1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * KVM Microsoft Hyper-V emulation
4 *
5 * derived from arch/x86/kvm/x86.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
12 *
13 * Authors:
14 * Avi Kivity <avi@qumranet.com>
15 * Yaniv Kamay <yaniv@qumranet.com>
16 * Amit Shah <amit.shah@qumranet.com>
17 * Ben-Ami Yassour <benami@il.ibm.com>
18 * Andrey Smetanin <asmetanin@virtuozzo.com>
19 */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include "x86.h"
23 #include "lapic.h"
24 #include "ioapic.h"
25 #include "cpuid.h"
26 #include "hyperv.h"
27 #include "mmu.h"
28 #include "xen.h"
29
30 #include <linux/cpu.h>
31 #include <linux/kvm_host.h>
32 #include <linux/highmem.h>
33 #include <linux/sched/cputime.h>
34 #include <linux/spinlock.h>
35 #include <linux/eventfd.h>
36
37 #include <asm/apicdef.h>
38 #include <asm/mshyperv.h>
39 #include <trace/events/kvm.h>
40
41 #include "trace.h"
42 #include "irq.h"
43 #include "fpu.h"
44
45 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, HV_VCPUS_PER_SPARSE_BANK)
46
47 /*
48 * As per Hyper-V TLFS, extended hypercalls start from 0x8001
49 * (HvExtCallQueryCapabilities). Response of this hypercalls is a 64 bit value
50 * where each bit tells which extended hypercall is available besides
51 * HvExtCallQueryCapabilities.
52 *
53 * 0x8001 - First extended hypercall, HvExtCallQueryCapabilities, no bit
54 * assigned.
55 *
56 * 0x8002 - Bit 0
57 * 0x8003 - Bit 1
58 * ..
59 * 0x8041 - Bit 63
60 *
61 * Therefore, HV_EXT_CALL_MAX = 0x8001 + 64
62 */
63 #define HV_EXT_CALL_MAX (HV_EXT_CALL_QUERY_CAPABILITIES + 64)
64
65 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
66 bool vcpu_kick);
67
synic_read_sint(struct kvm_vcpu_hv_synic * synic,int sint)68 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
69 {
70 return atomic64_read(&synic->sint[sint]);
71 }
72
synic_get_sint_vector(u64 sint_value)73 static inline int synic_get_sint_vector(u64 sint_value)
74 {
75 if (sint_value & HV_SYNIC_SINT_MASKED)
76 return -1;
77 return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
78 }
79
synic_has_vector_connected(struct kvm_vcpu_hv_synic * synic,int vector)80 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
81 int vector)
82 {
83 int i;
84
85 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
86 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
87 return true;
88 }
89 return false;
90 }
91
synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic * synic,int vector)92 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
93 int vector)
94 {
95 int i;
96 u64 sint_value;
97
98 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
99 sint_value = synic_read_sint(synic, i);
100 if (synic_get_sint_vector(sint_value) == vector &&
101 sint_value & HV_SYNIC_SINT_AUTO_EOI)
102 return true;
103 }
104 return false;
105 }
106
synic_update_vector(struct kvm_vcpu_hv_synic * synic,int vector)107 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
108 int vector)
109 {
110 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
111 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
112 bool auto_eoi_old, auto_eoi_new;
113
114 if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
115 return;
116
117 if (synic_has_vector_connected(synic, vector))
118 __set_bit(vector, synic->vec_bitmap);
119 else
120 __clear_bit(vector, synic->vec_bitmap);
121
122 auto_eoi_old = !bitmap_empty(synic->auto_eoi_bitmap, 256);
123
124 if (synic_has_vector_auto_eoi(synic, vector))
125 __set_bit(vector, synic->auto_eoi_bitmap);
126 else
127 __clear_bit(vector, synic->auto_eoi_bitmap);
128
129 auto_eoi_new = !bitmap_empty(synic->auto_eoi_bitmap, 256);
130
131 if (auto_eoi_old == auto_eoi_new)
132 return;
133
134 if (!enable_apicv)
135 return;
136
137 down_write(&vcpu->kvm->arch.apicv_update_lock);
138
139 if (auto_eoi_new)
140 hv->synic_auto_eoi_used++;
141 else
142 hv->synic_auto_eoi_used--;
143
144 /*
145 * Inhibit APICv if any vCPU is using SynIC's AutoEOI, which relies on
146 * the hypervisor to manually inject IRQs.
147 */
148 __kvm_set_or_clear_apicv_inhibit(vcpu->kvm,
149 APICV_INHIBIT_REASON_HYPERV,
150 !!hv->synic_auto_eoi_used);
151
152 up_write(&vcpu->kvm->arch.apicv_update_lock);
153 }
154
synic_set_sint(struct kvm_vcpu_hv_synic * synic,int sint,u64 data,bool host)155 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
156 u64 data, bool host)
157 {
158 int vector, old_vector;
159 bool masked;
160
161 vector = data & HV_SYNIC_SINT_VECTOR_MASK;
162 masked = data & HV_SYNIC_SINT_MASKED;
163
164 /*
165 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
166 * default '0x10000' value on boot and this should not #GP. We need to
167 * allow zero-initing the register from host as well.
168 */
169 if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
170 return 1;
171 /*
172 * Guest may configure multiple SINTs to use the same vector, so
173 * we maintain a bitmap of vectors handled by synic, and a
174 * bitmap of vectors with auto-eoi behavior. The bitmaps are
175 * updated here, and atomically queried on fast paths.
176 */
177 old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
178
179 atomic64_set(&synic->sint[sint], data);
180
181 synic_update_vector(synic, old_vector);
182
183 synic_update_vector(synic, vector);
184
185 /* Load SynIC vectors into EOI exit bitmap */
186 kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
187 return 0;
188 }
189
get_vcpu_by_vpidx(struct kvm * kvm,u32 vpidx)190 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
191 {
192 struct kvm_vcpu *vcpu = NULL;
193 unsigned long i;
194
195 if (vpidx >= KVM_MAX_VCPUS)
196 return NULL;
197
198 vcpu = kvm_get_vcpu(kvm, vpidx);
199 if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
200 return vcpu;
201 kvm_for_each_vcpu(i, vcpu, kvm)
202 if (kvm_hv_get_vpindex(vcpu) == vpidx)
203 return vcpu;
204 return NULL;
205 }
206
synic_get(struct kvm * kvm,u32 vpidx)207 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
208 {
209 struct kvm_vcpu *vcpu;
210 struct kvm_vcpu_hv_synic *synic;
211
212 vcpu = get_vcpu_by_vpidx(kvm, vpidx);
213 if (!vcpu || !to_hv_vcpu(vcpu))
214 return NULL;
215 synic = to_hv_synic(vcpu);
216 return (synic->active) ? synic : NULL;
217 }
218
kvm_hv_notify_acked_sint(struct kvm_vcpu * vcpu,u32 sint)219 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
220 {
221 struct kvm *kvm = vcpu->kvm;
222 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
223 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
224 struct kvm_vcpu_hv_stimer *stimer;
225 int gsi, idx;
226
227 trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
228
229 /* Try to deliver pending Hyper-V SynIC timers messages */
230 for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
231 stimer = &hv_vcpu->stimer[idx];
232 if (stimer->msg_pending && stimer->config.enable &&
233 !stimer->config.direct_mode &&
234 stimer->config.sintx == sint)
235 stimer_mark_pending(stimer, false);
236 }
237
238 idx = srcu_read_lock(&kvm->irq_srcu);
239 gsi = atomic_read(&synic->sint_to_gsi[sint]);
240 if (gsi != -1)
241 kvm_notify_acked_gsi(kvm, gsi);
242 srcu_read_unlock(&kvm->irq_srcu, idx);
243 }
244
synic_exit(struct kvm_vcpu_hv_synic * synic,u32 msr)245 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
246 {
247 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
248 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
249
250 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
251 hv_vcpu->exit.u.synic.msr = msr;
252 hv_vcpu->exit.u.synic.control = synic->control;
253 hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
254 hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
255
256 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
257 }
258
synic_set_msr(struct kvm_vcpu_hv_synic * synic,u32 msr,u64 data,bool host)259 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
260 u32 msr, u64 data, bool host)
261 {
262 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
263 int ret;
264
265 if (!synic->active && (!host || data))
266 return 1;
267
268 trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
269
270 ret = 0;
271 switch (msr) {
272 case HV_X64_MSR_SCONTROL:
273 synic->control = data;
274 if (!host)
275 synic_exit(synic, msr);
276 break;
277 case HV_X64_MSR_SVERSION:
278 if (!host) {
279 ret = 1;
280 break;
281 }
282 synic->version = data;
283 break;
284 case HV_X64_MSR_SIEFP:
285 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
286 !synic->dont_zero_synic_pages)
287 if (kvm_clear_guest(vcpu->kvm,
288 data & PAGE_MASK, PAGE_SIZE)) {
289 ret = 1;
290 break;
291 }
292 synic->evt_page = data;
293 if (!host)
294 synic_exit(synic, msr);
295 break;
296 case HV_X64_MSR_SIMP:
297 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
298 !synic->dont_zero_synic_pages)
299 if (kvm_clear_guest(vcpu->kvm,
300 data & PAGE_MASK, PAGE_SIZE)) {
301 ret = 1;
302 break;
303 }
304 synic->msg_page = data;
305 if (!host)
306 synic_exit(synic, msr);
307 break;
308 case HV_X64_MSR_EOM: {
309 int i;
310
311 if (!synic->active)
312 break;
313
314 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
315 kvm_hv_notify_acked_sint(vcpu, i);
316 break;
317 }
318 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
319 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
320 break;
321 default:
322 ret = 1;
323 break;
324 }
325 return ret;
326 }
327
kvm_hv_is_syndbg_enabled(struct kvm_vcpu * vcpu)328 static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
329 {
330 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
331
332 return hv_vcpu->cpuid_cache.syndbg_cap_eax &
333 HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
334 }
335
kvm_hv_syndbg_complete_userspace(struct kvm_vcpu * vcpu)336 static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
337 {
338 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
339
340 if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
341 hv->hv_syndbg.control.status =
342 vcpu->run->hyperv.u.syndbg.status;
343 return 1;
344 }
345
syndbg_exit(struct kvm_vcpu * vcpu,u32 msr)346 static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
347 {
348 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
349 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
350
351 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
352 hv_vcpu->exit.u.syndbg.msr = msr;
353 hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
354 hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
355 hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
356 hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
357 vcpu->arch.complete_userspace_io =
358 kvm_hv_syndbg_complete_userspace;
359
360 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
361 }
362
syndbg_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)363 static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
364 {
365 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
366
367 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
368 return 1;
369
370 trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
371 to_hv_vcpu(vcpu)->vp_index, msr, data);
372 switch (msr) {
373 case HV_X64_MSR_SYNDBG_CONTROL:
374 syndbg->control.control = data;
375 if (!host)
376 syndbg_exit(vcpu, msr);
377 break;
378 case HV_X64_MSR_SYNDBG_STATUS:
379 syndbg->control.status = data;
380 break;
381 case HV_X64_MSR_SYNDBG_SEND_BUFFER:
382 syndbg->control.send_page = data;
383 break;
384 case HV_X64_MSR_SYNDBG_RECV_BUFFER:
385 syndbg->control.recv_page = data;
386 break;
387 case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
388 syndbg->control.pending_page = data;
389 if (!host)
390 syndbg_exit(vcpu, msr);
391 break;
392 case HV_X64_MSR_SYNDBG_OPTIONS:
393 syndbg->options = data;
394 break;
395 default:
396 break;
397 }
398
399 return 0;
400 }
401
syndbg_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)402 static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
403 {
404 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
405
406 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
407 return 1;
408
409 switch (msr) {
410 case HV_X64_MSR_SYNDBG_CONTROL:
411 *pdata = syndbg->control.control;
412 break;
413 case HV_X64_MSR_SYNDBG_STATUS:
414 *pdata = syndbg->control.status;
415 break;
416 case HV_X64_MSR_SYNDBG_SEND_BUFFER:
417 *pdata = syndbg->control.send_page;
418 break;
419 case HV_X64_MSR_SYNDBG_RECV_BUFFER:
420 *pdata = syndbg->control.recv_page;
421 break;
422 case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
423 *pdata = syndbg->control.pending_page;
424 break;
425 case HV_X64_MSR_SYNDBG_OPTIONS:
426 *pdata = syndbg->options;
427 break;
428 default:
429 break;
430 }
431
432 trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);
433
434 return 0;
435 }
436
synic_get_msr(struct kvm_vcpu_hv_synic * synic,u32 msr,u64 * pdata,bool host)437 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
438 bool host)
439 {
440 int ret;
441
442 if (!synic->active && !host)
443 return 1;
444
445 ret = 0;
446 switch (msr) {
447 case HV_X64_MSR_SCONTROL:
448 *pdata = synic->control;
449 break;
450 case HV_X64_MSR_SVERSION:
451 *pdata = synic->version;
452 break;
453 case HV_X64_MSR_SIEFP:
454 *pdata = synic->evt_page;
455 break;
456 case HV_X64_MSR_SIMP:
457 *pdata = synic->msg_page;
458 break;
459 case HV_X64_MSR_EOM:
460 *pdata = 0;
461 break;
462 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
463 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
464 break;
465 default:
466 ret = 1;
467 break;
468 }
469 return ret;
470 }
471
synic_set_irq(struct kvm_vcpu_hv_synic * synic,u32 sint)472 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
473 {
474 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
475 struct kvm_lapic_irq irq;
476 int ret, vector;
477
478 if (KVM_BUG_ON(!lapic_in_kernel(vcpu), vcpu->kvm))
479 return -EINVAL;
480
481 if (sint >= ARRAY_SIZE(synic->sint))
482 return -EINVAL;
483
484 vector = synic_get_sint_vector(synic_read_sint(synic, sint));
485 if (vector < 0)
486 return -ENOENT;
487
488 memset(&irq, 0, sizeof(irq));
489 irq.shorthand = APIC_DEST_SELF;
490 irq.dest_mode = APIC_DEST_PHYSICAL;
491 irq.delivery_mode = APIC_DM_FIXED;
492 irq.vector = vector;
493 irq.level = 1;
494
495 ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
496 trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
497 return ret;
498 }
499
kvm_hv_synic_set_irq(struct kvm * kvm,u32 vpidx,u32 sint)500 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
501 {
502 struct kvm_vcpu_hv_synic *synic;
503
504 synic = synic_get(kvm, vpidx);
505 if (!synic)
506 return -EINVAL;
507
508 return synic_set_irq(synic, sint);
509 }
510
kvm_hv_synic_send_eoi(struct kvm_vcpu * vcpu,int vector)511 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
512 {
513 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
514 int i;
515
516 trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
517
518 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
519 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
520 kvm_hv_notify_acked_sint(vcpu, i);
521 }
522
kvm_hv_set_sint_gsi(struct kvm * kvm,u32 vpidx,u32 sint,int gsi)523 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
524 {
525 struct kvm_vcpu_hv_synic *synic;
526
527 synic = synic_get(kvm, vpidx);
528 if (!synic)
529 return -EINVAL;
530
531 if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
532 return -EINVAL;
533
534 atomic_set(&synic->sint_to_gsi[sint], gsi);
535 return 0;
536 }
537
kvm_hv_irq_routing_update(struct kvm * kvm)538 void kvm_hv_irq_routing_update(struct kvm *kvm)
539 {
540 struct kvm_irq_routing_table *irq_rt;
541 struct kvm_kernel_irq_routing_entry *e;
542 u32 gsi;
543
544 irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
545 lockdep_is_held(&kvm->irq_lock));
546
547 for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
548 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
549 if (e->type == KVM_IRQ_ROUTING_HV_SINT)
550 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
551 e->hv_sint.sint, gsi);
552 }
553 }
554 }
555
synic_init(struct kvm_vcpu_hv_synic * synic)556 static void synic_init(struct kvm_vcpu_hv_synic *synic)
557 {
558 int i;
559
560 memset(synic, 0, sizeof(*synic));
561 synic->version = HV_SYNIC_VERSION_1;
562 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
563 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
564 atomic_set(&synic->sint_to_gsi[i], -1);
565 }
566 }
567
get_time_ref_counter(struct kvm * kvm)568 static u64 get_time_ref_counter(struct kvm *kvm)
569 {
570 struct kvm_hv *hv = to_kvm_hv(kvm);
571 struct kvm_vcpu *vcpu;
572 u64 tsc;
573
574 /*
575 * Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
576 * is broken, disabled or being updated.
577 */
578 if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET)
579 return div_u64(get_kvmclock_ns(kvm), 100);
580
581 vcpu = kvm_get_vcpu(kvm, 0);
582 tsc = kvm_read_l1_tsc(vcpu, rdtsc());
583 return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
584 + hv->tsc_ref.tsc_offset;
585 }
586
stimer_mark_pending(struct kvm_vcpu_hv_stimer * stimer,bool vcpu_kick)587 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
588 bool vcpu_kick)
589 {
590 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
591
592 set_bit(stimer->index,
593 to_hv_vcpu(vcpu)->stimer_pending_bitmap);
594 kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
595 if (vcpu_kick)
596 kvm_vcpu_kick(vcpu);
597 }
598
stimer_cleanup(struct kvm_vcpu_hv_stimer * stimer)599 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
600 {
601 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
602
603 trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
604 stimer->index);
605
606 hrtimer_cancel(&stimer->timer);
607 clear_bit(stimer->index,
608 to_hv_vcpu(vcpu)->stimer_pending_bitmap);
609 stimer->msg_pending = false;
610 stimer->exp_time = 0;
611 }
612
stimer_timer_callback(struct hrtimer * timer)613 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
614 {
615 struct kvm_vcpu_hv_stimer *stimer;
616
617 stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
618 trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
619 stimer->index);
620 stimer_mark_pending(stimer, true);
621
622 return HRTIMER_NORESTART;
623 }
624
625 /*
626 * stimer_start() assumptions:
627 * a) stimer->count is not equal to 0
628 * b) stimer->config has HV_STIMER_ENABLE flag
629 */
stimer_start(struct kvm_vcpu_hv_stimer * stimer)630 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
631 {
632 u64 time_now;
633 ktime_t ktime_now;
634
635 time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
636 ktime_now = ktime_get();
637
638 if (stimer->config.periodic) {
639 if (stimer->exp_time) {
640 if (time_now >= stimer->exp_time) {
641 u64 remainder;
642
643 div64_u64_rem(time_now - stimer->exp_time,
644 stimer->count, &remainder);
645 stimer->exp_time =
646 time_now + (stimer->count - remainder);
647 }
648 } else
649 stimer->exp_time = time_now + stimer->count;
650
651 trace_kvm_hv_stimer_start_periodic(
652 hv_stimer_to_vcpu(stimer)->vcpu_id,
653 stimer->index,
654 time_now, stimer->exp_time);
655
656 hrtimer_start(&stimer->timer,
657 ktime_add_ns(ktime_now,
658 100 * (stimer->exp_time - time_now)),
659 HRTIMER_MODE_ABS);
660 return 0;
661 }
662 stimer->exp_time = stimer->count;
663 if (time_now >= stimer->count) {
664 /*
665 * Expire timer according to Hypervisor Top-Level Functional
666 * specification v4(15.3.1):
667 * "If a one shot is enabled and the specified count is in
668 * the past, it will expire immediately."
669 */
670 stimer_mark_pending(stimer, false);
671 return 0;
672 }
673
674 trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
675 stimer->index,
676 time_now, stimer->count);
677
678 hrtimer_start(&stimer->timer,
679 ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
680 HRTIMER_MODE_ABS);
681 return 0;
682 }
683
stimer_set_config(struct kvm_vcpu_hv_stimer * stimer,u64 config,bool host)684 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
685 bool host)
686 {
687 union hv_stimer_config new_config = {.as_uint64 = config},
688 old_config = {.as_uint64 = stimer->config.as_uint64};
689 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
690 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
691 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
692
693 if (!synic->active && (!host || config))
694 return 1;
695
696 if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode &&
697 !(hv_vcpu->cpuid_cache.features_edx &
698 HV_STIMER_DIRECT_MODE_AVAILABLE)))
699 return 1;
700
701 trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
702 stimer->index, config, host);
703
704 stimer_cleanup(stimer);
705 if (old_config.enable &&
706 !new_config.direct_mode && new_config.sintx == 0)
707 new_config.enable = 0;
708 stimer->config.as_uint64 = new_config.as_uint64;
709
710 if (stimer->config.enable)
711 stimer_mark_pending(stimer, false);
712
713 return 0;
714 }
715
stimer_set_count(struct kvm_vcpu_hv_stimer * stimer,u64 count,bool host)716 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
717 bool host)
718 {
719 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
720 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
721
722 if (!synic->active && (!host || count))
723 return 1;
724
725 trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
726 stimer->index, count, host);
727
728 stimer_cleanup(stimer);
729 stimer->count = count;
730 if (stimer->count == 0)
731 stimer->config.enable = 0;
732 else if (stimer->config.auto_enable)
733 stimer->config.enable = 1;
734
735 if (stimer->config.enable)
736 stimer_mark_pending(stimer, false);
737
738 return 0;
739 }
740
stimer_get_config(struct kvm_vcpu_hv_stimer * stimer,u64 * pconfig)741 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
742 {
743 *pconfig = stimer->config.as_uint64;
744 return 0;
745 }
746
stimer_get_count(struct kvm_vcpu_hv_stimer * stimer,u64 * pcount)747 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
748 {
749 *pcount = stimer->count;
750 return 0;
751 }
752
synic_deliver_msg(struct kvm_vcpu_hv_synic * synic,u32 sint,struct hv_message * src_msg,bool no_retry)753 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
754 struct hv_message *src_msg, bool no_retry)
755 {
756 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
757 int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
758 gfn_t msg_page_gfn;
759 struct hv_message_header hv_hdr;
760 int r;
761
762 if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
763 return -ENOENT;
764
765 msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
766
767 /*
768 * Strictly following the spec-mandated ordering would assume setting
769 * .msg_pending before checking .message_type. However, this function
770 * is only called in vcpu context so the entire update is atomic from
771 * guest POV and thus the exact order here doesn't matter.
772 */
773 r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
774 msg_off + offsetof(struct hv_message,
775 header.message_type),
776 sizeof(hv_hdr.message_type));
777 if (r < 0)
778 return r;
779
780 if (hv_hdr.message_type != HVMSG_NONE) {
781 if (no_retry)
782 return 0;
783
784 hv_hdr.message_flags.msg_pending = 1;
785 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
786 &hv_hdr.message_flags,
787 msg_off +
788 offsetof(struct hv_message,
789 header.message_flags),
790 sizeof(hv_hdr.message_flags));
791 if (r < 0)
792 return r;
793 return -EAGAIN;
794 }
795
796 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
797 sizeof(src_msg->header) +
798 src_msg->header.payload_size);
799 if (r < 0)
800 return r;
801
802 r = synic_set_irq(synic, sint);
803 if (r < 0)
804 return r;
805 if (r == 0)
806 return -EFAULT;
807 return 0;
808 }
809
stimer_send_msg(struct kvm_vcpu_hv_stimer * stimer)810 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
811 {
812 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
813 struct hv_message *msg = &stimer->msg;
814 struct hv_timer_message_payload *payload =
815 (struct hv_timer_message_payload *)&msg->u.payload;
816
817 /*
818 * To avoid piling up periodic ticks, don't retry message
819 * delivery for them (within "lazy" lost ticks policy).
820 */
821 bool no_retry = stimer->config.periodic;
822
823 payload->expiration_time = stimer->exp_time;
824 payload->delivery_time = get_time_ref_counter(vcpu->kvm);
825 return synic_deliver_msg(to_hv_synic(vcpu),
826 stimer->config.sintx, msg,
827 no_retry);
828 }
829
stimer_notify_direct(struct kvm_vcpu_hv_stimer * stimer)830 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
831 {
832 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
833 struct kvm_lapic_irq irq = {
834 .delivery_mode = APIC_DM_FIXED,
835 .vector = stimer->config.apic_vector
836 };
837
838 if (lapic_in_kernel(vcpu))
839 return !kvm_apic_set_irq(vcpu, &irq, NULL);
840 return 0;
841 }
842
stimer_expiration(struct kvm_vcpu_hv_stimer * stimer)843 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
844 {
845 int r, direct = stimer->config.direct_mode;
846
847 stimer->msg_pending = true;
848 if (!direct)
849 r = stimer_send_msg(stimer);
850 else
851 r = stimer_notify_direct(stimer);
852 trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
853 stimer->index, direct, r);
854 if (!r) {
855 stimer->msg_pending = false;
856 if (!(stimer->config.periodic))
857 stimer->config.enable = 0;
858 }
859 }
860
kvm_hv_process_stimers(struct kvm_vcpu * vcpu)861 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
862 {
863 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
864 struct kvm_vcpu_hv_stimer *stimer;
865 u64 time_now, exp_time;
866 int i;
867
868 if (!hv_vcpu)
869 return;
870
871 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
872 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
873 stimer = &hv_vcpu->stimer[i];
874 if (stimer->config.enable) {
875 exp_time = stimer->exp_time;
876
877 if (exp_time) {
878 time_now =
879 get_time_ref_counter(vcpu->kvm);
880 if (time_now >= exp_time)
881 stimer_expiration(stimer);
882 }
883
884 if ((stimer->config.enable) &&
885 stimer->count) {
886 if (!stimer->msg_pending)
887 stimer_start(stimer);
888 } else
889 stimer_cleanup(stimer);
890 }
891 }
892 }
893
kvm_hv_vcpu_uninit(struct kvm_vcpu * vcpu)894 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
895 {
896 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
897 int i;
898
899 if (!hv_vcpu)
900 return;
901
902 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
903 stimer_cleanup(&hv_vcpu->stimer[i]);
904
905 kfree(hv_vcpu);
906 vcpu->arch.hyperv = NULL;
907 }
908
kvm_hv_assist_page_enabled(struct kvm_vcpu * vcpu)909 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
910 {
911 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
912
913 if (!hv_vcpu)
914 return false;
915
916 if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
917 return false;
918 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
919 }
920 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
921
kvm_hv_get_assist_page(struct kvm_vcpu * vcpu)922 int kvm_hv_get_assist_page(struct kvm_vcpu *vcpu)
923 {
924 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
925
926 if (!hv_vcpu || !kvm_hv_assist_page_enabled(vcpu))
927 return -EFAULT;
928
929 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
930 &hv_vcpu->vp_assist_page, sizeof(struct hv_vp_assist_page));
931 }
932 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
933
stimer_prepare_msg(struct kvm_vcpu_hv_stimer * stimer)934 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
935 {
936 struct hv_message *msg = &stimer->msg;
937 struct hv_timer_message_payload *payload =
938 (struct hv_timer_message_payload *)&msg->u.payload;
939
940 memset(&msg->header, 0, sizeof(msg->header));
941 msg->header.message_type = HVMSG_TIMER_EXPIRED;
942 msg->header.payload_size = sizeof(*payload);
943
944 payload->timer_index = stimer->index;
945 payload->expiration_time = 0;
946 payload->delivery_time = 0;
947 }
948
stimer_init(struct kvm_vcpu_hv_stimer * stimer,int timer_index)949 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
950 {
951 memset(stimer, 0, sizeof(*stimer));
952 stimer->index = timer_index;
953 hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
954 stimer->timer.function = stimer_timer_callback;
955 stimer_prepare_msg(stimer);
956 }
957
kvm_hv_vcpu_init(struct kvm_vcpu * vcpu)958 int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
959 {
960 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
961 int i;
962
963 if (hv_vcpu)
964 return 0;
965
966 hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
967 if (!hv_vcpu)
968 return -ENOMEM;
969
970 vcpu->arch.hyperv = hv_vcpu;
971 hv_vcpu->vcpu = vcpu;
972
973 synic_init(&hv_vcpu->synic);
974
975 bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
976 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
977 stimer_init(&hv_vcpu->stimer[i], i);
978
979 hv_vcpu->vp_index = vcpu->vcpu_idx;
980
981 for (i = 0; i < HV_NR_TLB_FLUSH_FIFOS; i++) {
982 INIT_KFIFO(hv_vcpu->tlb_flush_fifo[i].entries);
983 spin_lock_init(&hv_vcpu->tlb_flush_fifo[i].write_lock);
984 }
985
986 return 0;
987 }
988
kvm_hv_activate_synic(struct kvm_vcpu * vcpu,bool dont_zero_synic_pages)989 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
990 {
991 struct kvm_vcpu_hv_synic *synic;
992 int r;
993
994 r = kvm_hv_vcpu_init(vcpu);
995 if (r)
996 return r;
997
998 synic = to_hv_synic(vcpu);
999
1000 synic->active = true;
1001 synic->dont_zero_synic_pages = dont_zero_synic_pages;
1002 synic->control = HV_SYNIC_CONTROL_ENABLE;
1003 return 0;
1004 }
1005
kvm_hv_msr_partition_wide(u32 msr)1006 static bool kvm_hv_msr_partition_wide(u32 msr)
1007 {
1008 bool r = false;
1009
1010 switch (msr) {
1011 case HV_X64_MSR_GUEST_OS_ID:
1012 case HV_X64_MSR_HYPERCALL:
1013 case HV_X64_MSR_REFERENCE_TSC:
1014 case HV_X64_MSR_TIME_REF_COUNT:
1015 case HV_X64_MSR_CRASH_CTL:
1016 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1017 case HV_X64_MSR_RESET:
1018 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1019 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1020 case HV_X64_MSR_TSC_EMULATION_STATUS:
1021 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1022 case HV_X64_MSR_SYNDBG_OPTIONS:
1023 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1024 r = true;
1025 break;
1026 }
1027
1028 return r;
1029 }
1030
kvm_hv_msr_get_crash_data(struct kvm * kvm,u32 index,u64 * pdata)1031 static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
1032 {
1033 struct kvm_hv *hv = to_kvm_hv(kvm);
1034 size_t size = ARRAY_SIZE(hv->hv_crash_param);
1035
1036 if (WARN_ON_ONCE(index >= size))
1037 return -EINVAL;
1038
1039 *pdata = hv->hv_crash_param[array_index_nospec(index, size)];
1040 return 0;
1041 }
1042
kvm_hv_msr_get_crash_ctl(struct kvm * kvm,u64 * pdata)1043 static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
1044 {
1045 struct kvm_hv *hv = to_kvm_hv(kvm);
1046
1047 *pdata = hv->hv_crash_ctl;
1048 return 0;
1049 }
1050
kvm_hv_msr_set_crash_ctl(struct kvm * kvm,u64 data)1051 static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
1052 {
1053 struct kvm_hv *hv = to_kvm_hv(kvm);
1054
1055 hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
1056
1057 return 0;
1058 }
1059
kvm_hv_msr_set_crash_data(struct kvm * kvm,u32 index,u64 data)1060 static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
1061 {
1062 struct kvm_hv *hv = to_kvm_hv(kvm);
1063 size_t size = ARRAY_SIZE(hv->hv_crash_param);
1064
1065 if (WARN_ON_ONCE(index >= size))
1066 return -EINVAL;
1067
1068 hv->hv_crash_param[array_index_nospec(index, size)] = data;
1069 return 0;
1070 }
1071
1072 /*
1073 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
1074 * between them is possible:
1075 *
1076 * kvmclock formula:
1077 * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
1078 * + system_time
1079 *
1080 * Hyper-V formula:
1081 * nsec/100 = ticks * scale / 2^64 + offset
1082 *
1083 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
1084 * By dividing the kvmclock formula by 100 and equating what's left we get:
1085 * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1086 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100
1087 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100
1088 *
1089 * Now expand the kvmclock formula and divide by 100:
1090 * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
1091 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
1092 * + system_time
1093 * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1094 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1095 * + system_time / 100
1096 *
1097 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
1098 * nsec/100 = ticks * scale / 2^64
1099 * - tsc_timestamp * scale / 2^64
1100 * + system_time / 100
1101 *
1102 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
1103 * offset = system_time / 100 - tsc_timestamp * scale / 2^64
1104 *
1105 * These two equivalencies are implemented in this function.
1106 */
compute_tsc_page_parameters(struct pvclock_vcpu_time_info * hv_clock,struct ms_hyperv_tsc_page * tsc_ref)1107 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
1108 struct ms_hyperv_tsc_page *tsc_ref)
1109 {
1110 u64 max_mul;
1111
1112 if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
1113 return false;
1114
1115 /*
1116 * check if scale would overflow, if so we use the time ref counter
1117 * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
1118 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
1119 * tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
1120 */
1121 max_mul = 100ull << (32 - hv_clock->tsc_shift);
1122 if (hv_clock->tsc_to_system_mul >= max_mul)
1123 return false;
1124
1125 /*
1126 * Otherwise compute the scale and offset according to the formulas
1127 * derived above.
1128 */
1129 tsc_ref->tsc_scale =
1130 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
1131 hv_clock->tsc_to_system_mul,
1132 100);
1133
1134 tsc_ref->tsc_offset = hv_clock->system_time;
1135 do_div(tsc_ref->tsc_offset, 100);
1136 tsc_ref->tsc_offset -=
1137 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
1138 return true;
1139 }
1140
1141 /*
1142 * Don't touch TSC page values if the guest has opted for TSC emulation after
1143 * migration. KVM doesn't fully support reenlightenment notifications and TSC
1144 * access emulation and Hyper-V is known to expect the values in TSC page to
1145 * stay constant before TSC access emulation is disabled from guest side
1146 * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
1147 * frequency and guest visible TSC value across migration (and prevent it when
1148 * TSC scaling is unsupported).
1149 */
tsc_page_update_unsafe(struct kvm_hv * hv)1150 static inline bool tsc_page_update_unsafe(struct kvm_hv *hv)
1151 {
1152 return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) &&
1153 hv->hv_tsc_emulation_control;
1154 }
1155
kvm_hv_setup_tsc_page(struct kvm * kvm,struct pvclock_vcpu_time_info * hv_clock)1156 void kvm_hv_setup_tsc_page(struct kvm *kvm,
1157 struct pvclock_vcpu_time_info *hv_clock)
1158 {
1159 struct kvm_hv *hv = to_kvm_hv(kvm);
1160 u32 tsc_seq;
1161 u64 gfn;
1162
1163 BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
1164 BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
1165
1166 mutex_lock(&hv->hv_lock);
1167
1168 if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
1169 hv->hv_tsc_page_status == HV_TSC_PAGE_SET ||
1170 hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET)
1171 goto out_unlock;
1172
1173 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1174 goto out_unlock;
1175
1176 gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1177 /*
1178 * Because the TSC parameters only vary when there is a
1179 * change in the master clock, do not bother with caching.
1180 */
1181 if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
1182 &tsc_seq, sizeof(tsc_seq))))
1183 goto out_err;
1184
1185 if (tsc_seq && tsc_page_update_unsafe(hv)) {
1186 if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1187 goto out_err;
1188
1189 hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1190 goto out_unlock;
1191 }
1192
1193 /*
1194 * While we're computing and writing the parameters, force the
1195 * guest to use the time reference count MSR.
1196 */
1197 hv->tsc_ref.tsc_sequence = 0;
1198 if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1199 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1200 goto out_err;
1201
1202 if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
1203 goto out_err;
1204
1205 /* Ensure sequence is zero before writing the rest of the struct. */
1206 smp_wmb();
1207 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1208 goto out_err;
1209
1210 /*
1211 * Now switch to the TSC page mechanism by writing the sequence.
1212 */
1213 tsc_seq++;
1214 if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
1215 tsc_seq = 1;
1216
1217 /* Write the struct entirely before the non-zero sequence. */
1218 smp_wmb();
1219
1220 hv->tsc_ref.tsc_sequence = tsc_seq;
1221 if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1222 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1223 goto out_err;
1224
1225 hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1226 goto out_unlock;
1227
1228 out_err:
1229 hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1230 out_unlock:
1231 mutex_unlock(&hv->hv_lock);
1232 }
1233
kvm_hv_request_tsc_page_update(struct kvm * kvm)1234 void kvm_hv_request_tsc_page_update(struct kvm *kvm)
1235 {
1236 struct kvm_hv *hv = to_kvm_hv(kvm);
1237
1238 mutex_lock(&hv->hv_lock);
1239
1240 if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET &&
1241 !tsc_page_update_unsafe(hv))
1242 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1243
1244 mutex_unlock(&hv->hv_lock);
1245 }
1246
hv_check_msr_access(struct kvm_vcpu_hv * hv_vcpu,u32 msr)1247 static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr)
1248 {
1249 if (!hv_vcpu->enforce_cpuid)
1250 return true;
1251
1252 switch (msr) {
1253 case HV_X64_MSR_GUEST_OS_ID:
1254 case HV_X64_MSR_HYPERCALL:
1255 return hv_vcpu->cpuid_cache.features_eax &
1256 HV_MSR_HYPERCALL_AVAILABLE;
1257 case HV_X64_MSR_VP_RUNTIME:
1258 return hv_vcpu->cpuid_cache.features_eax &
1259 HV_MSR_VP_RUNTIME_AVAILABLE;
1260 case HV_X64_MSR_TIME_REF_COUNT:
1261 return hv_vcpu->cpuid_cache.features_eax &
1262 HV_MSR_TIME_REF_COUNT_AVAILABLE;
1263 case HV_X64_MSR_VP_INDEX:
1264 return hv_vcpu->cpuid_cache.features_eax &
1265 HV_MSR_VP_INDEX_AVAILABLE;
1266 case HV_X64_MSR_RESET:
1267 return hv_vcpu->cpuid_cache.features_eax &
1268 HV_MSR_RESET_AVAILABLE;
1269 case HV_X64_MSR_REFERENCE_TSC:
1270 return hv_vcpu->cpuid_cache.features_eax &
1271 HV_MSR_REFERENCE_TSC_AVAILABLE;
1272 case HV_X64_MSR_SCONTROL:
1273 case HV_X64_MSR_SVERSION:
1274 case HV_X64_MSR_SIEFP:
1275 case HV_X64_MSR_SIMP:
1276 case HV_X64_MSR_EOM:
1277 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1278 return hv_vcpu->cpuid_cache.features_eax &
1279 HV_MSR_SYNIC_AVAILABLE;
1280 case HV_X64_MSR_STIMER0_CONFIG:
1281 case HV_X64_MSR_STIMER1_CONFIG:
1282 case HV_X64_MSR_STIMER2_CONFIG:
1283 case HV_X64_MSR_STIMER3_CONFIG:
1284 case HV_X64_MSR_STIMER0_COUNT:
1285 case HV_X64_MSR_STIMER1_COUNT:
1286 case HV_X64_MSR_STIMER2_COUNT:
1287 case HV_X64_MSR_STIMER3_COUNT:
1288 return hv_vcpu->cpuid_cache.features_eax &
1289 HV_MSR_SYNTIMER_AVAILABLE;
1290 case HV_X64_MSR_EOI:
1291 case HV_X64_MSR_ICR:
1292 case HV_X64_MSR_TPR:
1293 case HV_X64_MSR_VP_ASSIST_PAGE:
1294 return hv_vcpu->cpuid_cache.features_eax &
1295 HV_MSR_APIC_ACCESS_AVAILABLE;
1296 break;
1297 case HV_X64_MSR_TSC_FREQUENCY:
1298 case HV_X64_MSR_APIC_FREQUENCY:
1299 return hv_vcpu->cpuid_cache.features_eax &
1300 HV_ACCESS_FREQUENCY_MSRS;
1301 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1302 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1303 case HV_X64_MSR_TSC_EMULATION_STATUS:
1304 return hv_vcpu->cpuid_cache.features_eax &
1305 HV_ACCESS_REENLIGHTENMENT;
1306 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1307 return hv_vcpu->cpuid_cache.features_eax &
1308 HV_ACCESS_TSC_INVARIANT;
1309 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1310 case HV_X64_MSR_CRASH_CTL:
1311 return hv_vcpu->cpuid_cache.features_edx &
1312 HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1313 case HV_X64_MSR_SYNDBG_OPTIONS:
1314 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1315 return hv_vcpu->cpuid_cache.features_edx &
1316 HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1317 default:
1318 break;
1319 }
1320
1321 return false;
1322 }
1323
kvm_hv_set_msr_pw(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1324 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
1325 bool host)
1326 {
1327 struct kvm *kvm = vcpu->kvm;
1328 struct kvm_hv *hv = to_kvm_hv(kvm);
1329
1330 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1331 return 1;
1332
1333 switch (msr) {
1334 case HV_X64_MSR_GUEST_OS_ID:
1335 hv->hv_guest_os_id = data;
1336 /* setting guest os id to zero disables hypercall page */
1337 if (!hv->hv_guest_os_id)
1338 hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1339 break;
1340 case HV_X64_MSR_HYPERCALL: {
1341 u8 instructions[9];
1342 int i = 0;
1343 u64 addr;
1344
1345 /* if guest os id is not set hypercall should remain disabled */
1346 if (!hv->hv_guest_os_id)
1347 break;
1348 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1349 hv->hv_hypercall = data;
1350 break;
1351 }
1352
1353 /*
1354 * If Xen and Hyper-V hypercalls are both enabled, disambiguate
1355 * the same way Xen itself does, by setting the bit 31 of EAX
1356 * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
1357 * going to be clobbered on 64-bit.
1358 */
1359 if (kvm_xen_hypercall_enabled(kvm)) {
1360 /* orl $0x80000000, %eax */
1361 instructions[i++] = 0x0d;
1362 instructions[i++] = 0x00;
1363 instructions[i++] = 0x00;
1364 instructions[i++] = 0x00;
1365 instructions[i++] = 0x80;
1366 }
1367
1368 /* vmcall/vmmcall */
1369 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i);
1370 i += 3;
1371
1372 /* ret */
1373 ((unsigned char *)instructions)[i++] = 0xc3;
1374
1375 addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
1376 if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
1377 return 1;
1378 hv->hv_hypercall = data;
1379 break;
1380 }
1381 case HV_X64_MSR_REFERENCE_TSC:
1382 hv->hv_tsc_page = data;
1383 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) {
1384 if (!host)
1385 hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED;
1386 else
1387 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1388 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1389 } else {
1390 hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET;
1391 }
1392 break;
1393 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1394 return kvm_hv_msr_set_crash_data(kvm,
1395 msr - HV_X64_MSR_CRASH_P0,
1396 data);
1397 case HV_X64_MSR_CRASH_CTL:
1398 if (host)
1399 return kvm_hv_msr_set_crash_ctl(kvm, data);
1400
1401 if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
1402 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
1403 hv->hv_crash_param[0],
1404 hv->hv_crash_param[1],
1405 hv->hv_crash_param[2],
1406 hv->hv_crash_param[3],
1407 hv->hv_crash_param[4]);
1408
1409 /* Send notification about crash to user space */
1410 kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
1411 }
1412 break;
1413 case HV_X64_MSR_RESET:
1414 if (data == 1) {
1415 vcpu_debug(vcpu, "hyper-v reset requested\n");
1416 kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1417 }
1418 break;
1419 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1420 hv->hv_reenlightenment_control = data;
1421 break;
1422 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1423 hv->hv_tsc_emulation_control = data;
1424 break;
1425 case HV_X64_MSR_TSC_EMULATION_STATUS:
1426 if (data && !host)
1427 return 1;
1428
1429 hv->hv_tsc_emulation_status = data;
1430 break;
1431 case HV_X64_MSR_TIME_REF_COUNT:
1432 /* read-only, but still ignore it if host-initiated */
1433 if (!host)
1434 return 1;
1435 break;
1436 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1437 /* Only bit 0 is supported */
1438 if (data & ~HV_EXPOSE_INVARIANT_TSC)
1439 return 1;
1440
1441 /* The feature can't be disabled from the guest */
1442 if (!host && hv->hv_invtsc_control && !data)
1443 return 1;
1444
1445 hv->hv_invtsc_control = data;
1446 break;
1447 case HV_X64_MSR_SYNDBG_OPTIONS:
1448 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1449 return syndbg_set_msr(vcpu, msr, data, host);
1450 default:
1451 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
1452 return 1;
1453 }
1454 return 0;
1455 }
1456
1457 /* Calculate cpu time spent by current task in 100ns units */
current_task_runtime_100ns(void)1458 static u64 current_task_runtime_100ns(void)
1459 {
1460 u64 utime, stime;
1461
1462 task_cputime_adjusted(current, &utime, &stime);
1463
1464 return div_u64(utime + stime, 100);
1465 }
1466
kvm_hv_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1467 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1468 {
1469 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1470
1471 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1472 return 1;
1473
1474 switch (msr) {
1475 case HV_X64_MSR_VP_INDEX: {
1476 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1477 u32 new_vp_index = (u32)data;
1478
1479 if (!host || new_vp_index >= KVM_MAX_VCPUS)
1480 return 1;
1481
1482 if (new_vp_index == hv_vcpu->vp_index)
1483 return 0;
1484
1485 /*
1486 * The VP index is initialized to vcpu_index by
1487 * kvm_hv_vcpu_postcreate so they initially match. Now the
1488 * VP index is changing, adjust num_mismatched_vp_indexes if
1489 * it now matches or no longer matches vcpu_idx.
1490 */
1491 if (hv_vcpu->vp_index == vcpu->vcpu_idx)
1492 atomic_inc(&hv->num_mismatched_vp_indexes);
1493 else if (new_vp_index == vcpu->vcpu_idx)
1494 atomic_dec(&hv->num_mismatched_vp_indexes);
1495
1496 hv_vcpu->vp_index = new_vp_index;
1497 break;
1498 }
1499 case HV_X64_MSR_VP_ASSIST_PAGE: {
1500 u64 gfn;
1501 unsigned long addr;
1502
1503 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1504 hv_vcpu->hv_vapic = data;
1505 if (kvm_lapic_set_pv_eoi(vcpu, 0, 0))
1506 return 1;
1507 break;
1508 }
1509 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1510 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1511 if (kvm_is_error_hva(addr))
1512 return 1;
1513
1514 /*
1515 * Clear apic_assist portion of struct hv_vp_assist_page
1516 * only, there can be valuable data in the rest which needs
1517 * to be preserved e.g. on migration.
1518 */
1519 if (__put_user(0, (u32 __user *)addr))
1520 return 1;
1521 hv_vcpu->hv_vapic = data;
1522 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1523 if (kvm_lapic_set_pv_eoi(vcpu,
1524 gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1525 sizeof(struct hv_vp_assist_page)))
1526 return 1;
1527 break;
1528 }
1529 case HV_X64_MSR_EOI:
1530 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1531 case HV_X64_MSR_ICR:
1532 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1533 case HV_X64_MSR_TPR:
1534 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1535 case HV_X64_MSR_VP_RUNTIME:
1536 if (!host)
1537 return 1;
1538 hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1539 break;
1540 case HV_X64_MSR_SCONTROL:
1541 case HV_X64_MSR_SVERSION:
1542 case HV_X64_MSR_SIEFP:
1543 case HV_X64_MSR_SIMP:
1544 case HV_X64_MSR_EOM:
1545 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1546 return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
1547 case HV_X64_MSR_STIMER0_CONFIG:
1548 case HV_X64_MSR_STIMER1_CONFIG:
1549 case HV_X64_MSR_STIMER2_CONFIG:
1550 case HV_X64_MSR_STIMER3_CONFIG: {
1551 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1552
1553 return stimer_set_config(to_hv_stimer(vcpu, timer_index),
1554 data, host);
1555 }
1556 case HV_X64_MSR_STIMER0_COUNT:
1557 case HV_X64_MSR_STIMER1_COUNT:
1558 case HV_X64_MSR_STIMER2_COUNT:
1559 case HV_X64_MSR_STIMER3_COUNT: {
1560 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1561
1562 return stimer_set_count(to_hv_stimer(vcpu, timer_index),
1563 data, host);
1564 }
1565 case HV_X64_MSR_TSC_FREQUENCY:
1566 case HV_X64_MSR_APIC_FREQUENCY:
1567 /* read-only, but still ignore it if host-initiated */
1568 if (!host)
1569 return 1;
1570 break;
1571 default:
1572 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
1573 return 1;
1574 }
1575
1576 return 0;
1577 }
1578
kvm_hv_get_msr_pw(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1579 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1580 bool host)
1581 {
1582 u64 data = 0;
1583 struct kvm *kvm = vcpu->kvm;
1584 struct kvm_hv *hv = to_kvm_hv(kvm);
1585
1586 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1587 return 1;
1588
1589 switch (msr) {
1590 case HV_X64_MSR_GUEST_OS_ID:
1591 data = hv->hv_guest_os_id;
1592 break;
1593 case HV_X64_MSR_HYPERCALL:
1594 data = hv->hv_hypercall;
1595 break;
1596 case HV_X64_MSR_TIME_REF_COUNT:
1597 data = get_time_ref_counter(kvm);
1598 break;
1599 case HV_X64_MSR_REFERENCE_TSC:
1600 data = hv->hv_tsc_page;
1601 break;
1602 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1603 return kvm_hv_msr_get_crash_data(kvm,
1604 msr - HV_X64_MSR_CRASH_P0,
1605 pdata);
1606 case HV_X64_MSR_CRASH_CTL:
1607 return kvm_hv_msr_get_crash_ctl(kvm, pdata);
1608 case HV_X64_MSR_RESET:
1609 data = 0;
1610 break;
1611 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1612 data = hv->hv_reenlightenment_control;
1613 break;
1614 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1615 data = hv->hv_tsc_emulation_control;
1616 break;
1617 case HV_X64_MSR_TSC_EMULATION_STATUS:
1618 data = hv->hv_tsc_emulation_status;
1619 break;
1620 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1621 data = hv->hv_invtsc_control;
1622 break;
1623 case HV_X64_MSR_SYNDBG_OPTIONS:
1624 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1625 return syndbg_get_msr(vcpu, msr, pdata, host);
1626 default:
1627 kvm_pr_unimpl_rdmsr(vcpu, msr);
1628 return 1;
1629 }
1630
1631 *pdata = data;
1632 return 0;
1633 }
1634
kvm_hv_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1635 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1636 bool host)
1637 {
1638 u64 data = 0;
1639 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1640
1641 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1642 return 1;
1643
1644 switch (msr) {
1645 case HV_X64_MSR_VP_INDEX:
1646 data = hv_vcpu->vp_index;
1647 break;
1648 case HV_X64_MSR_EOI:
1649 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1650 case HV_X64_MSR_ICR:
1651 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1652 case HV_X64_MSR_TPR:
1653 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1654 case HV_X64_MSR_VP_ASSIST_PAGE:
1655 data = hv_vcpu->hv_vapic;
1656 break;
1657 case HV_X64_MSR_VP_RUNTIME:
1658 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1659 break;
1660 case HV_X64_MSR_SCONTROL:
1661 case HV_X64_MSR_SVERSION:
1662 case HV_X64_MSR_SIEFP:
1663 case HV_X64_MSR_SIMP:
1664 case HV_X64_MSR_EOM:
1665 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1666 return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
1667 case HV_X64_MSR_STIMER0_CONFIG:
1668 case HV_X64_MSR_STIMER1_CONFIG:
1669 case HV_X64_MSR_STIMER2_CONFIG:
1670 case HV_X64_MSR_STIMER3_CONFIG: {
1671 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1672
1673 return stimer_get_config(to_hv_stimer(vcpu, timer_index),
1674 pdata);
1675 }
1676 case HV_X64_MSR_STIMER0_COUNT:
1677 case HV_X64_MSR_STIMER1_COUNT:
1678 case HV_X64_MSR_STIMER2_COUNT:
1679 case HV_X64_MSR_STIMER3_COUNT: {
1680 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1681
1682 return stimer_get_count(to_hv_stimer(vcpu, timer_index),
1683 pdata);
1684 }
1685 case HV_X64_MSR_TSC_FREQUENCY:
1686 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1687 break;
1688 case HV_X64_MSR_APIC_FREQUENCY:
1689 data = APIC_BUS_FREQUENCY;
1690 break;
1691 default:
1692 kvm_pr_unimpl_rdmsr(vcpu, msr);
1693 return 1;
1694 }
1695 *pdata = data;
1696 return 0;
1697 }
1698
kvm_hv_set_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1699 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1700 {
1701 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1702
1703 if (!host && !vcpu->arch.hyperv_enabled)
1704 return 1;
1705
1706 if (kvm_hv_vcpu_init(vcpu))
1707 return 1;
1708
1709 if (kvm_hv_msr_partition_wide(msr)) {
1710 int r;
1711
1712 mutex_lock(&hv->hv_lock);
1713 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1714 mutex_unlock(&hv->hv_lock);
1715 return r;
1716 } else
1717 return kvm_hv_set_msr(vcpu, msr, data, host);
1718 }
1719
kvm_hv_get_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1720 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1721 {
1722 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1723
1724 if (!host && !vcpu->arch.hyperv_enabled)
1725 return 1;
1726
1727 if (kvm_hv_vcpu_init(vcpu))
1728 return 1;
1729
1730 if (kvm_hv_msr_partition_wide(msr)) {
1731 int r;
1732
1733 mutex_lock(&hv->hv_lock);
1734 r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
1735 mutex_unlock(&hv->hv_lock);
1736 return r;
1737 } else
1738 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1739 }
1740
sparse_set_to_vcpu_mask(struct kvm * kvm,u64 * sparse_banks,u64 valid_bank_mask,unsigned long * vcpu_mask)1741 static void sparse_set_to_vcpu_mask(struct kvm *kvm, u64 *sparse_banks,
1742 u64 valid_bank_mask, unsigned long *vcpu_mask)
1743 {
1744 struct kvm_hv *hv = to_kvm_hv(kvm);
1745 bool has_mismatch = atomic_read(&hv->num_mismatched_vp_indexes);
1746 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1747 struct kvm_vcpu *vcpu;
1748 int bank, sbank = 0;
1749 unsigned long i;
1750 u64 *bitmap;
1751
1752 BUILD_BUG_ON(sizeof(vp_bitmap) >
1753 sizeof(*vcpu_mask) * BITS_TO_LONGS(KVM_MAX_VCPUS));
1754
1755 /*
1756 * If vp_index == vcpu_idx for all vCPUs, fill vcpu_mask directly, else
1757 * fill a temporary buffer and manually test each vCPU's VP index.
1758 */
1759 if (likely(!has_mismatch))
1760 bitmap = (u64 *)vcpu_mask;
1761 else
1762 bitmap = vp_bitmap;
1763
1764 /*
1765 * Each set of 64 VPs is packed into sparse_banks, with valid_bank_mask
1766 * having a '1' for each bank that exists in sparse_banks. Sets must
1767 * be in ascending order, i.e. bank0..bankN.
1768 */
1769 memset(bitmap, 0, sizeof(vp_bitmap));
1770 for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1771 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1772 bitmap[bank] = sparse_banks[sbank++];
1773
1774 if (likely(!has_mismatch))
1775 return;
1776
1777 bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
1778 kvm_for_each_vcpu(i, vcpu, kvm) {
1779 if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
1780 __set_bit(i, vcpu_mask);
1781 }
1782 }
1783
hv_is_vp_in_sparse_set(u32 vp_id,u64 valid_bank_mask,u64 sparse_banks[])1784 static bool hv_is_vp_in_sparse_set(u32 vp_id, u64 valid_bank_mask, u64 sparse_banks[])
1785 {
1786 int valid_bit_nr = vp_id / HV_VCPUS_PER_SPARSE_BANK;
1787 unsigned long sbank;
1788
1789 if (!test_bit(valid_bit_nr, (unsigned long *)&valid_bank_mask))
1790 return false;
1791
1792 /*
1793 * The index into the sparse bank is the number of preceding bits in
1794 * the valid mask. Optimize for VMs with <64 vCPUs by skipping the
1795 * fancy math if there can't possibly be preceding bits.
1796 */
1797 if (valid_bit_nr)
1798 sbank = hweight64(valid_bank_mask & GENMASK_ULL(valid_bit_nr - 1, 0));
1799 else
1800 sbank = 0;
1801
1802 return test_bit(vp_id % HV_VCPUS_PER_SPARSE_BANK,
1803 (unsigned long *)&sparse_banks[sbank]);
1804 }
1805
1806 struct kvm_hv_hcall {
1807 /* Hypercall input data */
1808 u64 param;
1809 u64 ingpa;
1810 u64 outgpa;
1811 u16 code;
1812 u16 var_cnt;
1813 u16 rep_cnt;
1814 u16 rep_idx;
1815 bool fast;
1816 bool rep;
1817 sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS];
1818
1819 /*
1820 * Current read offset when KVM reads hypercall input data gradually,
1821 * either offset in bytes from 'ingpa' for regular hypercalls or the
1822 * number of already consumed 'XMM halves' for 'fast' hypercalls.
1823 */
1824 union {
1825 gpa_t data_offset;
1826 int consumed_xmm_halves;
1827 };
1828 };
1829
1830
kvm_hv_get_hc_data(struct kvm * kvm,struct kvm_hv_hcall * hc,u16 orig_cnt,u16 cnt_cap,u64 * data)1831 static int kvm_hv_get_hc_data(struct kvm *kvm, struct kvm_hv_hcall *hc,
1832 u16 orig_cnt, u16 cnt_cap, u64 *data)
1833 {
1834 /*
1835 * Preserve the original count when ignoring entries via a "cap", KVM
1836 * still needs to validate the guest input (though the non-XMM path
1837 * punts on the checks).
1838 */
1839 u16 cnt = min(orig_cnt, cnt_cap);
1840 int i, j;
1841
1842 if (hc->fast) {
1843 /*
1844 * Each XMM holds two sparse banks, but do not count halves that
1845 * have already been consumed for hypercall parameters.
1846 */
1847 if (orig_cnt > 2 * HV_HYPERCALL_MAX_XMM_REGISTERS - hc->consumed_xmm_halves)
1848 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1849
1850 for (i = 0; i < cnt; i++) {
1851 j = i + hc->consumed_xmm_halves;
1852 if (j % 2)
1853 data[i] = sse128_hi(hc->xmm[j / 2]);
1854 else
1855 data[i] = sse128_lo(hc->xmm[j / 2]);
1856 }
1857 return 0;
1858 }
1859
1860 return kvm_read_guest(kvm, hc->ingpa + hc->data_offset, data,
1861 cnt * sizeof(*data));
1862 }
1863
kvm_get_sparse_vp_set(struct kvm * kvm,struct kvm_hv_hcall * hc,u64 * sparse_banks)1864 static u64 kvm_get_sparse_vp_set(struct kvm *kvm, struct kvm_hv_hcall *hc,
1865 u64 *sparse_banks)
1866 {
1867 if (hc->var_cnt > HV_MAX_SPARSE_VCPU_BANKS)
1868 return -EINVAL;
1869
1870 /* Cap var_cnt to ignore banks that cannot contain a legal VP index. */
1871 return kvm_hv_get_hc_data(kvm, hc, hc->var_cnt, KVM_HV_MAX_SPARSE_VCPU_SET_BITS,
1872 sparse_banks);
1873 }
1874
kvm_hv_get_tlb_flush_entries(struct kvm * kvm,struct kvm_hv_hcall * hc,u64 entries[])1875 static int kvm_hv_get_tlb_flush_entries(struct kvm *kvm, struct kvm_hv_hcall *hc, u64 entries[])
1876 {
1877 return kvm_hv_get_hc_data(kvm, hc, hc->rep_cnt, hc->rep_cnt, entries);
1878 }
1879
hv_tlb_flush_enqueue(struct kvm_vcpu * vcpu,struct kvm_vcpu_hv_tlb_flush_fifo * tlb_flush_fifo,u64 * entries,int count)1880 static void hv_tlb_flush_enqueue(struct kvm_vcpu *vcpu,
1881 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo,
1882 u64 *entries, int count)
1883 {
1884 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1885 u64 flush_all_entry = KVM_HV_TLB_FLUSHALL_ENTRY;
1886
1887 if (!hv_vcpu)
1888 return;
1889
1890 spin_lock(&tlb_flush_fifo->write_lock);
1891
1892 /*
1893 * All entries should fit on the fifo leaving one free for 'flush all'
1894 * entry in case another request comes in. In case there's not enough
1895 * space, just put 'flush all' entry there.
1896 */
1897 if (count && entries && count < kfifo_avail(&tlb_flush_fifo->entries)) {
1898 WARN_ON(kfifo_in(&tlb_flush_fifo->entries, entries, count) != count);
1899 goto out_unlock;
1900 }
1901
1902 /*
1903 * Note: full fifo always contains 'flush all' entry, no need to check the
1904 * return value.
1905 */
1906 kfifo_in(&tlb_flush_fifo->entries, &flush_all_entry, 1);
1907
1908 out_unlock:
1909 spin_unlock(&tlb_flush_fifo->write_lock);
1910 }
1911
kvm_hv_vcpu_flush_tlb(struct kvm_vcpu * vcpu)1912 int kvm_hv_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
1913 {
1914 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
1915 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1916 u64 entries[KVM_HV_TLB_FLUSH_FIFO_SIZE];
1917 int i, j, count;
1918 gva_t gva;
1919
1920 if (!tdp_enabled || !hv_vcpu)
1921 return -EINVAL;
1922
1923 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(vcpu, is_guest_mode(vcpu));
1924
1925 count = kfifo_out(&tlb_flush_fifo->entries, entries, KVM_HV_TLB_FLUSH_FIFO_SIZE);
1926
1927 for (i = 0; i < count; i++) {
1928 if (entries[i] == KVM_HV_TLB_FLUSHALL_ENTRY)
1929 goto out_flush_all;
1930
1931 /*
1932 * Lower 12 bits of 'address' encode the number of additional
1933 * pages to flush.
1934 */
1935 gva = entries[i] & PAGE_MASK;
1936 for (j = 0; j < (entries[i] & ~PAGE_MASK) + 1; j++)
1937 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva + j * PAGE_SIZE);
1938
1939 ++vcpu->stat.tlb_flush;
1940 }
1941 return 0;
1942
1943 out_flush_all:
1944 kfifo_reset_out(&tlb_flush_fifo->entries);
1945
1946 /* Fall back to full flush. */
1947 return -ENOSPC;
1948 }
1949
kvm_hv_flush_tlb(struct kvm_vcpu * vcpu,struct kvm_hv_hcall * hc)1950 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
1951 {
1952 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1953 u64 *sparse_banks = hv_vcpu->sparse_banks;
1954 struct kvm *kvm = vcpu->kvm;
1955 struct hv_tlb_flush_ex flush_ex;
1956 struct hv_tlb_flush flush;
1957 DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
1958 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
1959 /*
1960 * Normally, there can be no more than 'KVM_HV_TLB_FLUSH_FIFO_SIZE'
1961 * entries on the TLB flush fifo. The last entry, however, needs to be
1962 * always left free for 'flush all' entry which gets placed when
1963 * there is not enough space to put all the requested entries.
1964 */
1965 u64 __tlb_flush_entries[KVM_HV_TLB_FLUSH_FIFO_SIZE - 1];
1966 u64 *tlb_flush_entries;
1967 u64 valid_bank_mask;
1968 struct kvm_vcpu *v;
1969 unsigned long i;
1970 bool all_cpus;
1971
1972 /*
1973 * The Hyper-V TLFS doesn't allow more than HV_MAX_SPARSE_VCPU_BANKS
1974 * sparse banks. Fail the build if KVM's max allowed number of
1975 * vCPUs (>4096) exceeds this limit.
1976 */
1977 BUILD_BUG_ON(KVM_HV_MAX_SPARSE_VCPU_SET_BITS > HV_MAX_SPARSE_VCPU_BANKS);
1978
1979 /*
1980 * 'Slow' hypercall's first parameter is the address in guest's memory
1981 * where hypercall parameters are placed. This is either a GPA or a
1982 * nested GPA when KVM is handling the call from L2 ('direct' TLB
1983 * flush). Translate the address here so the memory can be uniformly
1984 * read with kvm_read_guest().
1985 */
1986 if (!hc->fast && is_guest_mode(vcpu)) {
1987 hc->ingpa = translate_nested_gpa(vcpu, hc->ingpa, 0, NULL);
1988 if (unlikely(hc->ingpa == INVALID_GPA))
1989 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1990 }
1991
1992 if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST ||
1993 hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE) {
1994 if (hc->fast) {
1995 flush.address_space = hc->ingpa;
1996 flush.flags = hc->outgpa;
1997 flush.processor_mask = sse128_lo(hc->xmm[0]);
1998 hc->consumed_xmm_halves = 1;
1999 } else {
2000 if (unlikely(kvm_read_guest(kvm, hc->ingpa,
2001 &flush, sizeof(flush))))
2002 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2003 hc->data_offset = sizeof(flush);
2004 }
2005
2006 trace_kvm_hv_flush_tlb(flush.processor_mask,
2007 flush.address_space, flush.flags,
2008 is_guest_mode(vcpu));
2009
2010 valid_bank_mask = BIT_ULL(0);
2011 sparse_banks[0] = flush.processor_mask;
2012
2013 /*
2014 * Work around possible WS2012 bug: it sends hypercalls
2015 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
2016 * while also expecting us to flush something and crashing if
2017 * we don't. Let's treat processor_mask == 0 same as
2018 * HV_FLUSH_ALL_PROCESSORS.
2019 */
2020 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
2021 flush.processor_mask == 0;
2022 } else {
2023 if (hc->fast) {
2024 flush_ex.address_space = hc->ingpa;
2025 flush_ex.flags = hc->outgpa;
2026 memcpy(&flush_ex.hv_vp_set,
2027 &hc->xmm[0], sizeof(hc->xmm[0]));
2028 hc->consumed_xmm_halves = 2;
2029 } else {
2030 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex,
2031 sizeof(flush_ex))))
2032 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2033 hc->data_offset = sizeof(flush_ex);
2034 }
2035
2036 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
2037 flush_ex.hv_vp_set.format,
2038 flush_ex.address_space,
2039 flush_ex.flags, is_guest_mode(vcpu));
2040
2041 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
2042 all_cpus = flush_ex.hv_vp_set.format !=
2043 HV_GENERIC_SET_SPARSE_4K;
2044
2045 if (hc->var_cnt != hweight64(valid_bank_mask))
2046 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2047
2048 if (!all_cpus) {
2049 if (!hc->var_cnt)
2050 goto ret_success;
2051
2052 if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
2053 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2054 }
2055
2056 /*
2057 * Hyper-V TLFS doesn't explicitly forbid non-empty sparse vCPU
2058 * banks (and, thus, non-zero 'var_cnt') for the 'all vCPUs'
2059 * case (HV_GENERIC_SET_ALL). Always adjust data_offset and
2060 * consumed_xmm_halves to make sure TLB flush entries are read
2061 * from the correct offset.
2062 */
2063 if (hc->fast)
2064 hc->consumed_xmm_halves += hc->var_cnt;
2065 else
2066 hc->data_offset += hc->var_cnt * sizeof(sparse_banks[0]);
2067 }
2068
2069 if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE ||
2070 hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX ||
2071 hc->rep_cnt > ARRAY_SIZE(__tlb_flush_entries)) {
2072 tlb_flush_entries = NULL;
2073 } else {
2074 if (kvm_hv_get_tlb_flush_entries(kvm, hc, __tlb_flush_entries))
2075 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2076 tlb_flush_entries = __tlb_flush_entries;
2077 }
2078
2079 /*
2080 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
2081 * analyze it here, flush TLB regardless of the specified address space.
2082 */
2083 if (all_cpus && !is_guest_mode(vcpu)) {
2084 kvm_for_each_vcpu(i, v, kvm) {
2085 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
2086 hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2087 tlb_flush_entries, hc->rep_cnt);
2088 }
2089
2090 kvm_make_all_cpus_request(kvm, KVM_REQ_HV_TLB_FLUSH);
2091 } else if (!is_guest_mode(vcpu)) {
2092 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, vcpu_mask);
2093
2094 for_each_set_bit(i, vcpu_mask, KVM_MAX_VCPUS) {
2095 v = kvm_get_vcpu(kvm, i);
2096 if (!v)
2097 continue;
2098 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
2099 hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2100 tlb_flush_entries, hc->rep_cnt);
2101 }
2102
2103 kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
2104 } else {
2105 struct kvm_vcpu_hv *hv_v;
2106
2107 bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
2108
2109 kvm_for_each_vcpu(i, v, kvm) {
2110 hv_v = to_hv_vcpu(v);
2111
2112 /*
2113 * The following check races with nested vCPUs entering/exiting
2114 * and/or migrating between L1's vCPUs, however the only case when
2115 * KVM *must* flush the TLB is when the target L2 vCPU keeps
2116 * running on the same L1 vCPU from the moment of the request until
2117 * kvm_hv_flush_tlb() returns. TLB is fully flushed in all other
2118 * cases, e.g. when the target L2 vCPU migrates to a different L1
2119 * vCPU or when the corresponding L1 vCPU temporary switches to a
2120 * different L2 vCPU while the request is being processed.
2121 */
2122 if (!hv_v || hv_v->nested.vm_id != hv_vcpu->nested.vm_id)
2123 continue;
2124
2125 if (!all_cpus &&
2126 !hv_is_vp_in_sparse_set(hv_v->nested.vp_id, valid_bank_mask,
2127 sparse_banks))
2128 continue;
2129
2130 __set_bit(i, vcpu_mask);
2131 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, true);
2132 hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2133 tlb_flush_entries, hc->rep_cnt);
2134 }
2135
2136 kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
2137 }
2138
2139 ret_success:
2140 /* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */
2141 return (u64)HV_STATUS_SUCCESS |
2142 ((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
2143 }
2144
kvm_hv_send_ipi_to_many(struct kvm * kvm,u32 vector,u64 * sparse_banks,u64 valid_bank_mask)2145 static void kvm_hv_send_ipi_to_many(struct kvm *kvm, u32 vector,
2146 u64 *sparse_banks, u64 valid_bank_mask)
2147 {
2148 struct kvm_lapic_irq irq = {
2149 .delivery_mode = APIC_DM_FIXED,
2150 .vector = vector
2151 };
2152 struct kvm_vcpu *vcpu;
2153 unsigned long i;
2154
2155 kvm_for_each_vcpu(i, vcpu, kvm) {
2156 if (sparse_banks &&
2157 !hv_is_vp_in_sparse_set(kvm_hv_get_vpindex(vcpu),
2158 valid_bank_mask, sparse_banks))
2159 continue;
2160
2161 /* We fail only when APIC is disabled */
2162 kvm_apic_set_irq(vcpu, &irq, NULL);
2163 }
2164 }
2165
kvm_hv_send_ipi(struct kvm_vcpu * vcpu,struct kvm_hv_hcall * hc)2166 static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2167 {
2168 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2169 u64 *sparse_banks = hv_vcpu->sparse_banks;
2170 struct kvm *kvm = vcpu->kvm;
2171 struct hv_send_ipi_ex send_ipi_ex;
2172 struct hv_send_ipi send_ipi;
2173 u64 valid_bank_mask;
2174 u32 vector;
2175 bool all_cpus;
2176
2177 if (hc->code == HVCALL_SEND_IPI) {
2178 if (!hc->fast) {
2179 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi,
2180 sizeof(send_ipi))))
2181 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2182 sparse_banks[0] = send_ipi.cpu_mask;
2183 vector = send_ipi.vector;
2184 } else {
2185 /* 'reserved' part of hv_send_ipi should be 0 */
2186 if (unlikely(hc->ingpa >> 32 != 0))
2187 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2188 sparse_banks[0] = hc->outgpa;
2189 vector = (u32)hc->ingpa;
2190 }
2191 all_cpus = false;
2192 valid_bank_mask = BIT_ULL(0);
2193
2194 trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
2195 } else {
2196 if (!hc->fast) {
2197 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex,
2198 sizeof(send_ipi_ex))))
2199 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2200 } else {
2201 send_ipi_ex.vector = (u32)hc->ingpa;
2202 send_ipi_ex.vp_set.format = hc->outgpa;
2203 send_ipi_ex.vp_set.valid_bank_mask = sse128_lo(hc->xmm[0]);
2204 }
2205
2206 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
2207 send_ipi_ex.vp_set.format,
2208 send_ipi_ex.vp_set.valid_bank_mask);
2209
2210 vector = send_ipi_ex.vector;
2211 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
2212 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
2213
2214 if (hc->var_cnt != hweight64(valid_bank_mask))
2215 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2216
2217 if (all_cpus)
2218 goto check_and_send_ipi;
2219
2220 if (!hc->var_cnt)
2221 goto ret_success;
2222
2223 if (!hc->fast)
2224 hc->data_offset = offsetof(struct hv_send_ipi_ex,
2225 vp_set.bank_contents);
2226 else
2227 hc->consumed_xmm_halves = 1;
2228
2229 if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
2230 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2231 }
2232
2233 check_and_send_ipi:
2234 if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
2235 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2236
2237 if (all_cpus)
2238 kvm_hv_send_ipi_to_many(kvm, vector, NULL, 0);
2239 else
2240 kvm_hv_send_ipi_to_many(kvm, vector, sparse_banks, valid_bank_mask);
2241
2242 ret_success:
2243 return HV_STATUS_SUCCESS;
2244 }
2245
kvm_hv_set_cpuid(struct kvm_vcpu * vcpu,bool hyperv_enabled)2246 void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu, bool hyperv_enabled)
2247 {
2248 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2249 struct kvm_cpuid_entry2 *entry;
2250
2251 vcpu->arch.hyperv_enabled = hyperv_enabled;
2252
2253 if (!hv_vcpu) {
2254 /*
2255 * KVM should have already allocated kvm_vcpu_hv if Hyper-V is
2256 * enabled in CPUID.
2257 */
2258 WARN_ON_ONCE(vcpu->arch.hyperv_enabled);
2259 return;
2260 }
2261
2262 memset(&hv_vcpu->cpuid_cache, 0, sizeof(hv_vcpu->cpuid_cache));
2263
2264 if (!vcpu->arch.hyperv_enabled)
2265 return;
2266
2267 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES);
2268 if (entry) {
2269 hv_vcpu->cpuid_cache.features_eax = entry->eax;
2270 hv_vcpu->cpuid_cache.features_ebx = entry->ebx;
2271 hv_vcpu->cpuid_cache.features_edx = entry->edx;
2272 }
2273
2274 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO);
2275 if (entry) {
2276 hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax;
2277 hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx;
2278 }
2279
2280 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
2281 if (entry)
2282 hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax;
2283
2284 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_NESTED_FEATURES);
2285 if (entry) {
2286 hv_vcpu->cpuid_cache.nested_eax = entry->eax;
2287 hv_vcpu->cpuid_cache.nested_ebx = entry->ebx;
2288 }
2289 }
2290
kvm_hv_set_enforce_cpuid(struct kvm_vcpu * vcpu,bool enforce)2291 int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce)
2292 {
2293 struct kvm_vcpu_hv *hv_vcpu;
2294 int ret = 0;
2295
2296 if (!to_hv_vcpu(vcpu)) {
2297 if (enforce) {
2298 ret = kvm_hv_vcpu_init(vcpu);
2299 if (ret)
2300 return ret;
2301 } else {
2302 return 0;
2303 }
2304 }
2305
2306 hv_vcpu = to_hv_vcpu(vcpu);
2307 hv_vcpu->enforce_cpuid = enforce;
2308
2309 return ret;
2310 }
2311
kvm_hv_hypercall_set_result(struct kvm_vcpu * vcpu,u64 result)2312 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
2313 {
2314 bool longmode;
2315
2316 longmode = is_64_bit_hypercall(vcpu);
2317 if (longmode)
2318 kvm_rax_write(vcpu, result);
2319 else {
2320 kvm_rdx_write(vcpu, result >> 32);
2321 kvm_rax_write(vcpu, result & 0xffffffff);
2322 }
2323 }
2324
kvm_hv_hypercall_complete(struct kvm_vcpu * vcpu,u64 result)2325 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
2326 {
2327 u32 tlb_lock_count = 0;
2328 int ret;
2329
2330 if (hv_result_success(result) && is_guest_mode(vcpu) &&
2331 kvm_hv_is_tlb_flush_hcall(vcpu) &&
2332 kvm_read_guest(vcpu->kvm, to_hv_vcpu(vcpu)->nested.pa_page_gpa,
2333 &tlb_lock_count, sizeof(tlb_lock_count)))
2334 result = HV_STATUS_INVALID_HYPERCALL_INPUT;
2335
2336 trace_kvm_hv_hypercall_done(result);
2337 kvm_hv_hypercall_set_result(vcpu, result);
2338 ++vcpu->stat.hypercalls;
2339
2340 ret = kvm_skip_emulated_instruction(vcpu);
2341
2342 if (tlb_lock_count)
2343 kvm_x86_ops.nested_ops->hv_inject_synthetic_vmexit_post_tlb_flush(vcpu);
2344
2345 return ret;
2346 }
2347
kvm_hv_hypercall_complete_userspace(struct kvm_vcpu * vcpu)2348 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
2349 {
2350 return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
2351 }
2352
kvm_hvcall_signal_event(struct kvm_vcpu * vcpu,struct kvm_hv_hcall * hc)2353 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2354 {
2355 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
2356 struct eventfd_ctx *eventfd;
2357
2358 if (unlikely(!hc->fast)) {
2359 int ret;
2360 gpa_t gpa = hc->ingpa;
2361
2362 if ((gpa & (__alignof__(hc->ingpa) - 1)) ||
2363 offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE)
2364 return HV_STATUS_INVALID_ALIGNMENT;
2365
2366 ret = kvm_vcpu_read_guest(vcpu, gpa,
2367 &hc->ingpa, sizeof(hc->ingpa));
2368 if (ret < 0)
2369 return HV_STATUS_INVALID_ALIGNMENT;
2370 }
2371
2372 /*
2373 * Per spec, bits 32-47 contain the extra "flag number". However, we
2374 * have no use for it, and in all known usecases it is zero, so just
2375 * report lookup failure if it isn't.
2376 */
2377 if (hc->ingpa & 0xffff00000000ULL)
2378 return HV_STATUS_INVALID_PORT_ID;
2379 /* remaining bits are reserved-zero */
2380 if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK)
2381 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2382
2383 /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
2384 rcu_read_lock();
2385 eventfd = idr_find(&hv->conn_to_evt, hc->ingpa);
2386 rcu_read_unlock();
2387 if (!eventfd)
2388 return HV_STATUS_INVALID_PORT_ID;
2389
2390 eventfd_signal(eventfd, 1);
2391 return HV_STATUS_SUCCESS;
2392 }
2393
is_xmm_fast_hypercall(struct kvm_hv_hcall * hc)2394 static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc)
2395 {
2396 switch (hc->code) {
2397 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2398 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2399 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2400 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2401 case HVCALL_SEND_IPI_EX:
2402 return true;
2403 }
2404
2405 return false;
2406 }
2407
kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall * hc)2408 static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc)
2409 {
2410 int reg;
2411
2412 kvm_fpu_get();
2413 for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++)
2414 _kvm_read_sse_reg(reg, &hc->xmm[reg]);
2415 kvm_fpu_put();
2416 }
2417
hv_check_hypercall_access(struct kvm_vcpu_hv * hv_vcpu,u16 code)2418 static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code)
2419 {
2420 if (!hv_vcpu->enforce_cpuid)
2421 return true;
2422
2423 switch (code) {
2424 case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2425 return hv_vcpu->cpuid_cache.enlightenments_ebx &&
2426 hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX;
2427 case HVCALL_POST_MESSAGE:
2428 return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES;
2429 case HVCALL_SIGNAL_EVENT:
2430 return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS;
2431 case HVCALL_POST_DEBUG_DATA:
2432 case HVCALL_RETRIEVE_DEBUG_DATA:
2433 case HVCALL_RESET_DEBUG_SESSION:
2434 /*
2435 * Return 'true' when SynDBG is disabled so the resulting code
2436 * will be HV_STATUS_INVALID_HYPERCALL_CODE.
2437 */
2438 return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) ||
2439 hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING;
2440 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2441 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2442 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2443 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2444 return false;
2445 fallthrough;
2446 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2447 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2448 return hv_vcpu->cpuid_cache.enlightenments_eax &
2449 HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2450 case HVCALL_SEND_IPI_EX:
2451 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2452 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2453 return false;
2454 fallthrough;
2455 case HVCALL_SEND_IPI:
2456 return hv_vcpu->cpuid_cache.enlightenments_eax &
2457 HV_X64_CLUSTER_IPI_RECOMMENDED;
2458 case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
2459 return hv_vcpu->cpuid_cache.features_ebx &
2460 HV_ENABLE_EXTENDED_HYPERCALLS;
2461 default:
2462 break;
2463 }
2464
2465 return true;
2466 }
2467
kvm_hv_hypercall(struct kvm_vcpu * vcpu)2468 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
2469 {
2470 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2471 struct kvm_hv_hcall hc;
2472 u64 ret = HV_STATUS_SUCCESS;
2473
2474 /*
2475 * hypercall generates UD from non zero cpl and real mode
2476 * per HYPER-V spec
2477 */
2478 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
2479 kvm_queue_exception(vcpu, UD_VECTOR);
2480 return 1;
2481 }
2482
2483 #ifdef CONFIG_X86_64
2484 if (is_64_bit_hypercall(vcpu)) {
2485 hc.param = kvm_rcx_read(vcpu);
2486 hc.ingpa = kvm_rdx_read(vcpu);
2487 hc.outgpa = kvm_r8_read(vcpu);
2488 } else
2489 #endif
2490 {
2491 hc.param = ((u64)kvm_rdx_read(vcpu) << 32) |
2492 (kvm_rax_read(vcpu) & 0xffffffff);
2493 hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
2494 (kvm_rcx_read(vcpu) & 0xffffffff);
2495 hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
2496 (kvm_rsi_read(vcpu) & 0xffffffff);
2497 }
2498
2499 hc.code = hc.param & 0xffff;
2500 hc.var_cnt = (hc.param & HV_HYPERCALL_VARHEAD_MASK) >> HV_HYPERCALL_VARHEAD_OFFSET;
2501 hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT);
2502 hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
2503 hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
2504 hc.rep = !!(hc.rep_cnt || hc.rep_idx);
2505
2506 trace_kvm_hv_hypercall(hc.code, hc.fast, hc.var_cnt, hc.rep_cnt,
2507 hc.rep_idx, hc.ingpa, hc.outgpa);
2508
2509 if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) {
2510 ret = HV_STATUS_ACCESS_DENIED;
2511 goto hypercall_complete;
2512 }
2513
2514 if (unlikely(hc.param & HV_HYPERCALL_RSVD_MASK)) {
2515 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2516 goto hypercall_complete;
2517 }
2518
2519 if (hc.fast && is_xmm_fast_hypercall(&hc)) {
2520 if (unlikely(hv_vcpu->enforce_cpuid &&
2521 !(hv_vcpu->cpuid_cache.features_edx &
2522 HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) {
2523 kvm_queue_exception(vcpu, UD_VECTOR);
2524 return 1;
2525 }
2526
2527 kvm_hv_hypercall_read_xmm(&hc);
2528 }
2529
2530 switch (hc.code) {
2531 case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2532 if (unlikely(hc.rep || hc.var_cnt)) {
2533 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2534 break;
2535 }
2536 kvm_vcpu_on_spin(vcpu, true);
2537 break;
2538 case HVCALL_SIGNAL_EVENT:
2539 if (unlikely(hc.rep || hc.var_cnt)) {
2540 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2541 break;
2542 }
2543 ret = kvm_hvcall_signal_event(vcpu, &hc);
2544 if (ret != HV_STATUS_INVALID_PORT_ID)
2545 break;
2546 fallthrough; /* maybe userspace knows this conn_id */
2547 case HVCALL_POST_MESSAGE:
2548 /* don't bother userspace if it has no way to handle it */
2549 if (unlikely(hc.rep || hc.var_cnt || !to_hv_synic(vcpu)->active)) {
2550 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2551 break;
2552 }
2553 goto hypercall_userspace_exit;
2554 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2555 if (unlikely(hc.var_cnt)) {
2556 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2557 break;
2558 }
2559 fallthrough;
2560 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2561 if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
2562 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2563 break;
2564 }
2565 ret = kvm_hv_flush_tlb(vcpu, &hc);
2566 break;
2567 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2568 if (unlikely(hc.var_cnt)) {
2569 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2570 break;
2571 }
2572 fallthrough;
2573 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2574 if (unlikely(hc.rep)) {
2575 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2576 break;
2577 }
2578 ret = kvm_hv_flush_tlb(vcpu, &hc);
2579 break;
2580 case HVCALL_SEND_IPI:
2581 if (unlikely(hc.var_cnt)) {
2582 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2583 break;
2584 }
2585 fallthrough;
2586 case HVCALL_SEND_IPI_EX:
2587 if (unlikely(hc.rep)) {
2588 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2589 break;
2590 }
2591 ret = kvm_hv_send_ipi(vcpu, &hc);
2592 break;
2593 case HVCALL_POST_DEBUG_DATA:
2594 case HVCALL_RETRIEVE_DEBUG_DATA:
2595 if (unlikely(hc.fast)) {
2596 ret = HV_STATUS_INVALID_PARAMETER;
2597 break;
2598 }
2599 fallthrough;
2600 case HVCALL_RESET_DEBUG_SESSION: {
2601 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
2602
2603 if (!kvm_hv_is_syndbg_enabled(vcpu)) {
2604 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2605 break;
2606 }
2607
2608 if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
2609 ret = HV_STATUS_OPERATION_DENIED;
2610 break;
2611 }
2612 goto hypercall_userspace_exit;
2613 }
2614 case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
2615 if (unlikely(hc.fast)) {
2616 ret = HV_STATUS_INVALID_PARAMETER;
2617 break;
2618 }
2619 goto hypercall_userspace_exit;
2620 default:
2621 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2622 break;
2623 }
2624
2625 hypercall_complete:
2626 return kvm_hv_hypercall_complete(vcpu, ret);
2627
2628 hypercall_userspace_exit:
2629 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
2630 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2631 vcpu->run->hyperv.u.hcall.input = hc.param;
2632 vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
2633 vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
2634 vcpu->arch.complete_userspace_io = kvm_hv_hypercall_complete_userspace;
2635 return 0;
2636 }
2637
kvm_hv_init_vm(struct kvm * kvm)2638 void kvm_hv_init_vm(struct kvm *kvm)
2639 {
2640 struct kvm_hv *hv = to_kvm_hv(kvm);
2641
2642 mutex_init(&hv->hv_lock);
2643 idr_init(&hv->conn_to_evt);
2644 }
2645
kvm_hv_destroy_vm(struct kvm * kvm)2646 void kvm_hv_destroy_vm(struct kvm *kvm)
2647 {
2648 struct kvm_hv *hv = to_kvm_hv(kvm);
2649 struct eventfd_ctx *eventfd;
2650 int i;
2651
2652 idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
2653 eventfd_ctx_put(eventfd);
2654 idr_destroy(&hv->conn_to_evt);
2655 }
2656
kvm_hv_eventfd_assign(struct kvm * kvm,u32 conn_id,int fd)2657 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
2658 {
2659 struct kvm_hv *hv = to_kvm_hv(kvm);
2660 struct eventfd_ctx *eventfd;
2661 int ret;
2662
2663 eventfd = eventfd_ctx_fdget(fd);
2664 if (IS_ERR(eventfd))
2665 return PTR_ERR(eventfd);
2666
2667 mutex_lock(&hv->hv_lock);
2668 ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
2669 GFP_KERNEL_ACCOUNT);
2670 mutex_unlock(&hv->hv_lock);
2671
2672 if (ret >= 0)
2673 return 0;
2674
2675 if (ret == -ENOSPC)
2676 ret = -EEXIST;
2677 eventfd_ctx_put(eventfd);
2678 return ret;
2679 }
2680
kvm_hv_eventfd_deassign(struct kvm * kvm,u32 conn_id)2681 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
2682 {
2683 struct kvm_hv *hv = to_kvm_hv(kvm);
2684 struct eventfd_ctx *eventfd;
2685
2686 mutex_lock(&hv->hv_lock);
2687 eventfd = idr_remove(&hv->conn_to_evt, conn_id);
2688 mutex_unlock(&hv->hv_lock);
2689
2690 if (!eventfd)
2691 return -ENOENT;
2692
2693 synchronize_srcu(&kvm->srcu);
2694 eventfd_ctx_put(eventfd);
2695 return 0;
2696 }
2697
kvm_vm_ioctl_hv_eventfd(struct kvm * kvm,struct kvm_hyperv_eventfd * args)2698 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
2699 {
2700 if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
2701 (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
2702 return -EINVAL;
2703
2704 if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
2705 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
2706 return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
2707 }
2708
kvm_get_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)2709 int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
2710 struct kvm_cpuid_entry2 __user *entries)
2711 {
2712 uint16_t evmcs_ver = 0;
2713 struct kvm_cpuid_entry2 cpuid_entries[] = {
2714 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
2715 { .function = HYPERV_CPUID_INTERFACE },
2716 { .function = HYPERV_CPUID_VERSION },
2717 { .function = HYPERV_CPUID_FEATURES },
2718 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
2719 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
2720 { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
2721 { .function = HYPERV_CPUID_SYNDBG_INTERFACE },
2722 { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES },
2723 { .function = HYPERV_CPUID_NESTED_FEATURES },
2724 };
2725 int i, nent = ARRAY_SIZE(cpuid_entries);
2726
2727 if (kvm_x86_ops.nested_ops->get_evmcs_version)
2728 evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
2729
2730 if (cpuid->nent < nent)
2731 return -E2BIG;
2732
2733 if (cpuid->nent > nent)
2734 cpuid->nent = nent;
2735
2736 for (i = 0; i < nent; i++) {
2737 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
2738 u32 signature[3];
2739
2740 switch (ent->function) {
2741 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
2742 memcpy(signature, "Linux KVM Hv", 12);
2743
2744 ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
2745 ent->ebx = signature[0];
2746 ent->ecx = signature[1];
2747 ent->edx = signature[2];
2748 break;
2749
2750 case HYPERV_CPUID_INTERFACE:
2751 ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
2752 break;
2753
2754 case HYPERV_CPUID_VERSION:
2755 /*
2756 * We implement some Hyper-V 2016 functions so let's use
2757 * this version.
2758 */
2759 ent->eax = 0x00003839;
2760 ent->ebx = 0x000A0000;
2761 break;
2762
2763 case HYPERV_CPUID_FEATURES:
2764 ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
2765 ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
2766 ent->eax |= HV_MSR_SYNIC_AVAILABLE;
2767 ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
2768 ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
2769 ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
2770 ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
2771 ent->eax |= HV_MSR_RESET_AVAILABLE;
2772 ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
2773 ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
2774 ent->eax |= HV_ACCESS_REENLIGHTENMENT;
2775 ent->eax |= HV_ACCESS_TSC_INVARIANT;
2776
2777 ent->ebx |= HV_POST_MESSAGES;
2778 ent->ebx |= HV_SIGNAL_EVENTS;
2779 ent->ebx |= HV_ENABLE_EXTENDED_HYPERCALLS;
2780
2781 ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE;
2782 ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
2783 ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
2784
2785 ent->ebx |= HV_DEBUGGING;
2786 ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
2787 ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
2788 ent->edx |= HV_FEATURE_EXT_GVA_RANGES_FLUSH;
2789
2790 /*
2791 * Direct Synthetic timers only make sense with in-kernel
2792 * LAPIC
2793 */
2794 if (!vcpu || lapic_in_kernel(vcpu))
2795 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2796
2797 break;
2798
2799 case HYPERV_CPUID_ENLIGHTMENT_INFO:
2800 ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2801 ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
2802 ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
2803 ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
2804 ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
2805 if (evmcs_ver)
2806 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
2807 if (!cpu_smt_possible())
2808 ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
2809
2810 ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED;
2811 /*
2812 * Default number of spinlock retry attempts, matches
2813 * HyperV 2016.
2814 */
2815 ent->ebx = 0x00000FFF;
2816
2817 break;
2818
2819 case HYPERV_CPUID_IMPLEMENT_LIMITS:
2820 /* Maximum number of virtual processors */
2821 ent->eax = KVM_MAX_VCPUS;
2822 /*
2823 * Maximum number of logical processors, matches
2824 * HyperV 2016.
2825 */
2826 ent->ebx = 64;
2827
2828 break;
2829
2830 case HYPERV_CPUID_NESTED_FEATURES:
2831 ent->eax = evmcs_ver;
2832 ent->eax |= HV_X64_NESTED_DIRECT_FLUSH;
2833 ent->eax |= HV_X64_NESTED_MSR_BITMAP;
2834 ent->ebx |= HV_X64_NESTED_EVMCS1_PERF_GLOBAL_CTRL;
2835 break;
2836
2837 case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
2838 memcpy(signature, "Linux KVM Hv", 12);
2839
2840 ent->eax = 0;
2841 ent->ebx = signature[0];
2842 ent->ecx = signature[1];
2843 ent->edx = signature[2];
2844 break;
2845
2846 case HYPERV_CPUID_SYNDBG_INTERFACE:
2847 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
2848 ent->eax = signature[0];
2849 break;
2850
2851 case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
2852 ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
2853 break;
2854
2855 default:
2856 break;
2857 }
2858 }
2859
2860 if (copy_to_user(entries, cpuid_entries,
2861 nent * sizeof(struct kvm_cpuid_entry2)))
2862 return -EFAULT;
2863
2864 return 0;
2865 }
2866