1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/coproc.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
9 * Christoffer Dall <c.dall@virtualopensystems.com>
10 */
11
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/kvm_host.h>
16 #include <linux/mm.h>
17 #include <linux/printk.h>
18 #include <linux/uaccess.h>
19
20 #include <asm/cacheflush.h>
21 #include <asm/cputype.h>
22 #include <asm/debug-monitors.h>
23 #include <asm/esr.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_emulate.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_nested.h>
29 #include <asm/perf_event.h>
30 #include <asm/sysreg.h>
31
32 #include <trace/events/kvm.h>
33
34 #include "sys_regs.h"
35
36 #include "trace.h"
37
38 /*
39 * For AArch32, we only take care of what is being trapped. Anything
40 * that has to do with init and userspace access has to go via the
41 * 64bit interface.
42 */
43
44 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
45
read_from_write_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)46 static bool read_from_write_only(struct kvm_vcpu *vcpu,
47 struct sys_reg_params *params,
48 const struct sys_reg_desc *r)
49 {
50 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
51 print_sys_reg_instr(params);
52 kvm_inject_undefined(vcpu);
53 return false;
54 }
55
write_to_read_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)56 static bool write_to_read_only(struct kvm_vcpu *vcpu,
57 struct sys_reg_params *params,
58 const struct sys_reg_desc *r)
59 {
60 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
61 print_sys_reg_instr(params);
62 kvm_inject_undefined(vcpu);
63 return false;
64 }
65
vcpu_read_sys_reg(const struct kvm_vcpu * vcpu,int reg)66 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
67 {
68 u64 val = 0x8badf00d8badf00d;
69
70 if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
71 __vcpu_read_sys_reg_from_cpu(reg, &val))
72 return val;
73
74 return __vcpu_sys_reg(vcpu, reg);
75 }
76
vcpu_write_sys_reg(struct kvm_vcpu * vcpu,u64 val,int reg)77 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
78 {
79 if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
80 __vcpu_write_sys_reg_to_cpu(val, reg))
81 return;
82
83 __vcpu_sys_reg(vcpu, reg) = val;
84 }
85
86 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
87 #define CSSELR_MAX 14
88
89 /*
90 * Returns the minimum line size for the selected cache, expressed as
91 * Log2(bytes).
92 */
get_min_cache_line_size(bool icache)93 static u8 get_min_cache_line_size(bool icache)
94 {
95 u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
96 u8 field;
97
98 if (icache)
99 field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
100 else
101 field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
102
103 /*
104 * Cache line size is represented as Log2(words) in CTR_EL0.
105 * Log2(bytes) can be derived with the following:
106 *
107 * Log2(words) + 2 = Log2(bytes / 4) + 2
108 * = Log2(bytes) - 2 + 2
109 * = Log2(bytes)
110 */
111 return field + 2;
112 }
113
114 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(struct kvm_vcpu * vcpu,u32 csselr)115 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
116 {
117 u8 line_size;
118
119 if (vcpu->arch.ccsidr)
120 return vcpu->arch.ccsidr[csselr];
121
122 line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
123
124 /*
125 * Fabricate a CCSIDR value as the overriding value does not exist.
126 * The real CCSIDR value will not be used as it can vary by the
127 * physical CPU which the vcpu currently resides in.
128 *
129 * The line size is determined with get_min_cache_line_size(), which
130 * should be valid for all CPUs even if they have different cache
131 * configuration.
132 *
133 * The associativity bits are cleared, meaning the geometry of all data
134 * and unified caches (which are guaranteed to be PIPT and thus
135 * non-aliasing) are 1 set and 1 way.
136 * Guests should not be doing cache operations by set/way at all, and
137 * for this reason, we trap them and attempt to infer the intent, so
138 * that we can flush the entire guest's address space at the appropriate
139 * time. The exposed geometry minimizes the number of the traps.
140 * [If guests should attempt to infer aliasing properties from the
141 * geometry (which is not permitted by the architecture), they would
142 * only do so for virtually indexed caches.]
143 *
144 * We don't check if the cache level exists as it is allowed to return
145 * an UNKNOWN value if not.
146 */
147 return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
148 }
149
set_ccsidr(struct kvm_vcpu * vcpu,u32 csselr,u32 val)150 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
151 {
152 u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
153 u32 *ccsidr = vcpu->arch.ccsidr;
154 u32 i;
155
156 if ((val & CCSIDR_EL1_RES0) ||
157 line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
158 return -EINVAL;
159
160 if (!ccsidr) {
161 if (val == get_ccsidr(vcpu, csselr))
162 return 0;
163
164 ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
165 if (!ccsidr)
166 return -ENOMEM;
167
168 for (i = 0; i < CSSELR_MAX; i++)
169 ccsidr[i] = get_ccsidr(vcpu, i);
170
171 vcpu->arch.ccsidr = ccsidr;
172 }
173
174 ccsidr[csselr] = val;
175
176 return 0;
177 }
178
access_rw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)179 static bool access_rw(struct kvm_vcpu *vcpu,
180 struct sys_reg_params *p,
181 const struct sys_reg_desc *r)
182 {
183 if (p->is_write)
184 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
185 else
186 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
187
188 return true;
189 }
190
191 /*
192 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
193 */
access_dcsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)194 static bool access_dcsw(struct kvm_vcpu *vcpu,
195 struct sys_reg_params *p,
196 const struct sys_reg_desc *r)
197 {
198 if (!p->is_write)
199 return read_from_write_only(vcpu, p, r);
200
201 /*
202 * Only track S/W ops if we don't have FWB. It still indicates
203 * that the guest is a bit broken (S/W operations should only
204 * be done by firmware, knowing that there is only a single
205 * CPU left in the system, and certainly not from non-secure
206 * software).
207 */
208 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
209 kvm_set_way_flush(vcpu);
210
211 return true;
212 }
213
get_access_mask(const struct sys_reg_desc * r,u64 * mask,u64 * shift)214 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
215 {
216 switch (r->aarch32_map) {
217 case AA32_LO:
218 *mask = GENMASK_ULL(31, 0);
219 *shift = 0;
220 break;
221 case AA32_HI:
222 *mask = GENMASK_ULL(63, 32);
223 *shift = 32;
224 break;
225 default:
226 *mask = GENMASK_ULL(63, 0);
227 *shift = 0;
228 break;
229 }
230 }
231
232 /*
233 * Generic accessor for VM registers. Only called as long as HCR_TVM
234 * is set. If the guest enables the MMU, we stop trapping the VM
235 * sys_regs and leave it in complete control of the caches.
236 */
access_vm_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)237 static bool access_vm_reg(struct kvm_vcpu *vcpu,
238 struct sys_reg_params *p,
239 const struct sys_reg_desc *r)
240 {
241 bool was_enabled = vcpu_has_cache_enabled(vcpu);
242 u64 val, mask, shift;
243
244 BUG_ON(!p->is_write);
245
246 get_access_mask(r, &mask, &shift);
247
248 if (~mask) {
249 val = vcpu_read_sys_reg(vcpu, r->reg);
250 val &= ~mask;
251 } else {
252 val = 0;
253 }
254
255 val |= (p->regval & (mask >> shift)) << shift;
256 vcpu_write_sys_reg(vcpu, val, r->reg);
257
258 kvm_toggle_cache(vcpu, was_enabled);
259 return true;
260 }
261
access_actlr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)262 static bool access_actlr(struct kvm_vcpu *vcpu,
263 struct sys_reg_params *p,
264 const struct sys_reg_desc *r)
265 {
266 u64 mask, shift;
267
268 if (p->is_write)
269 return ignore_write(vcpu, p);
270
271 get_access_mask(r, &mask, &shift);
272 p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
273
274 return true;
275 }
276
277 /*
278 * Trap handler for the GICv3 SGI generation system register.
279 * Forward the request to the VGIC emulation.
280 * The cp15_64 code makes sure this automatically works
281 * for both AArch64 and AArch32 accesses.
282 */
access_gic_sgi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)283 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
284 struct sys_reg_params *p,
285 const struct sys_reg_desc *r)
286 {
287 bool g1;
288
289 if (!p->is_write)
290 return read_from_write_only(vcpu, p, r);
291
292 /*
293 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
294 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
295 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
296 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
297 * group.
298 */
299 if (p->Op0 == 0) { /* AArch32 */
300 switch (p->Op1) {
301 default: /* Keep GCC quiet */
302 case 0: /* ICC_SGI1R */
303 g1 = true;
304 break;
305 case 1: /* ICC_ASGI1R */
306 case 2: /* ICC_SGI0R */
307 g1 = false;
308 break;
309 }
310 } else { /* AArch64 */
311 switch (p->Op2) {
312 default: /* Keep GCC quiet */
313 case 5: /* ICC_SGI1R_EL1 */
314 g1 = true;
315 break;
316 case 6: /* ICC_ASGI1R_EL1 */
317 case 7: /* ICC_SGI0R_EL1 */
318 g1 = false;
319 break;
320 }
321 }
322
323 vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
324
325 return true;
326 }
327
access_gic_sre(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)328 static bool access_gic_sre(struct kvm_vcpu *vcpu,
329 struct sys_reg_params *p,
330 const struct sys_reg_desc *r)
331 {
332 if (p->is_write)
333 return ignore_write(vcpu, p);
334
335 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
336 return true;
337 }
338
trap_raz_wi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)339 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
340 struct sys_reg_params *p,
341 const struct sys_reg_desc *r)
342 {
343 if (p->is_write)
344 return ignore_write(vcpu, p);
345 else
346 return read_zero(vcpu, p);
347 }
348
trap_undef(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)349 static bool trap_undef(struct kvm_vcpu *vcpu,
350 struct sys_reg_params *p,
351 const struct sys_reg_desc *r)
352 {
353 kvm_inject_undefined(vcpu);
354 return false;
355 }
356
357 /*
358 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
359 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
360 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
361 * treat it separately.
362 */
trap_loregion(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)363 static bool trap_loregion(struct kvm_vcpu *vcpu,
364 struct sys_reg_params *p,
365 const struct sys_reg_desc *r)
366 {
367 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
368 u32 sr = reg_to_encoding(r);
369
370 if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
371 kvm_inject_undefined(vcpu);
372 return false;
373 }
374
375 if (p->is_write && sr == SYS_LORID_EL1)
376 return write_to_read_only(vcpu, p, r);
377
378 return trap_raz_wi(vcpu, p, r);
379 }
380
trap_oslar_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)381 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
382 struct sys_reg_params *p,
383 const struct sys_reg_desc *r)
384 {
385 u64 oslsr;
386
387 if (!p->is_write)
388 return read_from_write_only(vcpu, p, r);
389
390 /* Forward the OSLK bit to OSLSR */
391 oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK;
392 if (p->regval & SYS_OSLAR_OSLK)
393 oslsr |= SYS_OSLSR_OSLK;
394
395 __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
396 return true;
397 }
398
trap_oslsr_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)399 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
400 struct sys_reg_params *p,
401 const struct sys_reg_desc *r)
402 {
403 if (p->is_write)
404 return write_to_read_only(vcpu, p, r);
405
406 p->regval = __vcpu_sys_reg(vcpu, r->reg);
407 return true;
408 }
409
set_oslsr_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)410 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
411 u64 val)
412 {
413 /*
414 * The only modifiable bit is the OSLK bit. Refuse the write if
415 * userspace attempts to change any other bit in the register.
416 */
417 if ((val ^ rd->val) & ~SYS_OSLSR_OSLK)
418 return -EINVAL;
419
420 __vcpu_sys_reg(vcpu, rd->reg) = val;
421 return 0;
422 }
423
trap_dbgauthstatus_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)424 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
425 struct sys_reg_params *p,
426 const struct sys_reg_desc *r)
427 {
428 if (p->is_write) {
429 return ignore_write(vcpu, p);
430 } else {
431 p->regval = read_sysreg(dbgauthstatus_el1);
432 return true;
433 }
434 }
435
436 /*
437 * We want to avoid world-switching all the DBG registers all the
438 * time:
439 *
440 * - If we've touched any debug register, it is likely that we're
441 * going to touch more of them. It then makes sense to disable the
442 * traps and start doing the save/restore dance
443 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
444 * then mandatory to save/restore the registers, as the guest
445 * depends on them.
446 *
447 * For this, we use a DIRTY bit, indicating the guest has modified the
448 * debug registers, used as follow:
449 *
450 * On guest entry:
451 * - If the dirty bit is set (because we're coming back from trapping),
452 * disable the traps, save host registers, restore guest registers.
453 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
454 * set the dirty bit, disable the traps, save host registers,
455 * restore guest registers.
456 * - Otherwise, enable the traps
457 *
458 * On guest exit:
459 * - If the dirty bit is set, save guest registers, restore host
460 * registers and clear the dirty bit. This ensure that the host can
461 * now use the debug registers.
462 */
trap_debug_regs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)463 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
464 struct sys_reg_params *p,
465 const struct sys_reg_desc *r)
466 {
467 access_rw(vcpu, p, r);
468 if (p->is_write)
469 vcpu_set_flag(vcpu, DEBUG_DIRTY);
470
471 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
472
473 return true;
474 }
475
476 /*
477 * reg_to_dbg/dbg_to_reg
478 *
479 * A 32 bit write to a debug register leave top bits alone
480 * A 32 bit read from a debug register only returns the bottom bits
481 *
482 * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
483 * switches between host and guest values in future.
484 */
reg_to_dbg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd,u64 * dbg_reg)485 static void reg_to_dbg(struct kvm_vcpu *vcpu,
486 struct sys_reg_params *p,
487 const struct sys_reg_desc *rd,
488 u64 *dbg_reg)
489 {
490 u64 mask, shift, val;
491
492 get_access_mask(rd, &mask, &shift);
493
494 val = *dbg_reg;
495 val &= ~mask;
496 val |= (p->regval & (mask >> shift)) << shift;
497 *dbg_reg = val;
498
499 vcpu_set_flag(vcpu, DEBUG_DIRTY);
500 }
501
dbg_to_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd,u64 * dbg_reg)502 static void dbg_to_reg(struct kvm_vcpu *vcpu,
503 struct sys_reg_params *p,
504 const struct sys_reg_desc *rd,
505 u64 *dbg_reg)
506 {
507 u64 mask, shift;
508
509 get_access_mask(rd, &mask, &shift);
510 p->regval = (*dbg_reg & mask) >> shift;
511 }
512
trap_bvr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)513 static bool trap_bvr(struct kvm_vcpu *vcpu,
514 struct sys_reg_params *p,
515 const struct sys_reg_desc *rd)
516 {
517 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
518
519 if (p->is_write)
520 reg_to_dbg(vcpu, p, rd, dbg_reg);
521 else
522 dbg_to_reg(vcpu, p, rd, dbg_reg);
523
524 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
525
526 return true;
527 }
528
set_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)529 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
530 u64 val)
531 {
532 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
533 return 0;
534 }
535
get_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)536 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
537 u64 *val)
538 {
539 *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
540 return 0;
541 }
542
reset_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)543 static void reset_bvr(struct kvm_vcpu *vcpu,
544 const struct sys_reg_desc *rd)
545 {
546 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
547 }
548
trap_bcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)549 static bool trap_bcr(struct kvm_vcpu *vcpu,
550 struct sys_reg_params *p,
551 const struct sys_reg_desc *rd)
552 {
553 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
554
555 if (p->is_write)
556 reg_to_dbg(vcpu, p, rd, dbg_reg);
557 else
558 dbg_to_reg(vcpu, p, rd, dbg_reg);
559
560 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
561
562 return true;
563 }
564
set_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)565 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
566 u64 val)
567 {
568 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
569 return 0;
570 }
571
get_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)572 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
573 u64 *val)
574 {
575 *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
576 return 0;
577 }
578
reset_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)579 static void reset_bcr(struct kvm_vcpu *vcpu,
580 const struct sys_reg_desc *rd)
581 {
582 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
583 }
584
trap_wvr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)585 static bool trap_wvr(struct kvm_vcpu *vcpu,
586 struct sys_reg_params *p,
587 const struct sys_reg_desc *rd)
588 {
589 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
590
591 if (p->is_write)
592 reg_to_dbg(vcpu, p, rd, dbg_reg);
593 else
594 dbg_to_reg(vcpu, p, rd, dbg_reg);
595
596 trace_trap_reg(__func__, rd->CRm, p->is_write,
597 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
598
599 return true;
600 }
601
set_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)602 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
603 u64 val)
604 {
605 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
606 return 0;
607 }
608
get_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)609 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
610 u64 *val)
611 {
612 *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
613 return 0;
614 }
615
reset_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)616 static void reset_wvr(struct kvm_vcpu *vcpu,
617 const struct sys_reg_desc *rd)
618 {
619 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
620 }
621
trap_wcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)622 static bool trap_wcr(struct kvm_vcpu *vcpu,
623 struct sys_reg_params *p,
624 const struct sys_reg_desc *rd)
625 {
626 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
627
628 if (p->is_write)
629 reg_to_dbg(vcpu, p, rd, dbg_reg);
630 else
631 dbg_to_reg(vcpu, p, rd, dbg_reg);
632
633 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
634
635 return true;
636 }
637
set_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)638 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
639 u64 val)
640 {
641 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
642 return 0;
643 }
644
get_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)645 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
646 u64 *val)
647 {
648 *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
649 return 0;
650 }
651
reset_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)652 static void reset_wcr(struct kvm_vcpu *vcpu,
653 const struct sys_reg_desc *rd)
654 {
655 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
656 }
657
reset_amair_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)658 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
659 {
660 u64 amair = read_sysreg(amair_el1);
661 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
662 }
663
reset_actlr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)664 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
665 {
666 u64 actlr = read_sysreg(actlr_el1);
667 vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
668 }
669
reset_mpidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)670 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
671 {
672 u64 mpidr;
673
674 /*
675 * Map the vcpu_id into the first three affinity level fields of
676 * the MPIDR. We limit the number of VCPUs in level 0 due to a
677 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
678 * of the GICv3 to be able to address each CPU directly when
679 * sending IPIs.
680 */
681 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
682 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
683 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
684 vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
685 }
686
pmu_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)687 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
688 const struct sys_reg_desc *r)
689 {
690 if (kvm_vcpu_has_pmu(vcpu))
691 return 0;
692
693 return REG_HIDDEN;
694 }
695
reset_pmu_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)696 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
697 {
698 u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
699
700 /* No PMU available, any PMU reg may UNDEF... */
701 if (!kvm_arm_support_pmu_v3())
702 return;
703
704 n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
705 n &= ARMV8_PMU_PMCR_N_MASK;
706 if (n)
707 mask |= GENMASK(n - 1, 0);
708
709 reset_unknown(vcpu, r);
710 __vcpu_sys_reg(vcpu, r->reg) &= mask;
711 }
712
reset_pmevcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)713 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
714 {
715 reset_unknown(vcpu, r);
716 __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
717 }
718
reset_pmevtyper(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)719 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
720 {
721 reset_unknown(vcpu, r);
722 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
723 }
724
reset_pmselr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)725 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
726 {
727 reset_unknown(vcpu, r);
728 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
729 }
730
reset_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)731 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
732 {
733 u64 pmcr;
734
735 /* No PMU available, PMCR_EL0 may UNDEF... */
736 if (!kvm_arm_support_pmu_v3())
737 return;
738
739 /* Only preserve PMCR_EL0.N, and reset the rest to 0 */
740 pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
741 if (!kvm_supports_32bit_el0())
742 pmcr |= ARMV8_PMU_PMCR_LC;
743
744 __vcpu_sys_reg(vcpu, r->reg) = pmcr;
745 }
746
check_pmu_access_disabled(struct kvm_vcpu * vcpu,u64 flags)747 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
748 {
749 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
750 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
751
752 if (!enabled)
753 kvm_inject_undefined(vcpu);
754
755 return !enabled;
756 }
757
pmu_access_el0_disabled(struct kvm_vcpu * vcpu)758 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
759 {
760 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
761 }
762
pmu_write_swinc_el0_disabled(struct kvm_vcpu * vcpu)763 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
764 {
765 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
766 }
767
pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu * vcpu)768 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
769 {
770 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
771 }
772
pmu_access_event_counter_el0_disabled(struct kvm_vcpu * vcpu)773 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
774 {
775 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
776 }
777
access_pmcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)778 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
779 const struct sys_reg_desc *r)
780 {
781 u64 val;
782
783 if (pmu_access_el0_disabled(vcpu))
784 return false;
785
786 if (p->is_write) {
787 /*
788 * Only update writeable bits of PMCR (continuing into
789 * kvm_pmu_handle_pmcr() as well)
790 */
791 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
792 val &= ~ARMV8_PMU_PMCR_MASK;
793 val |= p->regval & ARMV8_PMU_PMCR_MASK;
794 if (!kvm_supports_32bit_el0())
795 val |= ARMV8_PMU_PMCR_LC;
796 kvm_pmu_handle_pmcr(vcpu, val);
797 kvm_vcpu_pmu_restore_guest(vcpu);
798 } else {
799 /* PMCR.P & PMCR.C are RAZ */
800 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
801 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
802 p->regval = val;
803 }
804
805 return true;
806 }
807
access_pmselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)808 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
809 const struct sys_reg_desc *r)
810 {
811 if (pmu_access_event_counter_el0_disabled(vcpu))
812 return false;
813
814 if (p->is_write)
815 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
816 else
817 /* return PMSELR.SEL field */
818 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
819 & ARMV8_PMU_COUNTER_MASK;
820
821 return true;
822 }
823
access_pmceid(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)824 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
825 const struct sys_reg_desc *r)
826 {
827 u64 pmceid, mask, shift;
828
829 BUG_ON(p->is_write);
830
831 if (pmu_access_el0_disabled(vcpu))
832 return false;
833
834 get_access_mask(r, &mask, &shift);
835
836 pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
837 pmceid &= mask;
838 pmceid >>= shift;
839
840 p->regval = pmceid;
841
842 return true;
843 }
844
pmu_counter_idx_valid(struct kvm_vcpu * vcpu,u64 idx)845 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
846 {
847 u64 pmcr, val;
848
849 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
850 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
851 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
852 kvm_inject_undefined(vcpu);
853 return false;
854 }
855
856 return true;
857 }
858
access_pmu_evcntr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)859 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
860 struct sys_reg_params *p,
861 const struct sys_reg_desc *r)
862 {
863 u64 idx = ~0UL;
864
865 if (r->CRn == 9 && r->CRm == 13) {
866 if (r->Op2 == 2) {
867 /* PMXEVCNTR_EL0 */
868 if (pmu_access_event_counter_el0_disabled(vcpu))
869 return false;
870
871 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
872 & ARMV8_PMU_COUNTER_MASK;
873 } else if (r->Op2 == 0) {
874 /* PMCCNTR_EL0 */
875 if (pmu_access_cycle_counter_el0_disabled(vcpu))
876 return false;
877
878 idx = ARMV8_PMU_CYCLE_IDX;
879 }
880 } else if (r->CRn == 0 && r->CRm == 9) {
881 /* PMCCNTR */
882 if (pmu_access_event_counter_el0_disabled(vcpu))
883 return false;
884
885 idx = ARMV8_PMU_CYCLE_IDX;
886 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
887 /* PMEVCNTRn_EL0 */
888 if (pmu_access_event_counter_el0_disabled(vcpu))
889 return false;
890
891 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
892 }
893
894 /* Catch any decoding mistake */
895 WARN_ON(idx == ~0UL);
896
897 if (!pmu_counter_idx_valid(vcpu, idx))
898 return false;
899
900 if (p->is_write) {
901 if (pmu_access_el0_disabled(vcpu))
902 return false;
903
904 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
905 } else {
906 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
907 }
908
909 return true;
910 }
911
access_pmu_evtyper(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)912 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
913 const struct sys_reg_desc *r)
914 {
915 u64 idx, reg;
916
917 if (pmu_access_el0_disabled(vcpu))
918 return false;
919
920 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
921 /* PMXEVTYPER_EL0 */
922 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
923 reg = PMEVTYPER0_EL0 + idx;
924 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
925 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
926 if (idx == ARMV8_PMU_CYCLE_IDX)
927 reg = PMCCFILTR_EL0;
928 else
929 /* PMEVTYPERn_EL0 */
930 reg = PMEVTYPER0_EL0 + idx;
931 } else {
932 BUG();
933 }
934
935 if (!pmu_counter_idx_valid(vcpu, idx))
936 return false;
937
938 if (p->is_write) {
939 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
940 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
941 kvm_vcpu_pmu_restore_guest(vcpu);
942 } else {
943 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
944 }
945
946 return true;
947 }
948
access_pmcnten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)949 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
950 const struct sys_reg_desc *r)
951 {
952 u64 val, mask;
953
954 if (pmu_access_el0_disabled(vcpu))
955 return false;
956
957 mask = kvm_pmu_valid_counter_mask(vcpu);
958 if (p->is_write) {
959 val = p->regval & mask;
960 if (r->Op2 & 0x1) {
961 /* accessing PMCNTENSET_EL0 */
962 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
963 kvm_pmu_enable_counter_mask(vcpu, val);
964 kvm_vcpu_pmu_restore_guest(vcpu);
965 } else {
966 /* accessing PMCNTENCLR_EL0 */
967 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
968 kvm_pmu_disable_counter_mask(vcpu, val);
969 }
970 } else {
971 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
972 }
973
974 return true;
975 }
976
access_pminten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)977 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
978 const struct sys_reg_desc *r)
979 {
980 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
981
982 if (check_pmu_access_disabled(vcpu, 0))
983 return false;
984
985 if (p->is_write) {
986 u64 val = p->regval & mask;
987
988 if (r->Op2 & 0x1)
989 /* accessing PMINTENSET_EL1 */
990 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
991 else
992 /* accessing PMINTENCLR_EL1 */
993 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
994 } else {
995 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
996 }
997
998 return true;
999 }
1000
access_pmovs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1001 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1002 const struct sys_reg_desc *r)
1003 {
1004 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1005
1006 if (pmu_access_el0_disabled(vcpu))
1007 return false;
1008
1009 if (p->is_write) {
1010 if (r->CRm & 0x2)
1011 /* accessing PMOVSSET_EL0 */
1012 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1013 else
1014 /* accessing PMOVSCLR_EL0 */
1015 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1016 } else {
1017 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1018 }
1019
1020 return true;
1021 }
1022
access_pmswinc(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1023 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1024 const struct sys_reg_desc *r)
1025 {
1026 u64 mask;
1027
1028 if (!p->is_write)
1029 return read_from_write_only(vcpu, p, r);
1030
1031 if (pmu_write_swinc_el0_disabled(vcpu))
1032 return false;
1033
1034 mask = kvm_pmu_valid_counter_mask(vcpu);
1035 kvm_pmu_software_increment(vcpu, p->regval & mask);
1036 return true;
1037 }
1038
access_pmuserenr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1039 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1040 const struct sys_reg_desc *r)
1041 {
1042 if (p->is_write) {
1043 if (!vcpu_mode_priv(vcpu)) {
1044 kvm_inject_undefined(vcpu);
1045 return false;
1046 }
1047
1048 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1049 p->regval & ARMV8_PMU_USERENR_MASK;
1050 } else {
1051 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1052 & ARMV8_PMU_USERENR_MASK;
1053 }
1054
1055 return true;
1056 }
1057
1058 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1059 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
1060 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
1061 trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
1062 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
1063 trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
1064 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
1065 trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
1066 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
1067 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
1068
1069 #define PMU_SYS_REG(r) \
1070 SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
1071
1072 /* Macro to expand the PMEVCNTRn_EL0 register */
1073 #define PMU_PMEVCNTR_EL0(n) \
1074 { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)), \
1075 .reset = reset_pmevcntr, \
1076 .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1077
1078 /* Macro to expand the PMEVTYPERn_EL0 register */
1079 #define PMU_PMEVTYPER_EL0(n) \
1080 { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)), \
1081 .reset = reset_pmevtyper, \
1082 .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1083
undef_access(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1084 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1085 const struct sys_reg_desc *r)
1086 {
1087 kvm_inject_undefined(vcpu);
1088
1089 return false;
1090 }
1091
1092 /* Macro to expand the AMU counter and type registers*/
1093 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1094 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1095 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1096 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1097
ptrauth_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1098 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1099 const struct sys_reg_desc *rd)
1100 {
1101 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1102 }
1103
1104 /*
1105 * If we land here on a PtrAuth access, that is because we didn't
1106 * fixup the access on exit by allowing the PtrAuth sysregs. The only
1107 * way this happens is when the guest does not have PtrAuth support
1108 * enabled.
1109 */
1110 #define __PTRAUTH_KEY(k) \
1111 { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \
1112 .visibility = ptrauth_visibility}
1113
1114 #define PTRAUTH_KEY(k) \
1115 __PTRAUTH_KEY(k ## KEYLO_EL1), \
1116 __PTRAUTH_KEY(k ## KEYHI_EL1)
1117
access_arch_timer(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1118 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1119 struct sys_reg_params *p,
1120 const struct sys_reg_desc *r)
1121 {
1122 enum kvm_arch_timers tmr;
1123 enum kvm_arch_timer_regs treg;
1124 u64 reg = reg_to_encoding(r);
1125
1126 switch (reg) {
1127 case SYS_CNTP_TVAL_EL0:
1128 case SYS_AARCH32_CNTP_TVAL:
1129 tmr = TIMER_PTIMER;
1130 treg = TIMER_REG_TVAL;
1131 break;
1132 case SYS_CNTP_CTL_EL0:
1133 case SYS_AARCH32_CNTP_CTL:
1134 tmr = TIMER_PTIMER;
1135 treg = TIMER_REG_CTL;
1136 break;
1137 case SYS_CNTP_CVAL_EL0:
1138 case SYS_AARCH32_CNTP_CVAL:
1139 tmr = TIMER_PTIMER;
1140 treg = TIMER_REG_CVAL;
1141 break;
1142 default:
1143 print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1144 kvm_inject_undefined(vcpu);
1145 return false;
1146 }
1147
1148 if (p->is_write)
1149 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1150 else
1151 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1152
1153 return true;
1154 }
1155
vcpu_pmuver(const struct kvm_vcpu * vcpu)1156 static u8 vcpu_pmuver(const struct kvm_vcpu *vcpu)
1157 {
1158 if (kvm_vcpu_has_pmu(vcpu))
1159 return vcpu->kvm->arch.dfr0_pmuver.imp;
1160
1161 return vcpu->kvm->arch.dfr0_pmuver.unimp;
1162 }
1163
perfmon_to_pmuver(u8 perfmon)1164 static u8 perfmon_to_pmuver(u8 perfmon)
1165 {
1166 switch (perfmon) {
1167 case ID_DFR0_EL1_PerfMon_PMUv3:
1168 return ID_AA64DFR0_EL1_PMUVer_IMP;
1169 case ID_DFR0_EL1_PerfMon_IMPDEF:
1170 return ID_AA64DFR0_EL1_PMUVer_IMP_DEF;
1171 default:
1172 /* Anything ARMv8.1+ and NI have the same value. For now. */
1173 return perfmon;
1174 }
1175 }
1176
pmuver_to_perfmon(u8 pmuver)1177 static u8 pmuver_to_perfmon(u8 pmuver)
1178 {
1179 switch (pmuver) {
1180 case ID_AA64DFR0_EL1_PMUVer_IMP:
1181 return ID_DFR0_EL1_PerfMon_PMUv3;
1182 case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1183 return ID_DFR0_EL1_PerfMon_IMPDEF;
1184 default:
1185 /* Anything ARMv8.1+ and NI have the same value. For now. */
1186 return pmuver;
1187 }
1188 }
1189
1190 /* Read a sanitised cpufeature ID register by sys_reg_desc */
read_id_reg(const struct kvm_vcpu * vcpu,struct sys_reg_desc const * r)1191 static u64 read_id_reg(const struct kvm_vcpu *vcpu, struct sys_reg_desc const *r)
1192 {
1193 u32 id = reg_to_encoding(r);
1194 u64 val;
1195
1196 if (sysreg_visible_as_raz(vcpu, r))
1197 return 0;
1198
1199 val = read_sanitised_ftr_reg(id);
1200
1201 switch (id) {
1202 case SYS_ID_AA64PFR0_EL1:
1203 if (!vcpu_has_sve(vcpu))
1204 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_SVE);
1205 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AMU);
1206 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2);
1207 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1208 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3);
1209 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1210 if (kvm_vgic_global_state.type == VGIC_V3) {
1211 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC);
1212 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC), 1);
1213 }
1214 break;
1215 case SYS_ID_AA64PFR1_EL1:
1216 if (!kvm_has_mte(vcpu->kvm))
1217 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1218
1219 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1220 break;
1221 case SYS_ID_AA64ISAR1_EL1:
1222 if (!vcpu_has_ptrauth(vcpu))
1223 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1224 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1225 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1226 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1227 break;
1228 case SYS_ID_AA64ISAR2_EL1:
1229 if (!vcpu_has_ptrauth(vcpu))
1230 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1231 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1232 if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1233 val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1234 break;
1235 case SYS_ID_AA64DFR0_EL1:
1236 /* Limit debug to ARMv8.0 */
1237 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer);
1238 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer), 6);
1239 /* Set PMUver to the required version */
1240 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer);
1241 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer),
1242 vcpu_pmuver(vcpu));
1243 /* Hide SPE from guests */
1244 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMSVer);
1245 break;
1246 case SYS_ID_DFR0_EL1:
1247 val &= ~ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon);
1248 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon),
1249 pmuver_to_perfmon(vcpu_pmuver(vcpu)));
1250 break;
1251 case SYS_ID_AA64MMFR2_EL1:
1252 val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1253 break;
1254 case SYS_ID_MMFR4_EL1:
1255 val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1256 break;
1257 }
1258
1259 return val;
1260 }
1261
id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1262 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1263 const struct sys_reg_desc *r)
1264 {
1265 u32 id = reg_to_encoding(r);
1266
1267 switch (id) {
1268 case SYS_ID_AA64ZFR0_EL1:
1269 if (!vcpu_has_sve(vcpu))
1270 return REG_RAZ;
1271 break;
1272 }
1273
1274 return 0;
1275 }
1276
aa32_id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1277 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1278 const struct sys_reg_desc *r)
1279 {
1280 /*
1281 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1282 * EL. Promote to RAZ/WI in order to guarantee consistency between
1283 * systems.
1284 */
1285 if (!kvm_supports_32bit_el0())
1286 return REG_RAZ | REG_USER_WI;
1287
1288 return id_visibility(vcpu, r);
1289 }
1290
raz_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1291 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1292 const struct sys_reg_desc *r)
1293 {
1294 return REG_RAZ;
1295 }
1296
1297 /* cpufeature ID register access trap handlers */
1298
access_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1299 static bool access_id_reg(struct kvm_vcpu *vcpu,
1300 struct sys_reg_params *p,
1301 const struct sys_reg_desc *r)
1302 {
1303 if (p->is_write)
1304 return write_to_read_only(vcpu, p, r);
1305
1306 p->regval = read_id_reg(vcpu, r);
1307 if (vcpu_has_nv(vcpu))
1308 access_nested_id_reg(vcpu, p, r);
1309
1310 return true;
1311 }
1312
1313 /* Visibility overrides for SVE-specific control registers */
sve_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1314 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1315 const struct sys_reg_desc *rd)
1316 {
1317 if (vcpu_has_sve(vcpu))
1318 return 0;
1319
1320 return REG_HIDDEN;
1321 }
1322
set_id_aa64pfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1323 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1324 const struct sys_reg_desc *rd,
1325 u64 val)
1326 {
1327 u8 csv2, csv3;
1328
1329 /*
1330 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1331 * it doesn't promise more than what is actually provided (the
1332 * guest could otherwise be covered in ectoplasmic residue).
1333 */
1334 csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV2_SHIFT);
1335 if (csv2 > 1 ||
1336 (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1337 return -EINVAL;
1338
1339 /* Same thing for CSV3 */
1340 csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV3_SHIFT);
1341 if (csv3 > 1 ||
1342 (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1343 return -EINVAL;
1344
1345 /* We can only differ with CSV[23], and anything else is an error */
1346 val ^= read_id_reg(vcpu, rd);
1347 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
1348 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
1349 if (val)
1350 return -EINVAL;
1351
1352 vcpu->kvm->arch.pfr0_csv2 = csv2;
1353 vcpu->kvm->arch.pfr0_csv3 = csv3;
1354
1355 return 0;
1356 }
1357
set_id_aa64dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1358 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1359 const struct sys_reg_desc *rd,
1360 u64 val)
1361 {
1362 u8 pmuver, host_pmuver;
1363 bool valid_pmu;
1364
1365 host_pmuver = kvm_arm_pmu_get_pmuver_limit();
1366
1367 /*
1368 * Allow AA64DFR0_EL1.PMUver to be set from userspace as long
1369 * as it doesn't promise more than what the HW gives us. We
1370 * allow an IMPDEF PMU though, only if no PMU is supported
1371 * (KVM backward compatibility handling).
1372 */
1373 pmuver = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), val);
1374 if ((pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF && pmuver > host_pmuver))
1375 return -EINVAL;
1376
1377 valid_pmu = (pmuver != 0 && pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF);
1378
1379 /* Make sure view register and PMU support do match */
1380 if (kvm_vcpu_has_pmu(vcpu) != valid_pmu)
1381 return -EINVAL;
1382
1383 /* We can only differ with PMUver, and anything else is an error */
1384 val ^= read_id_reg(vcpu, rd);
1385 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer);
1386 if (val)
1387 return -EINVAL;
1388
1389 if (valid_pmu)
1390 vcpu->kvm->arch.dfr0_pmuver.imp = pmuver;
1391 else
1392 vcpu->kvm->arch.dfr0_pmuver.unimp = pmuver;
1393
1394 return 0;
1395 }
1396
set_id_dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1397 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1398 const struct sys_reg_desc *rd,
1399 u64 val)
1400 {
1401 u8 perfmon, host_perfmon;
1402 bool valid_pmu;
1403
1404 host_perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1405
1406 /*
1407 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1408 * it doesn't promise more than what the HW gives us on the
1409 * AArch64 side (as everything is emulated with that), and
1410 * that this is a PMUv3.
1411 */
1412 perfmon = FIELD_GET(ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon), val);
1413 if ((perfmon != ID_DFR0_EL1_PerfMon_IMPDEF && perfmon > host_perfmon) ||
1414 (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3))
1415 return -EINVAL;
1416
1417 valid_pmu = (perfmon != 0 && perfmon != ID_DFR0_EL1_PerfMon_IMPDEF);
1418
1419 /* Make sure view register and PMU support do match */
1420 if (kvm_vcpu_has_pmu(vcpu) != valid_pmu)
1421 return -EINVAL;
1422
1423 /* We can only differ with PerfMon, and anything else is an error */
1424 val ^= read_id_reg(vcpu, rd);
1425 val &= ~ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon);
1426 if (val)
1427 return -EINVAL;
1428
1429 if (valid_pmu)
1430 vcpu->kvm->arch.dfr0_pmuver.imp = perfmon_to_pmuver(perfmon);
1431 else
1432 vcpu->kvm->arch.dfr0_pmuver.unimp = perfmon_to_pmuver(perfmon);
1433
1434 return 0;
1435 }
1436
1437 /*
1438 * cpufeature ID register user accessors
1439 *
1440 * For now, these registers are immutable for userspace, so no values
1441 * are stored, and for set_id_reg() we don't allow the effective value
1442 * to be changed.
1443 */
get_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)1444 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1445 u64 *val)
1446 {
1447 *val = read_id_reg(vcpu, rd);
1448 return 0;
1449 }
1450
set_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1451 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1452 u64 val)
1453 {
1454 /* This is what we mean by invariant: you can't change it. */
1455 if (val != read_id_reg(vcpu, rd))
1456 return -EINVAL;
1457
1458 return 0;
1459 }
1460
get_raz_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)1461 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1462 u64 *val)
1463 {
1464 *val = 0;
1465 return 0;
1466 }
1467
set_wi_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1468 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1469 u64 val)
1470 {
1471 return 0;
1472 }
1473
access_ctr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1474 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1475 const struct sys_reg_desc *r)
1476 {
1477 if (p->is_write)
1478 return write_to_read_only(vcpu, p, r);
1479
1480 p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1481 return true;
1482 }
1483
access_clidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1484 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1485 const struct sys_reg_desc *r)
1486 {
1487 if (p->is_write)
1488 return write_to_read_only(vcpu, p, r);
1489
1490 p->regval = __vcpu_sys_reg(vcpu, r->reg);
1491 return true;
1492 }
1493
1494 /*
1495 * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1496 * by the physical CPU which the vcpu currently resides in.
1497 */
reset_clidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1498 static void reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1499 {
1500 u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1501 u64 clidr;
1502 u8 loc;
1503
1504 if ((ctr_el0 & CTR_EL0_IDC)) {
1505 /*
1506 * Data cache clean to the PoU is not required so LoUU and LoUIS
1507 * will not be set and a unified cache, which will be marked as
1508 * LoC, will be added.
1509 *
1510 * If not DIC, let the unified cache L2 so that an instruction
1511 * cache can be added as L1 later.
1512 */
1513 loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1514 clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1515 } else {
1516 /*
1517 * Data cache clean to the PoU is required so let L1 have a data
1518 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1519 * it can be marked as LoC too.
1520 */
1521 loc = 1;
1522 clidr = 1 << CLIDR_LOUU_SHIFT;
1523 clidr |= 1 << CLIDR_LOUIS_SHIFT;
1524 clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1525 }
1526
1527 /*
1528 * Instruction cache invalidation to the PoU is required so let L1 have
1529 * an instruction cache. If L1 already has a data cache, it will be
1530 * CACHE_TYPE_SEPARATE.
1531 */
1532 if (!(ctr_el0 & CTR_EL0_DIC))
1533 clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1534
1535 clidr |= loc << CLIDR_LOC_SHIFT;
1536
1537 /*
1538 * Add tag cache unified to data cache. Allocation tags and data are
1539 * unified in a cache line so that it looks valid even if there is only
1540 * one cache line.
1541 */
1542 if (kvm_has_mte(vcpu->kvm))
1543 clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1544
1545 __vcpu_sys_reg(vcpu, r->reg) = clidr;
1546 }
1547
set_clidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1548 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1549 u64 val)
1550 {
1551 u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1552 u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1553
1554 if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1555 return -EINVAL;
1556
1557 __vcpu_sys_reg(vcpu, rd->reg) = val;
1558
1559 return 0;
1560 }
1561
access_csselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1562 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1563 const struct sys_reg_desc *r)
1564 {
1565 int reg = r->reg;
1566
1567 if (p->is_write)
1568 vcpu_write_sys_reg(vcpu, p->regval, reg);
1569 else
1570 p->regval = vcpu_read_sys_reg(vcpu, reg);
1571 return true;
1572 }
1573
access_ccsidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1574 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1575 const struct sys_reg_desc *r)
1576 {
1577 u32 csselr;
1578
1579 if (p->is_write)
1580 return write_to_read_only(vcpu, p, r);
1581
1582 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1583 csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1584 if (csselr < CSSELR_MAX)
1585 p->regval = get_ccsidr(vcpu, csselr);
1586
1587 return true;
1588 }
1589
mte_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1590 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1591 const struct sys_reg_desc *rd)
1592 {
1593 if (kvm_has_mte(vcpu->kvm))
1594 return 0;
1595
1596 return REG_HIDDEN;
1597 }
1598
1599 #define MTE_REG(name) { \
1600 SYS_DESC(SYS_##name), \
1601 .access = undef_access, \
1602 .reset = reset_unknown, \
1603 .reg = name, \
1604 .visibility = mte_visibility, \
1605 }
1606
el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1607 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
1608 const struct sys_reg_desc *rd)
1609 {
1610 if (vcpu_has_nv(vcpu))
1611 return 0;
1612
1613 return REG_HIDDEN;
1614 }
1615
1616 #define EL2_REG(name, acc, rst, v) { \
1617 SYS_DESC(SYS_##name), \
1618 .access = acc, \
1619 .reset = rst, \
1620 .reg = name, \
1621 .visibility = el2_visibility, \
1622 .val = v, \
1623 }
1624
1625 /*
1626 * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
1627 * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
1628 * handling traps. Given that, they are always hidden from userspace.
1629 */
elx2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1630 static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
1631 const struct sys_reg_desc *rd)
1632 {
1633 return REG_HIDDEN_USER;
1634 }
1635
1636 #define EL12_REG(name, acc, rst, v) { \
1637 SYS_DESC(SYS_##name##_EL12), \
1638 .access = acc, \
1639 .reset = rst, \
1640 .reg = name##_EL1, \
1641 .val = v, \
1642 .visibility = elx2_visibility, \
1643 }
1644
1645 /* sys_reg_desc initialiser for known cpufeature ID registers */
1646 #define ID_SANITISED(name) { \
1647 SYS_DESC(SYS_##name), \
1648 .access = access_id_reg, \
1649 .get_user = get_id_reg, \
1650 .set_user = set_id_reg, \
1651 .visibility = id_visibility, \
1652 }
1653
1654 /* sys_reg_desc initialiser for known cpufeature ID registers */
1655 #define AA32_ID_SANITISED(name) { \
1656 SYS_DESC(SYS_##name), \
1657 .access = access_id_reg, \
1658 .get_user = get_id_reg, \
1659 .set_user = set_id_reg, \
1660 .visibility = aa32_id_visibility, \
1661 }
1662
1663 /*
1664 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1665 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1666 * (1 <= crm < 8, 0 <= Op2 < 8).
1667 */
1668 #define ID_UNALLOCATED(crm, op2) { \
1669 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
1670 .access = access_id_reg, \
1671 .get_user = get_id_reg, \
1672 .set_user = set_id_reg, \
1673 .visibility = raz_visibility \
1674 }
1675
1676 /*
1677 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1678 * For now, these are exposed just like unallocated ID regs: they appear
1679 * RAZ for the guest.
1680 */
1681 #define ID_HIDDEN(name) { \
1682 SYS_DESC(SYS_##name), \
1683 .access = access_id_reg, \
1684 .get_user = get_id_reg, \
1685 .set_user = set_id_reg, \
1686 .visibility = raz_visibility, \
1687 }
1688
access_sp_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1689 static bool access_sp_el1(struct kvm_vcpu *vcpu,
1690 struct sys_reg_params *p,
1691 const struct sys_reg_desc *r)
1692 {
1693 if (p->is_write)
1694 __vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
1695 else
1696 p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
1697
1698 return true;
1699 }
1700
access_elr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1701 static bool access_elr(struct kvm_vcpu *vcpu,
1702 struct sys_reg_params *p,
1703 const struct sys_reg_desc *r)
1704 {
1705 if (p->is_write)
1706 vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
1707 else
1708 p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
1709
1710 return true;
1711 }
1712
access_spsr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1713 static bool access_spsr(struct kvm_vcpu *vcpu,
1714 struct sys_reg_params *p,
1715 const struct sys_reg_desc *r)
1716 {
1717 if (p->is_write)
1718 __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
1719 else
1720 p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
1721
1722 return true;
1723 }
1724
1725 /*
1726 * Architected system registers.
1727 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1728 *
1729 * Debug handling: We do trap most, if not all debug related system
1730 * registers. The implementation is good enough to ensure that a guest
1731 * can use these with minimal performance degradation. The drawback is
1732 * that we don't implement any of the external debug architecture.
1733 * This should be revisited if we ever encounter a more demanding
1734 * guest...
1735 */
1736 static const struct sys_reg_desc sys_reg_descs[] = {
1737 { SYS_DESC(SYS_DC_ISW), access_dcsw },
1738 { SYS_DESC(SYS_DC_CSW), access_dcsw },
1739 { SYS_DESC(SYS_DC_CISW), access_dcsw },
1740
1741 DBG_BCR_BVR_WCR_WVR_EL1(0),
1742 DBG_BCR_BVR_WCR_WVR_EL1(1),
1743 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1744 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1745 DBG_BCR_BVR_WCR_WVR_EL1(2),
1746 DBG_BCR_BVR_WCR_WVR_EL1(3),
1747 DBG_BCR_BVR_WCR_WVR_EL1(4),
1748 DBG_BCR_BVR_WCR_WVR_EL1(5),
1749 DBG_BCR_BVR_WCR_WVR_EL1(6),
1750 DBG_BCR_BVR_WCR_WVR_EL1(7),
1751 DBG_BCR_BVR_WCR_WVR_EL1(8),
1752 DBG_BCR_BVR_WCR_WVR_EL1(9),
1753 DBG_BCR_BVR_WCR_WVR_EL1(10),
1754 DBG_BCR_BVR_WCR_WVR_EL1(11),
1755 DBG_BCR_BVR_WCR_WVR_EL1(12),
1756 DBG_BCR_BVR_WCR_WVR_EL1(13),
1757 DBG_BCR_BVR_WCR_WVR_EL1(14),
1758 DBG_BCR_BVR_WCR_WVR_EL1(15),
1759
1760 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1761 { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
1762 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1763 SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
1764 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1765 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1766 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1767 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1768 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1769
1770 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1771 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1772 // DBGDTR[TR]X_EL0 share the same encoding
1773 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1774
1775 { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1776
1777 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1778
1779 /*
1780 * ID regs: all ID_SANITISED() entries here must have corresponding
1781 * entries in arm64_ftr_regs[].
1782 */
1783
1784 /* AArch64 mappings of the AArch32 ID registers */
1785 /* CRm=1 */
1786 AA32_ID_SANITISED(ID_PFR0_EL1),
1787 AA32_ID_SANITISED(ID_PFR1_EL1),
1788 { SYS_DESC(SYS_ID_DFR0_EL1), .access = access_id_reg,
1789 .get_user = get_id_reg, .set_user = set_id_dfr0_el1,
1790 .visibility = aa32_id_visibility, },
1791 ID_HIDDEN(ID_AFR0_EL1),
1792 AA32_ID_SANITISED(ID_MMFR0_EL1),
1793 AA32_ID_SANITISED(ID_MMFR1_EL1),
1794 AA32_ID_SANITISED(ID_MMFR2_EL1),
1795 AA32_ID_SANITISED(ID_MMFR3_EL1),
1796
1797 /* CRm=2 */
1798 AA32_ID_SANITISED(ID_ISAR0_EL1),
1799 AA32_ID_SANITISED(ID_ISAR1_EL1),
1800 AA32_ID_SANITISED(ID_ISAR2_EL1),
1801 AA32_ID_SANITISED(ID_ISAR3_EL1),
1802 AA32_ID_SANITISED(ID_ISAR4_EL1),
1803 AA32_ID_SANITISED(ID_ISAR5_EL1),
1804 AA32_ID_SANITISED(ID_MMFR4_EL1),
1805 AA32_ID_SANITISED(ID_ISAR6_EL1),
1806
1807 /* CRm=3 */
1808 AA32_ID_SANITISED(MVFR0_EL1),
1809 AA32_ID_SANITISED(MVFR1_EL1),
1810 AA32_ID_SANITISED(MVFR2_EL1),
1811 ID_UNALLOCATED(3,3),
1812 AA32_ID_SANITISED(ID_PFR2_EL1),
1813 ID_HIDDEN(ID_DFR1_EL1),
1814 AA32_ID_SANITISED(ID_MMFR5_EL1),
1815 ID_UNALLOCATED(3,7),
1816
1817 /* AArch64 ID registers */
1818 /* CRm=4 */
1819 { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1820 .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1821 ID_SANITISED(ID_AA64PFR1_EL1),
1822 ID_UNALLOCATED(4,2),
1823 ID_UNALLOCATED(4,3),
1824 ID_SANITISED(ID_AA64ZFR0_EL1),
1825 ID_HIDDEN(ID_AA64SMFR0_EL1),
1826 ID_UNALLOCATED(4,6),
1827 ID_UNALLOCATED(4,7),
1828
1829 /* CRm=5 */
1830 { SYS_DESC(SYS_ID_AA64DFR0_EL1), .access = access_id_reg,
1831 .get_user = get_id_reg, .set_user = set_id_aa64dfr0_el1, },
1832 ID_SANITISED(ID_AA64DFR1_EL1),
1833 ID_UNALLOCATED(5,2),
1834 ID_UNALLOCATED(5,3),
1835 ID_HIDDEN(ID_AA64AFR0_EL1),
1836 ID_HIDDEN(ID_AA64AFR1_EL1),
1837 ID_UNALLOCATED(5,6),
1838 ID_UNALLOCATED(5,7),
1839
1840 /* CRm=6 */
1841 ID_SANITISED(ID_AA64ISAR0_EL1),
1842 ID_SANITISED(ID_AA64ISAR1_EL1),
1843 ID_SANITISED(ID_AA64ISAR2_EL1),
1844 ID_UNALLOCATED(6,3),
1845 ID_UNALLOCATED(6,4),
1846 ID_UNALLOCATED(6,5),
1847 ID_UNALLOCATED(6,6),
1848 ID_UNALLOCATED(6,7),
1849
1850 /* CRm=7 */
1851 ID_SANITISED(ID_AA64MMFR0_EL1),
1852 ID_SANITISED(ID_AA64MMFR1_EL1),
1853 ID_SANITISED(ID_AA64MMFR2_EL1),
1854 ID_UNALLOCATED(7,3),
1855 ID_UNALLOCATED(7,4),
1856 ID_UNALLOCATED(7,5),
1857 ID_UNALLOCATED(7,6),
1858 ID_UNALLOCATED(7,7),
1859
1860 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1861 { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1862 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1863
1864 MTE_REG(RGSR_EL1),
1865 MTE_REG(GCR_EL1),
1866
1867 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1868 { SYS_DESC(SYS_TRFCR_EL1), undef_access },
1869 { SYS_DESC(SYS_SMPRI_EL1), undef_access },
1870 { SYS_DESC(SYS_SMCR_EL1), undef_access },
1871 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1872 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1873 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1874
1875 PTRAUTH_KEY(APIA),
1876 PTRAUTH_KEY(APIB),
1877 PTRAUTH_KEY(APDA),
1878 PTRAUTH_KEY(APDB),
1879 PTRAUTH_KEY(APGA),
1880
1881 { SYS_DESC(SYS_SPSR_EL1), access_spsr},
1882 { SYS_DESC(SYS_ELR_EL1), access_elr},
1883
1884 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1885 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1886 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1887
1888 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1889 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1890 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1891 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1892 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1893 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1894 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1895 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1896
1897 MTE_REG(TFSR_EL1),
1898 MTE_REG(TFSRE0_EL1),
1899
1900 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1901 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1902
1903 { SYS_DESC(SYS_PMSCR_EL1), undef_access },
1904 { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1905 { SYS_DESC(SYS_PMSICR_EL1), undef_access },
1906 { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1907 { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1908 { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1909 { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1910 { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1911 { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1912 { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1913 { SYS_DESC(SYS_PMBSR_EL1), undef_access },
1914 /* PMBIDR_EL1 is not trapped */
1915
1916 { PMU_SYS_REG(SYS_PMINTENSET_EL1),
1917 .access = access_pminten, .reg = PMINTENSET_EL1 },
1918 { PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1919 .access = access_pminten, .reg = PMINTENSET_EL1 },
1920 { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1921
1922 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1923 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1924
1925 { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1926 { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1927 { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1928 { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1929 { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1930
1931 { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
1932 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1933
1934 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1935 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1936 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1937 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1938 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1939 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1940 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1941 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1942 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1943 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1944 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1945 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1946
1947 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1948 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1949
1950 { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1951
1952 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1953
1954 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1955 { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
1956 .set_user = set_clidr },
1957 { SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
1958 { SYS_DESC(SYS_SMIDR_EL1), undef_access },
1959 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1960 { SYS_DESC(SYS_CTR_EL0), access_ctr },
1961 { SYS_DESC(SYS_SVCR), undef_access },
1962
1963 { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1964 .reset = reset_pmcr, .reg = PMCR_EL0 },
1965 { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1966 .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1967 { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1968 .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1969 { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1970 .access = access_pmovs, .reg = PMOVSSET_EL0 },
1971 /*
1972 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
1973 * previously (and pointlessly) advertised in the past...
1974 */
1975 { PMU_SYS_REG(SYS_PMSWINC_EL0),
1976 .get_user = get_raz_reg, .set_user = set_wi_reg,
1977 .access = access_pmswinc, .reset = NULL },
1978 { PMU_SYS_REG(SYS_PMSELR_EL0),
1979 .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
1980 { PMU_SYS_REG(SYS_PMCEID0_EL0),
1981 .access = access_pmceid, .reset = NULL },
1982 { PMU_SYS_REG(SYS_PMCEID1_EL0),
1983 .access = access_pmceid, .reset = NULL },
1984 { PMU_SYS_REG(SYS_PMCCNTR_EL0),
1985 .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 },
1986 { PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1987 .access = access_pmu_evtyper, .reset = NULL },
1988 { PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1989 .access = access_pmu_evcntr, .reset = NULL },
1990 /*
1991 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1992 * in 32bit mode. Here we choose to reset it as zero for consistency.
1993 */
1994 { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1995 .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1996 { PMU_SYS_REG(SYS_PMOVSSET_EL0),
1997 .access = access_pmovs, .reg = PMOVSSET_EL0 },
1998
1999 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2000 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2001 { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2002
2003 { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2004
2005 { SYS_DESC(SYS_AMCR_EL0), undef_access },
2006 { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2007 { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2008 { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2009 { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2010 { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2011 { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2012 { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2013 AMU_AMEVCNTR0_EL0(0),
2014 AMU_AMEVCNTR0_EL0(1),
2015 AMU_AMEVCNTR0_EL0(2),
2016 AMU_AMEVCNTR0_EL0(3),
2017 AMU_AMEVCNTR0_EL0(4),
2018 AMU_AMEVCNTR0_EL0(5),
2019 AMU_AMEVCNTR0_EL0(6),
2020 AMU_AMEVCNTR0_EL0(7),
2021 AMU_AMEVCNTR0_EL0(8),
2022 AMU_AMEVCNTR0_EL0(9),
2023 AMU_AMEVCNTR0_EL0(10),
2024 AMU_AMEVCNTR0_EL0(11),
2025 AMU_AMEVCNTR0_EL0(12),
2026 AMU_AMEVCNTR0_EL0(13),
2027 AMU_AMEVCNTR0_EL0(14),
2028 AMU_AMEVCNTR0_EL0(15),
2029 AMU_AMEVTYPER0_EL0(0),
2030 AMU_AMEVTYPER0_EL0(1),
2031 AMU_AMEVTYPER0_EL0(2),
2032 AMU_AMEVTYPER0_EL0(3),
2033 AMU_AMEVTYPER0_EL0(4),
2034 AMU_AMEVTYPER0_EL0(5),
2035 AMU_AMEVTYPER0_EL0(6),
2036 AMU_AMEVTYPER0_EL0(7),
2037 AMU_AMEVTYPER0_EL0(8),
2038 AMU_AMEVTYPER0_EL0(9),
2039 AMU_AMEVTYPER0_EL0(10),
2040 AMU_AMEVTYPER0_EL0(11),
2041 AMU_AMEVTYPER0_EL0(12),
2042 AMU_AMEVTYPER0_EL0(13),
2043 AMU_AMEVTYPER0_EL0(14),
2044 AMU_AMEVTYPER0_EL0(15),
2045 AMU_AMEVCNTR1_EL0(0),
2046 AMU_AMEVCNTR1_EL0(1),
2047 AMU_AMEVCNTR1_EL0(2),
2048 AMU_AMEVCNTR1_EL0(3),
2049 AMU_AMEVCNTR1_EL0(4),
2050 AMU_AMEVCNTR1_EL0(5),
2051 AMU_AMEVCNTR1_EL0(6),
2052 AMU_AMEVCNTR1_EL0(7),
2053 AMU_AMEVCNTR1_EL0(8),
2054 AMU_AMEVCNTR1_EL0(9),
2055 AMU_AMEVCNTR1_EL0(10),
2056 AMU_AMEVCNTR1_EL0(11),
2057 AMU_AMEVCNTR1_EL0(12),
2058 AMU_AMEVCNTR1_EL0(13),
2059 AMU_AMEVCNTR1_EL0(14),
2060 AMU_AMEVCNTR1_EL0(15),
2061 AMU_AMEVTYPER1_EL0(0),
2062 AMU_AMEVTYPER1_EL0(1),
2063 AMU_AMEVTYPER1_EL0(2),
2064 AMU_AMEVTYPER1_EL0(3),
2065 AMU_AMEVTYPER1_EL0(4),
2066 AMU_AMEVTYPER1_EL0(5),
2067 AMU_AMEVTYPER1_EL0(6),
2068 AMU_AMEVTYPER1_EL0(7),
2069 AMU_AMEVTYPER1_EL0(8),
2070 AMU_AMEVTYPER1_EL0(9),
2071 AMU_AMEVTYPER1_EL0(10),
2072 AMU_AMEVTYPER1_EL0(11),
2073 AMU_AMEVTYPER1_EL0(12),
2074 AMU_AMEVTYPER1_EL0(13),
2075 AMU_AMEVTYPER1_EL0(14),
2076 AMU_AMEVTYPER1_EL0(15),
2077
2078 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2079 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2080 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2081
2082 /* PMEVCNTRn_EL0 */
2083 PMU_PMEVCNTR_EL0(0),
2084 PMU_PMEVCNTR_EL0(1),
2085 PMU_PMEVCNTR_EL0(2),
2086 PMU_PMEVCNTR_EL0(3),
2087 PMU_PMEVCNTR_EL0(4),
2088 PMU_PMEVCNTR_EL0(5),
2089 PMU_PMEVCNTR_EL0(6),
2090 PMU_PMEVCNTR_EL0(7),
2091 PMU_PMEVCNTR_EL0(8),
2092 PMU_PMEVCNTR_EL0(9),
2093 PMU_PMEVCNTR_EL0(10),
2094 PMU_PMEVCNTR_EL0(11),
2095 PMU_PMEVCNTR_EL0(12),
2096 PMU_PMEVCNTR_EL0(13),
2097 PMU_PMEVCNTR_EL0(14),
2098 PMU_PMEVCNTR_EL0(15),
2099 PMU_PMEVCNTR_EL0(16),
2100 PMU_PMEVCNTR_EL0(17),
2101 PMU_PMEVCNTR_EL0(18),
2102 PMU_PMEVCNTR_EL0(19),
2103 PMU_PMEVCNTR_EL0(20),
2104 PMU_PMEVCNTR_EL0(21),
2105 PMU_PMEVCNTR_EL0(22),
2106 PMU_PMEVCNTR_EL0(23),
2107 PMU_PMEVCNTR_EL0(24),
2108 PMU_PMEVCNTR_EL0(25),
2109 PMU_PMEVCNTR_EL0(26),
2110 PMU_PMEVCNTR_EL0(27),
2111 PMU_PMEVCNTR_EL0(28),
2112 PMU_PMEVCNTR_EL0(29),
2113 PMU_PMEVCNTR_EL0(30),
2114 /* PMEVTYPERn_EL0 */
2115 PMU_PMEVTYPER_EL0(0),
2116 PMU_PMEVTYPER_EL0(1),
2117 PMU_PMEVTYPER_EL0(2),
2118 PMU_PMEVTYPER_EL0(3),
2119 PMU_PMEVTYPER_EL0(4),
2120 PMU_PMEVTYPER_EL0(5),
2121 PMU_PMEVTYPER_EL0(6),
2122 PMU_PMEVTYPER_EL0(7),
2123 PMU_PMEVTYPER_EL0(8),
2124 PMU_PMEVTYPER_EL0(9),
2125 PMU_PMEVTYPER_EL0(10),
2126 PMU_PMEVTYPER_EL0(11),
2127 PMU_PMEVTYPER_EL0(12),
2128 PMU_PMEVTYPER_EL0(13),
2129 PMU_PMEVTYPER_EL0(14),
2130 PMU_PMEVTYPER_EL0(15),
2131 PMU_PMEVTYPER_EL0(16),
2132 PMU_PMEVTYPER_EL0(17),
2133 PMU_PMEVTYPER_EL0(18),
2134 PMU_PMEVTYPER_EL0(19),
2135 PMU_PMEVTYPER_EL0(20),
2136 PMU_PMEVTYPER_EL0(21),
2137 PMU_PMEVTYPER_EL0(22),
2138 PMU_PMEVTYPER_EL0(23),
2139 PMU_PMEVTYPER_EL0(24),
2140 PMU_PMEVTYPER_EL0(25),
2141 PMU_PMEVTYPER_EL0(26),
2142 PMU_PMEVTYPER_EL0(27),
2143 PMU_PMEVTYPER_EL0(28),
2144 PMU_PMEVTYPER_EL0(29),
2145 PMU_PMEVTYPER_EL0(30),
2146 /*
2147 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2148 * in 32bit mode. Here we choose to reset it as zero for consistency.
2149 */
2150 { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
2151 .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2152
2153 EL2_REG(VPIDR_EL2, access_rw, reset_unknown, 0),
2154 EL2_REG(VMPIDR_EL2, access_rw, reset_unknown, 0),
2155 EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2156 EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2157 EL2_REG(HCR_EL2, access_rw, reset_val, 0),
2158 EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2159 EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_EL2_DEFAULT ),
2160 EL2_REG(HSTR_EL2, access_rw, reset_val, 0),
2161 EL2_REG(HACR_EL2, access_rw, reset_val, 0),
2162
2163 EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2164 EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2165 EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2166 EL2_REG(VTTBR_EL2, access_rw, reset_val, 0),
2167 EL2_REG(VTCR_EL2, access_rw, reset_val, 0),
2168
2169 { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
2170 EL2_REG(SPSR_EL2, access_rw, reset_val, 0),
2171 EL2_REG(ELR_EL2, access_rw, reset_val, 0),
2172 { SYS_DESC(SYS_SP_EL1), access_sp_el1},
2173
2174 { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
2175 EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2176 EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2177 EL2_REG(ESR_EL2, access_rw, reset_val, 0),
2178 { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
2179
2180 EL2_REG(FAR_EL2, access_rw, reset_val, 0),
2181 EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2182
2183 EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2184 EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2185
2186 EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2187 EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2188 { SYS_DESC(SYS_RMR_EL2), trap_undef },
2189
2190 EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2191 EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2192
2193 EL2_REG(CNTVOFF_EL2, access_rw, reset_val, 0),
2194 EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2195
2196 EL12_REG(SCTLR, access_vm_reg, reset_val, 0x00C50078),
2197 EL12_REG(CPACR, access_rw, reset_val, 0),
2198 EL12_REG(TTBR0, access_vm_reg, reset_unknown, 0),
2199 EL12_REG(TTBR1, access_vm_reg, reset_unknown, 0),
2200 EL12_REG(TCR, access_vm_reg, reset_val, 0),
2201 { SYS_DESC(SYS_SPSR_EL12), access_spsr},
2202 { SYS_DESC(SYS_ELR_EL12), access_elr},
2203 EL12_REG(AFSR0, access_vm_reg, reset_unknown, 0),
2204 EL12_REG(AFSR1, access_vm_reg, reset_unknown, 0),
2205 EL12_REG(ESR, access_vm_reg, reset_unknown, 0),
2206 EL12_REG(FAR, access_vm_reg, reset_unknown, 0),
2207 EL12_REG(MAIR, access_vm_reg, reset_unknown, 0),
2208 EL12_REG(AMAIR, access_vm_reg, reset_amair_el1, 0),
2209 EL12_REG(VBAR, access_rw, reset_val, 0),
2210 EL12_REG(CONTEXTIDR, access_vm_reg, reset_val, 0),
2211 EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2212
2213 EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2214 };
2215
trap_dbgdidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2216 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2217 struct sys_reg_params *p,
2218 const struct sys_reg_desc *r)
2219 {
2220 if (p->is_write) {
2221 return ignore_write(vcpu, p);
2222 } else {
2223 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
2224 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2225 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT);
2226
2227 p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) |
2228 (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) |
2229 (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20)
2230 | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
2231 return true;
2232 }
2233 }
2234
2235 /*
2236 * AArch32 debug register mappings
2237 *
2238 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2239 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2240 *
2241 * None of the other registers share their location, so treat them as
2242 * if they were 64bit.
2243 */
2244 #define DBG_BCR_BVR_WCR_WVR(n) \
2245 /* DBGBVRn */ \
2246 { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2247 /* DBGBCRn */ \
2248 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
2249 /* DBGWVRn */ \
2250 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
2251 /* DBGWCRn */ \
2252 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2253
2254 #define DBGBXVR(n) \
2255 { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2256
2257 /*
2258 * Trapped cp14 registers. We generally ignore most of the external
2259 * debug, on the principle that they don't really make sense to a
2260 * guest. Revisit this one day, would this principle change.
2261 */
2262 static const struct sys_reg_desc cp14_regs[] = {
2263 /* DBGDIDR */
2264 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2265 /* DBGDTRRXext */
2266 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2267
2268 DBG_BCR_BVR_WCR_WVR(0),
2269 /* DBGDSCRint */
2270 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2271 DBG_BCR_BVR_WCR_WVR(1),
2272 /* DBGDCCINT */
2273 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2274 /* DBGDSCRext */
2275 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2276 DBG_BCR_BVR_WCR_WVR(2),
2277 /* DBGDTR[RT]Xint */
2278 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2279 /* DBGDTR[RT]Xext */
2280 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2281 DBG_BCR_BVR_WCR_WVR(3),
2282 DBG_BCR_BVR_WCR_WVR(4),
2283 DBG_BCR_BVR_WCR_WVR(5),
2284 /* DBGWFAR */
2285 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2286 /* DBGOSECCR */
2287 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2288 DBG_BCR_BVR_WCR_WVR(6),
2289 /* DBGVCR */
2290 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2291 DBG_BCR_BVR_WCR_WVR(7),
2292 DBG_BCR_BVR_WCR_WVR(8),
2293 DBG_BCR_BVR_WCR_WVR(9),
2294 DBG_BCR_BVR_WCR_WVR(10),
2295 DBG_BCR_BVR_WCR_WVR(11),
2296 DBG_BCR_BVR_WCR_WVR(12),
2297 DBG_BCR_BVR_WCR_WVR(13),
2298 DBG_BCR_BVR_WCR_WVR(14),
2299 DBG_BCR_BVR_WCR_WVR(15),
2300
2301 /* DBGDRAR (32bit) */
2302 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2303
2304 DBGBXVR(0),
2305 /* DBGOSLAR */
2306 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2307 DBGBXVR(1),
2308 /* DBGOSLSR */
2309 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2310 DBGBXVR(2),
2311 DBGBXVR(3),
2312 /* DBGOSDLR */
2313 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2314 DBGBXVR(4),
2315 /* DBGPRCR */
2316 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2317 DBGBXVR(5),
2318 DBGBXVR(6),
2319 DBGBXVR(7),
2320 DBGBXVR(8),
2321 DBGBXVR(9),
2322 DBGBXVR(10),
2323 DBGBXVR(11),
2324 DBGBXVR(12),
2325 DBGBXVR(13),
2326 DBGBXVR(14),
2327 DBGBXVR(15),
2328
2329 /* DBGDSAR (32bit) */
2330 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2331
2332 /* DBGDEVID2 */
2333 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2334 /* DBGDEVID1 */
2335 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2336 /* DBGDEVID */
2337 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2338 /* DBGCLAIMSET */
2339 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2340 /* DBGCLAIMCLR */
2341 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2342 /* DBGAUTHSTATUS */
2343 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2344 };
2345
2346 /* Trapped cp14 64bit registers */
2347 static const struct sys_reg_desc cp14_64_regs[] = {
2348 /* DBGDRAR (64bit) */
2349 { Op1( 0), CRm( 1), .access = trap_raz_wi },
2350
2351 /* DBGDSAR (64bit) */
2352 { Op1( 0), CRm( 2), .access = trap_raz_wi },
2353 };
2354
2355 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \
2356 AA32(_map), \
2357 Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \
2358 .visibility = pmu_visibility
2359
2360 /* Macro to expand the PMEVCNTRn register */
2361 #define PMU_PMEVCNTR(n) \
2362 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
2363 (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
2364 .access = access_pmu_evcntr }
2365
2366 /* Macro to expand the PMEVTYPERn register */
2367 #define PMU_PMEVTYPER(n) \
2368 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
2369 (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
2370 .access = access_pmu_evtyper }
2371 /*
2372 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2373 * depending on the way they are accessed (as a 32bit or a 64bit
2374 * register).
2375 */
2376 static const struct sys_reg_desc cp15_regs[] = {
2377 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2378 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2379 /* ACTLR */
2380 { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2381 /* ACTLR2 */
2382 { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2383 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2384 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2385 /* TTBCR */
2386 { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2387 /* TTBCR2 */
2388 { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2389 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2390 /* DFSR */
2391 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2392 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2393 /* ADFSR */
2394 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2395 /* AIFSR */
2396 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2397 /* DFAR */
2398 { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2399 /* IFAR */
2400 { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2401
2402 /*
2403 * DC{C,I,CI}SW operations:
2404 */
2405 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2406 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2407 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2408
2409 /* PMU */
2410 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2411 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2412 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2413 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2414 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2415 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2416 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid },
2417 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid },
2418 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2419 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2420 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2421 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2422 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2423 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2424 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2425 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid },
2426 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid },
2427 /* PMMIR */
2428 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2429
2430 /* PRRR/MAIR0 */
2431 { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2432 /* NMRR/MAIR1 */
2433 { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2434 /* AMAIR0 */
2435 { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2436 /* AMAIR1 */
2437 { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2438
2439 /* ICC_SRE */
2440 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2441
2442 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2443
2444 /* Arch Tmers */
2445 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2446 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2447
2448 /* PMEVCNTRn */
2449 PMU_PMEVCNTR(0),
2450 PMU_PMEVCNTR(1),
2451 PMU_PMEVCNTR(2),
2452 PMU_PMEVCNTR(3),
2453 PMU_PMEVCNTR(4),
2454 PMU_PMEVCNTR(5),
2455 PMU_PMEVCNTR(6),
2456 PMU_PMEVCNTR(7),
2457 PMU_PMEVCNTR(8),
2458 PMU_PMEVCNTR(9),
2459 PMU_PMEVCNTR(10),
2460 PMU_PMEVCNTR(11),
2461 PMU_PMEVCNTR(12),
2462 PMU_PMEVCNTR(13),
2463 PMU_PMEVCNTR(14),
2464 PMU_PMEVCNTR(15),
2465 PMU_PMEVCNTR(16),
2466 PMU_PMEVCNTR(17),
2467 PMU_PMEVCNTR(18),
2468 PMU_PMEVCNTR(19),
2469 PMU_PMEVCNTR(20),
2470 PMU_PMEVCNTR(21),
2471 PMU_PMEVCNTR(22),
2472 PMU_PMEVCNTR(23),
2473 PMU_PMEVCNTR(24),
2474 PMU_PMEVCNTR(25),
2475 PMU_PMEVCNTR(26),
2476 PMU_PMEVCNTR(27),
2477 PMU_PMEVCNTR(28),
2478 PMU_PMEVCNTR(29),
2479 PMU_PMEVCNTR(30),
2480 /* PMEVTYPERn */
2481 PMU_PMEVTYPER(0),
2482 PMU_PMEVTYPER(1),
2483 PMU_PMEVTYPER(2),
2484 PMU_PMEVTYPER(3),
2485 PMU_PMEVTYPER(4),
2486 PMU_PMEVTYPER(5),
2487 PMU_PMEVTYPER(6),
2488 PMU_PMEVTYPER(7),
2489 PMU_PMEVTYPER(8),
2490 PMU_PMEVTYPER(9),
2491 PMU_PMEVTYPER(10),
2492 PMU_PMEVTYPER(11),
2493 PMU_PMEVTYPER(12),
2494 PMU_PMEVTYPER(13),
2495 PMU_PMEVTYPER(14),
2496 PMU_PMEVTYPER(15),
2497 PMU_PMEVTYPER(16),
2498 PMU_PMEVTYPER(17),
2499 PMU_PMEVTYPER(18),
2500 PMU_PMEVTYPER(19),
2501 PMU_PMEVTYPER(20),
2502 PMU_PMEVTYPER(21),
2503 PMU_PMEVTYPER(22),
2504 PMU_PMEVTYPER(23),
2505 PMU_PMEVTYPER(24),
2506 PMU_PMEVTYPER(25),
2507 PMU_PMEVTYPER(26),
2508 PMU_PMEVTYPER(27),
2509 PMU_PMEVTYPER(28),
2510 PMU_PMEVTYPER(29),
2511 PMU_PMEVTYPER(30),
2512 /* PMCCFILTR */
2513 { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
2514
2515 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2516 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2517
2518 /* CCSIDR2 */
2519 { Op1(1), CRn( 0), CRm( 0), Op2(2), undef_access },
2520
2521 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2522 };
2523
2524 static const struct sys_reg_desc cp15_64_regs[] = {
2525 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2526 { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
2527 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2528 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2529 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2530 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2531 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
2532 };
2533
check_sysreg_table(const struct sys_reg_desc * table,unsigned int n,bool is_32)2534 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2535 bool is_32)
2536 {
2537 unsigned int i;
2538
2539 for (i = 0; i < n; i++) {
2540 if (!is_32 && table[i].reg && !table[i].reset) {
2541 kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
2542 return false;
2543 }
2544
2545 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2546 kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
2547 return false;
2548 }
2549 }
2550
2551 return true;
2552 }
2553
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu)2554 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2555 {
2556 kvm_inject_undefined(vcpu);
2557 return 1;
2558 }
2559
perform_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)2560 static void perform_access(struct kvm_vcpu *vcpu,
2561 struct sys_reg_params *params,
2562 const struct sys_reg_desc *r)
2563 {
2564 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2565
2566 /* Check for regs disabled by runtime config */
2567 if (sysreg_hidden(vcpu, r)) {
2568 kvm_inject_undefined(vcpu);
2569 return;
2570 }
2571
2572 /*
2573 * Not having an accessor means that we have configured a trap
2574 * that we don't know how to handle. This certainly qualifies
2575 * as a gross bug that should be fixed right away.
2576 */
2577 BUG_ON(!r->access);
2578
2579 /* Skip instruction if instructed so */
2580 if (likely(r->access(vcpu, params, r)))
2581 kvm_incr_pc(vcpu);
2582 }
2583
2584 /*
2585 * emulate_cp -- tries to match a sys_reg access in a handling table, and
2586 * call the corresponding trap handler.
2587 *
2588 * @params: pointer to the descriptor of the access
2589 * @table: array of trap descriptors
2590 * @num: size of the trap descriptor array
2591 *
2592 * Return true if the access has been handled, false if not.
2593 */
emulate_cp(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * table,size_t num)2594 static bool emulate_cp(struct kvm_vcpu *vcpu,
2595 struct sys_reg_params *params,
2596 const struct sys_reg_desc *table,
2597 size_t num)
2598 {
2599 const struct sys_reg_desc *r;
2600
2601 if (!table)
2602 return false; /* Not handled */
2603
2604 r = find_reg(params, table, num);
2605
2606 if (r) {
2607 perform_access(vcpu, params, r);
2608 return true;
2609 }
2610
2611 /* Not handled */
2612 return false;
2613 }
2614
unhandled_cp_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params)2615 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2616 struct sys_reg_params *params)
2617 {
2618 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2619 int cp = -1;
2620
2621 switch (esr_ec) {
2622 case ESR_ELx_EC_CP15_32:
2623 case ESR_ELx_EC_CP15_64:
2624 cp = 15;
2625 break;
2626 case ESR_ELx_EC_CP14_MR:
2627 case ESR_ELx_EC_CP14_64:
2628 cp = 14;
2629 break;
2630 default:
2631 WARN_ON(1);
2632 }
2633
2634 print_sys_reg_msg(params,
2635 "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2636 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2637 kvm_inject_undefined(vcpu);
2638 }
2639
2640 /**
2641 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2642 * @vcpu: The VCPU pointer
2643 * @run: The kvm_run struct
2644 */
kvm_handle_cp_64(struct kvm_vcpu * vcpu,const struct sys_reg_desc * global,size_t nr_global)2645 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2646 const struct sys_reg_desc *global,
2647 size_t nr_global)
2648 {
2649 struct sys_reg_params params;
2650 u64 esr = kvm_vcpu_get_esr(vcpu);
2651 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2652 int Rt2 = (esr >> 10) & 0x1f;
2653
2654 params.CRm = (esr >> 1) & 0xf;
2655 params.is_write = ((esr & 1) == 0);
2656
2657 params.Op0 = 0;
2658 params.Op1 = (esr >> 16) & 0xf;
2659 params.Op2 = 0;
2660 params.CRn = 0;
2661
2662 /*
2663 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2664 * backends between AArch32 and AArch64, we get away with it.
2665 */
2666 if (params.is_write) {
2667 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2668 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2669 }
2670
2671 /*
2672 * If the table contains a handler, handle the
2673 * potential register operation in the case of a read and return
2674 * with success.
2675 */
2676 if (emulate_cp(vcpu, ¶ms, global, nr_global)) {
2677 /* Split up the value between registers for the read side */
2678 if (!params.is_write) {
2679 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2680 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2681 }
2682
2683 return 1;
2684 }
2685
2686 unhandled_cp_access(vcpu, ¶ms);
2687 return 1;
2688 }
2689
2690 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
2691
2692 /*
2693 * The CP10 ID registers are architecturally mapped to AArch64 feature
2694 * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
2695 * from AArch32.
2696 */
kvm_esr_cp10_id_to_sys64(u64 esr,struct sys_reg_params * params)2697 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
2698 {
2699 u8 reg_id = (esr >> 10) & 0xf;
2700 bool valid;
2701
2702 params->is_write = ((esr & 1) == 0);
2703 params->Op0 = 3;
2704 params->Op1 = 0;
2705 params->CRn = 0;
2706 params->CRm = 3;
2707
2708 /* CP10 ID registers are read-only */
2709 valid = !params->is_write;
2710
2711 switch (reg_id) {
2712 /* MVFR0 */
2713 case 0b0111:
2714 params->Op2 = 0;
2715 break;
2716 /* MVFR1 */
2717 case 0b0110:
2718 params->Op2 = 1;
2719 break;
2720 /* MVFR2 */
2721 case 0b0101:
2722 params->Op2 = 2;
2723 break;
2724 default:
2725 valid = false;
2726 }
2727
2728 if (valid)
2729 return true;
2730
2731 kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
2732 params->is_write ? "write" : "read", reg_id);
2733 return false;
2734 }
2735
2736 /**
2737 * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
2738 * VFP Register' from AArch32.
2739 * @vcpu: The vCPU pointer
2740 *
2741 * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
2742 * Work out the correct AArch64 system register encoding and reroute to the
2743 * AArch64 system register emulation.
2744 */
kvm_handle_cp10_id(struct kvm_vcpu * vcpu)2745 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
2746 {
2747 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2748 u64 esr = kvm_vcpu_get_esr(vcpu);
2749 struct sys_reg_params params;
2750
2751 /* UNDEF on any unhandled register access */
2752 if (!kvm_esr_cp10_id_to_sys64(esr, ¶ms)) {
2753 kvm_inject_undefined(vcpu);
2754 return 1;
2755 }
2756
2757 if (emulate_sys_reg(vcpu, ¶ms))
2758 vcpu_set_reg(vcpu, Rt, params.regval);
2759
2760 return 1;
2761 }
2762
2763 /**
2764 * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
2765 * CRn=0, which corresponds to the AArch32 feature
2766 * registers.
2767 * @vcpu: the vCPU pointer
2768 * @params: the system register access parameters.
2769 *
2770 * Our cp15 system register tables do not enumerate the AArch32 feature
2771 * registers. Conveniently, our AArch64 table does, and the AArch32 system
2772 * register encoding can be trivially remapped into the AArch64 for the feature
2773 * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
2774 *
2775 * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
2776 * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
2777 * range are either UNKNOWN or RES0. Rerouting remains architectural as we
2778 * treat undefined registers in this range as RAZ.
2779 */
kvm_emulate_cp15_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)2780 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
2781 struct sys_reg_params *params)
2782 {
2783 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2784
2785 /* Treat impossible writes to RO registers as UNDEFINED */
2786 if (params->is_write) {
2787 unhandled_cp_access(vcpu, params);
2788 return 1;
2789 }
2790
2791 params->Op0 = 3;
2792
2793 /*
2794 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
2795 * Avoid conflicting with future expansion of AArch64 feature registers
2796 * and simply treat them as RAZ here.
2797 */
2798 if (params->CRm > 3)
2799 params->regval = 0;
2800 else if (!emulate_sys_reg(vcpu, params))
2801 return 1;
2802
2803 vcpu_set_reg(vcpu, Rt, params->regval);
2804 return 1;
2805 }
2806
2807 /**
2808 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2809 * @vcpu: The VCPU pointer
2810 * @run: The kvm_run struct
2811 */
kvm_handle_cp_32(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * global,size_t nr_global)2812 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2813 struct sys_reg_params *params,
2814 const struct sys_reg_desc *global,
2815 size_t nr_global)
2816 {
2817 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2818
2819 params->regval = vcpu_get_reg(vcpu, Rt);
2820
2821 if (emulate_cp(vcpu, params, global, nr_global)) {
2822 if (!params->is_write)
2823 vcpu_set_reg(vcpu, Rt, params->regval);
2824 return 1;
2825 }
2826
2827 unhandled_cp_access(vcpu, params);
2828 return 1;
2829 }
2830
kvm_handle_cp15_64(struct kvm_vcpu * vcpu)2831 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2832 {
2833 return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2834 }
2835
kvm_handle_cp15_32(struct kvm_vcpu * vcpu)2836 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2837 {
2838 struct sys_reg_params params;
2839
2840 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2841
2842 /*
2843 * Certain AArch32 ID registers are handled by rerouting to the AArch64
2844 * system register table. Registers in the ID range where CRm=0 are
2845 * excluded from this scheme as they do not trivially map into AArch64
2846 * system register encodings.
2847 */
2848 if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
2849 return kvm_emulate_cp15_id_reg(vcpu, ¶ms);
2850
2851 return kvm_handle_cp_32(vcpu, ¶ms, cp15_regs, ARRAY_SIZE(cp15_regs));
2852 }
2853
kvm_handle_cp14_64(struct kvm_vcpu * vcpu)2854 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2855 {
2856 return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2857 }
2858
kvm_handle_cp14_32(struct kvm_vcpu * vcpu)2859 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2860 {
2861 struct sys_reg_params params;
2862
2863 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2864
2865 return kvm_handle_cp_32(vcpu, ¶ms, cp14_regs, ARRAY_SIZE(cp14_regs));
2866 }
2867
is_imp_def_sys_reg(struct sys_reg_params * params)2868 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2869 {
2870 // See ARM DDI 0487E.a, section D12.3.2
2871 return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2872 }
2873
2874 /**
2875 * emulate_sys_reg - Emulate a guest access to an AArch64 system register
2876 * @vcpu: The VCPU pointer
2877 * @params: Decoded system register parameters
2878 *
2879 * Return: true if the system register access was successful, false otherwise.
2880 */
emulate_sys_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)2881 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
2882 struct sys_reg_params *params)
2883 {
2884 const struct sys_reg_desc *r;
2885
2886 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2887
2888 if (likely(r)) {
2889 perform_access(vcpu, params, r);
2890 return true;
2891 }
2892
2893 if (is_imp_def_sys_reg(params)) {
2894 kvm_inject_undefined(vcpu);
2895 } else {
2896 print_sys_reg_msg(params,
2897 "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2898 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2899 kvm_inject_undefined(vcpu);
2900 }
2901 return false;
2902 }
2903
2904 /**
2905 * kvm_reset_sys_regs - sets system registers to reset value
2906 * @vcpu: The VCPU pointer
2907 *
2908 * This function finds the right table above and sets the registers on the
2909 * virtual CPU struct to their architecturally defined reset values.
2910 */
kvm_reset_sys_regs(struct kvm_vcpu * vcpu)2911 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2912 {
2913 unsigned long i;
2914
2915 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2916 if (sys_reg_descs[i].reset)
2917 sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2918 }
2919
2920 /**
2921 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2922 * @vcpu: The VCPU pointer
2923 */
kvm_handle_sys_reg(struct kvm_vcpu * vcpu)2924 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2925 {
2926 struct sys_reg_params params;
2927 unsigned long esr = kvm_vcpu_get_esr(vcpu);
2928 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2929
2930 trace_kvm_handle_sys_reg(esr);
2931
2932 params = esr_sys64_to_params(esr);
2933 params.regval = vcpu_get_reg(vcpu, Rt);
2934
2935 if (!emulate_sys_reg(vcpu, ¶ms))
2936 return 1;
2937
2938 if (!params.is_write)
2939 vcpu_set_reg(vcpu, Rt, params.regval);
2940 return 1;
2941 }
2942
2943 /******************************************************************************
2944 * Userspace API
2945 *****************************************************************************/
2946
index_to_params(u64 id,struct sys_reg_params * params)2947 static bool index_to_params(u64 id, struct sys_reg_params *params)
2948 {
2949 switch (id & KVM_REG_SIZE_MASK) {
2950 case KVM_REG_SIZE_U64:
2951 /* Any unused index bits means it's not valid. */
2952 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2953 | KVM_REG_ARM_COPROC_MASK
2954 | KVM_REG_ARM64_SYSREG_OP0_MASK
2955 | KVM_REG_ARM64_SYSREG_OP1_MASK
2956 | KVM_REG_ARM64_SYSREG_CRN_MASK
2957 | KVM_REG_ARM64_SYSREG_CRM_MASK
2958 | KVM_REG_ARM64_SYSREG_OP2_MASK))
2959 return false;
2960 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2961 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2962 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2963 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2964 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2965 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2966 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2967 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2968 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2969 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2970 return true;
2971 default:
2972 return false;
2973 }
2974 }
2975
get_reg_by_id(u64 id,const struct sys_reg_desc table[],unsigned int num)2976 const struct sys_reg_desc *get_reg_by_id(u64 id,
2977 const struct sys_reg_desc table[],
2978 unsigned int num)
2979 {
2980 struct sys_reg_params params;
2981
2982 if (!index_to_params(id, ¶ms))
2983 return NULL;
2984
2985 return find_reg(¶ms, table, num);
2986 }
2987
2988 /* Decode an index value, and find the sys_reg_desc entry. */
2989 static const struct sys_reg_desc *
id_to_sys_reg_desc(struct kvm_vcpu * vcpu,u64 id,const struct sys_reg_desc table[],unsigned int num)2990 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
2991 const struct sys_reg_desc table[], unsigned int num)
2992
2993 {
2994 const struct sys_reg_desc *r;
2995
2996 /* We only do sys_reg for now. */
2997 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2998 return NULL;
2999
3000 r = get_reg_by_id(id, table, num);
3001
3002 /* Not saved in the sys_reg array and not otherwise accessible? */
3003 if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3004 r = NULL;
3005
3006 return r;
3007 }
3008
3009 /*
3010 * These are the invariant sys_reg registers: we let the guest see the
3011 * host versions of these, so they're part of the guest state.
3012 *
3013 * A future CPU may provide a mechanism to present different values to
3014 * the guest, or a future kvm may trap them.
3015 */
3016
3017 #define FUNCTION_INVARIANT(reg) \
3018 static void get_##reg(struct kvm_vcpu *v, \
3019 const struct sys_reg_desc *r) \
3020 { \
3021 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
3022 }
3023
3024 FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(revidr_el1)3025 FUNCTION_INVARIANT(revidr_el1)
3026 FUNCTION_INVARIANT(aidr_el1)
3027
3028 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3029 {
3030 ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3031 }
3032
3033 /* ->val is filled in by kvm_sys_reg_table_init() */
3034 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3035 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3036 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3037 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3038 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3039 };
3040
get_invariant_sys_reg(u64 id,u64 __user * uaddr)3041 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3042 {
3043 const struct sys_reg_desc *r;
3044
3045 r = get_reg_by_id(id, invariant_sys_regs,
3046 ARRAY_SIZE(invariant_sys_regs));
3047 if (!r)
3048 return -ENOENT;
3049
3050 return put_user(r->val, uaddr);
3051 }
3052
set_invariant_sys_reg(u64 id,u64 __user * uaddr)3053 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3054 {
3055 const struct sys_reg_desc *r;
3056 u64 val;
3057
3058 r = get_reg_by_id(id, invariant_sys_regs,
3059 ARRAY_SIZE(invariant_sys_regs));
3060 if (!r)
3061 return -ENOENT;
3062
3063 if (get_user(val, uaddr))
3064 return -EFAULT;
3065
3066 /* This is what we mean by invariant: you can't change it. */
3067 if (r->val != val)
3068 return -EINVAL;
3069
3070 return 0;
3071 }
3072
demux_c15_get(struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)3073 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3074 {
3075 u32 val;
3076 u32 __user *uval = uaddr;
3077
3078 /* Fail if we have unknown bits set. */
3079 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3080 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3081 return -ENOENT;
3082
3083 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3084 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3085 if (KVM_REG_SIZE(id) != 4)
3086 return -ENOENT;
3087 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3088 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3089 if (val >= CSSELR_MAX)
3090 return -ENOENT;
3091
3092 return put_user(get_ccsidr(vcpu, val), uval);
3093 default:
3094 return -ENOENT;
3095 }
3096 }
3097
demux_c15_set(struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)3098 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3099 {
3100 u32 val, newval;
3101 u32 __user *uval = uaddr;
3102
3103 /* Fail if we have unknown bits set. */
3104 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3105 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3106 return -ENOENT;
3107
3108 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3109 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3110 if (KVM_REG_SIZE(id) != 4)
3111 return -ENOENT;
3112 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3113 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3114 if (val >= CSSELR_MAX)
3115 return -ENOENT;
3116
3117 if (get_user(newval, uval))
3118 return -EFAULT;
3119
3120 return set_ccsidr(vcpu, val, newval);
3121 default:
3122 return -ENOENT;
3123 }
3124 }
3125
kvm_sys_reg_get_user(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,const struct sys_reg_desc table[],unsigned int num)3126 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3127 const struct sys_reg_desc table[], unsigned int num)
3128 {
3129 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3130 const struct sys_reg_desc *r;
3131 u64 val;
3132 int ret;
3133
3134 r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3135 if (!r || sysreg_hidden_user(vcpu, r))
3136 return -ENOENT;
3137
3138 if (r->get_user) {
3139 ret = (r->get_user)(vcpu, r, &val);
3140 } else {
3141 val = __vcpu_sys_reg(vcpu, r->reg);
3142 ret = 0;
3143 }
3144
3145 if (!ret)
3146 ret = put_user(val, uaddr);
3147
3148 return ret;
3149 }
3150
kvm_arm_sys_reg_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)3151 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3152 {
3153 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3154 int err;
3155
3156 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3157 return demux_c15_get(vcpu, reg->id, uaddr);
3158
3159 err = get_invariant_sys_reg(reg->id, uaddr);
3160 if (err != -ENOENT)
3161 return err;
3162
3163 return kvm_sys_reg_get_user(vcpu, reg,
3164 sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3165 }
3166
kvm_sys_reg_set_user(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,const struct sys_reg_desc table[],unsigned int num)3167 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3168 const struct sys_reg_desc table[], unsigned int num)
3169 {
3170 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3171 const struct sys_reg_desc *r;
3172 u64 val;
3173 int ret;
3174
3175 if (get_user(val, uaddr))
3176 return -EFAULT;
3177
3178 r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3179 if (!r || sysreg_hidden_user(vcpu, r))
3180 return -ENOENT;
3181
3182 if (sysreg_user_write_ignore(vcpu, r))
3183 return 0;
3184
3185 if (r->set_user) {
3186 ret = (r->set_user)(vcpu, r, val);
3187 } else {
3188 __vcpu_sys_reg(vcpu, r->reg) = val;
3189 ret = 0;
3190 }
3191
3192 return ret;
3193 }
3194
kvm_arm_sys_reg_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)3195 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3196 {
3197 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3198 int err;
3199
3200 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3201 return demux_c15_set(vcpu, reg->id, uaddr);
3202
3203 err = set_invariant_sys_reg(reg->id, uaddr);
3204 if (err != -ENOENT)
3205 return err;
3206
3207 return kvm_sys_reg_set_user(vcpu, reg,
3208 sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3209 }
3210
num_demux_regs(void)3211 static unsigned int num_demux_regs(void)
3212 {
3213 return CSSELR_MAX;
3214 }
3215
write_demux_regids(u64 __user * uindices)3216 static int write_demux_regids(u64 __user *uindices)
3217 {
3218 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3219 unsigned int i;
3220
3221 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3222 for (i = 0; i < CSSELR_MAX; i++) {
3223 if (put_user(val | i, uindices))
3224 return -EFAULT;
3225 uindices++;
3226 }
3227 return 0;
3228 }
3229
sys_reg_to_index(const struct sys_reg_desc * reg)3230 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3231 {
3232 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3233 KVM_REG_ARM64_SYSREG |
3234 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3235 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3236 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3237 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3238 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3239 }
3240
copy_reg_to_user(const struct sys_reg_desc * reg,u64 __user ** uind)3241 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3242 {
3243 if (!*uind)
3244 return true;
3245
3246 if (put_user(sys_reg_to_index(reg), *uind))
3247 return false;
3248
3249 (*uind)++;
3250 return true;
3251 }
3252
walk_one_sys_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 __user ** uind,unsigned int * total)3253 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3254 const struct sys_reg_desc *rd,
3255 u64 __user **uind,
3256 unsigned int *total)
3257 {
3258 /*
3259 * Ignore registers we trap but don't save,
3260 * and for which no custom user accessor is provided.
3261 */
3262 if (!(rd->reg || rd->get_user))
3263 return 0;
3264
3265 if (sysreg_hidden_user(vcpu, rd))
3266 return 0;
3267
3268 if (!copy_reg_to_user(rd, uind))
3269 return -EFAULT;
3270
3271 (*total)++;
3272 return 0;
3273 }
3274
3275 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
walk_sys_regs(struct kvm_vcpu * vcpu,u64 __user * uind)3276 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3277 {
3278 const struct sys_reg_desc *i2, *end2;
3279 unsigned int total = 0;
3280 int err;
3281
3282 i2 = sys_reg_descs;
3283 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3284
3285 while (i2 != end2) {
3286 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3287 if (err)
3288 return err;
3289 }
3290 return total;
3291 }
3292
kvm_arm_num_sys_reg_descs(struct kvm_vcpu * vcpu)3293 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3294 {
3295 return ARRAY_SIZE(invariant_sys_regs)
3296 + num_demux_regs()
3297 + walk_sys_regs(vcpu, (u64 __user *)NULL);
3298 }
3299
kvm_arm_copy_sys_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)3300 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3301 {
3302 unsigned int i;
3303 int err;
3304
3305 /* Then give them all the invariant registers' indices. */
3306 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3307 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3308 return -EFAULT;
3309 uindices++;
3310 }
3311
3312 err = walk_sys_regs(vcpu, uindices);
3313 if (err < 0)
3314 return err;
3315 uindices += err;
3316
3317 return write_demux_regids(uindices);
3318 }
3319
kvm_sys_reg_table_init(void)3320 int __init kvm_sys_reg_table_init(void)
3321 {
3322 bool valid = true;
3323 unsigned int i;
3324
3325 /* Make sure tables are unique and in order. */
3326 valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3327 valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3328 valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3329 valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3330 valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3331 valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3332
3333 if (!valid)
3334 return -EINVAL;
3335
3336 /* We abuse the reset function to overwrite the table itself. */
3337 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3338 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3339
3340 return 0;
3341 }
3342