);
84 fprintf(stream, "%*sfs:\n", indent, "");
85 segment_dump(stream, &sregs->fs, indent + 2);
86 fprintf(stream, "%*sgs:\n", indent, "");
87 segment_dump(stream, &sregs->gs, indent + 2);
88 fprintf(stream, "%*sss:\n", indent, "");
89 segment_dump(stream, &sregs->ss, indent + 2);
90 fprintf(stream, "%*str:\n", indent, "");
91 segment_dump(stream, &sregs->tr, indent + 2);
92 fprintf(stream, "%*sldt:\n", indent, "");
93 segment_dump(stream, &sregs->ldt, indent + 2);
94
95 fprintf(stream, "%*sgdt:\n", indent, "");
96 dtable_dump(stream, &sregs->gdt, indent + 2);
97 fprintf(stream, "%*sidt:\n", indent, "");
98 dtable_dump(stream, &sregs->idt, indent + 2);
99
100 fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
101 "cr3: 0x%.16llx cr4: 0x%.16llx\n",
102 indent, "",
103 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
104 fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
105 "apic_base: 0x%.16llx\n",
106 indent, "",
107 sregs->cr8, sregs->efer, sregs->apic_base);
108
109 fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
110 for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
111 fprintf(stream, "%*s%.16llx\n", indent + 2, "",
112 sregs->interrupt_bitmap[i]);
113 }
114 }
115
kvm_is_tdp_enabled(void)116 bool kvm_is_tdp_enabled(void)
117 {
118 if (host_cpu_is_intel)
119 return get_kvm_intel_param_bool("ept");
120 else
121 return get_kvm_amd_param_bool("npt");
122 }
123
virt_arch_pgd_alloc(struct kvm_vm * vm)124 void virt_arch_pgd_alloc(struct kvm_vm *vm)
125 {
126 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
127 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
128
129 /* If needed, create page map l4 table. */
130 if (!vm->pgd_created) {
131 vm->pgd = vm_alloc_page_table(vm);
132 vm->pgd_created = true;
133 }
134 }
135
virt_get_pte(struct kvm_vm * vm,uint64_t * parent_pte,uint64_t vaddr,int level)136 static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte,
137 uint64_t vaddr, int level)
138 {
139 uint64_t pt_gpa = PTE_GET_PA(*parent_pte);
140 uint64_t *page_table = addr_gpa2hva(vm, pt_gpa);
141 int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
142
143 TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd,
144 "Parent PTE (level %d) not PRESENT for gva: 0x%08lx",
145 level + 1, vaddr);
146
147 return &page_table[index];
148 }
149
virt_create_upper_pte(struct kvm_vm * vm,uint64_t * parent_pte,uint64_t vaddr,uint64_t paddr,int current_level,int target_level)150 static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
151 uint64_t *parent_pte,
152 uint64_t vaddr,
153 uint64_t paddr,
154 int current_level,
155 int target_level)
156 {
157 uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level);
158
159 if (!(*pte & PTE_PRESENT_MASK)) {
160 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK;
161 if (current_level == target_level)
162 *pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK);
163 else
164 *pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
165 } else {
166 /*
167 * Entry already present. Assert that the caller doesn't want
168 * a hugepage at this level, and that there isn't a hugepage at
169 * this level.
170 */
171 TEST_ASSERT(current_level != target_level,
172 "Cannot create hugepage at level: %u, vaddr: 0x%lx\n",
173 current_level, vaddr);
174 TEST_ASSERT(!(*pte & PTE_LARGE_MASK),
175 "Cannot create page table at level: %u, vaddr: 0x%lx\n",
176 current_level, vaddr);
177 }
178 return pte;
179 }
180
__virt_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,int level)181 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level)
182 {
183 const uint64_t pg_size = PG_LEVEL_SIZE(level);
184 uint64_t *pml4e, *pdpe, *pde;
185 uint64_t *pte;
186
187 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
188 "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
189
190 TEST_ASSERT((vaddr % pg_size) == 0,
191 "Virtual address not aligned,\n"
192 "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
193 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
194 "Invalid virtual address, vaddr: 0x%lx", vaddr);
195 TEST_ASSERT((paddr % pg_size) == 0,
196 "Physical address not aligned,\n"
197 " paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
198 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
199 "Physical address beyond maximum supported,\n"
200 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
201 paddr, vm->max_gfn, vm->page_size);
202
203 /*
204 * Allocate upper level page tables, if not already present. Return
205 * early if a hugepage was created.
206 */
207 pml4e = virt_create_upper_pte(vm, &vm->pgd, vaddr, paddr, PG_LEVEL_512G, level);
208 if (*pml4e & PTE_LARGE_MASK)
209 return;
210
211 pdpe = virt_create_upper_pte(vm, pml4e, vaddr, paddr, PG_LEVEL_1G, level);
212 if (*pdpe & PTE_LARGE_MASK)
213 return;
214
215 pde = virt_create_upper_pte(vm, pdpe, vaddr, paddr, PG_LEVEL_2M, level);
216 if (*pde & PTE_LARGE_MASK)
217 return;
218
219 /* Fill in page table entry. */
220 pte = virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
221 TEST_ASSERT(!(*pte & PTE_PRESENT_MASK),
222 "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr);
223 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK);
224 }
225
virt_arch_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr)226 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
227 {
228 __virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K);
229 }
230
virt_map_level(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,uint64_t nr_bytes,int level)231 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
232 uint64_t nr_bytes, int level)
233 {
234 uint64_t pg_size = PG_LEVEL_SIZE(level);
235 uint64_t nr_pages = nr_bytes / pg_size;
236 int i;
237
238 TEST_ASSERT(nr_bytes % pg_size == 0,
239 "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx",
240 nr_bytes, pg_size);
241
242 for (i = 0; i < nr_pages; i++) {
243 __virt_pg_map(vm, vaddr, paddr, level);
244
245 vaddr += pg_size;
246 paddr += pg_size;
247 }
248 }
249
vm_is_target_pte(uint64_t * pte,int * level,int current_level)250 static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level)
251 {
252 if (*pte & PTE_LARGE_MASK) {
253 TEST_ASSERT(*level == PG_LEVEL_NONE ||
254 *level == current_level,
255 "Unexpected hugepage at level %d\n", current_level);
256 *level = current_level;
257 }
258
259 return *level == current_level;
260 }
261
__vm_get_page_table_entry(struct kvm_vm * vm,uint64_t vaddr,int * level)262 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
263 int *level)
264 {
265 uint64_t *pml4e, *pdpe, *pde;
266
267 TEST_ASSERT(*level >= PG_LEVEL_NONE && *level < PG_LEVEL_NUM,
268 "Invalid PG_LEVEL_* '%d'", *level);
269
270 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
271 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
272 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
273 (vaddr >> vm->page_shift)),
274 "Invalid virtual address, vaddr: 0x%lx",
275 vaddr);
276 /*
277 * Based on the mode check above there are 48 bits in the vaddr, so
278 * shift 16 to sign extend the last bit (bit-47),
279 */
280 TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
281 "Canonical check failed. The virtual address is invalid.");
282
283 pml4e = virt_get_pte(vm, &vm->pgd, vaddr, PG_LEVEL_512G);
284 if (vm_is_target_pte(pml4e, level, PG_LEVEL_512G))
285 return pml4e;
286
287 pdpe = virt_get_pte(vm, pml4e, vaddr, PG_LEVEL_1G);
288 if (vm_is_target_pte(pdpe, level, PG_LEVEL_1G))
289 return pdpe;
290
291 pde = virt_get_pte(vm, pdpe, vaddr, PG_LEVEL_2M);
292 if (vm_is_target_pte(pde, level, PG_LEVEL_2M))
293 return pde;
294
295 return virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
296 }
297
vm_get_page_table_entry(struct kvm_vm * vm,uint64_t vaddr)298 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr)
299 {
300 int level = PG_LEVEL_4K;
301
302 return __vm_get_page_table_entry(vm, vaddr, &level);
303 }
304
virt_arch_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)305 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
306 {
307 uint64_t *pml4e, *pml4e_start;
308 uint64_t *pdpe, *pdpe_start;
309 uint64_t *pde, *pde_start;
310 uint64_t *pte, *pte_start;
311
312 if (!vm->pgd_created)
313 return;
314
315 fprintf(stream, "%*s "
316 " no\n", indent, "");
317 fprintf(stream, "%*s index hvaddr gpaddr "
318 "addr w exec dirty\n",
319 indent, "");
320 pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd);
321 for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
322 pml4e = &pml4e_start[n1];
323 if (!(*pml4e & PTE_PRESENT_MASK))
324 continue;
325 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
326 " %u\n",
327 indent, "",
328 pml4e - pml4e_start, pml4e,
329 addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
330 !!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK));
331
332 pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
333 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
334 pdpe = &pdpe_start[n2];
335 if (!(*pdpe & PTE_PRESENT_MASK))
336 continue;
337 fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10llx "
338 "%u %u\n",
339 indent, "",
340 pdpe - pdpe_start, pdpe,
341 addr_hva2gpa(vm, pdpe),
342 PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK),
343 !!(*pdpe & PTE_NX_MASK));
344
345 pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
346 for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
347 pde = &pde_start[n3];
348 if (!(*pde & PTE_PRESENT_MASK))
349 continue;
350 fprintf(stream, "%*spde 0x%-3zx %p "
351 "0x%-12lx 0x%-10llx %u %u\n",
352 indent, "", pde - pde_start, pde,
353 addr_hva2gpa(vm, pde),
354 PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK),
355 !!(*pde & PTE_NX_MASK));
356
357 pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
358 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
359 pte = &pte_start[n4];
360 if (!(*pte & PTE_PRESENT_MASK))
361 continue;
362 fprintf(stream, "%*spte 0x%-3zx %p "
363 "0x%-12lx 0x%-10llx %u %u "
364 " %u 0x%-10lx\n",
365 indent, "",
366 pte - pte_start, pte,
367 addr_hva2gpa(vm, pte),
368 PTE_GET_PFN(*pte),
369 !!(*pte & PTE_WRITABLE_MASK),
370 !!(*pte & PTE_NX_MASK),
371 !!(*pte & PTE_DIRTY_MASK),
372 ((uint64_t) n1 << 27)
373 | ((uint64_t) n2 << 18)
374 | ((uint64_t) n3 << 9)
375 | ((uint64_t) n4));
376 }
377 }
378 }
379 }
380 }
381
382 /*
383 * Set Unusable Segment
384 *
385 * Input Args: None
386 *
387 * Output Args:
388 * segp - Pointer to segment register
389 *
390 * Return: None
391 *
392 * Sets the segment register pointed to by @segp to an unusable state.
393 */
kvm_seg_set_unusable(struct kvm_segment * segp)394 static void kvm_seg_set_unusable(struct kvm_segment *segp)
395 {
396 memset(segp, 0, sizeof(*segp));
397 segp->unusable = true;
398 }
399
kvm_seg_fill_gdt_64bit(struct kvm_vm * vm,struct kvm_segment * segp)400 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
401 {
402 void *gdt = addr_gva2hva(vm, vm->gdt);
403 struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
404
405 desc->limit0 = segp->limit & 0xFFFF;
406 desc->base0 = segp->base & 0xFFFF;
407 desc->base1 = segp->base >> 16;
408 desc->type = segp->type;
409 desc->s = segp->s;
410 desc->dpl = segp->dpl;
411 desc->p = segp->present;
412 desc->limit1 = segp->limit >> 16;
413 desc->avl = segp->avl;
414 desc->l = segp->l;
415 desc->db = segp->db;
416 desc->g = segp->g;
417 desc->base2 = segp->base >> 24;
418 if (!segp->s)
419 desc->base3 = segp->base >> 32;
420 }
421
422
423 /*
424 * Set Long Mode Flat Kernel Code Segment
425 *
426 * Input Args:
427 * vm - VM whose GDT is being filled, or NULL to only write segp
428 * selector - selector value
429 *
430 * Output Args:
431 * segp - Pointer to KVM segment
432 *
433 * Return: None
434 *
435 * Sets up the KVM segment pointed to by @segp, to be a code segment
436 * with the selector value given by @selector.
437 */
kvm_seg_set_kernel_code_64bit(struct kvm_vm * vm,uint16_t selector,struct kvm_segment * segp)438 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
439 struct kvm_segment *segp)
440 {
441 memset(segp, 0, sizeof(*segp));
442 segp->selector = selector;
443 segp->limit = 0xFFFFFFFFu;
444 segp->s = 0x1; /* kTypeCodeData */
445 segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
446 * | kFlagCodeReadable
447 */
448 segp->g = true;
449 segp->l = true;
450 segp->present = 1;
451 if (vm)
452 kvm_seg_fill_gdt_64bit(vm, segp);
453 }
454
455 /*
456 * Set Long Mode Flat Kernel Data Segment
457 *
458 * Input Args:
459 * vm - VM whose GDT is being filled, or NULL to only write segp
460 * selector - selector value
461 *
462 * Output Args:
463 * segp - Pointer to KVM segment
464 *
465 * Return: None
466 *
467 * Sets up the KVM segment pointed to by @segp, to be a data segment
468 * with the selector value given by @selector.
469 */
kvm_seg_set_kernel_data_64bit(struct kvm_vm * vm,uint16_t selector,struct kvm_segment * segp)470 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
471 struct kvm_segment *segp)
472 {
473 memset(segp, 0, sizeof(*segp));
474 segp->selector = selector;
475 segp->limit = 0xFFFFFFFFu;
476 segp->s = 0x1; /* kTypeCodeData */
477 segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
478 * | kFlagDataWritable
479 */
480 segp->g = true;
481 segp->present = true;
482 if (vm)
483 kvm_seg_fill_gdt_64bit(vm, segp);
484 }
485
addr_arch_gva2gpa(struct kvm_vm * vm,vm_vaddr_t gva)486 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
487 {
488 int level = PG_LEVEL_NONE;
489 uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level);
490
491 TEST_ASSERT(*pte & PTE_PRESENT_MASK,
492 "Leaf PTE not PRESENT for gva: 0x%08lx", gva);
493
494 /*
495 * No need for a hugepage mask on the PTE, x86-64 requires the "unused"
496 * address bits to be zero.
497 */
498 return PTE_GET_PA(*pte) | (gva & ~HUGEPAGE_MASK(level));
499 }
500
kvm_setup_gdt(struct kvm_vm * vm,struct kvm_dtable * dt)501 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
502 {
503 if (!vm->gdt)
504 vm->gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
505
506 dt->base = vm->gdt;
507 dt->limit = getpagesize();
508 }
509
kvm_setup_tss_64bit(struct kvm_vm * vm,struct kvm_segment * segp,int selector)510 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
511 int selector)
512 {
513 if (!vm->tss)
514 vm->tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
515
516 memset(segp, 0, sizeof(*segp));
517 segp->base = vm->tss;
518 segp->limit = 0x67;
519 segp->selector = selector;
520 segp->type = 0xb;
521 segp->present = 1;
522 kvm_seg_fill_gdt_64bit(vm, segp);
523 }
524
vcpu_setup(struct kvm_vm * vm,struct kvm_vcpu * vcpu)525 static void vcpu_setup(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
526 {
527 struct kvm_sregs sregs;
528
529 /* Set mode specific system register values. */
530 vcpu_sregs_get(vcpu, &sregs);
531
532 sregs.idt.limit = 0;
533
534 kvm_setup_gdt(vm, &sregs.gdt);
535
536 switch (vm->mode) {
537 case VM_MODE_PXXV48_4K:
538 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
539 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
540 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
541
542 kvm_seg_set_unusable(&sregs.ldt);
543 kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
544 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
545 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
546 kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
547 break;
548
549 default:
550 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
551 }
552
553 sregs.cr3 = vm->pgd;
554 vcpu_sregs_set(vcpu, &sregs);
555 }
556
kvm_arch_vm_post_create(struct kvm_vm * vm)557 void kvm_arch_vm_post_create(struct kvm_vm *vm)
558 {
559 vm_create_irqchip(vm);
560 sync_global_to_guest(vm, host_cpu_is_intel);
561 sync_global_to_guest(vm, host_cpu_is_amd);
562 }
563
vm_arch_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id,void * guest_code)564 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
565 void *guest_code)
566 {
567 struct kvm_mp_state mp_state;
568 struct kvm_regs regs;
569 vm_vaddr_t stack_vaddr;
570 struct kvm_vcpu *vcpu;
571
572 stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
573 DEFAULT_GUEST_STACK_VADDR_MIN,
574 MEM_REGION_DATA);
575
576 vcpu = __vm_vcpu_add(vm, vcpu_id);
577 vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
578 vcpu_setup(vm, vcpu);
579
580 /* Setup guest general purpose registers */
581 vcpu_regs_get(vcpu, ®s);
582 regs.rflags = regs.rflags | 0x2;
583 regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
584 regs.rip = (unsigned long) guest_code;
585 vcpu_regs_set(vcpu, ®s);
586
587 /* Setup the MP state */
588 mp_state.mp_state = 0;
589 vcpu_mp_state_set(vcpu, &mp_state);
590
591 return vcpu;
592 }
593
vm_arch_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)594 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id)
595 {
596 struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
597
598 vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
599
600 return vcpu;
601 }
602
vcpu_arch_free(struct kvm_vcpu * vcpu)603 void vcpu_arch_free(struct kvm_vcpu *vcpu)
604 {
605 if (vcpu->cpuid)
606 free(vcpu->cpuid);
607 }
608
609 /* Do not use kvm_supported_cpuid directly except for validity checks. */
610 static void *kvm_supported_cpuid;
611
kvm_get_supported_cpuid(void)612 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
613 {
614 int kvm_fd;
615
616 if (kvm_supported_cpuid)
617 return kvm_supported_cpuid;
618
619 kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
620 kvm_fd = open_kvm_dev_path_or_exit();
621
622 kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID,
623 (struct kvm_cpuid2 *)kvm_supported_cpuid);
624
625 close(kvm_fd);
626 return kvm_supported_cpuid;
627 }
628
__kvm_cpu_has(const struct kvm_cpuid2 * cpuid,uint32_t function,uint32_t index,uint8_t reg,uint8_t lo,uint8_t hi)629 static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid,
630 uint32_t function, uint32_t index,
631 uint8_t reg, uint8_t lo, uint8_t hi)
632 {
633 const struct kvm_cpuid_entry2 *entry;
634 int i;
635
636 for (i = 0; i < cpuid->nent; i++) {
637 entry = &cpuid->entries[i];
638
639 /*
640 * The output registers in kvm_cpuid_entry2 are in alphabetical
641 * order, but kvm_x86_cpu_feature matches that mess, so yay
642 * pointer shenanigans!
643 */
644 if (entry->function == function && entry->index == index)
645 return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo;
646 }
647
648 return 0;
649 }
650
kvm_cpuid_has(const struct kvm_cpuid2 * cpuid,struct kvm_x86_cpu_feature feature)651 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
652 struct kvm_x86_cpu_feature feature)
653 {
654 return __kvm_cpu_has(cpuid, feature.function, feature.index,
655 feature.reg, feature.bit, feature.bit);
656 }
657
kvm_cpuid_property(const struct kvm_cpuid2 * cpuid,struct kvm_x86_cpu_property property)658 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
659 struct kvm_x86_cpu_property property)
660 {
661 return __kvm_cpu_has(cpuid, property.function, property.index,
662 property.reg, property.lo_bit, property.hi_bit);
663 }
664
kvm_get_feature_msr(uint64_t msr_index)665 uint64_t kvm_get_feature_msr(uint64_t msr_index)
666 {
667 struct {
668 struct kvm_msrs header;
669 struct kvm_msr_entry entry;
670 } buffer = {};
671 int r, kvm_fd;
672
673 buffer.header.nmsrs = 1;
674 buffer.entry.index = msr_index;
675 kvm_fd = open_kvm_dev_path_or_exit();
676
677 r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
678 TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r));
679
680 close(kvm_fd);
681 return buffer.entry.data;
682 }
683
__vm_xsave_require_permission(int bit,const char * name)684 void __vm_xsave_require_permission(int bit, const char *name)
685 {
686 int kvm_fd;
687 u64 bitmask;
688 long rc;
689 struct kvm_device_attr attr = {
690 .group = 0,
691 .attr = KVM_X86_XCOMP_GUEST_SUPP,
692 .addr = (unsigned long) &bitmask
693 };
694
695 TEST_ASSERT(!kvm_supported_cpuid,
696 "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM");
697
698 kvm_fd = open_kvm_dev_path_or_exit();
699 rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
700 close(kvm_fd);
701
702 if (rc == -1 && (errno == ENXIO || errno == EINVAL))
703 __TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported");
704
705 TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
706
707 __TEST_REQUIRE(bitmask & (1ULL << bit),
708 "Required XSAVE feature '%s' not supported", name);
709
710 TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit));
711
712 rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
713 TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
714 TEST_ASSERT(bitmask & (1ULL << bit),
715 "prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure bitmask=0x%lx",
716 bitmask);
717 }
718
vcpu_init_cpuid(struct kvm_vcpu * vcpu,const struct kvm_cpuid2 * cpuid)719 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid)
720 {
721 TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID");
722
723 /* Allow overriding the default CPUID. */
724 if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) {
725 free(vcpu->cpuid);
726 vcpu->cpuid = NULL;
727 }
728
729 if (!vcpu->cpuid)
730 vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent);
731
732 memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent));
733 vcpu_set_cpuid(vcpu);
734 }
735
vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu * vcpu,uint8_t maxphyaddr)736 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr)
737 {
738 struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, 0x80000008);
739
740 entry->eax = (entry->eax & ~0xff) | maxphyaddr;
741 vcpu_set_cpuid(vcpu);
742 }
743
vcpu_clear_cpuid_entry(struct kvm_vcpu * vcpu,uint32_t function)744 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function)
745 {
746 struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function);
747
748 entry->eax = 0;
749 entry->ebx = 0;
750 entry->ecx = 0;
751 entry->edx = 0;
752 vcpu_set_cpuid(vcpu);
753 }
754
vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature,bool set)755 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
756 struct kvm_x86_cpu_feature feature,
757 bool set)
758 {
759 struct kvm_cpuid_entry2 *entry;
760 u32 *reg;
761
762 entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
763 reg = (&entry->eax) + feature.reg;
764
765 if (set)
766 *reg |= BIT(feature.bit);
767 else
768 *reg &= ~BIT(feature.bit);
769
770 vcpu_set_cpuid(vcpu);
771 }
772
vcpu_get_msr(struct kvm_vcpu * vcpu,uint64_t msr_index)773 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index)
774 {
775 struct {
776 struct kvm_msrs header;
777 struct kvm_msr_entry entry;
778 } buffer = {};
779
780 buffer.header.nmsrs = 1;
781 buffer.entry.index = msr_index;
782
783 vcpu_msrs_get(vcpu, &buffer.header);
784
785 return buffer.entry.data;
786 }
787
_vcpu_set_msr(struct kvm_vcpu * vcpu,uint64_t msr_index,uint64_t msr_value)788 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value)
789 {
790 struct {
791 struct kvm_msrs header;
792 struct kvm_msr_entry entry;
793 } buffer = {};
794
795 memset(&buffer, 0, sizeof(buffer));
796 buffer.header.nmsrs = 1;
797 buffer.entry.index = msr_index;
798 buffer.entry.data = msr_value;
799
800 return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header);
801 }
802
vcpu_args_set(struct kvm_vcpu * vcpu,unsigned int num,...)803 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
804 {
805 va_list ap;
806 struct kvm_regs regs;
807
808 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
809 " num: %u\n",
810 num);
811
812 va_start(ap, num);
813 vcpu_regs_get(vcpu, ®s);
814
815 if (num >= 1)
816 regs.rdi = va_arg(ap, uint64_t);
817
818 if (num >= 2)
819 regs.rsi = va_arg(ap, uint64_t);
820
821 if (num >= 3)
822 regs.rdx = va_arg(ap, uint64_t);
823
824 if (num >= 4)
825 regs.rcx = va_arg(ap, uint64_t);
826
827 if (num >= 5)
828 regs.r8 = va_arg(ap, uint64_t);
829
830 if (num >= 6)
831 regs.r9 = va_arg(ap, uint64_t);
832
833 vcpu_regs_set(vcpu, ®s);
834 va_end(ap);
835 }
836
vcpu_arch_dump(FILE * stream,struct kvm_vcpu * vcpu,uint8_t indent)837 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
838 {
839 struct kvm_regs regs;
840 struct kvm_sregs sregs;
841
842 fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id);
843
844 fprintf(stream, "%*sregs:\n", indent + 2, "");
845 vcpu_regs_get(vcpu, ®s);
846 regs_dump(stream, ®s, indent + 4);
847
848 fprintf(stream, "%*ssregs:\n", indent + 2, "");
849 vcpu_sregs_get(vcpu, &sregs);
850 sregs_dump(stream, &sregs, indent + 4);
851 }
852
__kvm_get_msr_index_list(bool feature_msrs)853 static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs)
854 {
855 struct kvm_msr_list *list;
856 struct kvm_msr_list nmsrs;
857 int kvm_fd, r;
858
859 kvm_fd = open_kvm_dev_path_or_exit();
860
861 nmsrs.nmsrs = 0;
862 if (!feature_msrs)
863 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
864 else
865 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs);
866
867 TEST_ASSERT(r == -1 && errno == E2BIG,
868 "Expected -E2BIG, got rc: %i errno: %i (%s)",
869 r, errno, strerror(errno));
870
871 list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0]));
872 TEST_ASSERT(list, "-ENOMEM when allocating MSR index list");
873 list->nmsrs = nmsrs.nmsrs;
874
875 if (!feature_msrs)
876 kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
877 else
878 kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list);
879 close(kvm_fd);
880
881 TEST_ASSERT(list->nmsrs == nmsrs.nmsrs,
882 "Number of MSRs in list changed, was %d, now %d",
883 nmsrs.nmsrs, list->nmsrs);
884 return list;
885 }
886
kvm_get_msr_index_list(void)887 const struct kvm_msr_list *kvm_get_msr_index_list(void)
888 {
889 static const struct kvm_msr_list *list;
890
891 if (!list)
892 list = __kvm_get_msr_index_list(false);
893 return list;
894 }
895
896
kvm_get_feature_msr_index_list(void)897 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void)
898 {
899 static const struct kvm_msr_list *list;
900
901 if (!list)
902 list = __kvm_get_msr_index_list(true);
903 return list;
904 }
905
kvm_msr_is_in_save_restore_list(uint32_t msr_index)906 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index)
907 {
908 const struct kvm_msr_list *list = kvm_get_msr_index_list();
909 int i;
910
911 for (i = 0; i < list->nmsrs; ++i) {
912 if (list->indices[i] == msr_index)
913 return true;
914 }
915
916 return false;
917 }
918
vcpu_save_xsave_state(struct kvm_vcpu * vcpu,struct kvm_x86_state * state)919 static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu,
920 struct kvm_x86_state *state)
921 {
922 int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2);
923
924 if (size) {
925 state->xsave = malloc(size);
926 vcpu_xsave2_get(vcpu, state->xsave);
927 } else {
928 state->xsave = malloc(sizeof(struct kvm_xsave));
929 vcpu_xsave_get(vcpu, state->xsave);
930 }
931 }
932
vcpu_save_state(struct kvm_vcpu * vcpu)933 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu)
934 {
935 const struct kvm_msr_list *msr_list = kvm_get_msr_index_list();
936 struct kvm_x86_state *state;
937 int i;
938
939 static int nested_size = -1;
940
941 if (nested_size == -1) {
942 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
943 TEST_ASSERT(nested_size <= sizeof(state->nested_),
944 "Nested state size too big, %i > %zi",
945 nested_size, sizeof(state->nested_));
946 }
947
948 /*
949 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
950 * guest state is consistent only after userspace re-enters the
951 * kernel with KVM_RUN. Complete IO prior to migrating state
952 * to a new VM.
953 */
954 vcpu_run_complete_io(vcpu);
955
956 state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0]));
957
958 vcpu_events_get(vcpu, &state->events);
959 vcpu_mp_state_get(vcpu, &state->mp_state);
960 vcpu_regs_get(vcpu, &state->regs);
961 vcpu_save_xsave_state(vcpu, state);
962
963 if (kvm_has_cap(KVM_CAP_XCRS))
964 vcpu_xcrs_get(vcpu, &state->xcrs);
965
966 vcpu_sregs_get(vcpu, &state->sregs);
967
968 if (nested_size) {
969 state->nested.size = sizeof(state->nested_);
970
971 vcpu_nested_state_get(vcpu, &state->nested);
972 TEST_ASSERT(state->nested.size <= nested_size,
973 "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
974 state->nested.size, nested_size);
975 } else {
976 state->nested.size = 0;
977 }
978
979 state->msrs.nmsrs = msr_list->nmsrs;
980 for (i = 0; i < msr_list->nmsrs; i++)
981 state->msrs.entries[i].index = msr_list->indices[i];
982 vcpu_msrs_get(vcpu, &state->msrs);
983
984 vcpu_debugregs_get(vcpu, &state->debugregs);
985
986 return state;
987 }
988
vcpu_load_state(struct kvm_vcpu * vcpu,struct kvm_x86_state * state)989 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state)
990 {
991 vcpu_sregs_set(vcpu, &state->sregs);
992 vcpu_msrs_set(vcpu, &state->msrs);
993
994 if (kvm_has_cap(KVM_CAP_XCRS))
995 vcpu_xcrs_set(vcpu, &state->xcrs);
996
997 vcpu_xsave_set(vcpu, state->xsave);
998 vcpu_events_set(vcpu, &state->events);
999 vcpu_mp_state_set(vcpu, &state->mp_state);
1000 vcpu_debugregs_set(vcpu, &state->debugregs);
1001 vcpu_regs_set(vcpu, &state->regs);
1002
1003 if (state->nested.size)
1004 vcpu_nested_state_set(vcpu, &state->nested);
1005 }
1006
kvm_x86_state_cleanup(struct kvm_x86_state * state)1007 void kvm_x86_state_cleanup(struct kvm_x86_state *state)
1008 {
1009 free(state->xsave);
1010 free(state);
1011 }
1012
kvm_get_cpu_address_width(unsigned int * pa_bits,unsigned int * va_bits)1013 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1014 {
1015 if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) {
1016 *pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32;
1017 *va_bits = 32;
1018 } else {
1019 *pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1020 *va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR);
1021 }
1022 }
1023
set_idt_entry(struct kvm_vm * vm,int vector,unsigned long addr,int dpl,unsigned short selector)1024 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
1025 int dpl, unsigned short selector)
1026 {
1027 struct idt_entry *base =
1028 (struct idt_entry *)addr_gva2hva(vm, vm->idt);
1029 struct idt_entry *e = &base[vector];
1030
1031 memset(e, 0, sizeof(*e));
1032 e->offset0 = addr;
1033 e->selector = selector;
1034 e->ist = 0;
1035 e->type = 14;
1036 e->dpl = dpl;
1037 e->p = 1;
1038 e->offset1 = addr >> 16;
1039 e->offset2 = addr >> 32;
1040 }
1041
1042
kvm_fixup_exception(struct ex_regs * regs)1043 static bool kvm_fixup_exception(struct ex_regs *regs)
1044 {
1045 if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10)
1046 return false;
1047
1048 if (regs->vector == DE_VECTOR)
1049 return false;
1050
1051 regs->rip = regs->r11;
1052 regs->r9 = regs->vector;
1053 regs->r10 = regs->error_code;
1054 return true;
1055 }
1056
kvm_exit_unexpected_vector(uint32_t value)1057 void kvm_exit_unexpected_vector(uint32_t value)
1058 {
1059 ucall(UCALL_UNHANDLED, 1, value);
1060 }
1061
route_exception(struct ex_regs * regs)1062 void route_exception(struct ex_regs *regs)
1063 {
1064 typedef void(*handler)(struct ex_regs *);
1065 handler *handlers = (handler *)exception_handlers;
1066
1067 if (handlers && handlers[regs->vector]) {
1068 handlers[regs->vector](regs);
1069 return;
1070 }
1071
1072 if (kvm_fixup_exception(regs))
1073 return;
1074
1075 kvm_exit_unexpected_vector(regs->vector);
1076 }
1077
vm_init_descriptor_tables(struct kvm_vm * vm)1078 void vm_init_descriptor_tables(struct kvm_vm *vm)
1079 {
1080 extern void *idt_handlers;
1081 int i;
1082
1083 vm->idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
1084 vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
1085 /* Handlers have the same address in both address spaces.*/
1086 for (i = 0; i < NUM_INTERRUPTS; i++)
1087 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
1088 DEFAULT_CODE_SELECTOR);
1089 }
1090
vcpu_init_descriptor_tables(struct kvm_vcpu * vcpu)1091 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu)
1092 {
1093 struct kvm_vm *vm = vcpu->vm;
1094 struct kvm_sregs sregs;
1095
1096 vcpu_sregs_get(vcpu, &sregs);
1097 sregs.idt.base = vm->idt;
1098 sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
1099 sregs.gdt.base = vm->gdt;
1100 sregs.gdt.limit = getpagesize() - 1;
1101 kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
1102 vcpu_sregs_set(vcpu, &sregs);
1103 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
1104 }
1105
vm_install_exception_handler(struct kvm_vm * vm,int vector,void (* handler)(struct ex_regs *))1106 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1107 void (*handler)(struct ex_regs *))
1108 {
1109 vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
1110
1111 handlers[vector] = (vm_vaddr_t)handler;
1112 }
1113
assert_on_unhandled_exception(struct kvm_vcpu * vcpu)1114 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
1115 {
1116 struct ucall uc;
1117
1118 if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED) {
1119 uint64_t vector = uc.args[0];
1120
1121 TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)",
1122 vector);
1123 }
1124 }
1125
get_cpuid_entry(const struct kvm_cpuid2 * cpuid,uint32_t function,uint32_t index)1126 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
1127 uint32_t function, uint32_t index)
1128 {
1129 int i;
1130
1131 for (i = 0; i < cpuid->nent; i++) {
1132 if (cpuid->entries[i].function == function &&
1133 cpuid->entries[i].index == index)
1134 return &cpuid->entries[i];
1135 }
1136
1137 TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
1138
1139 return NULL;
1140 }
1141
kvm_hypercall(uint64_t nr,uint64_t a0,uint64_t a1,uint64_t a2,uint64_t a3)1142 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1143 uint64_t a3)
1144 {
1145 uint64_t r;
1146
1147 asm volatile("test %[use_vmmcall], %[use_vmmcall]\n\t"
1148 "jnz 1f\n\t"
1149 "vmcall\n\t"
1150 "jmp 2f\n\t"
1151 "1: vmmcall\n\t"
1152 "2:"
1153 : "=a"(r)
1154 : "a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3),
1155 [use_vmmcall] "r" (host_cpu_is_amd));
1156 return r;
1157 }
1158
kvm_get_supported_hv_cpuid(void)1159 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
1160 {
1161 static struct kvm_cpuid2 *cpuid;
1162 int kvm_fd;
1163
1164 if (cpuid)
1165 return cpuid;
1166
1167 cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
1168 kvm_fd = open_kvm_dev_path_or_exit();
1169
1170 kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1171
1172 close(kvm_fd);
1173 return cpuid;
1174 }
1175
vcpu_set_hv_cpuid(struct kvm_vcpu * vcpu)1176 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu)
1177 {
1178 static struct kvm_cpuid2 *cpuid_full;
1179 const struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
1180 int i, nent = 0;
1181
1182 if (!cpuid_full) {
1183 cpuid_sys = kvm_get_supported_cpuid();
1184 cpuid_hv = kvm_get_supported_hv_cpuid();
1185
1186 cpuid_full = allocate_kvm_cpuid2(cpuid_sys->nent + cpuid_hv->nent);
1187 if (!cpuid_full) {
1188 perror("malloc");
1189 abort();
1190 }
1191
1192 /* Need to skip KVM CPUID leaves 0x400000xx */
1193 for (i = 0; i < cpuid_sys->nent; i++) {
1194 if (cpuid_sys->entries[i].function >= 0x40000000 &&
1195 cpuid_sys->entries[i].function < 0x40000100)
1196 continue;
1197 cpuid_full->entries[nent] = cpuid_sys->entries[i];
1198 nent++;
1199 }
1200
1201 memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
1202 cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
1203 cpuid_full->nent = nent + cpuid_hv->nent;
1204 }
1205
1206 vcpu_init_cpuid(vcpu, cpuid_full);
1207 }
1208
vcpu_get_supported_hv_cpuid(struct kvm_vcpu * vcpu)1209 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu)
1210 {
1211 struct kvm_cpuid2 *cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
1212
1213 vcpu_ioctl(vcpu, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1214
1215 return cpuid;
1216 }
1217
vm_compute_max_gfn(struct kvm_vm * vm)1218 unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1219 {
1220 const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
1221 unsigned long ht_gfn, max_gfn, max_pfn;
1222 uint8_t maxphyaddr;
1223
1224 max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1;
1225
1226 /* Avoid reserved HyperTransport region on AMD processors. */
1227 if (!host_cpu_is_amd)
1228 return max_gfn;
1229
1230 /* On parts with <40 physical address bits, the area is fully hidden */
1231 if (vm->pa_bits < 40)
1232 return max_gfn;
1233
1234 /* Before family 17h, the HyperTransport area is just below 1T. */
1235 ht_gfn = (1 << 28) - num_ht_pages;
1236 if (this_cpu_family() < 0x17)
1237 goto done;
1238
1239 /*
1240 * Otherwise it's at the top of the physical address space, possibly
1241 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use
1242 * the old conservative value if MAXPHYADDR is not enumerated.
1243 */
1244 if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR))
1245 goto done;
1246
1247 maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1248 max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1;
1249
1250 if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION))
1251 max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION);
1252
1253 ht_gfn = max_pfn - num_ht_pages;
1254 done:
1255 return min(max_gfn, ht_gfn - 1);
1256 }
1257
1258 /* Returns true if kvm_intel was loaded with unrestricted_guest=1. */
vm_is_unrestricted_guest(struct kvm_vm * vm)1259 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
1260 {
1261 /* Ensure that a KVM vendor-specific module is loaded. */
1262 if (vm == NULL)
1263 close(open_kvm_dev_path_or_exit());
1264
1265 return get_kvm_intel_param_bool("unrestricted_guest");
1266 }
1267
kvm_selftest_arch_init(void)1268 void kvm_selftest_arch_init(void)
1269 {
1270 host_cpu_is_intel = this_cpu_is_intel();
1271 host_cpu_is_amd = this_cpu_is_amd();
1272 }
1273