1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4 * No bombay mix was harmed in the writing of this file.
5 *
6 * Copyright (C) 2020 Google LLC
7 * Author: Will Deacon <will@kernel.org>
8 */
9
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13
14
15 #define KVM_PTE_TYPE BIT(1)
16 #define KVM_PTE_TYPE_BLOCK 0
17 #define KVM_PTE_TYPE_PAGE 1
18 #define KVM_PTE_TYPE_TABLE 1
19
20 #define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2)
21
22 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2)
23 #define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6)
24 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO 3
25 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW 1
26 #define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8)
27 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3
28 #define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10)
29
30 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2)
31 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6)
32 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7)
33 #define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8)
34 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3
35 #define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10)
36
37 #define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 51)
38
39 #define KVM_PTE_LEAF_ATTR_HI_SW GENMASK(58, 55)
40
41 #define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54)
42
43 #define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54)
44
45 #define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
46 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
47 KVM_PTE_LEAF_ATTR_HI_S2_XN)
48
49 #define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2)
50 #define KVM_MAX_OWNER_ID 1
51
52 /*
53 * Used to indicate a pte for which a 'break-before-make' sequence is in
54 * progress.
55 */
56 #define KVM_INVALID_PTE_LOCKED BIT(10)
57
58 struct kvm_pgtable_walk_data {
59 struct kvm_pgtable_walker *walker;
60
61 u64 addr;
62 u64 end;
63 };
64
kvm_phys_is_valid(u64 phys)65 static bool kvm_phys_is_valid(u64 phys)
66 {
67 return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_EL1_PARANGE_MAX));
68 }
69
kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx * ctx,u64 phys)70 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
71 {
72 u64 granule = kvm_granule_size(ctx->level);
73
74 if (!kvm_level_supports_block_mapping(ctx->level))
75 return false;
76
77 if (granule > (ctx->end - ctx->addr))
78 return false;
79
80 if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
81 return false;
82
83 return IS_ALIGNED(ctx->addr, granule);
84 }
85
kvm_pgtable_idx(struct kvm_pgtable_walk_data * data,u32 level)86 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
87 {
88 u64 shift = kvm_granule_shift(level);
89 u64 mask = BIT(PAGE_SHIFT - 3) - 1;
90
91 return (data->addr >> shift) & mask;
92 }
93
kvm_pgd_page_idx(struct kvm_pgtable * pgt,u64 addr)94 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
95 {
96 u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
97 u64 mask = BIT(pgt->ia_bits) - 1;
98
99 return (addr & mask) >> shift;
100 }
101
kvm_pgd_pages(u32 ia_bits,u32 start_level)102 static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
103 {
104 struct kvm_pgtable pgt = {
105 .ia_bits = ia_bits,
106 .start_level = start_level,
107 };
108
109 return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
110 }
111
kvm_pte_table(kvm_pte_t pte,u32 level)112 static bool kvm_pte_table(kvm_pte_t pte, u32 level)
113 {
114 if (level == KVM_PGTABLE_MAX_LEVELS - 1)
115 return false;
116
117 if (!kvm_pte_valid(pte))
118 return false;
119
120 return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
121 }
122
kvm_pte_follow(kvm_pte_t pte,struct kvm_pgtable_mm_ops * mm_ops)123 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
124 {
125 return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
126 }
127
kvm_clear_pte(kvm_pte_t * ptep)128 static void kvm_clear_pte(kvm_pte_t *ptep)
129 {
130 WRITE_ONCE(*ptep, 0);
131 }
132
kvm_init_table_pte(kvm_pte_t * childp,struct kvm_pgtable_mm_ops * mm_ops)133 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
134 {
135 kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
136
137 pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
138 pte |= KVM_PTE_VALID;
139 return pte;
140 }
141
kvm_init_valid_leaf_pte(u64 pa,kvm_pte_t attr,u32 level)142 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level)
143 {
144 kvm_pte_t pte = kvm_phys_to_pte(pa);
145 u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
146 KVM_PTE_TYPE_BLOCK;
147
148 pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
149 pte |= FIELD_PREP(KVM_PTE_TYPE, type);
150 pte |= KVM_PTE_VALID;
151
152 return pte;
153 }
154
kvm_init_invalid_leaf_owner(u8 owner_id)155 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
156 {
157 return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
158 }
159
kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data * data,const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)160 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
161 const struct kvm_pgtable_visit_ctx *ctx,
162 enum kvm_pgtable_walk_flags visit)
163 {
164 struct kvm_pgtable_walker *walker = data->walker;
165
166 /* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
167 WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
168 return walker->cb(ctx, visit);
169 }
170
kvm_pgtable_walk_continue(const struct kvm_pgtable_walker * walker,int r)171 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
172 int r)
173 {
174 /*
175 * Visitor callbacks return EAGAIN when the conditions that led to a
176 * fault are no longer reflected in the page tables due to a race to
177 * update a PTE. In the context of a fault handler this is interpreted
178 * as a signal to retry guest execution.
179 *
180 * Ignore the return code altogether for walkers outside a fault handler
181 * (e.g. write protecting a range of memory) and chug along with the
182 * page table walk.
183 */
184 if (r == -EAGAIN)
185 return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
186
187 return !r;
188 }
189
190 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
191 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level);
192
__kvm_pgtable_visit(struct kvm_pgtable_walk_data * data,struct kvm_pgtable_mm_ops * mm_ops,kvm_pteref_t pteref,u32 level)193 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
194 struct kvm_pgtable_mm_ops *mm_ops,
195 kvm_pteref_t pteref, u32 level)
196 {
197 enum kvm_pgtable_walk_flags flags = data->walker->flags;
198 kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
199 struct kvm_pgtable_visit_ctx ctx = {
200 .ptep = ptep,
201 .old = READ_ONCE(*ptep),
202 .arg = data->walker->arg,
203 .mm_ops = mm_ops,
204 .addr = data->addr,
205 .end = data->end,
206 .level = level,
207 .flags = flags,
208 };
209 int ret = 0;
210 kvm_pteref_t childp;
211 bool table = kvm_pte_table(ctx.old, level);
212
213 if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE))
214 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
215
216 if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
217 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
218 ctx.old = READ_ONCE(*ptep);
219 table = kvm_pte_table(ctx.old, level);
220 }
221
222 if (!kvm_pgtable_walk_continue(data->walker, ret))
223 goto out;
224
225 if (!table) {
226 data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
227 data->addr += kvm_granule_size(level);
228 goto out;
229 }
230
231 childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
232 ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
233 if (!kvm_pgtable_walk_continue(data->walker, ret))
234 goto out;
235
236 if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
237 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
238
239 out:
240 if (kvm_pgtable_walk_continue(data->walker, ret))
241 return 0;
242
243 return ret;
244 }
245
__kvm_pgtable_walk(struct kvm_pgtable_walk_data * data,struct kvm_pgtable_mm_ops * mm_ops,kvm_pteref_t pgtable,u32 level)246 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
247 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level)
248 {
249 u32 idx;
250 int ret = 0;
251
252 if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
253 return -EINVAL;
254
255 for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
256 kvm_pteref_t pteref = &pgtable[idx];
257
258 if (data->addr >= data->end)
259 break;
260
261 ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
262 if (ret)
263 break;
264 }
265
266 return ret;
267 }
268
_kvm_pgtable_walk(struct kvm_pgtable * pgt,struct kvm_pgtable_walk_data * data)269 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
270 {
271 u32 idx;
272 int ret = 0;
273 u64 limit = BIT(pgt->ia_bits);
274
275 if (data->addr > limit || data->end > limit)
276 return -ERANGE;
277
278 if (!pgt->pgd)
279 return -EINVAL;
280
281 for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
282 kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
283
284 ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
285 if (ret)
286 break;
287 }
288
289 return ret;
290 }
291
kvm_pgtable_walk(struct kvm_pgtable * pgt,u64 addr,u64 size,struct kvm_pgtable_walker * walker)292 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
293 struct kvm_pgtable_walker *walker)
294 {
295 struct kvm_pgtable_walk_data walk_data = {
296 .addr = ALIGN_DOWN(addr, PAGE_SIZE),
297 .end = PAGE_ALIGN(walk_data.addr + size),
298 .walker = walker,
299 };
300 int r;
301
302 r = kvm_pgtable_walk_begin(walker);
303 if (r)
304 return r;
305
306 r = _kvm_pgtable_walk(pgt, &walk_data);
307 kvm_pgtable_walk_end(walker);
308
309 return r;
310 }
311
312 struct leaf_walk_data {
313 kvm_pte_t pte;
314 u32 level;
315 };
316
leaf_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)317 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
318 enum kvm_pgtable_walk_flags visit)
319 {
320 struct leaf_walk_data *data = ctx->arg;
321
322 data->pte = ctx->old;
323 data->level = ctx->level;
324
325 return 0;
326 }
327
kvm_pgtable_get_leaf(struct kvm_pgtable * pgt,u64 addr,kvm_pte_t * ptep,u32 * level)328 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
329 kvm_pte_t *ptep, u32 *level)
330 {
331 struct leaf_walk_data data;
332 struct kvm_pgtable_walker walker = {
333 .cb = leaf_walker,
334 .flags = KVM_PGTABLE_WALK_LEAF,
335 .arg = &data,
336 };
337 int ret;
338
339 ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
340 PAGE_SIZE, &walker);
341 if (!ret) {
342 if (ptep)
343 *ptep = data.pte;
344 if (level)
345 *level = data.level;
346 }
347
348 return ret;
349 }
350
351 struct hyp_map_data {
352 u64 phys;
353 kvm_pte_t attr;
354 };
355
hyp_set_prot_attr(enum kvm_pgtable_prot prot,kvm_pte_t * ptep)356 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
357 {
358 bool device = prot & KVM_PGTABLE_PROT_DEVICE;
359 u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
360 kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
361 u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
362 u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
363 KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
364
365 if (!(prot & KVM_PGTABLE_PROT_R))
366 return -EINVAL;
367
368 if (prot & KVM_PGTABLE_PROT_X) {
369 if (prot & KVM_PGTABLE_PROT_W)
370 return -EINVAL;
371
372 if (device)
373 return -EINVAL;
374 } else {
375 attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
376 }
377
378 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
379 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
380 attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
381 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
382 *ptep = attr;
383
384 return 0;
385 }
386
kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)387 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
388 {
389 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
390 u32 ap;
391
392 if (!kvm_pte_valid(pte))
393 return prot;
394
395 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
396 prot |= KVM_PGTABLE_PROT_X;
397
398 ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
399 if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
400 prot |= KVM_PGTABLE_PROT_R;
401 else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
402 prot |= KVM_PGTABLE_PROT_RW;
403
404 return prot;
405 }
406
hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct hyp_map_data * data)407 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
408 struct hyp_map_data *data)
409 {
410 kvm_pte_t new;
411 u64 granule = kvm_granule_size(ctx->level), phys = data->phys;
412
413 if (!kvm_block_mapping_supported(ctx, phys))
414 return false;
415
416 data->phys += granule;
417 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
418 if (ctx->old == new)
419 return true;
420 if (!kvm_pte_valid(ctx->old))
421 ctx->mm_ops->get_page(ctx->ptep);
422 else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
423 return false;
424
425 smp_store_release(ctx->ptep, new);
426 return true;
427 }
428
hyp_map_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)429 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
430 enum kvm_pgtable_walk_flags visit)
431 {
432 kvm_pte_t *childp, new;
433 struct hyp_map_data *data = ctx->arg;
434 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
435
436 if (hyp_map_walker_try_leaf(ctx, data))
437 return 0;
438
439 if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
440 return -EINVAL;
441
442 childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
443 if (!childp)
444 return -ENOMEM;
445
446 new = kvm_init_table_pte(childp, mm_ops);
447 mm_ops->get_page(ctx->ptep);
448 smp_store_release(ctx->ptep, new);
449
450 return 0;
451 }
452
kvm_pgtable_hyp_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot)453 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
454 enum kvm_pgtable_prot prot)
455 {
456 int ret;
457 struct hyp_map_data map_data = {
458 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
459 };
460 struct kvm_pgtable_walker walker = {
461 .cb = hyp_map_walker,
462 .flags = KVM_PGTABLE_WALK_LEAF,
463 .arg = &map_data,
464 };
465
466 ret = hyp_set_prot_attr(prot, &map_data.attr);
467 if (ret)
468 return ret;
469
470 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
471 dsb(ishst);
472 isb();
473 return ret;
474 }
475
hyp_unmap_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)476 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
477 enum kvm_pgtable_walk_flags visit)
478 {
479 kvm_pte_t *childp = NULL;
480 u64 granule = kvm_granule_size(ctx->level);
481 u64 *unmapped = ctx->arg;
482 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
483
484 if (!kvm_pte_valid(ctx->old))
485 return -EINVAL;
486
487 if (kvm_pte_table(ctx->old, ctx->level)) {
488 childp = kvm_pte_follow(ctx->old, mm_ops);
489
490 if (mm_ops->page_count(childp) != 1)
491 return 0;
492
493 kvm_clear_pte(ctx->ptep);
494 dsb(ishst);
495 __tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
496 } else {
497 if (ctx->end - ctx->addr < granule)
498 return -EINVAL;
499
500 kvm_clear_pte(ctx->ptep);
501 dsb(ishst);
502 __tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
503 *unmapped += granule;
504 }
505
506 dsb(ish);
507 isb();
508 mm_ops->put_page(ctx->ptep);
509
510 if (childp)
511 mm_ops->put_page(childp);
512
513 return 0;
514 }
515
kvm_pgtable_hyp_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)516 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
517 {
518 u64 unmapped = 0;
519 struct kvm_pgtable_walker walker = {
520 .cb = hyp_unmap_walker,
521 .arg = &unmapped,
522 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
523 };
524
525 if (!pgt->mm_ops->page_count)
526 return 0;
527
528 kvm_pgtable_walk(pgt, addr, size, &walker);
529 return unmapped;
530 }
531
kvm_pgtable_hyp_init(struct kvm_pgtable * pgt,u32 va_bits,struct kvm_pgtable_mm_ops * mm_ops)532 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
533 struct kvm_pgtable_mm_ops *mm_ops)
534 {
535 u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
536
537 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
538 if (!pgt->pgd)
539 return -ENOMEM;
540
541 pgt->ia_bits = va_bits;
542 pgt->start_level = KVM_PGTABLE_MAX_LEVELS - levels;
543 pgt->mm_ops = mm_ops;
544 pgt->mmu = NULL;
545 pgt->force_pte_cb = NULL;
546
547 return 0;
548 }
549
hyp_free_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)550 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
551 enum kvm_pgtable_walk_flags visit)
552 {
553 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
554
555 if (!kvm_pte_valid(ctx->old))
556 return 0;
557
558 mm_ops->put_page(ctx->ptep);
559
560 if (kvm_pte_table(ctx->old, ctx->level))
561 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
562
563 return 0;
564 }
565
kvm_pgtable_hyp_destroy(struct kvm_pgtable * pgt)566 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
567 {
568 struct kvm_pgtable_walker walker = {
569 .cb = hyp_free_walker,
570 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
571 };
572
573 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
574 pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
575 pgt->pgd = NULL;
576 }
577
578 struct stage2_map_data {
579 u64 phys;
580 kvm_pte_t attr;
581 u8 owner_id;
582
583 kvm_pte_t *anchor;
584 kvm_pte_t *childp;
585
586 struct kvm_s2_mmu *mmu;
587 void *memcache;
588
589 /* Force mappings to page granularity */
590 bool force_pte;
591 };
592
kvm_get_vtcr(u64 mmfr0,u64 mmfr1,u32 phys_shift)593 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
594 {
595 u64 vtcr = VTCR_EL2_FLAGS;
596 u8 lvls;
597
598 vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
599 vtcr |= VTCR_EL2_T0SZ(phys_shift);
600 /*
601 * Use a minimum 2 level page table to prevent splitting
602 * host PMD huge pages at stage2.
603 */
604 lvls = stage2_pgtable_levels(phys_shift);
605 if (lvls < 2)
606 lvls = 2;
607 vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
608
609 #ifdef CONFIG_ARM64_HW_AFDBM
610 /*
611 * Enable the Hardware Access Flag management, unconditionally
612 * on all CPUs. The features is RES0 on CPUs without the support
613 * and must be ignored by the CPUs.
614 */
615 vtcr |= VTCR_EL2_HA;
616 #endif /* CONFIG_ARM64_HW_AFDBM */
617
618 /* Set the vmid bits */
619 vtcr |= (get_vmid_bits(mmfr1) == 16) ?
620 VTCR_EL2_VS_16BIT :
621 VTCR_EL2_VS_8BIT;
622
623 return vtcr;
624 }
625
stage2_has_fwb(struct kvm_pgtable * pgt)626 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
627 {
628 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
629 return false;
630
631 return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
632 }
633
634 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
635
stage2_set_prot_attr(struct kvm_pgtable * pgt,enum kvm_pgtable_prot prot,kvm_pte_t * ptep)636 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
637 kvm_pte_t *ptep)
638 {
639 bool device = prot & KVM_PGTABLE_PROT_DEVICE;
640 kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) :
641 KVM_S2_MEMATTR(pgt, NORMAL);
642 u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
643
644 if (!(prot & KVM_PGTABLE_PROT_X))
645 attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
646 else if (device)
647 return -EINVAL;
648
649 if (prot & KVM_PGTABLE_PROT_R)
650 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
651
652 if (prot & KVM_PGTABLE_PROT_W)
653 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
654
655 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
656 attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
657 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
658 *ptep = attr;
659
660 return 0;
661 }
662
kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)663 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
664 {
665 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
666
667 if (!kvm_pte_valid(pte))
668 return prot;
669
670 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
671 prot |= KVM_PGTABLE_PROT_R;
672 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
673 prot |= KVM_PGTABLE_PROT_W;
674 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
675 prot |= KVM_PGTABLE_PROT_X;
676
677 return prot;
678 }
679
stage2_pte_needs_update(kvm_pte_t old,kvm_pte_t new)680 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
681 {
682 if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
683 return true;
684
685 return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
686 }
687
stage2_pte_is_counted(kvm_pte_t pte)688 static bool stage2_pte_is_counted(kvm_pte_t pte)
689 {
690 /*
691 * The refcount tracks valid entries as well as invalid entries if they
692 * encode ownership of a page to another entity than the page-table
693 * owner, whose id is 0.
694 */
695 return !!pte;
696 }
697
stage2_pte_is_locked(kvm_pte_t pte)698 static bool stage2_pte_is_locked(kvm_pte_t pte)
699 {
700 return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
701 }
702
stage2_try_set_pte(const struct kvm_pgtable_visit_ctx * ctx,kvm_pte_t new)703 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
704 {
705 if (!kvm_pgtable_walk_shared(ctx)) {
706 WRITE_ONCE(*ctx->ptep, new);
707 return true;
708 }
709
710 return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
711 }
712
713 /**
714 * stage2_try_break_pte() - Invalidates a pte according to the
715 * 'break-before-make' requirements of the
716 * architecture.
717 *
718 * @ctx: context of the visited pte.
719 * @mmu: stage-2 mmu
720 *
721 * Returns: true if the pte was successfully broken.
722 *
723 * If the removed pte was valid, performs the necessary serialization and TLB
724 * invalidation for the old value. For counted ptes, drops the reference count
725 * on the containing table page.
726 */
stage2_try_break_pte(const struct kvm_pgtable_visit_ctx * ctx,struct kvm_s2_mmu * mmu)727 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
728 struct kvm_s2_mmu *mmu)
729 {
730 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
731
732 if (stage2_pte_is_locked(ctx->old)) {
733 /*
734 * Should never occur if this walker has exclusive access to the
735 * page tables.
736 */
737 WARN_ON(!kvm_pgtable_walk_shared(ctx));
738 return false;
739 }
740
741 if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
742 return false;
743
744 /*
745 * Perform the appropriate TLB invalidation based on the evicted pte
746 * value (if any).
747 */
748 if (kvm_pte_table(ctx->old, ctx->level))
749 kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
750 else if (kvm_pte_valid(ctx->old))
751 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr, ctx->level);
752
753 if (stage2_pte_is_counted(ctx->old))
754 mm_ops->put_page(ctx->ptep);
755
756 return true;
757 }
758
stage2_make_pte(const struct kvm_pgtable_visit_ctx * ctx,kvm_pte_t new)759 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
760 {
761 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
762
763 WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
764
765 if (stage2_pte_is_counted(new))
766 mm_ops->get_page(ctx->ptep);
767
768 smp_store_release(ctx->ptep, new);
769 }
770
stage2_put_pte(const struct kvm_pgtable_visit_ctx * ctx,struct kvm_s2_mmu * mmu,struct kvm_pgtable_mm_ops * mm_ops)771 static void stage2_put_pte(const struct kvm_pgtable_visit_ctx *ctx, struct kvm_s2_mmu *mmu,
772 struct kvm_pgtable_mm_ops *mm_ops)
773 {
774 /*
775 * Clear the existing PTE, and perform break-before-make with
776 * TLB maintenance if it was valid.
777 */
778 if (kvm_pte_valid(ctx->old)) {
779 kvm_clear_pte(ctx->ptep);
780 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr, ctx->level);
781 }
782
783 mm_ops->put_page(ctx->ptep);
784 }
785
stage2_pte_cacheable(struct kvm_pgtable * pgt,kvm_pte_t pte)786 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
787 {
788 u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
789 return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
790 }
791
stage2_pte_executable(kvm_pte_t pte)792 static bool stage2_pte_executable(kvm_pte_t pte)
793 {
794 return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
795 }
796
stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)797 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
798 struct stage2_map_data *data)
799 {
800 if (data->force_pte && (ctx->level < (KVM_PGTABLE_MAX_LEVELS - 1)))
801 return false;
802
803 return kvm_block_mapping_supported(ctx, data->phys);
804 }
805
stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)806 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
807 struct stage2_map_data *data)
808 {
809 kvm_pte_t new;
810 u64 granule = kvm_granule_size(ctx->level), phys = data->phys;
811 struct kvm_pgtable *pgt = data->mmu->pgt;
812 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
813
814 if (!stage2_leaf_mapping_allowed(ctx, data))
815 return -E2BIG;
816
817 if (kvm_phys_is_valid(phys))
818 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
819 else
820 new = kvm_init_invalid_leaf_owner(data->owner_id);
821
822 /*
823 * Skip updating the PTE if we are trying to recreate the exact
824 * same mapping or only change the access permissions. Instead,
825 * the vCPU will exit one more time from guest if still needed
826 * and then go through the path of relaxing permissions.
827 */
828 if (!stage2_pte_needs_update(ctx->old, new))
829 return -EAGAIN;
830
831 if (!stage2_try_break_pte(ctx, data->mmu))
832 return -EAGAIN;
833
834 /* Perform CMOs before installation of the guest stage-2 PTE */
835 if (mm_ops->dcache_clean_inval_poc && stage2_pte_cacheable(pgt, new))
836 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
837 granule);
838
839 if (mm_ops->icache_inval_pou && stage2_pte_executable(new))
840 mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
841
842 stage2_make_pte(ctx, new);
843
844 if (kvm_phys_is_valid(phys))
845 data->phys += granule;
846 return 0;
847 }
848
stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)849 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
850 struct stage2_map_data *data)
851 {
852 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
853 kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
854 int ret;
855
856 if (!stage2_leaf_mapping_allowed(ctx, data))
857 return 0;
858
859 ret = stage2_map_walker_try_leaf(ctx, data);
860 if (ret)
861 return ret;
862
863 mm_ops->free_removed_table(childp, ctx->level);
864 return 0;
865 }
866
stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)867 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
868 struct stage2_map_data *data)
869 {
870 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
871 kvm_pte_t *childp, new;
872 int ret;
873
874 ret = stage2_map_walker_try_leaf(ctx, data);
875 if (ret != -E2BIG)
876 return ret;
877
878 if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
879 return -EINVAL;
880
881 if (!data->memcache)
882 return -ENOMEM;
883
884 childp = mm_ops->zalloc_page(data->memcache);
885 if (!childp)
886 return -ENOMEM;
887
888 if (!stage2_try_break_pte(ctx, data->mmu)) {
889 mm_ops->put_page(childp);
890 return -EAGAIN;
891 }
892
893 /*
894 * If we've run into an existing block mapping then replace it with
895 * a table. Accesses beyond 'end' that fall within the new table
896 * will be mapped lazily.
897 */
898 new = kvm_init_table_pte(childp, mm_ops);
899 stage2_make_pte(ctx, new);
900
901 return 0;
902 }
903
904 /*
905 * The TABLE_PRE callback runs for table entries on the way down, looking
906 * for table entries which we could conceivably replace with a block entry
907 * for this mapping. If it finds one it replaces the entry and calls
908 * kvm_pgtable_mm_ops::free_removed_table() to tear down the detached table.
909 *
910 * Otherwise, the LEAF callback performs the mapping at the existing leaves
911 * instead.
912 */
stage2_map_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)913 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
914 enum kvm_pgtable_walk_flags visit)
915 {
916 struct stage2_map_data *data = ctx->arg;
917
918 switch (visit) {
919 case KVM_PGTABLE_WALK_TABLE_PRE:
920 return stage2_map_walk_table_pre(ctx, data);
921 case KVM_PGTABLE_WALK_LEAF:
922 return stage2_map_walk_leaf(ctx, data);
923 default:
924 return -EINVAL;
925 }
926 }
927
kvm_pgtable_stage2_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot,void * mc,enum kvm_pgtable_walk_flags flags)928 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
929 u64 phys, enum kvm_pgtable_prot prot,
930 void *mc, enum kvm_pgtable_walk_flags flags)
931 {
932 int ret;
933 struct stage2_map_data map_data = {
934 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
935 .mmu = pgt->mmu,
936 .memcache = mc,
937 .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
938 };
939 struct kvm_pgtable_walker walker = {
940 .cb = stage2_map_walker,
941 .flags = flags |
942 KVM_PGTABLE_WALK_TABLE_PRE |
943 KVM_PGTABLE_WALK_LEAF,
944 .arg = &map_data,
945 };
946
947 if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
948 return -EINVAL;
949
950 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
951 if (ret)
952 return ret;
953
954 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
955 dsb(ishst);
956 return ret;
957 }
958
kvm_pgtable_stage2_set_owner(struct kvm_pgtable * pgt,u64 addr,u64 size,void * mc,u8 owner_id)959 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
960 void *mc, u8 owner_id)
961 {
962 int ret;
963 struct stage2_map_data map_data = {
964 .phys = KVM_PHYS_INVALID,
965 .mmu = pgt->mmu,
966 .memcache = mc,
967 .owner_id = owner_id,
968 .force_pte = true,
969 };
970 struct kvm_pgtable_walker walker = {
971 .cb = stage2_map_walker,
972 .flags = KVM_PGTABLE_WALK_TABLE_PRE |
973 KVM_PGTABLE_WALK_LEAF,
974 .arg = &map_data,
975 };
976
977 if (owner_id > KVM_MAX_OWNER_ID)
978 return -EINVAL;
979
980 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
981 return ret;
982 }
983
stage2_unmap_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)984 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
985 enum kvm_pgtable_walk_flags visit)
986 {
987 struct kvm_pgtable *pgt = ctx->arg;
988 struct kvm_s2_mmu *mmu = pgt->mmu;
989 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
990 kvm_pte_t *childp = NULL;
991 bool need_flush = false;
992
993 if (!kvm_pte_valid(ctx->old)) {
994 if (stage2_pte_is_counted(ctx->old)) {
995 kvm_clear_pte(ctx->ptep);
996 mm_ops->put_page(ctx->ptep);
997 }
998 return 0;
999 }
1000
1001 if (kvm_pte_table(ctx->old, ctx->level)) {
1002 childp = kvm_pte_follow(ctx->old, mm_ops);
1003
1004 if (mm_ops->page_count(childp) != 1)
1005 return 0;
1006 } else if (stage2_pte_cacheable(pgt, ctx->old)) {
1007 need_flush = !stage2_has_fwb(pgt);
1008 }
1009
1010 /*
1011 * This is similar to the map() path in that we unmap the entire
1012 * block entry and rely on the remaining portions being faulted
1013 * back lazily.
1014 */
1015 stage2_put_pte(ctx, mmu, mm_ops);
1016
1017 if (need_flush && mm_ops->dcache_clean_inval_poc)
1018 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1019 kvm_granule_size(ctx->level));
1020
1021 if (childp)
1022 mm_ops->put_page(childp);
1023
1024 return 0;
1025 }
1026
kvm_pgtable_stage2_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)1027 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1028 {
1029 struct kvm_pgtable_walker walker = {
1030 .cb = stage2_unmap_walker,
1031 .arg = pgt,
1032 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1033 };
1034
1035 return kvm_pgtable_walk(pgt, addr, size, &walker);
1036 }
1037
1038 struct stage2_attr_data {
1039 kvm_pte_t attr_set;
1040 kvm_pte_t attr_clr;
1041 kvm_pte_t pte;
1042 u32 level;
1043 };
1044
stage2_attr_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1045 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1046 enum kvm_pgtable_walk_flags visit)
1047 {
1048 kvm_pte_t pte = ctx->old;
1049 struct stage2_attr_data *data = ctx->arg;
1050 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1051
1052 if (!kvm_pte_valid(ctx->old))
1053 return -EAGAIN;
1054
1055 data->level = ctx->level;
1056 data->pte = pte;
1057 pte &= ~data->attr_clr;
1058 pte |= data->attr_set;
1059
1060 /*
1061 * We may race with the CPU trying to set the access flag here,
1062 * but worst-case the access flag update gets lost and will be
1063 * set on the next access instead.
1064 */
1065 if (data->pte != pte) {
1066 /*
1067 * Invalidate instruction cache before updating the guest
1068 * stage-2 PTE if we are going to add executable permission.
1069 */
1070 if (mm_ops->icache_inval_pou &&
1071 stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1072 mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1073 kvm_granule_size(ctx->level));
1074
1075 if (!stage2_try_set_pte(ctx, pte))
1076 return -EAGAIN;
1077 }
1078
1079 return 0;
1080 }
1081
stage2_update_leaf_attrs(struct kvm_pgtable * pgt,u64 addr,u64 size,kvm_pte_t attr_set,kvm_pte_t attr_clr,kvm_pte_t * orig_pte,u32 * level,enum kvm_pgtable_walk_flags flags)1082 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1083 u64 size, kvm_pte_t attr_set,
1084 kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1085 u32 *level, enum kvm_pgtable_walk_flags flags)
1086 {
1087 int ret;
1088 kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1089 struct stage2_attr_data data = {
1090 .attr_set = attr_set & attr_mask,
1091 .attr_clr = attr_clr & attr_mask,
1092 };
1093 struct kvm_pgtable_walker walker = {
1094 .cb = stage2_attr_walker,
1095 .arg = &data,
1096 .flags = flags | KVM_PGTABLE_WALK_LEAF,
1097 };
1098
1099 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1100 if (ret)
1101 return ret;
1102
1103 if (orig_pte)
1104 *orig_pte = data.pte;
1105
1106 if (level)
1107 *level = data.level;
1108 return 0;
1109 }
1110
kvm_pgtable_stage2_wrprotect(struct kvm_pgtable * pgt,u64 addr,u64 size)1111 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1112 {
1113 return stage2_update_leaf_attrs(pgt, addr, size, 0,
1114 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1115 NULL, NULL, 0);
1116 }
1117
kvm_pgtable_stage2_mkyoung(struct kvm_pgtable * pgt,u64 addr)1118 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1119 {
1120 kvm_pte_t pte = 0;
1121 int ret;
1122
1123 ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1124 &pte, NULL,
1125 KVM_PGTABLE_WALK_HANDLE_FAULT |
1126 KVM_PGTABLE_WALK_SHARED);
1127 if (!ret)
1128 dsb(ishst);
1129
1130 return pte;
1131 }
1132
kvm_pgtable_stage2_mkold(struct kvm_pgtable * pgt,u64 addr)1133 kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr)
1134 {
1135 kvm_pte_t pte = 0;
1136 stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF,
1137 &pte, NULL, 0);
1138 /*
1139 * "But where's the TLBI?!", you scream.
1140 * "Over in the core code", I sigh.
1141 *
1142 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1143 */
1144 return pte;
1145 }
1146
kvm_pgtable_stage2_is_young(struct kvm_pgtable * pgt,u64 addr)1147 bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr)
1148 {
1149 kvm_pte_t pte = 0;
1150 stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL, 0);
1151 return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF;
1152 }
1153
kvm_pgtable_stage2_relax_perms(struct kvm_pgtable * pgt,u64 addr,enum kvm_pgtable_prot prot)1154 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1155 enum kvm_pgtable_prot prot)
1156 {
1157 int ret;
1158 u32 level;
1159 kvm_pte_t set = 0, clr = 0;
1160
1161 if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1162 return -EINVAL;
1163
1164 if (prot & KVM_PGTABLE_PROT_R)
1165 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1166
1167 if (prot & KVM_PGTABLE_PROT_W)
1168 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1169
1170 if (prot & KVM_PGTABLE_PROT_X)
1171 clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1172
1173 ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
1174 KVM_PGTABLE_WALK_HANDLE_FAULT |
1175 KVM_PGTABLE_WALK_SHARED);
1176 if (!ret)
1177 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level);
1178 return ret;
1179 }
1180
stage2_flush_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1181 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1182 enum kvm_pgtable_walk_flags visit)
1183 {
1184 struct kvm_pgtable *pgt = ctx->arg;
1185 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1186
1187 if (!kvm_pte_valid(ctx->old) || !stage2_pte_cacheable(pgt, ctx->old))
1188 return 0;
1189
1190 if (mm_ops->dcache_clean_inval_poc)
1191 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1192 kvm_granule_size(ctx->level));
1193 return 0;
1194 }
1195
kvm_pgtable_stage2_flush(struct kvm_pgtable * pgt,u64 addr,u64 size)1196 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1197 {
1198 struct kvm_pgtable_walker walker = {
1199 .cb = stage2_flush_walker,
1200 .flags = KVM_PGTABLE_WALK_LEAF,
1201 .arg = pgt,
1202 };
1203
1204 if (stage2_has_fwb(pgt))
1205 return 0;
1206
1207 return kvm_pgtable_walk(pgt, addr, size, &walker);
1208 }
1209
1210
__kvm_pgtable_stage2_init(struct kvm_pgtable * pgt,struct kvm_s2_mmu * mmu,struct kvm_pgtable_mm_ops * mm_ops,enum kvm_pgtable_stage2_flags flags,kvm_pgtable_force_pte_cb_t force_pte_cb)1211 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1212 struct kvm_pgtable_mm_ops *mm_ops,
1213 enum kvm_pgtable_stage2_flags flags,
1214 kvm_pgtable_force_pte_cb_t force_pte_cb)
1215 {
1216 size_t pgd_sz;
1217 u64 vtcr = mmu->arch->vtcr;
1218 u32 ia_bits = VTCR_EL2_IPA(vtcr);
1219 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1220 u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1221
1222 pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1223 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1224 if (!pgt->pgd)
1225 return -ENOMEM;
1226
1227 pgt->ia_bits = ia_bits;
1228 pgt->start_level = start_level;
1229 pgt->mm_ops = mm_ops;
1230 pgt->mmu = mmu;
1231 pgt->flags = flags;
1232 pgt->force_pte_cb = force_pte_cb;
1233
1234 /* Ensure zeroed PGD pages are visible to the hardware walker */
1235 dsb(ishst);
1236 return 0;
1237 }
1238
kvm_pgtable_stage2_pgd_size(u64 vtcr)1239 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1240 {
1241 u32 ia_bits = VTCR_EL2_IPA(vtcr);
1242 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1243 u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1244
1245 return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1246 }
1247
stage2_free_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1248 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1249 enum kvm_pgtable_walk_flags visit)
1250 {
1251 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1252
1253 if (!stage2_pte_is_counted(ctx->old))
1254 return 0;
1255
1256 mm_ops->put_page(ctx->ptep);
1257
1258 if (kvm_pte_table(ctx->old, ctx->level))
1259 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
1260
1261 return 0;
1262 }
1263
kvm_pgtable_stage2_destroy(struct kvm_pgtable * pgt)1264 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1265 {
1266 size_t pgd_sz;
1267 struct kvm_pgtable_walker walker = {
1268 .cb = stage2_free_walker,
1269 .flags = KVM_PGTABLE_WALK_LEAF |
1270 KVM_PGTABLE_WALK_TABLE_POST,
1271 };
1272
1273 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1274 pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1275 pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
1276 pgt->pgd = NULL;
1277 }
1278
kvm_pgtable_stage2_free_removed(struct kvm_pgtable_mm_ops * mm_ops,void * pgtable,u32 level)1279 void kvm_pgtable_stage2_free_removed(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, u32 level)
1280 {
1281 kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1282 struct kvm_pgtable_walker walker = {
1283 .cb = stage2_free_walker,
1284 .flags = KVM_PGTABLE_WALK_LEAF |
1285 KVM_PGTABLE_WALK_TABLE_POST,
1286 };
1287 struct kvm_pgtable_walk_data data = {
1288 .walker = &walker,
1289
1290 /*
1291 * At this point the IPA really doesn't matter, as the page
1292 * table being traversed has already been removed from the stage
1293 * 2. Set an appropriate range to cover the entire page table.
1294 */
1295 .addr = 0,
1296 .end = kvm_granule_size(level),
1297 };
1298
1299 WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1300 }
1301