1  /* SPDX-License-Identifier: GPL-2.0-only */
2  #ifndef __KVM_HOST_H
3  #define __KVM_HOST_H
4  
5  
6  #include <linux/types.h>
7  #include <linux/hardirq.h>
8  #include <linux/list.h>
9  #include <linux/mutex.h>
10  #include <linux/spinlock.h>
11  #include <linux/signal.h>
12  #include <linux/sched.h>
13  #include <linux/sched/stat.h>
14  #include <linux/bug.h>
15  #include <linux/minmax.h>
16  #include <linux/mm.h>
17  #include <linux/mmu_notifier.h>
18  #include <linux/preempt.h>
19  #include <linux/msi.h>
20  #include <linux/slab.h>
21  #include <linux/vmalloc.h>
22  #include <linux/rcupdate.h>
23  #include <linux/ratelimit.h>
24  #include <linux/err.h>
25  #include <linux/irqflags.h>
26  #include <linux/context_tracking.h>
27  #include <linux/irqbypass.h>
28  #include <linux/rcuwait.h>
29  #include <linux/refcount.h>
30  #include <linux/nospec.h>
31  #include <linux/notifier.h>
32  #include <linux/ftrace.h>
33  #include <linux/hashtable.h>
34  #include <linux/instrumentation.h>
35  #include <linux/interval_tree.h>
36  #include <linux/rbtree.h>
37  #include <linux/xarray.h>
38  #include <asm/signal.h>
39  
40  #include <linux/kvm.h>
41  #include <linux/kvm_para.h>
42  
43  #include <linux/kvm_types.h>
44  
45  #include <asm/kvm_host.h>
46  #include <linux/kvm_dirty_ring.h>
47  
48  #ifndef KVM_MAX_VCPU_IDS
49  #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50  #endif
51  
52  /*
53   * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54   * used in kvm, other bits are visible for userspace which are defined in
55   * include/linux/kvm_h.
56   */
57  #define KVM_MEMSLOT_INVALID	(1UL << 16)
58  
59  /*
60   * Bit 63 of the memslot generation number is an "update in-progress flag",
61   * e.g. is temporarily set for the duration of install_new_memslots().
62   * This flag effectively creates a unique generation number that is used to
63   * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64   * i.e. may (or may not) have come from the previous memslots generation.
65   *
66   * This is necessary because the actual memslots update is not atomic with
67   * respect to the generation number update.  Updating the generation number
68   * first would allow a vCPU to cache a spte from the old memslots using the
69   * new generation number, and updating the generation number after switching
70   * to the new memslots would allow cache hits using the old generation number
71   * to reference the defunct memslots.
72   *
73   * This mechanism is used to prevent getting hits in KVM's caches while a
74   * memslot update is in-progress, and to prevent cache hits *after* updating
75   * the actual generation number against accesses that were inserted into the
76   * cache *before* the memslots were updated.
77   */
78  #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79  
80  /* Two fragments for cross MMIO pages. */
81  #define KVM_MAX_MMIO_FRAGMENTS	2
82  
83  #ifndef KVM_ADDRESS_SPACE_NUM
84  #define KVM_ADDRESS_SPACE_NUM	1
85  #endif
86  
87  /*
88   * For the normal pfn, the highest 12 bits should be zero,
89   * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90   * mask bit 63 to indicate the noslot pfn.
91   */
92  #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93  #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94  #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95  
96  #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97  #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98  #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99  #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
100  
101  /*
102   * error pfns indicate that the gfn is in slot but faild to
103   * translate it to pfn on host.
104   */
is_error_pfn(kvm_pfn_t pfn)105  static inline bool is_error_pfn(kvm_pfn_t pfn)
106  {
107  	return !!(pfn & KVM_PFN_ERR_MASK);
108  }
109  
110  /*
111   * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112   * by a pending signal.  Note, the signal may or may not be fatal.
113   */
is_sigpending_pfn(kvm_pfn_t pfn)114  static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115  {
116  	return pfn == KVM_PFN_ERR_SIGPENDING;
117  }
118  
119  /*
120   * error_noslot pfns indicate that the gfn can not be
121   * translated to pfn - it is not in slot or failed to
122   * translate it to pfn.
123   */
is_error_noslot_pfn(kvm_pfn_t pfn)124  static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125  {
126  	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127  }
128  
129  /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)130  static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131  {
132  	return pfn == KVM_PFN_NOSLOT;
133  }
134  
135  /*
136   * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137   * provide own defines and kvm_is_error_hva
138   */
139  #ifndef KVM_HVA_ERR_BAD
140  
141  #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
142  #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
143  
kvm_is_error_hva(unsigned long addr)144  static inline bool kvm_is_error_hva(unsigned long addr)
145  {
146  	return addr >= PAGE_OFFSET;
147  }
148  
149  #endif
150  
151  #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
152  
is_error_page(struct page * page)153  static inline bool is_error_page(struct page *page)
154  {
155  	return IS_ERR(page);
156  }
157  
158  #define KVM_REQUEST_MASK           GENMASK(7,0)
159  #define KVM_REQUEST_NO_WAKEUP      BIT(8)
160  #define KVM_REQUEST_WAIT           BIT(9)
161  #define KVM_REQUEST_NO_ACTION      BIT(10)
162  /*
163   * Architecture-independent vcpu->requests bit members
164   * Bits 3-7 are reserved for more arch-independent bits.
165   */
166  #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167  #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
168  #define KVM_REQ_UNBLOCK			2
169  #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
170  #define KVM_REQUEST_ARCH_BASE		8
171  
172  /*
173   * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
174   * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
175   * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
176   * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
177   * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
178   * guarantee the vCPU received an IPI and has actually exited guest mode.
179   */
180  #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
181  
182  #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
183  	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
184  	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
185  })
186  #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
187  
188  bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
189  				 unsigned long *vcpu_bitmap);
190  bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
191  bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
192  				      struct kvm_vcpu *except);
193  bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
194  				unsigned long *vcpu_bitmap);
195  
196  #define KVM_USERSPACE_IRQ_SOURCE_ID		0
197  #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
198  
199  extern struct mutex kvm_lock;
200  extern struct list_head vm_list;
201  
202  struct kvm_io_range {
203  	gpa_t addr;
204  	int len;
205  	struct kvm_io_device *dev;
206  };
207  
208  #define NR_IOBUS_DEVS 1000
209  
210  struct kvm_io_bus {
211  	int dev_count;
212  	int ioeventfd_count;
213  	struct kvm_io_range range[];
214  };
215  
216  enum kvm_bus {
217  	KVM_MMIO_BUS,
218  	KVM_PIO_BUS,
219  	KVM_VIRTIO_CCW_NOTIFY_BUS,
220  	KVM_FAST_MMIO_BUS,
221  	KVM_NR_BUSES
222  };
223  
224  int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
225  		     int len, const void *val);
226  int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
227  			    gpa_t addr, int len, const void *val, long cookie);
228  int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
229  		    int len, void *val);
230  int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
231  			    int len, struct kvm_io_device *dev);
232  int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
233  			      struct kvm_io_device *dev);
234  struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
235  					 gpa_t addr);
236  
237  #ifdef CONFIG_KVM_ASYNC_PF
238  struct kvm_async_pf {
239  	struct work_struct work;
240  	struct list_head link;
241  	struct list_head queue;
242  	struct kvm_vcpu *vcpu;
243  	struct mm_struct *mm;
244  	gpa_t cr2_or_gpa;
245  	unsigned long addr;
246  	struct kvm_arch_async_pf arch;
247  	bool   wakeup_all;
248  	bool notpresent_injected;
249  };
250  
251  void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
252  void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
253  bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
254  			unsigned long hva, struct kvm_arch_async_pf *arch);
255  int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
256  #endif
257  
258  #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
259  struct kvm_gfn_range {
260  	struct kvm_memory_slot *slot;
261  	gfn_t start;
262  	gfn_t end;
263  	pte_t pte;
264  	bool may_block;
265  };
266  bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
267  bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
268  bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
269  bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
270  #endif
271  
272  enum {
273  	OUTSIDE_GUEST_MODE,
274  	IN_GUEST_MODE,
275  	EXITING_GUEST_MODE,
276  	READING_SHADOW_PAGE_TABLES,
277  };
278  
279  #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
280  
281  struct kvm_host_map {
282  	/*
283  	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
284  	 * a 'struct page' for it. When using mem= kernel parameter some memory
285  	 * can be used as guest memory but they are not managed by host
286  	 * kernel).
287  	 * If 'pfn' is not managed by the host kernel, this field is
288  	 * initialized to KVM_UNMAPPED_PAGE.
289  	 */
290  	struct page *page;
291  	void *hva;
292  	kvm_pfn_t pfn;
293  	kvm_pfn_t gfn;
294  };
295  
296  /*
297   * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
298   * directly to check for that.
299   */
kvm_vcpu_mapped(struct kvm_host_map * map)300  static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
301  {
302  	return !!map->hva;
303  }
304  
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)305  static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
306  {
307  	return single_task_running() && !need_resched() && ktime_before(cur, stop);
308  }
309  
310  /*
311   * Sometimes a large or cross-page mmio needs to be broken up into separate
312   * exits for userspace servicing.
313   */
314  struct kvm_mmio_fragment {
315  	gpa_t gpa;
316  	void *data;
317  	unsigned len;
318  };
319  
320  struct kvm_vcpu {
321  	struct kvm *kvm;
322  #ifdef CONFIG_PREEMPT_NOTIFIERS
323  	struct preempt_notifier preempt_notifier;
324  #endif
325  	int cpu;
326  	int vcpu_id; /* id given by userspace at creation */
327  	int vcpu_idx; /* index into kvm->vcpu_array */
328  	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
329  #ifdef CONFIG_PROVE_RCU
330  	int srcu_depth;
331  #endif
332  	int mode;
333  	u64 requests;
334  	unsigned long guest_debug;
335  
336  	struct mutex mutex;
337  	struct kvm_run *run;
338  
339  #ifndef __KVM_HAVE_ARCH_WQP
340  	struct rcuwait wait;
341  #endif
342  	struct pid __rcu *pid;
343  	int sigset_active;
344  	sigset_t sigset;
345  	unsigned int halt_poll_ns;
346  	bool valid_wakeup;
347  
348  #ifdef CONFIG_HAS_IOMEM
349  	int mmio_needed;
350  	int mmio_read_completed;
351  	int mmio_is_write;
352  	int mmio_cur_fragment;
353  	int mmio_nr_fragments;
354  	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
355  #endif
356  
357  #ifdef CONFIG_KVM_ASYNC_PF
358  	struct {
359  		u32 queued;
360  		struct list_head queue;
361  		struct list_head done;
362  		spinlock_t lock;
363  	} async_pf;
364  #endif
365  
366  #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
367  	/*
368  	 * Cpu relax intercept or pause loop exit optimization
369  	 * in_spin_loop: set when a vcpu does a pause loop exit
370  	 *  or cpu relax intercepted.
371  	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
372  	 */
373  	struct {
374  		bool in_spin_loop;
375  		bool dy_eligible;
376  	} spin_loop;
377  #endif
378  	bool preempted;
379  	bool ready;
380  	struct kvm_vcpu_arch arch;
381  	struct kvm_vcpu_stat stat;
382  	char stats_id[KVM_STATS_NAME_SIZE];
383  	struct kvm_dirty_ring dirty_ring;
384  
385  	/*
386  	 * The most recently used memslot by this vCPU and the slots generation
387  	 * for which it is valid.
388  	 * No wraparound protection is needed since generations won't overflow in
389  	 * thousands of years, even assuming 1M memslot operations per second.
390  	 */
391  	struct kvm_memory_slot *last_used_slot;
392  	u64 last_used_slot_gen;
393  };
394  
395  /*
396   * Start accounting time towards a guest.
397   * Must be called before entering guest context.
398   */
guest_timing_enter_irqoff(void)399  static __always_inline void guest_timing_enter_irqoff(void)
400  {
401  	/*
402  	 * This is running in ioctl context so its safe to assume that it's the
403  	 * stime pending cputime to flush.
404  	 */
405  	instrumentation_begin();
406  	vtime_account_guest_enter();
407  	instrumentation_end();
408  }
409  
410  /*
411   * Enter guest context and enter an RCU extended quiescent state.
412   *
413   * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
414   * unsafe to use any code which may directly or indirectly use RCU, tracing
415   * (including IRQ flag tracing), or lockdep. All code in this period must be
416   * non-instrumentable.
417   */
guest_context_enter_irqoff(void)418  static __always_inline void guest_context_enter_irqoff(void)
419  {
420  	/*
421  	 * KVM does not hold any references to rcu protected data when it
422  	 * switches CPU into a guest mode. In fact switching to a guest mode
423  	 * is very similar to exiting to userspace from rcu point of view. In
424  	 * addition CPU may stay in a guest mode for quite a long time (up to
425  	 * one time slice). Lets treat guest mode as quiescent state, just like
426  	 * we do with user-mode execution.
427  	 */
428  	if (!context_tracking_guest_enter()) {
429  		instrumentation_begin();
430  		rcu_virt_note_context_switch();
431  		instrumentation_end();
432  	}
433  }
434  
435  /*
436   * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
437   * guest_state_enter_irqoff().
438   */
guest_enter_irqoff(void)439  static __always_inline void guest_enter_irqoff(void)
440  {
441  	guest_timing_enter_irqoff();
442  	guest_context_enter_irqoff();
443  }
444  
445  /**
446   * guest_state_enter_irqoff - Fixup state when entering a guest
447   *
448   * Entry to a guest will enable interrupts, but the kernel state is interrupts
449   * disabled when this is invoked. Also tell RCU about it.
450   *
451   * 1) Trace interrupts on state
452   * 2) Invoke context tracking if enabled to adjust RCU state
453   * 3) Tell lockdep that interrupts are enabled
454   *
455   * Invoked from architecture specific code before entering a guest.
456   * Must be called with interrupts disabled and the caller must be
457   * non-instrumentable.
458   * The caller has to invoke guest_timing_enter_irqoff() before this.
459   *
460   * Note: this is analogous to exit_to_user_mode().
461   */
guest_state_enter_irqoff(void)462  static __always_inline void guest_state_enter_irqoff(void)
463  {
464  	instrumentation_begin();
465  	trace_hardirqs_on_prepare();
466  	lockdep_hardirqs_on_prepare();
467  	instrumentation_end();
468  
469  	guest_context_enter_irqoff();
470  	lockdep_hardirqs_on(CALLER_ADDR0);
471  }
472  
473  /*
474   * Exit guest context and exit an RCU extended quiescent state.
475   *
476   * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
477   * unsafe to use any code which may directly or indirectly use RCU, tracing
478   * (including IRQ flag tracing), or lockdep. All code in this period must be
479   * non-instrumentable.
480   */
guest_context_exit_irqoff(void)481  static __always_inline void guest_context_exit_irqoff(void)
482  {
483  	context_tracking_guest_exit();
484  }
485  
486  /*
487   * Stop accounting time towards a guest.
488   * Must be called after exiting guest context.
489   */
guest_timing_exit_irqoff(void)490  static __always_inline void guest_timing_exit_irqoff(void)
491  {
492  	instrumentation_begin();
493  	/* Flush the guest cputime we spent on the guest */
494  	vtime_account_guest_exit();
495  	instrumentation_end();
496  }
497  
498  /*
499   * Deprecated. Architectures should move to guest_state_exit_irqoff() and
500   * guest_timing_exit_irqoff().
501   */
guest_exit_irqoff(void)502  static __always_inline void guest_exit_irqoff(void)
503  {
504  	guest_context_exit_irqoff();
505  	guest_timing_exit_irqoff();
506  }
507  
guest_exit(void)508  static inline void guest_exit(void)
509  {
510  	unsigned long flags;
511  
512  	local_irq_save(flags);
513  	guest_exit_irqoff();
514  	local_irq_restore(flags);
515  }
516  
517  /**
518   * guest_state_exit_irqoff - Establish state when returning from guest mode
519   *
520   * Entry from a guest disables interrupts, but guest mode is traced as
521   * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
522   *
523   * 1) Tell lockdep that interrupts are disabled
524   * 2) Invoke context tracking if enabled to reactivate RCU
525   * 3) Trace interrupts off state
526   *
527   * Invoked from architecture specific code after exiting a guest.
528   * Must be invoked with interrupts disabled and the caller must be
529   * non-instrumentable.
530   * The caller has to invoke guest_timing_exit_irqoff() after this.
531   *
532   * Note: this is analogous to enter_from_user_mode().
533   */
guest_state_exit_irqoff(void)534  static __always_inline void guest_state_exit_irqoff(void)
535  {
536  	lockdep_hardirqs_off(CALLER_ADDR0);
537  	guest_context_exit_irqoff();
538  
539  	instrumentation_begin();
540  	trace_hardirqs_off_finish();
541  	instrumentation_end();
542  }
543  
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)544  static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
545  {
546  	/*
547  	 * The memory barrier ensures a previous write to vcpu->requests cannot
548  	 * be reordered with the read of vcpu->mode.  It pairs with the general
549  	 * memory barrier following the write of vcpu->mode in VCPU RUN.
550  	 */
551  	smp_mb__before_atomic();
552  	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
553  }
554  
555  /*
556   * Some of the bitops functions do not support too long bitmaps.
557   * This number must be determined not to exceed such limits.
558   */
559  #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
560  
561  /*
562   * Since at idle each memslot belongs to two memslot sets it has to contain
563   * two embedded nodes for each data structure that it forms a part of.
564   *
565   * Two memslot sets (one active and one inactive) are necessary so the VM
566   * continues to run on one memslot set while the other is being modified.
567   *
568   * These two memslot sets normally point to the same set of memslots.
569   * They can, however, be desynchronized when performing a memslot management
570   * operation by replacing the memslot to be modified by its copy.
571   * After the operation is complete, both memslot sets once again point to
572   * the same, common set of memslot data.
573   *
574   * The memslots themselves are independent of each other so they can be
575   * individually added or deleted.
576   */
577  struct kvm_memory_slot {
578  	struct hlist_node id_node[2];
579  	struct interval_tree_node hva_node[2];
580  	struct rb_node gfn_node[2];
581  	gfn_t base_gfn;
582  	unsigned long npages;
583  	unsigned long *dirty_bitmap;
584  	struct kvm_arch_memory_slot arch;
585  	unsigned long userspace_addr;
586  	u32 flags;
587  	short id;
588  	u16 as_id;
589  };
590  
kvm_slot_dirty_track_enabled(const struct kvm_memory_slot * slot)591  static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
592  {
593  	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
594  }
595  
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)596  static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
597  {
598  	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
599  }
600  
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)601  static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
602  {
603  	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
604  
605  	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
606  }
607  
608  #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
609  #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
610  #endif
611  
612  struct kvm_s390_adapter_int {
613  	u64 ind_addr;
614  	u64 summary_addr;
615  	u64 ind_offset;
616  	u32 summary_offset;
617  	u32 adapter_id;
618  };
619  
620  struct kvm_hv_sint {
621  	u32 vcpu;
622  	u32 sint;
623  };
624  
625  struct kvm_xen_evtchn {
626  	u32 port;
627  	u32 vcpu_id;
628  	int vcpu_idx;
629  	u32 priority;
630  };
631  
632  struct kvm_kernel_irq_routing_entry {
633  	u32 gsi;
634  	u32 type;
635  	int (*set)(struct kvm_kernel_irq_routing_entry *e,
636  		   struct kvm *kvm, int irq_source_id, int level,
637  		   bool line_status);
638  	union {
639  		struct {
640  			unsigned irqchip;
641  			unsigned pin;
642  		} irqchip;
643  		struct {
644  			u32 address_lo;
645  			u32 address_hi;
646  			u32 data;
647  			u32 flags;
648  			u32 devid;
649  		} msi;
650  		struct kvm_s390_adapter_int adapter;
651  		struct kvm_hv_sint hv_sint;
652  		struct kvm_xen_evtchn xen_evtchn;
653  	};
654  	struct hlist_node link;
655  };
656  
657  #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
658  struct kvm_irq_routing_table {
659  	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
660  	u32 nr_rt_entries;
661  	/*
662  	 * Array indexed by gsi. Each entry contains list of irq chips
663  	 * the gsi is connected to.
664  	 */
665  	struct hlist_head map[];
666  };
667  #endif
668  
669  bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
670  
671  #ifndef KVM_INTERNAL_MEM_SLOTS
672  #define KVM_INTERNAL_MEM_SLOTS 0
673  #endif
674  
675  #define KVM_MEM_SLOTS_NUM SHRT_MAX
676  #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
677  
678  #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)679  static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
680  {
681  	return 0;
682  }
683  #endif
684  
685  struct kvm_memslots {
686  	u64 generation;
687  	atomic_long_t last_used_slot;
688  	struct rb_root_cached hva_tree;
689  	struct rb_root gfn_tree;
690  	/*
691  	 * The mapping table from slot id to memslot.
692  	 *
693  	 * 7-bit bucket count matches the size of the old id to index array for
694  	 * 512 slots, while giving good performance with this slot count.
695  	 * Higher bucket counts bring only small performance improvements but
696  	 * always result in higher memory usage (even for lower memslot counts).
697  	 */
698  	DECLARE_HASHTABLE(id_hash, 7);
699  	int node_idx;
700  };
701  
702  struct kvm {
703  #ifdef KVM_HAVE_MMU_RWLOCK
704  	rwlock_t mmu_lock;
705  #else
706  	spinlock_t mmu_lock;
707  #endif /* KVM_HAVE_MMU_RWLOCK */
708  
709  	struct mutex slots_lock;
710  
711  	/*
712  	 * Protects the arch-specific fields of struct kvm_memory_slots in
713  	 * use by the VM. To be used under the slots_lock (above) or in a
714  	 * kvm->srcu critical section where acquiring the slots_lock would
715  	 * lead to deadlock with the synchronize_srcu in
716  	 * install_new_memslots.
717  	 */
718  	struct mutex slots_arch_lock;
719  	struct mm_struct *mm; /* userspace tied to this vm */
720  	unsigned long nr_memslot_pages;
721  	/* The two memslot sets - active and inactive (per address space) */
722  	struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
723  	/* The current active memslot set for each address space */
724  	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
725  	struct xarray vcpu_array;
726  	/*
727  	 * Protected by slots_lock, but can be read outside if an
728  	 * incorrect answer is acceptable.
729  	 */
730  	atomic_t nr_memslots_dirty_logging;
731  
732  	/* Used to wait for completion of MMU notifiers.  */
733  	spinlock_t mn_invalidate_lock;
734  	unsigned long mn_active_invalidate_count;
735  	struct rcuwait mn_memslots_update_rcuwait;
736  
737  	/* For management / invalidation of gfn_to_pfn_caches */
738  	spinlock_t gpc_lock;
739  	struct list_head gpc_list;
740  
741  	/*
742  	 * created_vcpus is protected by kvm->lock, and is incremented
743  	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
744  	 * incremented after storing the kvm_vcpu pointer in vcpus,
745  	 * and is accessed atomically.
746  	 */
747  	atomic_t online_vcpus;
748  	int max_vcpus;
749  	int created_vcpus;
750  	int last_boosted_vcpu;
751  	struct list_head vm_list;
752  	struct mutex lock;
753  	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
754  #ifdef CONFIG_HAVE_KVM_EVENTFD
755  	struct {
756  		spinlock_t        lock;
757  		struct list_head  items;
758  		struct list_head  resampler_list;
759  		struct mutex      resampler_lock;
760  	} irqfds;
761  	struct list_head ioeventfds;
762  #endif
763  	struct kvm_vm_stat stat;
764  	struct kvm_arch arch;
765  	refcount_t users_count;
766  #ifdef CONFIG_KVM_MMIO
767  	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
768  	spinlock_t ring_lock;
769  	struct list_head coalesced_zones;
770  #endif
771  
772  	struct mutex irq_lock;
773  #ifdef CONFIG_HAVE_KVM_IRQCHIP
774  	/*
775  	 * Update side is protected by irq_lock.
776  	 */
777  	struct kvm_irq_routing_table __rcu *irq_routing;
778  #endif
779  #ifdef CONFIG_HAVE_KVM_IRQFD
780  	struct hlist_head irq_ack_notifier_list;
781  #endif
782  
783  #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
784  	struct mmu_notifier mmu_notifier;
785  	unsigned long mmu_invalidate_seq;
786  	long mmu_invalidate_in_progress;
787  	unsigned long mmu_invalidate_range_start;
788  	unsigned long mmu_invalidate_range_end;
789  #endif
790  	struct list_head devices;
791  	u64 manual_dirty_log_protect;
792  	struct dentry *debugfs_dentry;
793  	struct kvm_stat_data **debugfs_stat_data;
794  	struct srcu_struct srcu;
795  	struct srcu_struct irq_srcu;
796  	pid_t userspace_pid;
797  	bool override_halt_poll_ns;
798  	unsigned int max_halt_poll_ns;
799  	u32 dirty_ring_size;
800  	bool dirty_ring_with_bitmap;
801  	bool vm_bugged;
802  	bool vm_dead;
803  
804  #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
805  	struct notifier_block pm_notifier;
806  #endif
807  	char stats_id[KVM_STATS_NAME_SIZE];
808  };
809  
810  #define kvm_err(fmt, ...) \
811  	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
812  #define kvm_info(fmt, ...) \
813  	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
814  #define kvm_debug(fmt, ...) \
815  	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
816  #define kvm_debug_ratelimited(fmt, ...) \
817  	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
818  			     ## __VA_ARGS__)
819  #define kvm_pr_unimpl(fmt, ...) \
820  	pr_err_ratelimited("kvm [%i]: " fmt, \
821  			   task_tgid_nr(current), ## __VA_ARGS__)
822  
823  /* The guest did something we don't support. */
824  #define vcpu_unimpl(vcpu, fmt, ...)					\
825  	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
826  			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
827  
828  #define vcpu_debug(vcpu, fmt, ...)					\
829  	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
830  #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
831  	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
832  			      ## __VA_ARGS__)
833  #define vcpu_err(vcpu, fmt, ...)					\
834  	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
835  
kvm_vm_dead(struct kvm * kvm)836  static inline void kvm_vm_dead(struct kvm *kvm)
837  {
838  	kvm->vm_dead = true;
839  	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
840  }
841  
kvm_vm_bugged(struct kvm * kvm)842  static inline void kvm_vm_bugged(struct kvm *kvm)
843  {
844  	kvm->vm_bugged = true;
845  	kvm_vm_dead(kvm);
846  }
847  
848  
849  #define KVM_BUG(cond, kvm, fmt...)				\
850  ({								\
851  	int __ret = (cond);					\
852  								\
853  	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
854  		kvm_vm_bugged(kvm);				\
855  	unlikely(__ret);					\
856  })
857  
858  #define KVM_BUG_ON(cond, kvm)					\
859  ({								\
860  	int __ret = (cond);					\
861  								\
862  	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
863  		kvm_vm_bugged(kvm);				\
864  	unlikely(__ret);					\
865  })
866  
kvm_vcpu_srcu_read_lock(struct kvm_vcpu * vcpu)867  static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
868  {
869  #ifdef CONFIG_PROVE_RCU
870  	WARN_ONCE(vcpu->srcu_depth++,
871  		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
872  #endif
873  	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
874  }
875  
kvm_vcpu_srcu_read_unlock(struct kvm_vcpu * vcpu)876  static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
877  {
878  	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
879  
880  #ifdef CONFIG_PROVE_RCU
881  	WARN_ONCE(--vcpu->srcu_depth,
882  		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
883  #endif
884  }
885  
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)886  static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
887  {
888  	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
889  }
890  
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)891  static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
892  {
893  	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
894  				      lockdep_is_held(&kvm->slots_lock) ||
895  				      !refcount_read(&kvm->users_count));
896  }
897  
kvm_get_vcpu(struct kvm * kvm,int i)898  static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
899  {
900  	int num_vcpus = atomic_read(&kvm->online_vcpus);
901  	i = array_index_nospec(i, num_vcpus);
902  
903  	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
904  	smp_rmb();
905  	return xa_load(&kvm->vcpu_array, i);
906  }
907  
908  #define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
909  	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
910  			  (atomic_read(&kvm->online_vcpus) - 1))
911  
kvm_get_vcpu_by_id(struct kvm * kvm,int id)912  static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
913  {
914  	struct kvm_vcpu *vcpu = NULL;
915  	unsigned long i;
916  
917  	if (id < 0)
918  		return NULL;
919  	if (id < KVM_MAX_VCPUS)
920  		vcpu = kvm_get_vcpu(kvm, id);
921  	if (vcpu && vcpu->vcpu_id == id)
922  		return vcpu;
923  	kvm_for_each_vcpu(i, vcpu, kvm)
924  		if (vcpu->vcpu_id == id)
925  			return vcpu;
926  	return NULL;
927  }
928  
929  void kvm_destroy_vcpus(struct kvm *kvm);
930  
931  void vcpu_load(struct kvm_vcpu *vcpu);
932  void vcpu_put(struct kvm_vcpu *vcpu);
933  
934  #ifdef __KVM_HAVE_IOAPIC
935  void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
936  void kvm_arch_post_irq_routing_update(struct kvm *kvm);
937  #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)938  static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
939  {
940  }
kvm_arch_post_irq_routing_update(struct kvm * kvm)941  static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
942  {
943  }
944  #endif
945  
946  #ifdef CONFIG_HAVE_KVM_IRQFD
947  int kvm_irqfd_init(void);
948  void kvm_irqfd_exit(void);
949  #else
kvm_irqfd_init(void)950  static inline int kvm_irqfd_init(void)
951  {
952  	return 0;
953  }
954  
kvm_irqfd_exit(void)955  static inline void kvm_irqfd_exit(void)
956  {
957  }
958  #endif
959  int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
960  void kvm_exit(void);
961  
962  void kvm_get_kvm(struct kvm *kvm);
963  bool kvm_get_kvm_safe(struct kvm *kvm);
964  void kvm_put_kvm(struct kvm *kvm);
965  bool file_is_kvm(struct file *file);
966  void kvm_put_kvm_no_destroy(struct kvm *kvm);
967  
__kvm_memslots(struct kvm * kvm,int as_id)968  static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
969  {
970  	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
971  	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
972  			lockdep_is_held(&kvm->slots_lock) ||
973  			!refcount_read(&kvm->users_count));
974  }
975  
kvm_memslots(struct kvm * kvm)976  static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
977  {
978  	return __kvm_memslots(kvm, 0);
979  }
980  
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)981  static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
982  {
983  	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
984  
985  	return __kvm_memslots(vcpu->kvm, as_id);
986  }
987  
kvm_memslots_empty(struct kvm_memslots * slots)988  static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
989  {
990  	return RB_EMPTY_ROOT(&slots->gfn_tree);
991  }
992  
993  #define kvm_for_each_memslot(memslot, bkt, slots)			      \
994  	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
995  		if (WARN_ON_ONCE(!memslot->npages)) {			      \
996  		} else
997  
998  static inline
id_to_memslot(struct kvm_memslots * slots,int id)999  struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1000  {
1001  	struct kvm_memory_slot *slot;
1002  	int idx = slots->node_idx;
1003  
1004  	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1005  		if (slot->id == id)
1006  			return slot;
1007  	}
1008  
1009  	return NULL;
1010  }
1011  
1012  /* Iterator used for walking memslots that overlap a gfn range. */
1013  struct kvm_memslot_iter {
1014  	struct kvm_memslots *slots;
1015  	struct rb_node *node;
1016  	struct kvm_memory_slot *slot;
1017  };
1018  
kvm_memslot_iter_next(struct kvm_memslot_iter * iter)1019  static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1020  {
1021  	iter->node = rb_next(iter->node);
1022  	if (!iter->node)
1023  		return;
1024  
1025  	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1026  }
1027  
kvm_memslot_iter_start(struct kvm_memslot_iter * iter,struct kvm_memslots * slots,gfn_t start)1028  static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1029  					  struct kvm_memslots *slots,
1030  					  gfn_t start)
1031  {
1032  	int idx = slots->node_idx;
1033  	struct rb_node *tmp;
1034  	struct kvm_memory_slot *slot;
1035  
1036  	iter->slots = slots;
1037  
1038  	/*
1039  	 * Find the so called "upper bound" of a key - the first node that has
1040  	 * its key strictly greater than the searched one (the start gfn in our case).
1041  	 */
1042  	iter->node = NULL;
1043  	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1044  		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1045  		if (start < slot->base_gfn) {
1046  			iter->node = tmp;
1047  			tmp = tmp->rb_left;
1048  		} else {
1049  			tmp = tmp->rb_right;
1050  		}
1051  	}
1052  
1053  	/*
1054  	 * Find the slot with the lowest gfn that can possibly intersect with
1055  	 * the range, so we'll ideally have slot start <= range start
1056  	 */
1057  	if (iter->node) {
1058  		/*
1059  		 * A NULL previous node means that the very first slot
1060  		 * already has a higher start gfn.
1061  		 * In this case slot start > range start.
1062  		 */
1063  		tmp = rb_prev(iter->node);
1064  		if (tmp)
1065  			iter->node = tmp;
1066  	} else {
1067  		/* a NULL node below means no slots */
1068  		iter->node = rb_last(&slots->gfn_tree);
1069  	}
1070  
1071  	if (iter->node) {
1072  		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1073  
1074  		/*
1075  		 * It is possible in the slot start < range start case that the
1076  		 * found slot ends before or at range start (slot end <= range start)
1077  		 * and so it does not overlap the requested range.
1078  		 *
1079  		 * In such non-overlapping case the next slot (if it exists) will
1080  		 * already have slot start > range start, otherwise the logic above
1081  		 * would have found it instead of the current slot.
1082  		 */
1083  		if (iter->slot->base_gfn + iter->slot->npages <= start)
1084  			kvm_memslot_iter_next(iter);
1085  	}
1086  }
1087  
kvm_memslot_iter_is_valid(struct kvm_memslot_iter * iter,gfn_t end)1088  static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1089  {
1090  	if (!iter->node)
1091  		return false;
1092  
1093  	/*
1094  	 * If this slot starts beyond or at the end of the range so does
1095  	 * every next one
1096  	 */
1097  	return iter->slot->base_gfn < end;
1098  }
1099  
1100  /* Iterate over each memslot at least partially intersecting [start, end) range */
1101  #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1102  	for (kvm_memslot_iter_start(iter, slots, start);		\
1103  	     kvm_memslot_iter_is_valid(iter, end);			\
1104  	     kvm_memslot_iter_next(iter))
1105  
1106  /*
1107   * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1108   * - create a new memory slot
1109   * - delete an existing memory slot
1110   * - modify an existing memory slot
1111   *   -- move it in the guest physical memory space
1112   *   -- just change its flags
1113   *
1114   * Since flags can be changed by some of these operations, the following
1115   * differentiation is the best we can do for __kvm_set_memory_region():
1116   */
1117  enum kvm_mr_change {
1118  	KVM_MR_CREATE,
1119  	KVM_MR_DELETE,
1120  	KVM_MR_MOVE,
1121  	KVM_MR_FLAGS_ONLY,
1122  };
1123  
1124  int kvm_set_memory_region(struct kvm *kvm,
1125  			  const struct kvm_userspace_memory_region *mem);
1126  int __kvm_set_memory_region(struct kvm *kvm,
1127  			    const struct kvm_userspace_memory_region *mem);
1128  void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1129  void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1130  int kvm_arch_prepare_memory_region(struct kvm *kvm,
1131  				const struct kvm_memory_slot *old,
1132  				struct kvm_memory_slot *new,
1133  				enum kvm_mr_change change);
1134  void kvm_arch_commit_memory_region(struct kvm *kvm,
1135  				struct kvm_memory_slot *old,
1136  				const struct kvm_memory_slot *new,
1137  				enum kvm_mr_change change);
1138  /* flush all memory translations */
1139  void kvm_arch_flush_shadow_all(struct kvm *kvm);
1140  /* flush memory translations pointing to 'slot' */
1141  void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1142  				   struct kvm_memory_slot *slot);
1143  
1144  int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1145  			    struct page **pages, int nr_pages);
1146  
1147  struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1148  unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1149  unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1150  unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1151  unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1152  				      bool *writable);
1153  void kvm_release_page_clean(struct page *page);
1154  void kvm_release_page_dirty(struct page *page);
1155  
1156  kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1157  kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1158  		      bool *writable);
1159  kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1160  kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1161  kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1162  			       bool atomic, bool interruptible, bool *async,
1163  			       bool write_fault, bool *writable, hva_t *hva);
1164  
1165  void kvm_release_pfn_clean(kvm_pfn_t pfn);
1166  void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1167  void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1168  void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1169  
1170  void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1171  int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1172  			int len);
1173  int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1174  int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1175  			   void *data, unsigned long len);
1176  int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1177  				 void *data, unsigned int offset,
1178  				 unsigned long len);
1179  int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1180  			 int offset, int len);
1181  int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1182  		    unsigned long len);
1183  int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1184  			   void *data, unsigned long len);
1185  int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1186  				  void *data, unsigned int offset,
1187  				  unsigned long len);
1188  int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1189  			      gpa_t gpa, unsigned long len);
1190  
1191  #define __kvm_get_guest(kvm, gfn, offset, v)				\
1192  ({									\
1193  	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1194  	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1195  	int __ret = -EFAULT;						\
1196  									\
1197  	if (!kvm_is_error_hva(__addr))					\
1198  		__ret = get_user(v, __uaddr);				\
1199  	__ret;								\
1200  })
1201  
1202  #define kvm_get_guest(kvm, gpa, v)					\
1203  ({									\
1204  	gpa_t __gpa = gpa;						\
1205  	struct kvm *__kvm = kvm;					\
1206  									\
1207  	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1208  			offset_in_page(__gpa), v);			\
1209  })
1210  
1211  #define __kvm_put_guest(kvm, gfn, offset, v)				\
1212  ({									\
1213  	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1214  	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1215  	int __ret = -EFAULT;						\
1216  									\
1217  	if (!kvm_is_error_hva(__addr))					\
1218  		__ret = put_user(v, __uaddr);				\
1219  	if (!__ret)							\
1220  		mark_page_dirty(kvm, gfn);				\
1221  	__ret;								\
1222  })
1223  
1224  #define kvm_put_guest(kvm, gpa, v)					\
1225  ({									\
1226  	gpa_t __gpa = gpa;						\
1227  	struct kvm *__kvm = kvm;					\
1228  									\
1229  	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1230  			offset_in_page(__gpa), v);			\
1231  })
1232  
1233  int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1234  struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1235  bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1236  bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1237  unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1238  void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1239  void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1240  
1241  struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1242  struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1243  kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1244  kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1245  int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1246  void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1247  unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1248  unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1249  int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1250  			     int len);
1251  int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1252  			       unsigned long len);
1253  int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1254  			unsigned long len);
1255  int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1256  			      int offset, int len);
1257  int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1258  			 unsigned long len);
1259  void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1260  
1261  /**
1262   * kvm_gpc_init - initialize gfn_to_pfn_cache.
1263   *
1264   * @gpc:	   struct gfn_to_pfn_cache object.
1265   * @kvm:	   pointer to kvm instance.
1266   * @vcpu:	   vCPU to be used for marking pages dirty and to be woken on
1267   *		   invalidation.
1268   * @usage:	   indicates if the resulting host physical PFN is used while
1269   *		   the @vcpu is IN_GUEST_MODE (in which case invalidation of
1270   *		   the cache from MMU notifiers---but not for KVM memslot
1271   *		   changes!---will also force @vcpu to exit the guest and
1272   *		   refresh the cache); and/or if the PFN used directly
1273   *		   by KVM (and thus needs a kernel virtual mapping).
1274   *
1275   * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1276   * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1277   * the caller before init).
1278   */
1279  void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm,
1280  		  struct kvm_vcpu *vcpu, enum pfn_cache_usage usage);
1281  
1282  /**
1283   * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1284   *                    physical address.
1285   *
1286   * @gpc:	   struct gfn_to_pfn_cache object.
1287   * @gpa:	   guest physical address to map.
1288   * @len:	   sanity check; the range being access must fit a single page.
1289   *
1290   * @return:	   0 for success.
1291   *		   -EINVAL for a mapping which would cross a page boundary.
1292   *		   -EFAULT for an untranslatable guest physical address.
1293   *
1294   * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1295   * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1296   * to ensure that the cache is valid before accessing the target page.
1297   */
1298  int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1299  
1300  /**
1301   * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1302   *
1303   * @gpc:	   struct gfn_to_pfn_cache object.
1304   * @len:	   sanity check; the range being access must fit a single page.
1305   *
1306   * @return:	   %true if the cache is still valid and the address matches.
1307   *		   %false if the cache is not valid.
1308   *
1309   * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1310   * while calling this function, and then continue to hold the lock until the
1311   * access is complete.
1312   *
1313   * Callers in IN_GUEST_MODE may do so without locking, although they should
1314   * still hold a read lock on kvm->scru for the memslot checks.
1315   */
1316  bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1317  
1318  /**
1319   * kvm_gpc_refresh - update a previously initialized cache.
1320   *
1321   * @gpc:	   struct gfn_to_pfn_cache object.
1322   * @len:	   sanity check; the range being access must fit a single page.
1323   *
1324   * @return:	   0 for success.
1325   *		   -EINVAL for a mapping which would cross a page boundary.
1326   *		   -EFAULT for an untranslatable guest physical address.
1327   *
1328   * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1329   * return from this function does not mean the page can be immediately
1330   * accessed because it may have raced with an invalidation. Callers must
1331   * still lock and check the cache status, as this function does not return
1332   * with the lock still held to permit access.
1333   */
1334  int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1335  
1336  /**
1337   * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1338   *
1339   * @gpc:	   struct gfn_to_pfn_cache object.
1340   *
1341   * This removes a cache from the VM's list to be processed on MMU notifier
1342   * invocation.
1343   */
1344  void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1345  
1346  void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1347  void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1348  
1349  void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1350  bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1351  void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1352  void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1353  bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1354  void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1355  int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1356  void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1357  
1358  void kvm_flush_remote_tlbs(struct kvm *kvm);
1359  
1360  #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1361  int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1362  int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1363  int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1364  void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1365  void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1366  #endif
1367  
1368  void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
1369  			      unsigned long end);
1370  void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
1371  			    unsigned long end);
1372  
1373  long kvm_arch_dev_ioctl(struct file *filp,
1374  			unsigned int ioctl, unsigned long arg);
1375  long kvm_arch_vcpu_ioctl(struct file *filp,
1376  			 unsigned int ioctl, unsigned long arg);
1377  vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1378  
1379  int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1380  
1381  void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1382  					struct kvm_memory_slot *slot,
1383  					gfn_t gfn_offset,
1384  					unsigned long mask);
1385  void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1386  
1387  #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1388  void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1389  					const struct kvm_memory_slot *memslot);
1390  #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1391  int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1392  int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1393  		      int *is_dirty, struct kvm_memory_slot **memslot);
1394  #endif
1395  
1396  int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1397  			bool line_status);
1398  int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1399  			    struct kvm_enable_cap *cap);
1400  long kvm_arch_vm_ioctl(struct file *filp,
1401  		       unsigned int ioctl, unsigned long arg);
1402  long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1403  			      unsigned long arg);
1404  
1405  int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1406  int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1407  
1408  int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1409  				    struct kvm_translation *tr);
1410  
1411  int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1412  int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1413  int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1414  				  struct kvm_sregs *sregs);
1415  int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1416  				  struct kvm_sregs *sregs);
1417  int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1418  				    struct kvm_mp_state *mp_state);
1419  int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1420  				    struct kvm_mp_state *mp_state);
1421  int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1422  					struct kvm_guest_debug *dbg);
1423  int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1424  
1425  void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1426  
1427  void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1428  void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1429  int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1430  int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1431  void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1432  void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1433  
1434  #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1435  int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1436  #endif
1437  
1438  #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1439  void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1440  #else
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)1441  static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1442  #endif
1443  
1444  #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1445  int kvm_arch_hardware_enable(void);
1446  void kvm_arch_hardware_disable(void);
1447  #endif
1448  int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1449  bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1450  int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1451  bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1452  bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1453  int kvm_arch_post_init_vm(struct kvm *kvm);
1454  void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1455  int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1456  
1457  #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1458  /*
1459   * All architectures that want to use vzalloc currently also
1460   * need their own kvm_arch_alloc_vm implementation.
1461   */
kvm_arch_alloc_vm(void)1462  static inline struct kvm *kvm_arch_alloc_vm(void)
1463  {
1464  	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1465  }
1466  #endif
1467  
__kvm_arch_free_vm(struct kvm * kvm)1468  static inline void __kvm_arch_free_vm(struct kvm *kvm)
1469  {
1470  	kvfree(kvm);
1471  }
1472  
1473  #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1474  static inline void kvm_arch_free_vm(struct kvm *kvm)
1475  {
1476  	__kvm_arch_free_vm(kvm);
1477  }
1478  #endif
1479  
1480  #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
kvm_arch_flush_remote_tlb(struct kvm * kvm)1481  static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1482  {
1483  	return -ENOTSUPP;
1484  }
1485  #endif
1486  
1487  #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1488  void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1489  void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1490  bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1491  #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1492  static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1493  {
1494  }
1495  
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1496  static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1497  {
1498  }
1499  
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1500  static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1501  {
1502  	return false;
1503  }
1504  #endif
1505  #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1506  void kvm_arch_start_assignment(struct kvm *kvm);
1507  void kvm_arch_end_assignment(struct kvm *kvm);
1508  bool kvm_arch_has_assigned_device(struct kvm *kvm);
1509  #else
kvm_arch_start_assignment(struct kvm * kvm)1510  static inline void kvm_arch_start_assignment(struct kvm *kvm)
1511  {
1512  }
1513  
kvm_arch_end_assignment(struct kvm * kvm)1514  static inline void kvm_arch_end_assignment(struct kvm *kvm)
1515  {
1516  }
1517  
kvm_arch_has_assigned_device(struct kvm * kvm)1518  static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1519  {
1520  	return false;
1521  }
1522  #endif
1523  
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1524  static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1525  {
1526  #ifdef __KVM_HAVE_ARCH_WQP
1527  	return vcpu->arch.waitp;
1528  #else
1529  	return &vcpu->wait;
1530  #endif
1531  }
1532  
1533  /*
1534   * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1535   * true if the vCPU was blocking and was awakened, false otherwise.
1536   */
__kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)1537  static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1538  {
1539  	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1540  }
1541  
kvm_vcpu_is_blocking(struct kvm_vcpu * vcpu)1542  static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1543  {
1544  	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1545  }
1546  
1547  #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1548  /*
1549   * returns true if the virtual interrupt controller is initialized and
1550   * ready to accept virtual IRQ. On some architectures the virtual interrupt
1551   * controller is dynamically instantiated and this is not always true.
1552   */
1553  bool kvm_arch_intc_initialized(struct kvm *kvm);
1554  #else
kvm_arch_intc_initialized(struct kvm * kvm)1555  static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1556  {
1557  	return true;
1558  }
1559  #endif
1560  
1561  #ifdef CONFIG_GUEST_PERF_EVENTS
1562  unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1563  
1564  void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1565  void kvm_unregister_perf_callbacks(void);
1566  #else
kvm_register_perf_callbacks(void * ign)1567  static inline void kvm_register_perf_callbacks(void *ign) {}
kvm_unregister_perf_callbacks(void)1568  static inline void kvm_unregister_perf_callbacks(void) {}
1569  #endif /* CONFIG_GUEST_PERF_EVENTS */
1570  
1571  int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1572  void kvm_arch_destroy_vm(struct kvm *kvm);
1573  void kvm_arch_sync_events(struct kvm *kvm);
1574  
1575  int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1576  
1577  struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1578  bool kvm_is_zone_device_page(struct page *page);
1579  
1580  struct kvm_irq_ack_notifier {
1581  	struct hlist_node link;
1582  	unsigned gsi;
1583  	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1584  };
1585  
1586  int kvm_irq_map_gsi(struct kvm *kvm,
1587  		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1588  int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1589  
1590  int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1591  		bool line_status);
1592  int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1593  		int irq_source_id, int level, bool line_status);
1594  int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1595  			       struct kvm *kvm, int irq_source_id,
1596  			       int level, bool line_status);
1597  bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1598  void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1599  void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1600  void kvm_register_irq_ack_notifier(struct kvm *kvm,
1601  				   struct kvm_irq_ack_notifier *kian);
1602  void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1603  				   struct kvm_irq_ack_notifier *kian);
1604  int kvm_request_irq_source_id(struct kvm *kvm);
1605  void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1606  bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1607  
1608  /*
1609   * Returns a pointer to the memslot if it contains gfn.
1610   * Otherwise returns NULL.
1611   */
1612  static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1613  try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1614  {
1615  	if (!slot)
1616  		return NULL;
1617  
1618  	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1619  		return slot;
1620  	else
1621  		return NULL;
1622  }
1623  
1624  /*
1625   * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1626   *
1627   * With "approx" set returns the memslot also when the address falls
1628   * in a hole. In that case one of the memslots bordering the hole is
1629   * returned.
1630   */
1631  static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,bool approx)1632  search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1633  {
1634  	struct kvm_memory_slot *slot;
1635  	struct rb_node *node;
1636  	int idx = slots->node_idx;
1637  
1638  	slot = NULL;
1639  	for (node = slots->gfn_tree.rb_node; node; ) {
1640  		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1641  		if (gfn >= slot->base_gfn) {
1642  			if (gfn < slot->base_gfn + slot->npages)
1643  				return slot;
1644  			node = node->rb_right;
1645  		} else
1646  			node = node->rb_left;
1647  	}
1648  
1649  	return approx ? slot : NULL;
1650  }
1651  
1652  static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn,bool approx)1653  ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1654  {
1655  	struct kvm_memory_slot *slot;
1656  
1657  	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1658  	slot = try_get_memslot(slot, gfn);
1659  	if (slot)
1660  		return slot;
1661  
1662  	slot = search_memslots(slots, gfn, approx);
1663  	if (slot) {
1664  		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1665  		return slot;
1666  	}
1667  
1668  	return NULL;
1669  }
1670  
1671  /*
1672   * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1673   * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1674   * because that would bloat other code too much.
1675   */
1676  static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1677  __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1678  {
1679  	return ____gfn_to_memslot(slots, gfn, false);
1680  }
1681  
1682  static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1683  __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1684  {
1685  	/*
1686  	 * The index was checked originally in search_memslots.  To avoid
1687  	 * that a malicious guest builds a Spectre gadget out of e.g. page
1688  	 * table walks, do not let the processor speculate loads outside
1689  	 * the guest's registered memslots.
1690  	 */
1691  	unsigned long offset = gfn - slot->base_gfn;
1692  	offset = array_index_nospec(offset, slot->npages);
1693  	return slot->userspace_addr + offset * PAGE_SIZE;
1694  }
1695  
memslot_id(struct kvm * kvm,gfn_t gfn)1696  static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1697  {
1698  	return gfn_to_memslot(kvm, gfn)->id;
1699  }
1700  
1701  static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1702  hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1703  {
1704  	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1705  
1706  	return slot->base_gfn + gfn_offset;
1707  }
1708  
gfn_to_gpa(gfn_t gfn)1709  static inline gpa_t gfn_to_gpa(gfn_t gfn)
1710  {
1711  	return (gpa_t)gfn << PAGE_SHIFT;
1712  }
1713  
gpa_to_gfn(gpa_t gpa)1714  static inline gfn_t gpa_to_gfn(gpa_t gpa)
1715  {
1716  	return (gfn_t)(gpa >> PAGE_SHIFT);
1717  }
1718  
pfn_to_hpa(kvm_pfn_t pfn)1719  static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1720  {
1721  	return (hpa_t)pfn << PAGE_SHIFT;
1722  }
1723  
kvm_is_error_gpa(struct kvm * kvm,gpa_t gpa)1724  static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1725  {
1726  	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1727  
1728  	return kvm_is_error_hva(hva);
1729  }
1730  
1731  enum kvm_stat_kind {
1732  	KVM_STAT_VM,
1733  	KVM_STAT_VCPU,
1734  };
1735  
1736  struct kvm_stat_data {
1737  	struct kvm *kvm;
1738  	const struct _kvm_stats_desc *desc;
1739  	enum kvm_stat_kind kind;
1740  };
1741  
1742  struct _kvm_stats_desc {
1743  	struct kvm_stats_desc desc;
1744  	char name[KVM_STATS_NAME_SIZE];
1745  };
1746  
1747  #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1748  	.flags = type | unit | base |					       \
1749  		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1750  		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1751  		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1752  	.exponent = exp,						       \
1753  	.size = sz,							       \
1754  	.bucket_size = bsz
1755  
1756  #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1757  	{								       \
1758  		{							       \
1759  			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1760  			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1761  		},							       \
1762  		.name = #stat,						       \
1763  	}
1764  #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1765  	{								       \
1766  		{							       \
1767  			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1768  			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1769  		},							       \
1770  		.name = #stat,						       \
1771  	}
1772  #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1773  	{								       \
1774  		{							       \
1775  			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1776  			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1777  		},							       \
1778  		.name = #stat,						       \
1779  	}
1780  #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1781  	{								       \
1782  		{							       \
1783  			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1784  			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1785  		},							       \
1786  		.name = #stat,						       \
1787  	}
1788  /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1789  #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1790  	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1791  
1792  #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1793  	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1794  		unit, base, exponent, 1, 0)
1795  #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1796  	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1797  		unit, base, exponent, 1, 0)
1798  #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1799  	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1800  		unit, base, exponent, 1, 0)
1801  #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1802  	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1803  		unit, base, exponent, sz, bsz)
1804  #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1805  	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1806  		unit, base, exponent, sz, 0)
1807  
1808  /* Cumulative counter, read/write */
1809  #define STATS_DESC_COUNTER(SCOPE, name)					       \
1810  	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1811  		KVM_STATS_BASE_POW10, 0)
1812  /* Instantaneous counter, read only */
1813  #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1814  	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1815  		KVM_STATS_BASE_POW10, 0)
1816  /* Peak counter, read/write */
1817  #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1818  	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1819  		KVM_STATS_BASE_POW10, 0)
1820  
1821  /* Instantaneous boolean value, read only */
1822  #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
1823  	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1824  		KVM_STATS_BASE_POW10, 0)
1825  /* Peak (sticky) boolean value, read/write */
1826  #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
1827  	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1828  		KVM_STATS_BASE_POW10, 0)
1829  
1830  /* Cumulative time in nanosecond */
1831  #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1832  	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1833  		KVM_STATS_BASE_POW10, -9)
1834  /* Linear histogram for time in nanosecond */
1835  #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
1836  	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1837  		KVM_STATS_BASE_POW10, -9, sz, bsz)
1838  /* Logarithmic histogram for time in nanosecond */
1839  #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
1840  	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1841  		KVM_STATS_BASE_POW10, -9, sz)
1842  
1843  #define KVM_GENERIC_VM_STATS()						       \
1844  	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
1845  	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1846  
1847  #define KVM_GENERIC_VCPU_STATS()					       \
1848  	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1849  	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1850  	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1851  	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1852  	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1853  	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
1854  	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
1855  	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1856  			HALT_POLL_HIST_COUNT),				       \
1857  	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
1858  			HALT_POLL_HIST_COUNT),				       \
1859  	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
1860  			HALT_POLL_HIST_COUNT),				       \
1861  	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1862  
1863  extern struct dentry *kvm_debugfs_dir;
1864  
1865  ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1866  		       const struct _kvm_stats_desc *desc,
1867  		       void *stats, size_t size_stats,
1868  		       char __user *user_buffer, size_t size, loff_t *offset);
1869  
1870  /**
1871   * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1872   * statistics data.
1873   *
1874   * @data: start address of the stats data
1875   * @size: the number of bucket of the stats data
1876   * @value: the new value used to update the linear histogram's bucket
1877   * @bucket_size: the size (width) of a bucket
1878   */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)1879  static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1880  						u64 value, size_t bucket_size)
1881  {
1882  	size_t index = div64_u64(value, bucket_size);
1883  
1884  	index = min(index, size - 1);
1885  	++data[index];
1886  }
1887  
1888  /**
1889   * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1890   * statistics data.
1891   *
1892   * @data: start address of the stats data
1893   * @size: the number of bucket of the stats data
1894   * @value: the new value used to update the logarithmic histogram's bucket
1895   */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)1896  static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1897  {
1898  	size_t index = fls64(value);
1899  
1900  	index = min(index, size - 1);
1901  	++data[index];
1902  }
1903  
1904  #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
1905  	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1906  #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
1907  	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1908  
1909  
1910  extern const struct kvm_stats_header kvm_vm_stats_header;
1911  extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1912  extern const struct kvm_stats_header kvm_vcpu_stats_header;
1913  extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1914  
1915  #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_invalidate_retry(struct kvm * kvm,unsigned long mmu_seq)1916  static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
1917  {
1918  	if (unlikely(kvm->mmu_invalidate_in_progress))
1919  		return 1;
1920  	/*
1921  	 * Ensure the read of mmu_invalidate_in_progress happens before
1922  	 * the read of mmu_invalidate_seq.  This interacts with the
1923  	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
1924  	 * that the caller either sees the old (non-zero) value of
1925  	 * mmu_invalidate_in_progress or the new (incremented) value of
1926  	 * mmu_invalidate_seq.
1927  	 *
1928  	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
1929  	 * than under kvm->mmu_lock, for scalability, so can't rely on
1930  	 * kvm->mmu_lock to keep things ordered.
1931  	 */
1932  	smp_rmb();
1933  	if (kvm->mmu_invalidate_seq != mmu_seq)
1934  		return 1;
1935  	return 0;
1936  }
1937  
mmu_invalidate_retry_hva(struct kvm * kvm,unsigned long mmu_seq,unsigned long hva)1938  static inline int mmu_invalidate_retry_hva(struct kvm *kvm,
1939  					   unsigned long mmu_seq,
1940  					   unsigned long hva)
1941  {
1942  	lockdep_assert_held(&kvm->mmu_lock);
1943  	/*
1944  	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
1945  	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
1946  	 * that might be being invalidated. Note that it may include some false
1947  	 * positives, due to shortcuts when handing concurrent invalidations.
1948  	 */
1949  	if (unlikely(kvm->mmu_invalidate_in_progress) &&
1950  	    hva >= kvm->mmu_invalidate_range_start &&
1951  	    hva < kvm->mmu_invalidate_range_end)
1952  		return 1;
1953  	if (kvm->mmu_invalidate_seq != mmu_seq)
1954  		return 1;
1955  	return 0;
1956  }
1957  #endif
1958  
1959  #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1960  
1961  #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1962  
1963  bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1964  int kvm_set_irq_routing(struct kvm *kvm,
1965  			const struct kvm_irq_routing_entry *entries,
1966  			unsigned nr,
1967  			unsigned flags);
1968  int kvm_set_routing_entry(struct kvm *kvm,
1969  			  struct kvm_kernel_irq_routing_entry *e,
1970  			  const struct kvm_irq_routing_entry *ue);
1971  void kvm_free_irq_routing(struct kvm *kvm);
1972  
1973  #else
1974  
kvm_free_irq_routing(struct kvm * kvm)1975  static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1976  
1977  #endif
1978  
1979  int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1980  
1981  #ifdef CONFIG_HAVE_KVM_EVENTFD
1982  
1983  void kvm_eventfd_init(struct kvm *kvm);
1984  int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1985  
1986  #ifdef CONFIG_HAVE_KVM_IRQFD
1987  int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1988  void kvm_irqfd_release(struct kvm *kvm);
1989  void kvm_irq_routing_update(struct kvm *);
1990  #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1991  static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1992  {
1993  	return -EINVAL;
1994  }
1995  
kvm_irqfd_release(struct kvm * kvm)1996  static inline void kvm_irqfd_release(struct kvm *kvm) {}
1997  #endif
1998  
1999  #else
2000  
kvm_eventfd_init(struct kvm * kvm)2001  static inline void kvm_eventfd_init(struct kvm *kvm) {}
2002  
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)2003  static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2004  {
2005  	return -EINVAL;
2006  }
2007  
kvm_irqfd_release(struct kvm * kvm)2008  static inline void kvm_irqfd_release(struct kvm *kvm) {}
2009  
2010  #ifdef CONFIG_HAVE_KVM_IRQCHIP
kvm_irq_routing_update(struct kvm * kvm)2011  static inline void kvm_irq_routing_update(struct kvm *kvm)
2012  {
2013  }
2014  #endif
2015  
kvm_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)2016  static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
2017  {
2018  	return -ENOSYS;
2019  }
2020  
2021  #endif /* CONFIG_HAVE_KVM_EVENTFD */
2022  
2023  void kvm_arch_irq_routing_update(struct kvm *kvm);
2024  
__kvm_make_request(int req,struct kvm_vcpu * vcpu)2025  static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2026  {
2027  	/*
2028  	 * Ensure the rest of the request is published to kvm_check_request's
2029  	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2030  	 */
2031  	smp_wmb();
2032  	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2033  }
2034  
kvm_make_request(int req,struct kvm_vcpu * vcpu)2035  static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2036  {
2037  	/*
2038  	 * Request that don't require vCPU action should never be logged in
2039  	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2040  	 * logged indefinitely and prevent the vCPU from entering the guest.
2041  	 */
2042  	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2043  		     (req & KVM_REQUEST_NO_ACTION));
2044  
2045  	__kvm_make_request(req, vcpu);
2046  }
2047  
kvm_request_pending(struct kvm_vcpu * vcpu)2048  static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2049  {
2050  	return READ_ONCE(vcpu->requests);
2051  }
2052  
kvm_test_request(int req,struct kvm_vcpu * vcpu)2053  static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2054  {
2055  	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2056  }
2057  
kvm_clear_request(int req,struct kvm_vcpu * vcpu)2058  static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2059  {
2060  	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2061  }
2062  
kvm_check_request(int req,struct kvm_vcpu * vcpu)2063  static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2064  {
2065  	if (kvm_test_request(req, vcpu)) {
2066  		kvm_clear_request(req, vcpu);
2067  
2068  		/*
2069  		 * Ensure the rest of the request is visible to kvm_check_request's
2070  		 * caller.  Paired with the smp_wmb in kvm_make_request.
2071  		 */
2072  		smp_mb__after_atomic();
2073  		return true;
2074  	} else {
2075  		return false;
2076  	}
2077  }
2078  
2079  #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2080  extern bool kvm_rebooting;
2081  #endif
2082  
2083  extern unsigned int halt_poll_ns;
2084  extern unsigned int halt_poll_ns_grow;
2085  extern unsigned int halt_poll_ns_grow_start;
2086  extern unsigned int halt_poll_ns_shrink;
2087  
2088  struct kvm_device {
2089  	const struct kvm_device_ops *ops;
2090  	struct kvm *kvm;
2091  	void *private;
2092  	struct list_head vm_node;
2093  };
2094  
2095  /* create, destroy, and name are mandatory */
2096  struct kvm_device_ops {
2097  	const char *name;
2098  
2099  	/*
2100  	 * create is called holding kvm->lock and any operations not suitable
2101  	 * to do while holding the lock should be deferred to init (see
2102  	 * below).
2103  	 */
2104  	int (*create)(struct kvm_device *dev, u32 type);
2105  
2106  	/*
2107  	 * init is called after create if create is successful and is called
2108  	 * outside of holding kvm->lock.
2109  	 */
2110  	void (*init)(struct kvm_device *dev);
2111  
2112  	/*
2113  	 * Destroy is responsible for freeing dev.
2114  	 *
2115  	 * Destroy may be called before or after destructors are called
2116  	 * on emulated I/O regions, depending on whether a reference is
2117  	 * held by a vcpu or other kvm component that gets destroyed
2118  	 * after the emulated I/O.
2119  	 */
2120  	void (*destroy)(struct kvm_device *dev);
2121  
2122  	/*
2123  	 * Release is an alternative method to free the device. It is
2124  	 * called when the device file descriptor is closed. Once
2125  	 * release is called, the destroy method will not be called
2126  	 * anymore as the device is removed from the device list of
2127  	 * the VM. kvm->lock is held.
2128  	 */
2129  	void (*release)(struct kvm_device *dev);
2130  
2131  	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2132  	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2133  	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2134  	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2135  		      unsigned long arg);
2136  	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2137  };
2138  
2139  void kvm_device_get(struct kvm_device *dev);
2140  void kvm_device_put(struct kvm_device *dev);
2141  struct kvm_device *kvm_device_from_filp(struct file *filp);
2142  int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2143  void kvm_unregister_device_ops(u32 type);
2144  
2145  extern struct kvm_device_ops kvm_mpic_ops;
2146  extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2147  extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2148  
2149  #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2150  
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2151  static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2152  {
2153  	vcpu->spin_loop.in_spin_loop = val;
2154  }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2155  static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2156  {
2157  	vcpu->spin_loop.dy_eligible = val;
2158  }
2159  
2160  #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2161  
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2162  static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2163  {
2164  }
2165  
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2166  static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2167  {
2168  }
2169  #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2170  
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)2171  static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2172  {
2173  	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2174  		!(memslot->flags & KVM_MEMSLOT_INVALID));
2175  }
2176  
2177  struct kvm_vcpu *kvm_get_running_vcpu(void);
2178  struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2179  
2180  #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2181  bool kvm_arch_has_irq_bypass(void);
2182  int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2183  			   struct irq_bypass_producer *);
2184  void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2185  			   struct irq_bypass_producer *);
2186  void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2187  void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2188  int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2189  				  uint32_t guest_irq, bool set);
2190  bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2191  				  struct kvm_kernel_irq_routing_entry *);
2192  #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2193  
2194  #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2195  /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2196  static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2197  {
2198  	return vcpu->valid_wakeup;
2199  }
2200  
2201  #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2202  static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2203  {
2204  	return true;
2205  }
2206  #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2207  
2208  #ifdef CONFIG_HAVE_KVM_NO_POLL
2209  /* Callback that tells if we must not poll */
2210  bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2211  #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)2212  static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2213  {
2214  	return false;
2215  }
2216  #endif /* CONFIG_HAVE_KVM_NO_POLL */
2217  
2218  #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2219  long kvm_arch_vcpu_async_ioctl(struct file *filp,
2220  			       unsigned int ioctl, unsigned long arg);
2221  #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2222  static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2223  					     unsigned int ioctl,
2224  					     unsigned long arg)
2225  {
2226  	return -ENOIOCTLCMD;
2227  }
2228  #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2229  
2230  void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
2231  					    unsigned long start, unsigned long end);
2232  
2233  void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2234  
2235  #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2236  int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2237  #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)2238  static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2239  {
2240  	return 0;
2241  }
2242  #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2243  
2244  typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2245  
2246  int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2247  				uintptr_t data, const char *name,
2248  				struct task_struct **thread_ptr);
2249  
2250  #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)2251  static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2252  {
2253  	vcpu->run->exit_reason = KVM_EXIT_INTR;
2254  	vcpu->stat.signal_exits++;
2255  }
2256  #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2257  
2258  /*
2259   * If more than one page is being (un)accounted, @virt must be the address of
2260   * the first page of a block of pages what were allocated together (i.e
2261   * accounted together).
2262   *
2263   * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2264   * is thread-safe.
2265   */
kvm_account_pgtable_pages(void * virt,int nr)2266  static inline void kvm_account_pgtable_pages(void *virt, int nr)
2267  {
2268  	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2269  }
2270  
2271  /*
2272   * This defines how many reserved entries we want to keep before we
2273   * kick the vcpu to the userspace to avoid dirty ring full.  This
2274   * value can be tuned to higher if e.g. PML is enabled on the host.
2275   */
2276  #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2277  
2278  /* Max number of entries allowed for each kvm dirty ring */
2279  #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2280  
2281  #endif
2282