1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 ARM Ltd.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/irqdomain.h>
13 #include <linux/uaccess.h>
14
15 #include <clocksource/arm_arch_timer.h>
16 #include <asm/arch_timer.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_hyp.h>
19
20 #include <kvm/arm_vgic.h>
21 #include <kvm/arm_arch_timer.h>
22
23 #include "trace.h"
24
25 static struct timecounter *timecounter;
26 static unsigned int host_vtimer_irq;
27 static unsigned int host_ptimer_irq;
28 static u32 host_vtimer_irq_flags;
29 static u32 host_ptimer_irq_flags;
30
31 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
32
33 static const struct kvm_irq_level default_ptimer_irq = {
34 .irq = 30,
35 .level = 1,
36 };
37
38 static const struct kvm_irq_level default_vtimer_irq = {
39 .irq = 27,
40 .level = 1,
41 };
42
43 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
44 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
45 struct arch_timer_context *timer_ctx);
46 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
47 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
48 struct arch_timer_context *timer,
49 enum kvm_arch_timer_regs treg,
50 u64 val);
51 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
52 struct arch_timer_context *timer,
53 enum kvm_arch_timer_regs treg);
54
timer_get_ctl(struct arch_timer_context * ctxt)55 u32 timer_get_ctl(struct arch_timer_context *ctxt)
56 {
57 struct kvm_vcpu *vcpu = ctxt->vcpu;
58
59 switch(arch_timer_ctx_index(ctxt)) {
60 case TIMER_VTIMER:
61 return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
62 case TIMER_PTIMER:
63 return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
64 default:
65 WARN_ON(1);
66 return 0;
67 }
68 }
69
timer_get_cval(struct arch_timer_context * ctxt)70 u64 timer_get_cval(struct arch_timer_context *ctxt)
71 {
72 struct kvm_vcpu *vcpu = ctxt->vcpu;
73
74 switch(arch_timer_ctx_index(ctxt)) {
75 case TIMER_VTIMER:
76 return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
77 case TIMER_PTIMER:
78 return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
79 default:
80 WARN_ON(1);
81 return 0;
82 }
83 }
84
timer_get_offset(struct arch_timer_context * ctxt)85 static u64 timer_get_offset(struct arch_timer_context *ctxt)
86 {
87 struct kvm_vcpu *vcpu = ctxt->vcpu;
88
89 switch(arch_timer_ctx_index(ctxt)) {
90 case TIMER_VTIMER:
91 return __vcpu_sys_reg(vcpu, CNTVOFF_EL2);
92 default:
93 return 0;
94 }
95 }
96
timer_set_ctl(struct arch_timer_context * ctxt,u32 ctl)97 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
98 {
99 struct kvm_vcpu *vcpu = ctxt->vcpu;
100
101 switch(arch_timer_ctx_index(ctxt)) {
102 case TIMER_VTIMER:
103 __vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
104 break;
105 case TIMER_PTIMER:
106 __vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
107 break;
108 default:
109 WARN_ON(1);
110 }
111 }
112
timer_set_cval(struct arch_timer_context * ctxt,u64 cval)113 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
114 {
115 struct kvm_vcpu *vcpu = ctxt->vcpu;
116
117 switch(arch_timer_ctx_index(ctxt)) {
118 case TIMER_VTIMER:
119 __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
120 break;
121 case TIMER_PTIMER:
122 __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
123 break;
124 default:
125 WARN_ON(1);
126 }
127 }
128
timer_set_offset(struct arch_timer_context * ctxt,u64 offset)129 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
130 {
131 struct kvm_vcpu *vcpu = ctxt->vcpu;
132
133 switch(arch_timer_ctx_index(ctxt)) {
134 case TIMER_VTIMER:
135 __vcpu_sys_reg(vcpu, CNTVOFF_EL2) = offset;
136 break;
137 default:
138 WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
139 }
140 }
141
kvm_phys_timer_read(void)142 u64 kvm_phys_timer_read(void)
143 {
144 return timecounter->cc->read(timecounter->cc);
145 }
146
get_timer_map(struct kvm_vcpu * vcpu,struct timer_map * map)147 static void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
148 {
149 if (has_vhe()) {
150 map->direct_vtimer = vcpu_vtimer(vcpu);
151 map->direct_ptimer = vcpu_ptimer(vcpu);
152 map->emul_ptimer = NULL;
153 } else {
154 map->direct_vtimer = vcpu_vtimer(vcpu);
155 map->direct_ptimer = NULL;
156 map->emul_ptimer = vcpu_ptimer(vcpu);
157 }
158
159 trace_kvm_get_timer_map(vcpu->vcpu_id, map);
160 }
161
userspace_irqchip(struct kvm * kvm)162 static inline bool userspace_irqchip(struct kvm *kvm)
163 {
164 return static_branch_unlikely(&userspace_irqchip_in_use) &&
165 unlikely(!irqchip_in_kernel(kvm));
166 }
167
soft_timer_start(struct hrtimer * hrt,u64 ns)168 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
169 {
170 hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
171 HRTIMER_MODE_ABS_HARD);
172 }
173
soft_timer_cancel(struct hrtimer * hrt)174 static void soft_timer_cancel(struct hrtimer *hrt)
175 {
176 hrtimer_cancel(hrt);
177 }
178
kvm_arch_timer_handler(int irq,void * dev_id)179 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
180 {
181 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
182 struct arch_timer_context *ctx;
183 struct timer_map map;
184
185 /*
186 * We may see a timer interrupt after vcpu_put() has been called which
187 * sets the CPU's vcpu pointer to NULL, because even though the timer
188 * has been disabled in timer_save_state(), the hardware interrupt
189 * signal may not have been retired from the interrupt controller yet.
190 */
191 if (!vcpu)
192 return IRQ_HANDLED;
193
194 get_timer_map(vcpu, &map);
195
196 if (irq == host_vtimer_irq)
197 ctx = map.direct_vtimer;
198 else
199 ctx = map.direct_ptimer;
200
201 if (kvm_timer_should_fire(ctx))
202 kvm_timer_update_irq(vcpu, true, ctx);
203
204 if (userspace_irqchip(vcpu->kvm) &&
205 !static_branch_unlikely(&has_gic_active_state))
206 disable_percpu_irq(host_vtimer_irq);
207
208 return IRQ_HANDLED;
209 }
210
kvm_counter_compute_delta(struct arch_timer_context * timer_ctx,u64 val)211 static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
212 u64 val)
213 {
214 u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
215
216 if (now < val) {
217 u64 ns;
218
219 ns = cyclecounter_cyc2ns(timecounter->cc,
220 val - now,
221 timecounter->mask,
222 &timecounter->frac);
223 return ns;
224 }
225
226 return 0;
227 }
228
kvm_timer_compute_delta(struct arch_timer_context * timer_ctx)229 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
230 {
231 return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
232 }
233
kvm_timer_irq_can_fire(struct arch_timer_context * timer_ctx)234 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
235 {
236 WARN_ON(timer_ctx && timer_ctx->loaded);
237 return timer_ctx &&
238 ((timer_get_ctl(timer_ctx) &
239 (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
240 }
241
vcpu_has_wfit_active(struct kvm_vcpu * vcpu)242 static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
243 {
244 return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
245 vcpu_get_flag(vcpu, IN_WFIT));
246 }
247
wfit_delay_ns(struct kvm_vcpu * vcpu)248 static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
249 {
250 struct arch_timer_context *ctx = vcpu_vtimer(vcpu);
251 u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
252
253 return kvm_counter_compute_delta(ctx, val);
254 }
255
256 /*
257 * Returns the earliest expiration time in ns among guest timers.
258 * Note that it will return 0 if none of timers can fire.
259 */
kvm_timer_earliest_exp(struct kvm_vcpu * vcpu)260 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
261 {
262 u64 min_delta = ULLONG_MAX;
263 int i;
264
265 for (i = 0; i < NR_KVM_TIMERS; i++) {
266 struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
267
268 WARN(ctx->loaded, "timer %d loaded\n", i);
269 if (kvm_timer_irq_can_fire(ctx))
270 min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
271 }
272
273 if (vcpu_has_wfit_active(vcpu))
274 min_delta = min(min_delta, wfit_delay_ns(vcpu));
275
276 /* If none of timers can fire, then return 0 */
277 if (min_delta == ULLONG_MAX)
278 return 0;
279
280 return min_delta;
281 }
282
kvm_bg_timer_expire(struct hrtimer * hrt)283 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
284 {
285 struct arch_timer_cpu *timer;
286 struct kvm_vcpu *vcpu;
287 u64 ns;
288
289 timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
290 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
291
292 /*
293 * Check that the timer has really expired from the guest's
294 * PoV (NTP on the host may have forced it to expire
295 * early). If we should have slept longer, restart it.
296 */
297 ns = kvm_timer_earliest_exp(vcpu);
298 if (unlikely(ns)) {
299 hrtimer_forward_now(hrt, ns_to_ktime(ns));
300 return HRTIMER_RESTART;
301 }
302
303 kvm_vcpu_wake_up(vcpu);
304 return HRTIMER_NORESTART;
305 }
306
kvm_hrtimer_expire(struct hrtimer * hrt)307 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
308 {
309 struct arch_timer_context *ctx;
310 struct kvm_vcpu *vcpu;
311 u64 ns;
312
313 ctx = container_of(hrt, struct arch_timer_context, hrtimer);
314 vcpu = ctx->vcpu;
315
316 trace_kvm_timer_hrtimer_expire(ctx);
317
318 /*
319 * Check that the timer has really expired from the guest's
320 * PoV (NTP on the host may have forced it to expire
321 * early). If not ready, schedule for a later time.
322 */
323 ns = kvm_timer_compute_delta(ctx);
324 if (unlikely(ns)) {
325 hrtimer_forward_now(hrt, ns_to_ktime(ns));
326 return HRTIMER_RESTART;
327 }
328
329 kvm_timer_update_irq(vcpu, true, ctx);
330 return HRTIMER_NORESTART;
331 }
332
kvm_timer_should_fire(struct arch_timer_context * timer_ctx)333 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
334 {
335 enum kvm_arch_timers index;
336 u64 cval, now;
337
338 if (!timer_ctx)
339 return false;
340
341 index = arch_timer_ctx_index(timer_ctx);
342
343 if (timer_ctx->loaded) {
344 u32 cnt_ctl = 0;
345
346 switch (index) {
347 case TIMER_VTIMER:
348 cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
349 break;
350 case TIMER_PTIMER:
351 cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
352 break;
353 case NR_KVM_TIMERS:
354 /* GCC is braindead */
355 cnt_ctl = 0;
356 break;
357 }
358
359 return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
360 (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
361 !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
362 }
363
364 if (!kvm_timer_irq_can_fire(timer_ctx))
365 return false;
366
367 cval = timer_get_cval(timer_ctx);
368 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
369
370 return cval <= now;
371 }
372
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)373 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
374 {
375 return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
376 }
377
378 /*
379 * Reflect the timer output level into the kvm_run structure
380 */
kvm_timer_update_run(struct kvm_vcpu * vcpu)381 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
382 {
383 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
384 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
385 struct kvm_sync_regs *regs = &vcpu->run->s.regs;
386
387 /* Populate the device bitmap with the timer states */
388 regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
389 KVM_ARM_DEV_EL1_PTIMER);
390 if (kvm_timer_should_fire(vtimer))
391 regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
392 if (kvm_timer_should_fire(ptimer))
393 regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
394 }
395
kvm_timer_update_irq(struct kvm_vcpu * vcpu,bool new_level,struct arch_timer_context * timer_ctx)396 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
397 struct arch_timer_context *timer_ctx)
398 {
399 int ret;
400
401 timer_ctx->irq.level = new_level;
402 trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
403 timer_ctx->irq.level);
404
405 if (!userspace_irqchip(vcpu->kvm)) {
406 ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
407 timer_ctx->irq.irq,
408 timer_ctx->irq.level,
409 timer_ctx);
410 WARN_ON(ret);
411 }
412 }
413
414 /* Only called for a fully emulated timer */
timer_emulate(struct arch_timer_context * ctx)415 static void timer_emulate(struct arch_timer_context *ctx)
416 {
417 bool should_fire = kvm_timer_should_fire(ctx);
418
419 trace_kvm_timer_emulate(ctx, should_fire);
420
421 if (should_fire != ctx->irq.level) {
422 kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
423 return;
424 }
425
426 /*
427 * If the timer can fire now, we don't need to have a soft timer
428 * scheduled for the future. If the timer cannot fire at all,
429 * then we also don't need a soft timer.
430 */
431 if (should_fire || !kvm_timer_irq_can_fire(ctx))
432 return;
433
434 soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
435 }
436
set_cntvoff(u64 cntvoff)437 static void set_cntvoff(u64 cntvoff)
438 {
439 kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
440 }
441
timer_save_state(struct arch_timer_context * ctx)442 static void timer_save_state(struct arch_timer_context *ctx)
443 {
444 struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
445 enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
446 unsigned long flags;
447
448 if (!timer->enabled)
449 return;
450
451 local_irq_save(flags);
452
453 if (!ctx->loaded)
454 goto out;
455
456 switch (index) {
457 case TIMER_VTIMER:
458 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
459 timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
460
461 /* Disable the timer */
462 write_sysreg_el0(0, SYS_CNTV_CTL);
463 isb();
464
465 /*
466 * The kernel may decide to run userspace after
467 * calling vcpu_put, so we reset cntvoff to 0 to
468 * ensure a consistent read between user accesses to
469 * the virtual counter and kernel access to the
470 * physical counter of non-VHE case.
471 *
472 * For VHE, the virtual counter uses a fixed virtual
473 * offset of zero, so no need to zero CNTVOFF_EL2
474 * register, but this is actually useful when switching
475 * between EL1/vEL2 with NV.
476 *
477 * Do it unconditionally, as this is either unavoidable
478 * or dirt cheap.
479 */
480 set_cntvoff(0);
481 break;
482 case TIMER_PTIMER:
483 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
484 timer_set_cval(ctx, read_sysreg_el0(SYS_CNTP_CVAL));
485
486 /* Disable the timer */
487 write_sysreg_el0(0, SYS_CNTP_CTL);
488 isb();
489
490 break;
491 case NR_KVM_TIMERS:
492 BUG();
493 }
494
495 trace_kvm_timer_save_state(ctx);
496
497 ctx->loaded = false;
498 out:
499 local_irq_restore(flags);
500 }
501
502 /*
503 * Schedule the background timer before calling kvm_vcpu_halt, so that this
504 * thread is removed from its waitqueue and made runnable when there's a timer
505 * interrupt to handle.
506 */
kvm_timer_blocking(struct kvm_vcpu * vcpu)507 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
508 {
509 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
510 struct timer_map map;
511
512 get_timer_map(vcpu, &map);
513
514 /*
515 * If no timers are capable of raising interrupts (disabled or
516 * masked), then there's no more work for us to do.
517 */
518 if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
519 !kvm_timer_irq_can_fire(map.direct_ptimer) &&
520 !kvm_timer_irq_can_fire(map.emul_ptimer) &&
521 !vcpu_has_wfit_active(vcpu))
522 return;
523
524 /*
525 * At least one guest time will expire. Schedule a background timer.
526 * Set the earliest expiration time among the guest timers.
527 */
528 soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
529 }
530
kvm_timer_unblocking(struct kvm_vcpu * vcpu)531 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
532 {
533 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
534
535 soft_timer_cancel(&timer->bg_timer);
536 }
537
timer_restore_state(struct arch_timer_context * ctx)538 static void timer_restore_state(struct arch_timer_context *ctx)
539 {
540 struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
541 enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
542 unsigned long flags;
543
544 if (!timer->enabled)
545 return;
546
547 local_irq_save(flags);
548
549 if (ctx->loaded)
550 goto out;
551
552 switch (index) {
553 case TIMER_VTIMER:
554 set_cntvoff(timer_get_offset(ctx));
555 write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
556 isb();
557 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
558 break;
559 case TIMER_PTIMER:
560 write_sysreg_el0(timer_get_cval(ctx), SYS_CNTP_CVAL);
561 isb();
562 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
563 break;
564 case NR_KVM_TIMERS:
565 BUG();
566 }
567
568 trace_kvm_timer_restore_state(ctx);
569
570 ctx->loaded = true;
571 out:
572 local_irq_restore(flags);
573 }
574
set_timer_irq_phys_active(struct arch_timer_context * ctx,bool active)575 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
576 {
577 int r;
578 r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
579 WARN_ON(r);
580 }
581
kvm_timer_vcpu_load_gic(struct arch_timer_context * ctx)582 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
583 {
584 struct kvm_vcpu *vcpu = ctx->vcpu;
585 bool phys_active = false;
586
587 /*
588 * Update the timer output so that it is likely to match the
589 * state we're about to restore. If the timer expires between
590 * this point and the register restoration, we'll take the
591 * interrupt anyway.
592 */
593 kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
594
595 if (irqchip_in_kernel(vcpu->kvm))
596 phys_active = kvm_vgic_map_is_active(vcpu, ctx->irq.irq);
597
598 phys_active |= ctx->irq.level;
599
600 set_timer_irq_phys_active(ctx, phys_active);
601 }
602
kvm_timer_vcpu_load_nogic(struct kvm_vcpu * vcpu)603 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
604 {
605 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
606
607 /*
608 * Update the timer output so that it is likely to match the
609 * state we're about to restore. If the timer expires between
610 * this point and the register restoration, we'll take the
611 * interrupt anyway.
612 */
613 kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
614
615 /*
616 * When using a userspace irqchip with the architected timers and a
617 * host interrupt controller that doesn't support an active state, we
618 * must still prevent continuously exiting from the guest, and
619 * therefore mask the physical interrupt by disabling it on the host
620 * interrupt controller when the virtual level is high, such that the
621 * guest can make forward progress. Once we detect the output level
622 * being de-asserted, we unmask the interrupt again so that we exit
623 * from the guest when the timer fires.
624 */
625 if (vtimer->irq.level)
626 disable_percpu_irq(host_vtimer_irq);
627 else
628 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
629 }
630
kvm_timer_vcpu_load(struct kvm_vcpu * vcpu)631 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
632 {
633 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
634 struct timer_map map;
635
636 if (unlikely(!timer->enabled))
637 return;
638
639 get_timer_map(vcpu, &map);
640
641 if (static_branch_likely(&has_gic_active_state)) {
642 kvm_timer_vcpu_load_gic(map.direct_vtimer);
643 if (map.direct_ptimer)
644 kvm_timer_vcpu_load_gic(map.direct_ptimer);
645 } else {
646 kvm_timer_vcpu_load_nogic(vcpu);
647 }
648
649 kvm_timer_unblocking(vcpu);
650
651 timer_restore_state(map.direct_vtimer);
652 if (map.direct_ptimer)
653 timer_restore_state(map.direct_ptimer);
654
655 if (map.emul_ptimer)
656 timer_emulate(map.emul_ptimer);
657 }
658
kvm_timer_should_notify_user(struct kvm_vcpu * vcpu)659 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
660 {
661 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
662 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
663 struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
664 bool vlevel, plevel;
665
666 if (likely(irqchip_in_kernel(vcpu->kvm)))
667 return false;
668
669 vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
670 plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
671
672 return kvm_timer_should_fire(vtimer) != vlevel ||
673 kvm_timer_should_fire(ptimer) != plevel;
674 }
675
kvm_timer_vcpu_put(struct kvm_vcpu * vcpu)676 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
677 {
678 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
679 struct timer_map map;
680
681 if (unlikely(!timer->enabled))
682 return;
683
684 get_timer_map(vcpu, &map);
685
686 timer_save_state(map.direct_vtimer);
687 if (map.direct_ptimer)
688 timer_save_state(map.direct_ptimer);
689
690 /*
691 * Cancel soft timer emulation, because the only case where we
692 * need it after a vcpu_put is in the context of a sleeping VCPU, and
693 * in that case we already factor in the deadline for the physical
694 * timer when scheduling the bg_timer.
695 *
696 * In any case, we re-schedule the hrtimer for the physical timer when
697 * coming back to the VCPU thread in kvm_timer_vcpu_load().
698 */
699 if (map.emul_ptimer)
700 soft_timer_cancel(&map.emul_ptimer->hrtimer);
701
702 if (kvm_vcpu_is_blocking(vcpu))
703 kvm_timer_blocking(vcpu);
704 }
705
706 /*
707 * With a userspace irqchip we have to check if the guest de-asserted the
708 * timer and if so, unmask the timer irq signal on the host interrupt
709 * controller to ensure that we see future timer signals.
710 */
unmask_vtimer_irq_user(struct kvm_vcpu * vcpu)711 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
712 {
713 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
714
715 if (!kvm_timer_should_fire(vtimer)) {
716 kvm_timer_update_irq(vcpu, false, vtimer);
717 if (static_branch_likely(&has_gic_active_state))
718 set_timer_irq_phys_active(vtimer, false);
719 else
720 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
721 }
722 }
723
kvm_timer_sync_user(struct kvm_vcpu * vcpu)724 void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
725 {
726 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
727
728 if (unlikely(!timer->enabled))
729 return;
730
731 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
732 unmask_vtimer_irq_user(vcpu);
733 }
734
kvm_timer_vcpu_reset(struct kvm_vcpu * vcpu)735 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
736 {
737 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
738 struct timer_map map;
739
740 get_timer_map(vcpu, &map);
741
742 /*
743 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
744 * and to 0 for ARMv7. We provide an implementation that always
745 * resets the timer to be disabled and unmasked and is compliant with
746 * the ARMv7 architecture.
747 */
748 timer_set_ctl(vcpu_vtimer(vcpu), 0);
749 timer_set_ctl(vcpu_ptimer(vcpu), 0);
750
751 if (timer->enabled) {
752 kvm_timer_update_irq(vcpu, false, vcpu_vtimer(vcpu));
753 kvm_timer_update_irq(vcpu, false, vcpu_ptimer(vcpu));
754
755 if (irqchip_in_kernel(vcpu->kvm)) {
756 kvm_vgic_reset_mapped_irq(vcpu, map.direct_vtimer->irq.irq);
757 if (map.direct_ptimer)
758 kvm_vgic_reset_mapped_irq(vcpu, map.direct_ptimer->irq.irq);
759 }
760 }
761
762 if (map.emul_ptimer)
763 soft_timer_cancel(&map.emul_ptimer->hrtimer);
764
765 return 0;
766 }
767
768 /* Make the updates of cntvoff for all vtimer contexts atomic */
update_vtimer_cntvoff(struct kvm_vcpu * vcpu,u64 cntvoff)769 static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
770 {
771 unsigned long i;
772 struct kvm *kvm = vcpu->kvm;
773 struct kvm_vcpu *tmp;
774
775 mutex_lock(&kvm->lock);
776 kvm_for_each_vcpu(i, tmp, kvm)
777 timer_set_offset(vcpu_vtimer(tmp), cntvoff);
778
779 /*
780 * When called from the vcpu create path, the CPU being created is not
781 * included in the loop above, so we just set it here as well.
782 */
783 timer_set_offset(vcpu_vtimer(vcpu), cntvoff);
784 mutex_unlock(&kvm->lock);
785 }
786
kvm_timer_vcpu_init(struct kvm_vcpu * vcpu)787 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
788 {
789 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
790 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
791 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
792
793 vtimer->vcpu = vcpu;
794 ptimer->vcpu = vcpu;
795
796 /* Synchronize cntvoff across all vtimers of a VM. */
797 update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
798 timer_set_offset(ptimer, 0);
799
800 hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
801 timer->bg_timer.function = kvm_bg_timer_expire;
802
803 hrtimer_init(&vtimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
804 hrtimer_init(&ptimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
805 vtimer->hrtimer.function = kvm_hrtimer_expire;
806 ptimer->hrtimer.function = kvm_hrtimer_expire;
807
808 vtimer->irq.irq = default_vtimer_irq.irq;
809 ptimer->irq.irq = default_ptimer_irq.irq;
810
811 vtimer->host_timer_irq = host_vtimer_irq;
812 ptimer->host_timer_irq = host_ptimer_irq;
813
814 vtimer->host_timer_irq_flags = host_vtimer_irq_flags;
815 ptimer->host_timer_irq_flags = host_ptimer_irq_flags;
816 }
817
kvm_timer_cpu_up(void)818 void kvm_timer_cpu_up(void)
819 {
820 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
821 if (host_ptimer_irq)
822 enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
823 }
824
kvm_timer_cpu_down(void)825 void kvm_timer_cpu_down(void)
826 {
827 disable_percpu_irq(host_vtimer_irq);
828 if (host_ptimer_irq)
829 disable_percpu_irq(host_ptimer_irq);
830 }
831
kvm_arm_timer_set_reg(struct kvm_vcpu * vcpu,u64 regid,u64 value)832 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
833 {
834 struct arch_timer_context *timer;
835
836 switch (regid) {
837 case KVM_REG_ARM_TIMER_CTL:
838 timer = vcpu_vtimer(vcpu);
839 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
840 break;
841 case KVM_REG_ARM_TIMER_CNT:
842 timer = vcpu_vtimer(vcpu);
843 update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
844 break;
845 case KVM_REG_ARM_TIMER_CVAL:
846 timer = vcpu_vtimer(vcpu);
847 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
848 break;
849 case KVM_REG_ARM_PTIMER_CTL:
850 timer = vcpu_ptimer(vcpu);
851 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
852 break;
853 case KVM_REG_ARM_PTIMER_CVAL:
854 timer = vcpu_ptimer(vcpu);
855 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
856 break;
857
858 default:
859 return -1;
860 }
861
862 return 0;
863 }
864
read_timer_ctl(struct arch_timer_context * timer)865 static u64 read_timer_ctl(struct arch_timer_context *timer)
866 {
867 /*
868 * Set ISTATUS bit if it's expired.
869 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
870 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
871 * regardless of ENABLE bit for our implementation convenience.
872 */
873 u32 ctl = timer_get_ctl(timer);
874
875 if (!kvm_timer_compute_delta(timer))
876 ctl |= ARCH_TIMER_CTRL_IT_STAT;
877
878 return ctl;
879 }
880
kvm_arm_timer_get_reg(struct kvm_vcpu * vcpu,u64 regid)881 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
882 {
883 switch (regid) {
884 case KVM_REG_ARM_TIMER_CTL:
885 return kvm_arm_timer_read(vcpu,
886 vcpu_vtimer(vcpu), TIMER_REG_CTL);
887 case KVM_REG_ARM_TIMER_CNT:
888 return kvm_arm_timer_read(vcpu,
889 vcpu_vtimer(vcpu), TIMER_REG_CNT);
890 case KVM_REG_ARM_TIMER_CVAL:
891 return kvm_arm_timer_read(vcpu,
892 vcpu_vtimer(vcpu), TIMER_REG_CVAL);
893 case KVM_REG_ARM_PTIMER_CTL:
894 return kvm_arm_timer_read(vcpu,
895 vcpu_ptimer(vcpu), TIMER_REG_CTL);
896 case KVM_REG_ARM_PTIMER_CNT:
897 return kvm_arm_timer_read(vcpu,
898 vcpu_ptimer(vcpu), TIMER_REG_CNT);
899 case KVM_REG_ARM_PTIMER_CVAL:
900 return kvm_arm_timer_read(vcpu,
901 vcpu_ptimer(vcpu), TIMER_REG_CVAL);
902 }
903 return (u64)-1;
904 }
905
kvm_arm_timer_read(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg)906 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
907 struct arch_timer_context *timer,
908 enum kvm_arch_timer_regs treg)
909 {
910 u64 val;
911
912 switch (treg) {
913 case TIMER_REG_TVAL:
914 val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
915 val = lower_32_bits(val);
916 break;
917
918 case TIMER_REG_CTL:
919 val = read_timer_ctl(timer);
920 break;
921
922 case TIMER_REG_CVAL:
923 val = timer_get_cval(timer);
924 break;
925
926 case TIMER_REG_CNT:
927 val = kvm_phys_timer_read() - timer_get_offset(timer);
928 break;
929
930 default:
931 BUG();
932 }
933
934 return val;
935 }
936
kvm_arm_timer_read_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg)937 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
938 enum kvm_arch_timers tmr,
939 enum kvm_arch_timer_regs treg)
940 {
941 struct arch_timer_context *timer;
942 struct timer_map map;
943 u64 val;
944
945 get_timer_map(vcpu, &map);
946 timer = vcpu_get_timer(vcpu, tmr);
947
948 if (timer == map.emul_ptimer)
949 return kvm_arm_timer_read(vcpu, timer, treg);
950
951 preempt_disable();
952 timer_save_state(timer);
953
954 val = kvm_arm_timer_read(vcpu, timer, treg);
955
956 timer_restore_state(timer);
957 preempt_enable();
958
959 return val;
960 }
961
kvm_arm_timer_write(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg,u64 val)962 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
963 struct arch_timer_context *timer,
964 enum kvm_arch_timer_regs treg,
965 u64 val)
966 {
967 switch (treg) {
968 case TIMER_REG_TVAL:
969 timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
970 break;
971
972 case TIMER_REG_CTL:
973 timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
974 break;
975
976 case TIMER_REG_CVAL:
977 timer_set_cval(timer, val);
978 break;
979
980 default:
981 BUG();
982 }
983 }
984
kvm_arm_timer_write_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg,u64 val)985 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
986 enum kvm_arch_timers tmr,
987 enum kvm_arch_timer_regs treg,
988 u64 val)
989 {
990 struct arch_timer_context *timer;
991 struct timer_map map;
992
993 get_timer_map(vcpu, &map);
994 timer = vcpu_get_timer(vcpu, tmr);
995 if (timer == map.emul_ptimer) {
996 soft_timer_cancel(&timer->hrtimer);
997 kvm_arm_timer_write(vcpu, timer, treg, val);
998 timer_emulate(timer);
999 } else {
1000 preempt_disable();
1001 timer_save_state(timer);
1002 kvm_arm_timer_write(vcpu, timer, treg, val);
1003 timer_restore_state(timer);
1004 preempt_enable();
1005 }
1006 }
1007
timer_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)1008 static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
1009 {
1010 if (vcpu)
1011 irqd_set_forwarded_to_vcpu(d);
1012 else
1013 irqd_clr_forwarded_to_vcpu(d);
1014
1015 return 0;
1016 }
1017
timer_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)1018 static int timer_irq_set_irqchip_state(struct irq_data *d,
1019 enum irqchip_irq_state which, bool val)
1020 {
1021 if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1022 return irq_chip_set_parent_state(d, which, val);
1023
1024 if (val)
1025 irq_chip_mask_parent(d);
1026 else
1027 irq_chip_unmask_parent(d);
1028
1029 return 0;
1030 }
1031
timer_irq_eoi(struct irq_data * d)1032 static void timer_irq_eoi(struct irq_data *d)
1033 {
1034 if (!irqd_is_forwarded_to_vcpu(d))
1035 irq_chip_eoi_parent(d);
1036 }
1037
timer_irq_ack(struct irq_data * d)1038 static void timer_irq_ack(struct irq_data *d)
1039 {
1040 d = d->parent_data;
1041 if (d->chip->irq_ack)
1042 d->chip->irq_ack(d);
1043 }
1044
1045 static struct irq_chip timer_chip = {
1046 .name = "KVM",
1047 .irq_ack = timer_irq_ack,
1048 .irq_mask = irq_chip_mask_parent,
1049 .irq_unmask = irq_chip_unmask_parent,
1050 .irq_eoi = timer_irq_eoi,
1051 .irq_set_type = irq_chip_set_type_parent,
1052 .irq_set_vcpu_affinity = timer_irq_set_vcpu_affinity,
1053 .irq_set_irqchip_state = timer_irq_set_irqchip_state,
1054 };
1055
timer_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1056 static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1057 unsigned int nr_irqs, void *arg)
1058 {
1059 irq_hw_number_t hwirq = (uintptr_t)arg;
1060
1061 return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1062 &timer_chip, NULL);
1063 }
1064
timer_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1065 static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1066 unsigned int nr_irqs)
1067 {
1068 }
1069
1070 static const struct irq_domain_ops timer_domain_ops = {
1071 .alloc = timer_irq_domain_alloc,
1072 .free = timer_irq_domain_free,
1073 };
1074
1075 static struct irq_ops arch_timer_irq_ops = {
1076 .get_input_level = kvm_arch_timer_get_input_level,
1077 };
1078
kvm_irq_fixup_flags(unsigned int virq,u32 * flags)1079 static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1080 {
1081 *flags = irq_get_trigger_type(virq);
1082 if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1083 kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1084 virq);
1085 *flags = IRQF_TRIGGER_LOW;
1086 }
1087 }
1088
kvm_irq_init(struct arch_timer_kvm_info * info)1089 static int kvm_irq_init(struct arch_timer_kvm_info *info)
1090 {
1091 struct irq_domain *domain = NULL;
1092
1093 if (info->virtual_irq <= 0) {
1094 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1095 info->virtual_irq);
1096 return -ENODEV;
1097 }
1098
1099 host_vtimer_irq = info->virtual_irq;
1100 kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1101
1102 if (kvm_vgic_global_state.no_hw_deactivation) {
1103 struct fwnode_handle *fwnode;
1104 struct irq_data *data;
1105
1106 fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1107 if (!fwnode)
1108 return -ENOMEM;
1109
1110 /* Assume both vtimer and ptimer in the same parent */
1111 data = irq_get_irq_data(host_vtimer_irq);
1112 domain = irq_domain_create_hierarchy(data->domain, 0,
1113 NR_KVM_TIMERS, fwnode,
1114 &timer_domain_ops, NULL);
1115 if (!domain) {
1116 irq_domain_free_fwnode(fwnode);
1117 return -ENOMEM;
1118 }
1119
1120 arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1121 WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1122 (void *)TIMER_VTIMER));
1123 }
1124
1125 if (info->physical_irq > 0) {
1126 host_ptimer_irq = info->physical_irq;
1127 kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1128
1129 if (domain)
1130 WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1131 (void *)TIMER_PTIMER));
1132 }
1133
1134 return 0;
1135 }
1136
kvm_timer_hyp_init(bool has_gic)1137 int __init kvm_timer_hyp_init(bool has_gic)
1138 {
1139 struct arch_timer_kvm_info *info;
1140 int err;
1141
1142 info = arch_timer_get_kvm_info();
1143 timecounter = &info->timecounter;
1144
1145 if (!timecounter->cc) {
1146 kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1147 return -ENODEV;
1148 }
1149
1150 err = kvm_irq_init(info);
1151 if (err)
1152 return err;
1153
1154 /* First, do the virtual EL1 timer irq */
1155
1156 err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1157 "kvm guest vtimer", kvm_get_running_vcpus());
1158 if (err) {
1159 kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1160 host_vtimer_irq, err);
1161 return err;
1162 }
1163
1164 if (has_gic) {
1165 err = irq_set_vcpu_affinity(host_vtimer_irq,
1166 kvm_get_running_vcpus());
1167 if (err) {
1168 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1169 goto out_free_irq;
1170 }
1171
1172 static_branch_enable(&has_gic_active_state);
1173 }
1174
1175 kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1176
1177 /* Now let's do the physical EL1 timer irq */
1178
1179 if (info->physical_irq > 0) {
1180 err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1181 "kvm guest ptimer", kvm_get_running_vcpus());
1182 if (err) {
1183 kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1184 host_ptimer_irq, err);
1185 return err;
1186 }
1187
1188 if (has_gic) {
1189 err = irq_set_vcpu_affinity(host_ptimer_irq,
1190 kvm_get_running_vcpus());
1191 if (err) {
1192 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1193 goto out_free_irq;
1194 }
1195 }
1196
1197 kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1198 } else if (has_vhe()) {
1199 kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1200 info->physical_irq);
1201 err = -ENODEV;
1202 goto out_free_irq;
1203 }
1204
1205 return 0;
1206 out_free_irq:
1207 free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1208 return err;
1209 }
1210
kvm_timer_vcpu_terminate(struct kvm_vcpu * vcpu)1211 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1212 {
1213 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1214
1215 soft_timer_cancel(&timer->bg_timer);
1216 }
1217
timer_irqs_are_valid(struct kvm_vcpu * vcpu)1218 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1219 {
1220 int vtimer_irq, ptimer_irq, ret;
1221 unsigned long i;
1222
1223 vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
1224 ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
1225 if (ret)
1226 return false;
1227
1228 ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
1229 ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
1230 if (ret)
1231 return false;
1232
1233 kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
1234 if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
1235 vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
1236 return false;
1237 }
1238
1239 return true;
1240 }
1241
kvm_arch_timer_get_input_level(int vintid)1242 bool kvm_arch_timer_get_input_level(int vintid)
1243 {
1244 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1245 struct arch_timer_context *timer;
1246
1247 if (WARN(!vcpu, "No vcpu context!\n"))
1248 return false;
1249
1250 if (vintid == vcpu_vtimer(vcpu)->irq.irq)
1251 timer = vcpu_vtimer(vcpu);
1252 else if (vintid == vcpu_ptimer(vcpu)->irq.irq)
1253 timer = vcpu_ptimer(vcpu);
1254 else
1255 BUG();
1256
1257 return kvm_timer_should_fire(timer);
1258 }
1259
kvm_timer_enable(struct kvm_vcpu * vcpu)1260 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1261 {
1262 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1263 struct timer_map map;
1264 int ret;
1265
1266 if (timer->enabled)
1267 return 0;
1268
1269 /* Without a VGIC we do not map virtual IRQs to physical IRQs */
1270 if (!irqchip_in_kernel(vcpu->kvm))
1271 goto no_vgic;
1272
1273 /*
1274 * At this stage, we have the guarantee that the vgic is both
1275 * available and initialized.
1276 */
1277 if (!timer_irqs_are_valid(vcpu)) {
1278 kvm_debug("incorrectly configured timer irqs\n");
1279 return -EINVAL;
1280 }
1281
1282 get_timer_map(vcpu, &map);
1283
1284 ret = kvm_vgic_map_phys_irq(vcpu,
1285 map.direct_vtimer->host_timer_irq,
1286 map.direct_vtimer->irq.irq,
1287 &arch_timer_irq_ops);
1288 if (ret)
1289 return ret;
1290
1291 if (map.direct_ptimer) {
1292 ret = kvm_vgic_map_phys_irq(vcpu,
1293 map.direct_ptimer->host_timer_irq,
1294 map.direct_ptimer->irq.irq,
1295 &arch_timer_irq_ops);
1296 }
1297
1298 if (ret)
1299 return ret;
1300
1301 no_vgic:
1302 timer->enabled = 1;
1303 return 0;
1304 }
1305
1306 /*
1307 * On VHE system, we only need to configure the EL2 timer trap register once,
1308 * not for every world switch.
1309 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
1310 * and this makes those bits have no effect for the host kernel execution.
1311 */
kvm_timer_init_vhe(void)1312 void kvm_timer_init_vhe(void)
1313 {
1314 /* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
1315 u32 cnthctl_shift = 10;
1316 u64 val;
1317
1318 /*
1319 * VHE systems allow the guest direct access to the EL1 physical
1320 * timer/counter.
1321 */
1322 val = read_sysreg(cnthctl_el2);
1323 val |= (CNTHCTL_EL1PCEN << cnthctl_shift);
1324 val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
1325 write_sysreg(val, cnthctl_el2);
1326 }
1327
set_timer_irqs(struct kvm * kvm,int vtimer_irq,int ptimer_irq)1328 static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
1329 {
1330 struct kvm_vcpu *vcpu;
1331 unsigned long i;
1332
1333 kvm_for_each_vcpu(i, vcpu, kvm) {
1334 vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
1335 vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
1336 }
1337 }
1338
kvm_arm_timer_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1339 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1340 {
1341 int __user *uaddr = (int __user *)(long)attr->addr;
1342 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
1343 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
1344 int irq;
1345
1346 if (!irqchip_in_kernel(vcpu->kvm))
1347 return -EINVAL;
1348
1349 if (get_user(irq, uaddr))
1350 return -EFAULT;
1351
1352 if (!(irq_is_ppi(irq)))
1353 return -EINVAL;
1354
1355 if (vcpu->arch.timer_cpu.enabled)
1356 return -EBUSY;
1357
1358 switch (attr->attr) {
1359 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1360 set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
1361 break;
1362 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1363 set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
1364 break;
1365 default:
1366 return -ENXIO;
1367 }
1368
1369 return 0;
1370 }
1371
kvm_arm_timer_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1372 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1373 {
1374 int __user *uaddr = (int __user *)(long)attr->addr;
1375 struct arch_timer_context *timer;
1376 int irq;
1377
1378 switch (attr->attr) {
1379 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1380 timer = vcpu_vtimer(vcpu);
1381 break;
1382 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1383 timer = vcpu_ptimer(vcpu);
1384 break;
1385 default:
1386 return -ENXIO;
1387 }
1388
1389 irq = timer->irq.irq;
1390 return put_user(irq, uaddr);
1391 }
1392
kvm_arm_timer_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1393 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1394 {
1395 switch (attr->attr) {
1396 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1397 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1398 return 0;
1399 }
1400
1401 return -ENXIO;
1402 }
1403