1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22
23 #include "trace.h"
24
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27
28 static unsigned long __ro_after_init hyp_idmap_start;
29 static unsigned long __ro_after_init hyp_idmap_end;
30 static phys_addr_t __ro_after_init hyp_idmap_vector;
31
32 static unsigned long __ro_after_init io_map_base;
33
stage2_range_addr_end(phys_addr_t addr,phys_addr_t end)34 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
35 {
36 phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
37 phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
38
39 return (boundary - 1 < end - 1) ? boundary : end;
40 }
41
42 /*
43 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
44 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
45 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
46 * long will also starve other vCPUs. We have to also make sure that the page
47 * tables are not freed while we released the lock.
48 */
stage2_apply_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end,int (* fn)(struct kvm_pgtable *,u64,u64),bool resched)49 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
50 phys_addr_t end,
51 int (*fn)(struct kvm_pgtable *, u64, u64),
52 bool resched)
53 {
54 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
55 int ret;
56 u64 next;
57
58 do {
59 struct kvm_pgtable *pgt = mmu->pgt;
60 if (!pgt)
61 return -EINVAL;
62
63 next = stage2_range_addr_end(addr, end);
64 ret = fn(pgt, addr, next - addr);
65 if (ret)
66 break;
67
68 if (resched && next != end)
69 cond_resched_rwlock_write(&kvm->mmu_lock);
70 } while (addr = next, addr != end);
71
72 return ret;
73 }
74
75 #define stage2_apply_range_resched(mmu, addr, end, fn) \
76 stage2_apply_range(mmu, addr, end, fn, true)
77
memslot_is_logging(struct kvm_memory_slot * memslot)78 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
79 {
80 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
81 }
82
83 /**
84 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
85 * @kvm: pointer to kvm structure.
86 *
87 * Interface to HYP function to flush all VM TLB entries
88 */
kvm_flush_remote_tlbs(struct kvm * kvm)89 void kvm_flush_remote_tlbs(struct kvm *kvm)
90 {
91 ++kvm->stat.generic.remote_tlb_flush_requests;
92 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
93 }
94
kvm_is_device_pfn(unsigned long pfn)95 static bool kvm_is_device_pfn(unsigned long pfn)
96 {
97 return !pfn_is_map_memory(pfn);
98 }
99
stage2_memcache_zalloc_page(void * arg)100 static void *stage2_memcache_zalloc_page(void *arg)
101 {
102 struct kvm_mmu_memory_cache *mc = arg;
103 void *virt;
104
105 /* Allocated with __GFP_ZERO, so no need to zero */
106 virt = kvm_mmu_memory_cache_alloc(mc);
107 if (virt)
108 kvm_account_pgtable_pages(virt, 1);
109 return virt;
110 }
111
kvm_host_zalloc_pages_exact(size_t size)112 static void *kvm_host_zalloc_pages_exact(size_t size)
113 {
114 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
115 }
116
kvm_s2_zalloc_pages_exact(size_t size)117 static void *kvm_s2_zalloc_pages_exact(size_t size)
118 {
119 void *virt = kvm_host_zalloc_pages_exact(size);
120
121 if (virt)
122 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
123 return virt;
124 }
125
kvm_s2_free_pages_exact(void * virt,size_t size)126 static void kvm_s2_free_pages_exact(void *virt, size_t size)
127 {
128 kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
129 free_pages_exact(virt, size);
130 }
131
132 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
133
stage2_free_removed_table_rcu_cb(struct rcu_head * head)134 static void stage2_free_removed_table_rcu_cb(struct rcu_head *head)
135 {
136 struct page *page = container_of(head, struct page, rcu_head);
137 void *pgtable = page_to_virt(page);
138 u32 level = page_private(page);
139
140 kvm_pgtable_stage2_free_removed(&kvm_s2_mm_ops, pgtable, level);
141 }
142
stage2_free_removed_table(void * addr,u32 level)143 static void stage2_free_removed_table(void *addr, u32 level)
144 {
145 struct page *page = virt_to_page(addr);
146
147 set_page_private(page, (unsigned long)level);
148 call_rcu(&page->rcu_head, stage2_free_removed_table_rcu_cb);
149 }
150
kvm_host_get_page(void * addr)151 static void kvm_host_get_page(void *addr)
152 {
153 get_page(virt_to_page(addr));
154 }
155
kvm_host_put_page(void * addr)156 static void kvm_host_put_page(void *addr)
157 {
158 put_page(virt_to_page(addr));
159 }
160
kvm_s2_put_page(void * addr)161 static void kvm_s2_put_page(void *addr)
162 {
163 struct page *p = virt_to_page(addr);
164 /* Dropping last refcount, the page will be freed */
165 if (page_count(p) == 1)
166 kvm_account_pgtable_pages(addr, -1);
167 put_page(p);
168 }
169
kvm_host_page_count(void * addr)170 static int kvm_host_page_count(void *addr)
171 {
172 return page_count(virt_to_page(addr));
173 }
174
kvm_host_pa(void * addr)175 static phys_addr_t kvm_host_pa(void *addr)
176 {
177 return __pa(addr);
178 }
179
kvm_host_va(phys_addr_t phys)180 static void *kvm_host_va(phys_addr_t phys)
181 {
182 return __va(phys);
183 }
184
clean_dcache_guest_page(void * va,size_t size)185 static void clean_dcache_guest_page(void *va, size_t size)
186 {
187 __clean_dcache_guest_page(va, size);
188 }
189
invalidate_icache_guest_page(void * va,size_t size)190 static void invalidate_icache_guest_page(void *va, size_t size)
191 {
192 __invalidate_icache_guest_page(va, size);
193 }
194
195 /*
196 * Unmapping vs dcache management:
197 *
198 * If a guest maps certain memory pages as uncached, all writes will
199 * bypass the data cache and go directly to RAM. However, the CPUs
200 * can still speculate reads (not writes) and fill cache lines with
201 * data.
202 *
203 * Those cache lines will be *clean* cache lines though, so a
204 * clean+invalidate operation is equivalent to an invalidate
205 * operation, because no cache lines are marked dirty.
206 *
207 * Those clean cache lines could be filled prior to an uncached write
208 * by the guest, and the cache coherent IO subsystem would therefore
209 * end up writing old data to disk.
210 *
211 * This is why right after unmapping a page/section and invalidating
212 * the corresponding TLBs, we flush to make sure the IO subsystem will
213 * never hit in the cache.
214 *
215 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
216 * we then fully enforce cacheability of RAM, no matter what the guest
217 * does.
218 */
219 /**
220 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
221 * @mmu: The KVM stage-2 MMU pointer
222 * @start: The intermediate physical base address of the range to unmap
223 * @size: The size of the area to unmap
224 * @may_block: Whether or not we are permitted to block
225 *
226 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
227 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
228 * destroying the VM), otherwise another faulting VCPU may come in and mess
229 * with things behind our backs.
230 */
__unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)231 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
232 bool may_block)
233 {
234 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
235 phys_addr_t end = start + size;
236
237 lockdep_assert_held_write(&kvm->mmu_lock);
238 WARN_ON(size & ~PAGE_MASK);
239 WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap,
240 may_block));
241 }
242
unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size)243 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
244 {
245 __unmap_stage2_range(mmu, start, size, true);
246 }
247
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)248 static void stage2_flush_memslot(struct kvm *kvm,
249 struct kvm_memory_slot *memslot)
250 {
251 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
252 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
253
254 stage2_apply_range_resched(&kvm->arch.mmu, addr, end, kvm_pgtable_stage2_flush);
255 }
256
257 /**
258 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
259 * @kvm: The struct kvm pointer
260 *
261 * Go through the stage 2 page tables and invalidate any cache lines
262 * backing memory already mapped to the VM.
263 */
stage2_flush_vm(struct kvm * kvm)264 static void stage2_flush_vm(struct kvm *kvm)
265 {
266 struct kvm_memslots *slots;
267 struct kvm_memory_slot *memslot;
268 int idx, bkt;
269
270 idx = srcu_read_lock(&kvm->srcu);
271 write_lock(&kvm->mmu_lock);
272
273 slots = kvm_memslots(kvm);
274 kvm_for_each_memslot(memslot, bkt, slots)
275 stage2_flush_memslot(kvm, memslot);
276
277 write_unlock(&kvm->mmu_lock);
278 srcu_read_unlock(&kvm->srcu, idx);
279 }
280
281 /**
282 * free_hyp_pgds - free Hyp-mode page tables
283 */
free_hyp_pgds(void)284 void __init free_hyp_pgds(void)
285 {
286 mutex_lock(&kvm_hyp_pgd_mutex);
287 if (hyp_pgtable) {
288 kvm_pgtable_hyp_destroy(hyp_pgtable);
289 kfree(hyp_pgtable);
290 hyp_pgtable = NULL;
291 }
292 mutex_unlock(&kvm_hyp_pgd_mutex);
293 }
294
kvm_host_owns_hyp_mappings(void)295 static bool kvm_host_owns_hyp_mappings(void)
296 {
297 if (is_kernel_in_hyp_mode())
298 return false;
299
300 if (static_branch_likely(&kvm_protected_mode_initialized))
301 return false;
302
303 /*
304 * This can happen at boot time when __create_hyp_mappings() is called
305 * after the hyp protection has been enabled, but the static key has
306 * not been flipped yet.
307 */
308 if (!hyp_pgtable && is_protected_kvm_enabled())
309 return false;
310
311 WARN_ON(!hyp_pgtable);
312
313 return true;
314 }
315
__create_hyp_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)316 int __create_hyp_mappings(unsigned long start, unsigned long size,
317 unsigned long phys, enum kvm_pgtable_prot prot)
318 {
319 int err;
320
321 if (WARN_ON(!kvm_host_owns_hyp_mappings()))
322 return -EINVAL;
323
324 mutex_lock(&kvm_hyp_pgd_mutex);
325 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
326 mutex_unlock(&kvm_hyp_pgd_mutex);
327
328 return err;
329 }
330
kvm_kaddr_to_phys(void * kaddr)331 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
332 {
333 if (!is_vmalloc_addr(kaddr)) {
334 BUG_ON(!virt_addr_valid(kaddr));
335 return __pa(kaddr);
336 } else {
337 return page_to_phys(vmalloc_to_page(kaddr)) +
338 offset_in_page(kaddr);
339 }
340 }
341
342 struct hyp_shared_pfn {
343 u64 pfn;
344 int count;
345 struct rb_node node;
346 };
347
348 static DEFINE_MUTEX(hyp_shared_pfns_lock);
349 static struct rb_root hyp_shared_pfns = RB_ROOT;
350
find_shared_pfn(u64 pfn,struct rb_node *** node,struct rb_node ** parent)351 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
352 struct rb_node **parent)
353 {
354 struct hyp_shared_pfn *this;
355
356 *node = &hyp_shared_pfns.rb_node;
357 *parent = NULL;
358 while (**node) {
359 this = container_of(**node, struct hyp_shared_pfn, node);
360 *parent = **node;
361 if (this->pfn < pfn)
362 *node = &((**node)->rb_left);
363 else if (this->pfn > pfn)
364 *node = &((**node)->rb_right);
365 else
366 return this;
367 }
368
369 return NULL;
370 }
371
share_pfn_hyp(u64 pfn)372 static int share_pfn_hyp(u64 pfn)
373 {
374 struct rb_node **node, *parent;
375 struct hyp_shared_pfn *this;
376 int ret = 0;
377
378 mutex_lock(&hyp_shared_pfns_lock);
379 this = find_shared_pfn(pfn, &node, &parent);
380 if (this) {
381 this->count++;
382 goto unlock;
383 }
384
385 this = kzalloc(sizeof(*this), GFP_KERNEL);
386 if (!this) {
387 ret = -ENOMEM;
388 goto unlock;
389 }
390
391 this->pfn = pfn;
392 this->count = 1;
393 rb_link_node(&this->node, parent, node);
394 rb_insert_color(&this->node, &hyp_shared_pfns);
395 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
396 unlock:
397 mutex_unlock(&hyp_shared_pfns_lock);
398
399 return ret;
400 }
401
unshare_pfn_hyp(u64 pfn)402 static int unshare_pfn_hyp(u64 pfn)
403 {
404 struct rb_node **node, *parent;
405 struct hyp_shared_pfn *this;
406 int ret = 0;
407
408 mutex_lock(&hyp_shared_pfns_lock);
409 this = find_shared_pfn(pfn, &node, &parent);
410 if (WARN_ON(!this)) {
411 ret = -ENOENT;
412 goto unlock;
413 }
414
415 this->count--;
416 if (this->count)
417 goto unlock;
418
419 rb_erase(&this->node, &hyp_shared_pfns);
420 kfree(this);
421 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
422 unlock:
423 mutex_unlock(&hyp_shared_pfns_lock);
424
425 return ret;
426 }
427
kvm_share_hyp(void * from,void * to)428 int kvm_share_hyp(void *from, void *to)
429 {
430 phys_addr_t start, end, cur;
431 u64 pfn;
432 int ret;
433
434 if (is_kernel_in_hyp_mode())
435 return 0;
436
437 /*
438 * The share hcall maps things in the 'fixed-offset' region of the hyp
439 * VA space, so we can only share physically contiguous data-structures
440 * for now.
441 */
442 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
443 return -EINVAL;
444
445 if (kvm_host_owns_hyp_mappings())
446 return create_hyp_mappings(from, to, PAGE_HYP);
447
448 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
449 end = PAGE_ALIGN(__pa(to));
450 for (cur = start; cur < end; cur += PAGE_SIZE) {
451 pfn = __phys_to_pfn(cur);
452 ret = share_pfn_hyp(pfn);
453 if (ret)
454 return ret;
455 }
456
457 return 0;
458 }
459
kvm_unshare_hyp(void * from,void * to)460 void kvm_unshare_hyp(void *from, void *to)
461 {
462 phys_addr_t start, end, cur;
463 u64 pfn;
464
465 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
466 return;
467
468 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
469 end = PAGE_ALIGN(__pa(to));
470 for (cur = start; cur < end; cur += PAGE_SIZE) {
471 pfn = __phys_to_pfn(cur);
472 WARN_ON(unshare_pfn_hyp(pfn));
473 }
474 }
475
476 /**
477 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
478 * @from: The virtual kernel start address of the range
479 * @to: The virtual kernel end address of the range (exclusive)
480 * @prot: The protection to be applied to this range
481 *
482 * The same virtual address as the kernel virtual address is also used
483 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
484 * physical pages.
485 */
create_hyp_mappings(void * from,void * to,enum kvm_pgtable_prot prot)486 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
487 {
488 phys_addr_t phys_addr;
489 unsigned long virt_addr;
490 unsigned long start = kern_hyp_va((unsigned long)from);
491 unsigned long end = kern_hyp_va((unsigned long)to);
492
493 if (is_kernel_in_hyp_mode())
494 return 0;
495
496 if (!kvm_host_owns_hyp_mappings())
497 return -EPERM;
498
499 start = start & PAGE_MASK;
500 end = PAGE_ALIGN(end);
501
502 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
503 int err;
504
505 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
506 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
507 prot);
508 if (err)
509 return err;
510 }
511
512 return 0;
513 }
514
515
516 /**
517 * hyp_alloc_private_va_range - Allocates a private VA range.
518 * @size: The size of the VA range to reserve.
519 * @haddr: The hypervisor virtual start address of the allocation.
520 *
521 * The private virtual address (VA) range is allocated below io_map_base
522 * and aligned based on the order of @size.
523 *
524 * Return: 0 on success or negative error code on failure.
525 */
hyp_alloc_private_va_range(size_t size,unsigned long * haddr)526 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
527 {
528 unsigned long base;
529 int ret = 0;
530
531 mutex_lock(&kvm_hyp_pgd_mutex);
532
533 /*
534 * This assumes that we have enough space below the idmap
535 * page to allocate our VAs. If not, the check below will
536 * kick. A potential alternative would be to detect that
537 * overflow and switch to an allocation above the idmap.
538 *
539 * The allocated size is always a multiple of PAGE_SIZE.
540 */
541 base = io_map_base - PAGE_ALIGN(size);
542
543 /* Align the allocation based on the order of its size */
544 base = ALIGN_DOWN(base, PAGE_SIZE << get_order(size));
545
546 /*
547 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
548 * allocating the new area, as it would indicate we've
549 * overflowed the idmap/IO address range.
550 */
551 if ((base ^ io_map_base) & BIT(VA_BITS - 1))
552 ret = -ENOMEM;
553 else
554 *haddr = io_map_base = base;
555
556 mutex_unlock(&kvm_hyp_pgd_mutex);
557
558 return ret;
559 }
560
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,enum kvm_pgtable_prot prot)561 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
562 unsigned long *haddr,
563 enum kvm_pgtable_prot prot)
564 {
565 unsigned long addr;
566 int ret = 0;
567
568 if (!kvm_host_owns_hyp_mappings()) {
569 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
570 phys_addr, size, prot);
571 if (IS_ERR_VALUE(addr))
572 return addr;
573 *haddr = addr;
574
575 return 0;
576 }
577
578 size = PAGE_ALIGN(size + offset_in_page(phys_addr));
579 ret = hyp_alloc_private_va_range(size, &addr);
580 if (ret)
581 return ret;
582
583 ret = __create_hyp_mappings(addr, size, phys_addr, prot);
584 if (ret)
585 return ret;
586
587 *haddr = addr + offset_in_page(phys_addr);
588 return ret;
589 }
590
591 /**
592 * create_hyp_io_mappings - Map IO into both kernel and HYP
593 * @phys_addr: The physical start address which gets mapped
594 * @size: Size of the region being mapped
595 * @kaddr: Kernel VA for this mapping
596 * @haddr: HYP VA for this mapping
597 */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)598 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
599 void __iomem **kaddr,
600 void __iomem **haddr)
601 {
602 unsigned long addr;
603 int ret;
604
605 if (is_protected_kvm_enabled())
606 return -EPERM;
607
608 *kaddr = ioremap(phys_addr, size);
609 if (!*kaddr)
610 return -ENOMEM;
611
612 if (is_kernel_in_hyp_mode()) {
613 *haddr = *kaddr;
614 return 0;
615 }
616
617 ret = __create_hyp_private_mapping(phys_addr, size,
618 &addr, PAGE_HYP_DEVICE);
619 if (ret) {
620 iounmap(*kaddr);
621 *kaddr = NULL;
622 *haddr = NULL;
623 return ret;
624 }
625
626 *haddr = (void __iomem *)addr;
627 return 0;
628 }
629
630 /**
631 * create_hyp_exec_mappings - Map an executable range into HYP
632 * @phys_addr: The physical start address which gets mapped
633 * @size: Size of the region being mapped
634 * @haddr: HYP VA for this mapping
635 */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)636 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
637 void **haddr)
638 {
639 unsigned long addr;
640 int ret;
641
642 BUG_ON(is_kernel_in_hyp_mode());
643
644 ret = __create_hyp_private_mapping(phys_addr, size,
645 &addr, PAGE_HYP_EXEC);
646 if (ret) {
647 *haddr = NULL;
648 return ret;
649 }
650
651 *haddr = (void *)addr;
652 return 0;
653 }
654
655 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
656 /* We shouldn't need any other callback to walk the PT */
657 .phys_to_virt = kvm_host_va,
658 };
659
get_user_mapping_size(struct kvm * kvm,u64 addr)660 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
661 {
662 struct kvm_pgtable pgt = {
663 .pgd = (kvm_pteref_t)kvm->mm->pgd,
664 .ia_bits = vabits_actual,
665 .start_level = (KVM_PGTABLE_MAX_LEVELS -
666 CONFIG_PGTABLE_LEVELS),
667 .mm_ops = &kvm_user_mm_ops,
668 };
669 kvm_pte_t pte = 0; /* Keep GCC quiet... */
670 u32 level = ~0;
671 int ret;
672
673 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
674 VM_BUG_ON(ret);
675 VM_BUG_ON(level >= KVM_PGTABLE_MAX_LEVELS);
676 VM_BUG_ON(!(pte & PTE_VALID));
677
678 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
679 }
680
681 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
682 .zalloc_page = stage2_memcache_zalloc_page,
683 .zalloc_pages_exact = kvm_s2_zalloc_pages_exact,
684 .free_pages_exact = kvm_s2_free_pages_exact,
685 .free_removed_table = stage2_free_removed_table,
686 .get_page = kvm_host_get_page,
687 .put_page = kvm_s2_put_page,
688 .page_count = kvm_host_page_count,
689 .phys_to_virt = kvm_host_va,
690 .virt_to_phys = kvm_host_pa,
691 .dcache_clean_inval_poc = clean_dcache_guest_page,
692 .icache_inval_pou = invalidate_icache_guest_page,
693 };
694
695 /**
696 * kvm_init_stage2_mmu - Initialise a S2 MMU structure
697 * @kvm: The pointer to the KVM structure
698 * @mmu: The pointer to the s2 MMU structure
699 * @type: The machine type of the virtual machine
700 *
701 * Allocates only the stage-2 HW PGD level table(s).
702 * Note we don't need locking here as this is only called when the VM is
703 * created, which can only be done once.
704 */
kvm_init_stage2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu,unsigned long type)705 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
706 {
707 u32 kvm_ipa_limit = get_kvm_ipa_limit();
708 int cpu, err;
709 struct kvm_pgtable *pgt;
710 u64 mmfr0, mmfr1;
711 u32 phys_shift;
712
713 if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
714 return -EINVAL;
715
716 phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
717 if (is_protected_kvm_enabled()) {
718 phys_shift = kvm_ipa_limit;
719 } else if (phys_shift) {
720 if (phys_shift > kvm_ipa_limit ||
721 phys_shift < ARM64_MIN_PARANGE_BITS)
722 return -EINVAL;
723 } else {
724 phys_shift = KVM_PHYS_SHIFT;
725 if (phys_shift > kvm_ipa_limit) {
726 pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
727 current->comm);
728 return -EINVAL;
729 }
730 }
731
732 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
733 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
734 kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
735
736 if (mmu->pgt != NULL) {
737 kvm_err("kvm_arch already initialized?\n");
738 return -EINVAL;
739 }
740
741 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
742 if (!pgt)
743 return -ENOMEM;
744
745 mmu->arch = &kvm->arch;
746 err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
747 if (err)
748 goto out_free_pgtable;
749
750 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
751 if (!mmu->last_vcpu_ran) {
752 err = -ENOMEM;
753 goto out_destroy_pgtable;
754 }
755
756 for_each_possible_cpu(cpu)
757 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
758
759 mmu->pgt = pgt;
760 mmu->pgd_phys = __pa(pgt->pgd);
761 return 0;
762
763 out_destroy_pgtable:
764 kvm_pgtable_stage2_destroy(pgt);
765 out_free_pgtable:
766 kfree(pgt);
767 return err;
768 }
769
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)770 static void stage2_unmap_memslot(struct kvm *kvm,
771 struct kvm_memory_slot *memslot)
772 {
773 hva_t hva = memslot->userspace_addr;
774 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
775 phys_addr_t size = PAGE_SIZE * memslot->npages;
776 hva_t reg_end = hva + size;
777
778 /*
779 * A memory region could potentially cover multiple VMAs, and any holes
780 * between them, so iterate over all of them to find out if we should
781 * unmap any of them.
782 *
783 * +--------------------------------------------+
784 * +---------------+----------------+ +----------------+
785 * | : VMA 1 | VMA 2 | | VMA 3 : |
786 * +---------------+----------------+ +----------------+
787 * | memory region |
788 * +--------------------------------------------+
789 */
790 do {
791 struct vm_area_struct *vma;
792 hva_t vm_start, vm_end;
793
794 vma = find_vma_intersection(current->mm, hva, reg_end);
795 if (!vma)
796 break;
797
798 /*
799 * Take the intersection of this VMA with the memory region
800 */
801 vm_start = max(hva, vma->vm_start);
802 vm_end = min(reg_end, vma->vm_end);
803
804 if (!(vma->vm_flags & VM_PFNMAP)) {
805 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
806 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
807 }
808 hva = vm_end;
809 } while (hva < reg_end);
810 }
811
812 /**
813 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
814 * @kvm: The struct kvm pointer
815 *
816 * Go through the memregions and unmap any regular RAM
817 * backing memory already mapped to the VM.
818 */
stage2_unmap_vm(struct kvm * kvm)819 void stage2_unmap_vm(struct kvm *kvm)
820 {
821 struct kvm_memslots *slots;
822 struct kvm_memory_slot *memslot;
823 int idx, bkt;
824
825 idx = srcu_read_lock(&kvm->srcu);
826 mmap_read_lock(current->mm);
827 write_lock(&kvm->mmu_lock);
828
829 slots = kvm_memslots(kvm);
830 kvm_for_each_memslot(memslot, bkt, slots)
831 stage2_unmap_memslot(kvm, memslot);
832
833 write_unlock(&kvm->mmu_lock);
834 mmap_read_unlock(current->mm);
835 srcu_read_unlock(&kvm->srcu, idx);
836 }
837
kvm_free_stage2_pgd(struct kvm_s2_mmu * mmu)838 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
839 {
840 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
841 struct kvm_pgtable *pgt = NULL;
842
843 write_lock(&kvm->mmu_lock);
844 pgt = mmu->pgt;
845 if (pgt) {
846 mmu->pgd_phys = 0;
847 mmu->pgt = NULL;
848 free_percpu(mmu->last_vcpu_ran);
849 }
850 write_unlock(&kvm->mmu_lock);
851
852 if (pgt) {
853 kvm_pgtable_stage2_destroy(pgt);
854 kfree(pgt);
855 }
856 }
857
hyp_mc_free_fn(void * addr,void * unused)858 static void hyp_mc_free_fn(void *addr, void *unused)
859 {
860 free_page((unsigned long)addr);
861 }
862
hyp_mc_alloc_fn(void * unused)863 static void *hyp_mc_alloc_fn(void *unused)
864 {
865 return (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
866 }
867
free_hyp_memcache(struct kvm_hyp_memcache * mc)868 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
869 {
870 if (is_protected_kvm_enabled())
871 __free_hyp_memcache(mc, hyp_mc_free_fn,
872 kvm_host_va, NULL);
873 }
874
topup_hyp_memcache(struct kvm_hyp_memcache * mc,unsigned long min_pages)875 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
876 {
877 if (!is_protected_kvm_enabled())
878 return 0;
879
880 return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
881 kvm_host_pa, NULL);
882 }
883
884 /**
885 * kvm_phys_addr_ioremap - map a device range to guest IPA
886 *
887 * @kvm: The KVM pointer
888 * @guest_ipa: The IPA at which to insert the mapping
889 * @pa: The physical address of the device
890 * @size: The size of the mapping
891 * @writable: Whether or not to create a writable mapping
892 */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)893 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
894 phys_addr_t pa, unsigned long size, bool writable)
895 {
896 phys_addr_t addr;
897 int ret = 0;
898 struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
899 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
900 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
901 KVM_PGTABLE_PROT_R |
902 (writable ? KVM_PGTABLE_PROT_W : 0);
903
904 if (is_protected_kvm_enabled())
905 return -EPERM;
906
907 size += offset_in_page(guest_ipa);
908 guest_ipa &= PAGE_MASK;
909
910 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
911 ret = kvm_mmu_topup_memory_cache(&cache,
912 kvm_mmu_cache_min_pages(kvm));
913 if (ret)
914 break;
915
916 write_lock(&kvm->mmu_lock);
917 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
918 &cache, 0);
919 write_unlock(&kvm->mmu_lock);
920 if (ret)
921 break;
922
923 pa += PAGE_SIZE;
924 }
925
926 kvm_mmu_free_memory_cache(&cache);
927 return ret;
928 }
929
930 /**
931 * stage2_wp_range() - write protect stage2 memory region range
932 * @mmu: The KVM stage-2 MMU pointer
933 * @addr: Start address of range
934 * @end: End address of range
935 */
stage2_wp_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)936 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
937 {
938 stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect);
939 }
940
941 /**
942 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
943 * @kvm: The KVM pointer
944 * @slot: The memory slot to write protect
945 *
946 * Called to start logging dirty pages after memory region
947 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
948 * all present PUD, PMD and PTEs are write protected in the memory region.
949 * Afterwards read of dirty page log can be called.
950 *
951 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
952 * serializing operations for VM memory regions.
953 */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)954 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
955 {
956 struct kvm_memslots *slots = kvm_memslots(kvm);
957 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
958 phys_addr_t start, end;
959
960 if (WARN_ON_ONCE(!memslot))
961 return;
962
963 start = memslot->base_gfn << PAGE_SHIFT;
964 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
965
966 write_lock(&kvm->mmu_lock);
967 stage2_wp_range(&kvm->arch.mmu, start, end);
968 write_unlock(&kvm->mmu_lock);
969 kvm_flush_remote_tlbs(kvm);
970 }
971
972 /**
973 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
974 * @kvm: The KVM pointer
975 * @slot: The memory slot associated with mask
976 * @gfn_offset: The gfn offset in memory slot
977 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
978 * slot to be write protected
979 *
980 * Walks bits set in mask write protects the associated pte's. Caller must
981 * acquire kvm_mmu_lock.
982 */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)983 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
984 struct kvm_memory_slot *slot,
985 gfn_t gfn_offset, unsigned long mask)
986 {
987 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
988 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
989 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
990
991 stage2_wp_range(&kvm->arch.mmu, start, end);
992 }
993
994 /*
995 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
996 * dirty pages.
997 *
998 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
999 * enable dirty logging for them.
1000 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1001 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1002 struct kvm_memory_slot *slot,
1003 gfn_t gfn_offset, unsigned long mask)
1004 {
1005 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1006 }
1007
kvm_send_hwpoison_signal(unsigned long address,short lsb)1008 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1009 {
1010 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1011 }
1012
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)1013 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1014 unsigned long hva,
1015 unsigned long map_size)
1016 {
1017 gpa_t gpa_start;
1018 hva_t uaddr_start, uaddr_end;
1019 size_t size;
1020
1021 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1022 if (map_size == PAGE_SIZE)
1023 return true;
1024
1025 size = memslot->npages * PAGE_SIZE;
1026
1027 gpa_start = memslot->base_gfn << PAGE_SHIFT;
1028
1029 uaddr_start = memslot->userspace_addr;
1030 uaddr_end = uaddr_start + size;
1031
1032 /*
1033 * Pages belonging to memslots that don't have the same alignment
1034 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1035 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1036 *
1037 * Consider a layout like the following:
1038 *
1039 * memslot->userspace_addr:
1040 * +-----+--------------------+--------------------+---+
1041 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
1042 * +-----+--------------------+--------------------+---+
1043 *
1044 * memslot->base_gfn << PAGE_SHIFT:
1045 * +---+--------------------+--------------------+-----+
1046 * |abc|def Stage-2 block | Stage-2 block |tvxyz|
1047 * +---+--------------------+--------------------+-----+
1048 *
1049 * If we create those stage-2 blocks, we'll end up with this incorrect
1050 * mapping:
1051 * d -> f
1052 * e -> g
1053 * f -> h
1054 */
1055 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1056 return false;
1057
1058 /*
1059 * Next, let's make sure we're not trying to map anything not covered
1060 * by the memslot. This means we have to prohibit block size mappings
1061 * for the beginning and end of a non-block aligned and non-block sized
1062 * memory slot (illustrated by the head and tail parts of the
1063 * userspace view above containing pages 'abcde' and 'xyz',
1064 * respectively).
1065 *
1066 * Note that it doesn't matter if we do the check using the
1067 * userspace_addr or the base_gfn, as both are equally aligned (per
1068 * the check above) and equally sized.
1069 */
1070 return (hva & ~(map_size - 1)) >= uaddr_start &&
1071 (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1072 }
1073
1074 /*
1075 * Check if the given hva is backed by a transparent huge page (THP) and
1076 * whether it can be mapped using block mapping in stage2. If so, adjust
1077 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1078 * supported. This will need to be updated to support other THP sizes.
1079 *
1080 * Returns the size of the mapping.
1081 */
1082 static unsigned long
transparent_hugepage_adjust(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long hva,kvm_pfn_t * pfnp,phys_addr_t * ipap)1083 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1084 unsigned long hva, kvm_pfn_t *pfnp,
1085 phys_addr_t *ipap)
1086 {
1087 kvm_pfn_t pfn = *pfnp;
1088
1089 /*
1090 * Make sure the adjustment is done only for THP pages. Also make
1091 * sure that the HVA and IPA are sufficiently aligned and that the
1092 * block map is contained within the memslot.
1093 */
1094 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
1095 get_user_mapping_size(kvm, hva) >= PMD_SIZE) {
1096 /*
1097 * The address we faulted on is backed by a transparent huge
1098 * page. However, because we map the compound huge page and
1099 * not the individual tail page, we need to transfer the
1100 * refcount to the head page. We have to be careful that the
1101 * THP doesn't start to split while we are adjusting the
1102 * refcounts.
1103 *
1104 * We are sure this doesn't happen, because mmu_invalidate_retry
1105 * was successful and we are holding the mmu_lock, so if this
1106 * THP is trying to split, it will be blocked in the mmu
1107 * notifier before touching any of the pages, specifically
1108 * before being able to call __split_huge_page_refcount().
1109 *
1110 * We can therefore safely transfer the refcount from PG_tail
1111 * to PG_head and switch the pfn from a tail page to the head
1112 * page accordingly.
1113 */
1114 *ipap &= PMD_MASK;
1115 kvm_release_pfn_clean(pfn);
1116 pfn &= ~(PTRS_PER_PMD - 1);
1117 get_page(pfn_to_page(pfn));
1118 *pfnp = pfn;
1119
1120 return PMD_SIZE;
1121 }
1122
1123 /* Use page mapping if we cannot use block mapping. */
1124 return PAGE_SIZE;
1125 }
1126
get_vma_page_shift(struct vm_area_struct * vma,unsigned long hva)1127 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1128 {
1129 unsigned long pa;
1130
1131 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1132 return huge_page_shift(hstate_vma(vma));
1133
1134 if (!(vma->vm_flags & VM_PFNMAP))
1135 return PAGE_SHIFT;
1136
1137 VM_BUG_ON(is_vm_hugetlb_page(vma));
1138
1139 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1140
1141 #ifndef __PAGETABLE_PMD_FOLDED
1142 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1143 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1144 ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1145 return PUD_SHIFT;
1146 #endif
1147
1148 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1149 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1150 ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1151 return PMD_SHIFT;
1152
1153 return PAGE_SHIFT;
1154 }
1155
1156 /*
1157 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1158 * able to see the page's tags and therefore they must be initialised first. If
1159 * PG_mte_tagged is set, tags have already been initialised.
1160 *
1161 * The race in the test/set of the PG_mte_tagged flag is handled by:
1162 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1163 * racing to santise the same page
1164 * - mmap_lock protects between a VM faulting a page in and the VMM performing
1165 * an mprotect() to add VM_MTE
1166 */
sanitise_mte_tags(struct kvm * kvm,kvm_pfn_t pfn,unsigned long size)1167 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1168 unsigned long size)
1169 {
1170 unsigned long i, nr_pages = size >> PAGE_SHIFT;
1171 struct page *page = pfn_to_page(pfn);
1172
1173 if (!kvm_has_mte(kvm))
1174 return;
1175
1176 for (i = 0; i < nr_pages; i++, page++) {
1177 if (try_page_mte_tagging(page)) {
1178 mte_clear_page_tags(page_address(page));
1179 set_page_mte_tagged(page);
1180 }
1181 }
1182 }
1183
kvm_vma_mte_allowed(struct vm_area_struct * vma)1184 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1185 {
1186 return vma->vm_flags & VM_MTE_ALLOWED;
1187 }
1188
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,unsigned long fault_status)1189 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1190 struct kvm_memory_slot *memslot, unsigned long hva,
1191 unsigned long fault_status)
1192 {
1193 int ret = 0;
1194 bool write_fault, writable, force_pte = false;
1195 bool exec_fault;
1196 bool device = false;
1197 unsigned long mmu_seq;
1198 struct kvm *kvm = vcpu->kvm;
1199 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1200 struct vm_area_struct *vma;
1201 short vma_shift;
1202 gfn_t gfn;
1203 kvm_pfn_t pfn;
1204 bool logging_active = memslot_is_logging(memslot);
1205 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
1206 unsigned long vma_pagesize, fault_granule;
1207 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1208 struct kvm_pgtable *pgt;
1209
1210 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
1211 write_fault = kvm_is_write_fault(vcpu);
1212 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1213 VM_BUG_ON(write_fault && exec_fault);
1214
1215 if (fault_status == ESR_ELx_FSC_PERM && !write_fault && !exec_fault) {
1216 kvm_err("Unexpected L2 read permission error\n");
1217 return -EFAULT;
1218 }
1219
1220 /*
1221 * Let's check if we will get back a huge page backed by hugetlbfs, or
1222 * get block mapping for device MMIO region.
1223 */
1224 mmap_read_lock(current->mm);
1225 vma = vma_lookup(current->mm, hva);
1226 if (unlikely(!vma)) {
1227 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1228 mmap_read_unlock(current->mm);
1229 return -EFAULT;
1230 }
1231
1232 /*
1233 * logging_active is guaranteed to never be true for VM_PFNMAP
1234 * memslots.
1235 */
1236 if (logging_active) {
1237 force_pte = true;
1238 vma_shift = PAGE_SHIFT;
1239 } else {
1240 vma_shift = get_vma_page_shift(vma, hva);
1241 }
1242
1243 switch (vma_shift) {
1244 #ifndef __PAGETABLE_PMD_FOLDED
1245 case PUD_SHIFT:
1246 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1247 break;
1248 fallthrough;
1249 #endif
1250 case CONT_PMD_SHIFT:
1251 vma_shift = PMD_SHIFT;
1252 fallthrough;
1253 case PMD_SHIFT:
1254 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1255 break;
1256 fallthrough;
1257 case CONT_PTE_SHIFT:
1258 vma_shift = PAGE_SHIFT;
1259 force_pte = true;
1260 fallthrough;
1261 case PAGE_SHIFT:
1262 break;
1263 default:
1264 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1265 }
1266
1267 vma_pagesize = 1UL << vma_shift;
1268 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1269 fault_ipa &= ~(vma_pagesize - 1);
1270
1271 gfn = fault_ipa >> PAGE_SHIFT;
1272 mmap_read_unlock(current->mm);
1273
1274 /*
1275 * Permission faults just need to update the existing leaf entry,
1276 * and so normally don't require allocations from the memcache. The
1277 * only exception to this is when dirty logging is enabled at runtime
1278 * and a write fault needs to collapse a block entry into a table.
1279 */
1280 if (fault_status != ESR_ELx_FSC_PERM ||
1281 (logging_active && write_fault)) {
1282 ret = kvm_mmu_topup_memory_cache(memcache,
1283 kvm_mmu_cache_min_pages(kvm));
1284 if (ret)
1285 return ret;
1286 }
1287
1288 mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1289 /*
1290 * Ensure the read of mmu_invalidate_seq happens before we call
1291 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1292 * the page we just got a reference to gets unmapped before we have a
1293 * chance to grab the mmu_lock, which ensure that if the page gets
1294 * unmapped afterwards, the call to kvm_unmap_gfn will take it away
1295 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1296 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1297 *
1298 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is
1299 * used to avoid unnecessary overhead introduced to locate the memory
1300 * slot because it's always fixed even @gfn is adjusted for huge pages.
1301 */
1302 smp_rmb();
1303
1304 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
1305 write_fault, &writable, NULL);
1306 if (pfn == KVM_PFN_ERR_HWPOISON) {
1307 kvm_send_hwpoison_signal(hva, vma_shift);
1308 return 0;
1309 }
1310 if (is_error_noslot_pfn(pfn))
1311 return -EFAULT;
1312
1313 if (kvm_is_device_pfn(pfn)) {
1314 /*
1315 * If the page was identified as device early by looking at
1316 * the VMA flags, vma_pagesize is already representing the
1317 * largest quantity we can map. If instead it was mapped
1318 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1319 * and must not be upgraded.
1320 *
1321 * In both cases, we don't let transparent_hugepage_adjust()
1322 * change things at the last minute.
1323 */
1324 device = true;
1325 } else if (logging_active && !write_fault) {
1326 /*
1327 * Only actually map the page as writable if this was a write
1328 * fault.
1329 */
1330 writable = false;
1331 }
1332
1333 if (exec_fault && device)
1334 return -ENOEXEC;
1335
1336 read_lock(&kvm->mmu_lock);
1337 pgt = vcpu->arch.hw_mmu->pgt;
1338 if (mmu_invalidate_retry(kvm, mmu_seq))
1339 goto out_unlock;
1340
1341 /*
1342 * If we are not forced to use page mapping, check if we are
1343 * backed by a THP and thus use block mapping if possible.
1344 */
1345 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1346 if (fault_status == ESR_ELx_FSC_PERM &&
1347 fault_granule > PAGE_SIZE)
1348 vma_pagesize = fault_granule;
1349 else
1350 vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1351 hva, &pfn,
1352 &fault_ipa);
1353 }
1354
1355 if (fault_status != ESR_ELx_FSC_PERM && !device && kvm_has_mte(kvm)) {
1356 /* Check the VMM hasn't introduced a new disallowed VMA */
1357 if (kvm_vma_mte_allowed(vma)) {
1358 sanitise_mte_tags(kvm, pfn, vma_pagesize);
1359 } else {
1360 ret = -EFAULT;
1361 goto out_unlock;
1362 }
1363 }
1364
1365 if (writable)
1366 prot |= KVM_PGTABLE_PROT_W;
1367
1368 if (exec_fault)
1369 prot |= KVM_PGTABLE_PROT_X;
1370
1371 if (device)
1372 prot |= KVM_PGTABLE_PROT_DEVICE;
1373 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
1374 prot |= KVM_PGTABLE_PROT_X;
1375
1376 /*
1377 * Under the premise of getting a FSC_PERM fault, we just need to relax
1378 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1379 * kvm_pgtable_stage2_map() should be called to change block size.
1380 */
1381 if (fault_status == ESR_ELx_FSC_PERM && vma_pagesize == fault_granule)
1382 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1383 else
1384 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1385 __pfn_to_phys(pfn), prot,
1386 memcache,
1387 KVM_PGTABLE_WALK_HANDLE_FAULT |
1388 KVM_PGTABLE_WALK_SHARED);
1389
1390 /* Mark the page dirty only if the fault is handled successfully */
1391 if (writable && !ret) {
1392 kvm_set_pfn_dirty(pfn);
1393 mark_page_dirty_in_slot(kvm, memslot, gfn);
1394 }
1395
1396 out_unlock:
1397 read_unlock(&kvm->mmu_lock);
1398 kvm_set_pfn_accessed(pfn);
1399 kvm_release_pfn_clean(pfn);
1400 return ret != -EAGAIN ? ret : 0;
1401 }
1402
1403 /* Resolve the access fault by making the page young again. */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1404 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1405 {
1406 kvm_pte_t pte;
1407 struct kvm_s2_mmu *mmu;
1408
1409 trace_kvm_access_fault(fault_ipa);
1410
1411 read_lock(&vcpu->kvm->mmu_lock);
1412 mmu = vcpu->arch.hw_mmu;
1413 pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1414 read_unlock(&vcpu->kvm->mmu_lock);
1415
1416 if (kvm_pte_valid(pte))
1417 kvm_set_pfn_accessed(kvm_pte_to_pfn(pte));
1418 }
1419
1420 /**
1421 * kvm_handle_guest_abort - handles all 2nd stage aborts
1422 * @vcpu: the VCPU pointer
1423 *
1424 * Any abort that gets to the host is almost guaranteed to be caused by a
1425 * missing second stage translation table entry, which can mean that either the
1426 * guest simply needs more memory and we must allocate an appropriate page or it
1427 * can mean that the guest tried to access I/O memory, which is emulated by user
1428 * space. The distinction is based on the IPA causing the fault and whether this
1429 * memory region has been registered as standard RAM by user space.
1430 */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu)1431 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1432 {
1433 unsigned long fault_status;
1434 phys_addr_t fault_ipa;
1435 struct kvm_memory_slot *memslot;
1436 unsigned long hva;
1437 bool is_iabt, write_fault, writable;
1438 gfn_t gfn;
1439 int ret, idx;
1440
1441 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1442
1443 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1444 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1445
1446 if (fault_status == ESR_ELx_FSC_FAULT) {
1447 /* Beyond sanitised PARange (which is the IPA limit) */
1448 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1449 kvm_inject_size_fault(vcpu);
1450 return 1;
1451 }
1452
1453 /* Falls between the IPA range and the PARange? */
1454 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
1455 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1456
1457 if (is_iabt)
1458 kvm_inject_pabt(vcpu, fault_ipa);
1459 else
1460 kvm_inject_dabt(vcpu, fault_ipa);
1461 return 1;
1462 }
1463 }
1464
1465 /* Synchronous External Abort? */
1466 if (kvm_vcpu_abt_issea(vcpu)) {
1467 /*
1468 * For RAS the host kernel may handle this abort.
1469 * There is no need to pass the error into the guest.
1470 */
1471 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1472 kvm_inject_vabt(vcpu);
1473
1474 return 1;
1475 }
1476
1477 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1478 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1479
1480 /* Check the stage-2 fault is trans. fault or write fault */
1481 if (fault_status != ESR_ELx_FSC_FAULT &&
1482 fault_status != ESR_ELx_FSC_PERM &&
1483 fault_status != ESR_ELx_FSC_ACCESS) {
1484 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1485 kvm_vcpu_trap_get_class(vcpu),
1486 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1487 (unsigned long)kvm_vcpu_get_esr(vcpu));
1488 return -EFAULT;
1489 }
1490
1491 idx = srcu_read_lock(&vcpu->kvm->srcu);
1492
1493 gfn = fault_ipa >> PAGE_SHIFT;
1494 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1495 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1496 write_fault = kvm_is_write_fault(vcpu);
1497 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1498 /*
1499 * The guest has put either its instructions or its page-tables
1500 * somewhere it shouldn't have. Userspace won't be able to do
1501 * anything about this (there's no syndrome for a start), so
1502 * re-inject the abort back into the guest.
1503 */
1504 if (is_iabt) {
1505 ret = -ENOEXEC;
1506 goto out;
1507 }
1508
1509 if (kvm_vcpu_abt_iss1tw(vcpu)) {
1510 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1511 ret = 1;
1512 goto out_unlock;
1513 }
1514
1515 /*
1516 * Check for a cache maintenance operation. Since we
1517 * ended-up here, we know it is outside of any memory
1518 * slot. But we can't find out if that is for a device,
1519 * or if the guest is just being stupid. The only thing
1520 * we know for sure is that this range cannot be cached.
1521 *
1522 * So let's assume that the guest is just being
1523 * cautious, and skip the instruction.
1524 */
1525 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1526 kvm_incr_pc(vcpu);
1527 ret = 1;
1528 goto out_unlock;
1529 }
1530
1531 /*
1532 * The IPA is reported as [MAX:12], so we need to
1533 * complement it with the bottom 12 bits from the
1534 * faulting VA. This is always 12 bits, irrespective
1535 * of the page size.
1536 */
1537 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1538 ret = io_mem_abort(vcpu, fault_ipa);
1539 goto out_unlock;
1540 }
1541
1542 /* Userspace should not be able to register out-of-bounds IPAs */
1543 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1544
1545 if (fault_status == ESR_ELx_FSC_ACCESS) {
1546 handle_access_fault(vcpu, fault_ipa);
1547 ret = 1;
1548 goto out_unlock;
1549 }
1550
1551 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1552 if (ret == 0)
1553 ret = 1;
1554 out:
1555 if (ret == -ENOEXEC) {
1556 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1557 ret = 1;
1558 }
1559 out_unlock:
1560 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1561 return ret;
1562 }
1563
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1564 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1565 {
1566 if (!kvm->arch.mmu.pgt)
1567 return false;
1568
1569 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1570 (range->end - range->start) << PAGE_SHIFT,
1571 range->may_block);
1572
1573 return false;
1574 }
1575
kvm_set_spte_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1576 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1577 {
1578 kvm_pfn_t pfn = pte_pfn(range->pte);
1579
1580 if (!kvm->arch.mmu.pgt)
1581 return false;
1582
1583 WARN_ON(range->end - range->start != 1);
1584
1585 /*
1586 * If the page isn't tagged, defer to user_mem_abort() for sanitising
1587 * the MTE tags. The S2 pte should have been unmapped by
1588 * mmu_notifier_invalidate_range_end().
1589 */
1590 if (kvm_has_mte(kvm) && !page_mte_tagged(pfn_to_page(pfn)))
1591 return false;
1592
1593 /*
1594 * We've moved a page around, probably through CoW, so let's treat
1595 * it just like a translation fault and the map handler will clean
1596 * the cache to the PoC.
1597 *
1598 * The MMU notifiers will have unmapped a huge PMD before calling
1599 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1600 * therefore we never need to clear out a huge PMD through this
1601 * calling path and a memcache is not required.
1602 */
1603 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1604 PAGE_SIZE, __pfn_to_phys(pfn),
1605 KVM_PGTABLE_PROT_R, NULL, 0);
1606
1607 return false;
1608 }
1609
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1610 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1611 {
1612 u64 size = (range->end - range->start) << PAGE_SHIFT;
1613 kvm_pte_t kpte;
1614 pte_t pte;
1615
1616 if (!kvm->arch.mmu.pgt)
1617 return false;
1618
1619 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1620
1621 kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt,
1622 range->start << PAGE_SHIFT);
1623 pte = __pte(kpte);
1624 return pte_valid(pte) && pte_young(pte);
1625 }
1626
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1627 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1628 {
1629 if (!kvm->arch.mmu.pgt)
1630 return false;
1631
1632 return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt,
1633 range->start << PAGE_SHIFT);
1634 }
1635
kvm_mmu_get_httbr(void)1636 phys_addr_t kvm_mmu_get_httbr(void)
1637 {
1638 return __pa(hyp_pgtable->pgd);
1639 }
1640
kvm_get_idmap_vector(void)1641 phys_addr_t kvm_get_idmap_vector(void)
1642 {
1643 return hyp_idmap_vector;
1644 }
1645
kvm_map_idmap_text(void)1646 static int kvm_map_idmap_text(void)
1647 {
1648 unsigned long size = hyp_idmap_end - hyp_idmap_start;
1649 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1650 PAGE_HYP_EXEC);
1651 if (err)
1652 kvm_err("Failed to idmap %lx-%lx\n",
1653 hyp_idmap_start, hyp_idmap_end);
1654
1655 return err;
1656 }
1657
kvm_hyp_zalloc_page(void * arg)1658 static void *kvm_hyp_zalloc_page(void *arg)
1659 {
1660 return (void *)get_zeroed_page(GFP_KERNEL);
1661 }
1662
1663 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1664 .zalloc_page = kvm_hyp_zalloc_page,
1665 .get_page = kvm_host_get_page,
1666 .put_page = kvm_host_put_page,
1667 .phys_to_virt = kvm_host_va,
1668 .virt_to_phys = kvm_host_pa,
1669 };
1670
kvm_mmu_init(u32 * hyp_va_bits)1671 int __init kvm_mmu_init(u32 *hyp_va_bits)
1672 {
1673 int err;
1674 u32 idmap_bits;
1675 u32 kernel_bits;
1676
1677 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1678 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1679 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1680 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1681 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1682
1683 /*
1684 * We rely on the linker script to ensure at build time that the HYP
1685 * init code does not cross a page boundary.
1686 */
1687 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1688
1689 /*
1690 * The ID map may be configured to use an extended virtual address
1691 * range. This is only the case if system RAM is out of range for the
1692 * currently configured page size and VA_BITS_MIN, in which case we will
1693 * also need the extended virtual range for the HYP ID map, or we won't
1694 * be able to enable the EL2 MMU.
1695 *
1696 * However, in some cases the ID map may be configured for fewer than
1697 * the number of VA bits used by the regular kernel stage 1. This
1698 * happens when VA_BITS=52 and the kernel image is placed in PA space
1699 * below 48 bits.
1700 *
1701 * At EL2, there is only one TTBR register, and we can't switch between
1702 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
1703 * line: we need to use the extended range with *both* our translation
1704 * tables.
1705 *
1706 * So use the maximum of the idmap VA bits and the regular kernel stage
1707 * 1 VA bits to assure that the hypervisor can both ID map its code page
1708 * and map any kernel memory.
1709 */
1710 idmap_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1711 kernel_bits = vabits_actual;
1712 *hyp_va_bits = max(idmap_bits, kernel_bits);
1713
1714 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1715 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1716 kvm_debug("HYP VA range: %lx:%lx\n",
1717 kern_hyp_va(PAGE_OFFSET),
1718 kern_hyp_va((unsigned long)high_memory - 1));
1719
1720 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1721 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
1722 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1723 /*
1724 * The idmap page is intersecting with the VA space,
1725 * it is not safe to continue further.
1726 */
1727 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1728 err = -EINVAL;
1729 goto out;
1730 }
1731
1732 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1733 if (!hyp_pgtable) {
1734 kvm_err("Hyp mode page-table not allocated\n");
1735 err = -ENOMEM;
1736 goto out;
1737 }
1738
1739 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1740 if (err)
1741 goto out_free_pgtable;
1742
1743 err = kvm_map_idmap_text();
1744 if (err)
1745 goto out_destroy_pgtable;
1746
1747 io_map_base = hyp_idmap_start;
1748 return 0;
1749
1750 out_destroy_pgtable:
1751 kvm_pgtable_hyp_destroy(hyp_pgtable);
1752 out_free_pgtable:
1753 kfree(hyp_pgtable);
1754 hyp_pgtable = NULL;
1755 out:
1756 return err;
1757 }
1758
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1759 void kvm_arch_commit_memory_region(struct kvm *kvm,
1760 struct kvm_memory_slot *old,
1761 const struct kvm_memory_slot *new,
1762 enum kvm_mr_change change)
1763 {
1764 /*
1765 * At this point memslot has been committed and there is an
1766 * allocated dirty_bitmap[], dirty pages will be tracked while the
1767 * memory slot is write protected.
1768 */
1769 if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1770 /*
1771 * If we're with initial-all-set, we don't need to write
1772 * protect any pages because they're all reported as dirty.
1773 * Huge pages and normal pages will be write protect gradually.
1774 */
1775 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1776 kvm_mmu_wp_memory_region(kvm, new->id);
1777 }
1778 }
1779 }
1780
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1781 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1782 const struct kvm_memory_slot *old,
1783 struct kvm_memory_slot *new,
1784 enum kvm_mr_change change)
1785 {
1786 hva_t hva, reg_end;
1787 int ret = 0;
1788
1789 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1790 change != KVM_MR_FLAGS_ONLY)
1791 return 0;
1792
1793 /*
1794 * Prevent userspace from creating a memory region outside of the IPA
1795 * space addressable by the KVM guest IPA space.
1796 */
1797 if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1798 return -EFAULT;
1799
1800 hva = new->userspace_addr;
1801 reg_end = hva + (new->npages << PAGE_SHIFT);
1802
1803 mmap_read_lock(current->mm);
1804 /*
1805 * A memory region could potentially cover multiple VMAs, and any holes
1806 * between them, so iterate over all of them.
1807 *
1808 * +--------------------------------------------+
1809 * +---------------+----------------+ +----------------+
1810 * | : VMA 1 | VMA 2 | | VMA 3 : |
1811 * +---------------+----------------+ +----------------+
1812 * | memory region |
1813 * +--------------------------------------------+
1814 */
1815 do {
1816 struct vm_area_struct *vma;
1817
1818 vma = find_vma_intersection(current->mm, hva, reg_end);
1819 if (!vma)
1820 break;
1821
1822 if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
1823 ret = -EINVAL;
1824 break;
1825 }
1826
1827 if (vma->vm_flags & VM_PFNMAP) {
1828 /* IO region dirty page logging not allowed */
1829 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1830 ret = -EINVAL;
1831 break;
1832 }
1833 }
1834 hva = min(reg_end, vma->vm_end);
1835 } while (hva < reg_end);
1836
1837 mmap_read_unlock(current->mm);
1838 return ret;
1839 }
1840
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1841 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1842 {
1843 }
1844
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)1845 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1846 {
1847 }
1848
kvm_arch_flush_shadow_all(struct kvm * kvm)1849 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1850 {
1851 kvm_free_stage2_pgd(&kvm->arch.mmu);
1852 }
1853
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1854 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1855 struct kvm_memory_slot *slot)
1856 {
1857 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1858 phys_addr_t size = slot->npages << PAGE_SHIFT;
1859
1860 write_lock(&kvm->mmu_lock);
1861 unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1862 write_unlock(&kvm->mmu_lock);
1863 }
1864
1865 /*
1866 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1867 *
1868 * Main problems:
1869 * - S/W ops are local to a CPU (not broadcast)
1870 * - We have line migration behind our back (speculation)
1871 * - System caches don't support S/W at all (damn!)
1872 *
1873 * In the face of the above, the best we can do is to try and convert
1874 * S/W ops to VA ops. Because the guest is not allowed to infer the
1875 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1876 * which is a rather good thing for us.
1877 *
1878 * Also, it is only used when turning caches on/off ("The expected
1879 * usage of the cache maintenance instructions that operate by set/way
1880 * is associated with the cache maintenance instructions associated
1881 * with the powerdown and powerup of caches, if this is required by
1882 * the implementation.").
1883 *
1884 * We use the following policy:
1885 *
1886 * - If we trap a S/W operation, we enable VM trapping to detect
1887 * caches being turned on/off, and do a full clean.
1888 *
1889 * - We flush the caches on both caches being turned on and off.
1890 *
1891 * - Once the caches are enabled, we stop trapping VM ops.
1892 */
kvm_set_way_flush(struct kvm_vcpu * vcpu)1893 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1894 {
1895 unsigned long hcr = *vcpu_hcr(vcpu);
1896
1897 /*
1898 * If this is the first time we do a S/W operation
1899 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1900 * VM trapping.
1901 *
1902 * Otherwise, rely on the VM trapping to wait for the MMU +
1903 * Caches to be turned off. At that point, we'll be able to
1904 * clean the caches again.
1905 */
1906 if (!(hcr & HCR_TVM)) {
1907 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1908 vcpu_has_cache_enabled(vcpu));
1909 stage2_flush_vm(vcpu->kvm);
1910 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
1911 }
1912 }
1913
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)1914 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1915 {
1916 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1917
1918 /*
1919 * If switching the MMU+caches on, need to invalidate the caches.
1920 * If switching it off, need to clean the caches.
1921 * Clean + invalidate does the trick always.
1922 */
1923 if (now_enabled != was_enabled)
1924 stage2_flush_vm(vcpu->kvm);
1925
1926 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1927 if (now_enabled)
1928 *vcpu_hcr(vcpu) &= ~HCR_TVM;
1929
1930 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1931 }
1932