1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42
43 #include <linux/kvm_types.h>
44
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51
52 /*
53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54 * used in kvm, other bits are visible for userspace which are defined in
55 * include/linux/kvm_h.
56 */
57 #define KVM_MEMSLOT_INVALID (1UL << 16)
58
59 /*
60 * Bit 63 of the memslot generation number is an "update in-progress flag",
61 * e.g. is temporarily set for the duration of install_new_memslots().
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
65 *
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update. Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
72 *
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
77 */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
79
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS 2
82
83 #ifndef KVM_ADDRESS_SPACE_NUM
84 #define KVM_ADDRESS_SPACE_NUM 1
85 #endif
86
87 /*
88 * For the normal pfn, the highest 12 bits should be zero,
89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
91 */
92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94 #define KVM_PFN_NOSLOT (0x1ULL << 63)
95
96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3)
100
101 /*
102 * error pfns indicate that the gfn is in slot but faild to
103 * translate it to pfn on host.
104 */
is_error_pfn(kvm_pfn_t pfn)105 static inline bool is_error_pfn(kvm_pfn_t pfn)
106 {
107 return !!(pfn & KVM_PFN_ERR_MASK);
108 }
109
110 /*
111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112 * by a pending signal. Note, the signal may or may not be fatal.
113 */
is_sigpending_pfn(kvm_pfn_t pfn)114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115 {
116 return pfn == KVM_PFN_ERR_SIGPENDING;
117 }
118
119 /*
120 * error_noslot pfns indicate that the gfn can not be
121 * translated to pfn - it is not in slot or failed to
122 * translate it to pfn.
123 */
is_error_noslot_pfn(kvm_pfn_t pfn)124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125 {
126 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127 }
128
129 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)130 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131 {
132 return pfn == KVM_PFN_NOSLOT;
133 }
134
135 /*
136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137 * provide own defines and kvm_is_error_hva
138 */
139 #ifndef KVM_HVA_ERR_BAD
140
141 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
142 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
143
kvm_is_error_hva(unsigned long addr)144 static inline bool kvm_is_error_hva(unsigned long addr)
145 {
146 return addr >= PAGE_OFFSET;
147 }
148
149 #endif
150
151 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
152
is_error_page(struct page * page)153 static inline bool is_error_page(struct page *page)
154 {
155 return IS_ERR(page);
156 }
157
158 #define KVM_REQUEST_MASK GENMASK(7,0)
159 #define KVM_REQUEST_NO_WAKEUP BIT(8)
160 #define KVM_REQUEST_WAIT BIT(9)
161 #define KVM_REQUEST_NO_ACTION BIT(10)
162 /*
163 * Architecture-independent vcpu->requests bit members
164 * Bits 3-7 are reserved for more arch-independent bits.
165 */
166 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
168 #define KVM_REQ_UNBLOCK 2
169 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3
170 #define KVM_REQUEST_ARCH_BASE 8
171
172 /*
173 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
174 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
175 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
176 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
177 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
178 * guarantee the vCPU received an IPI and has actually exited guest mode.
179 */
180 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
181
182 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
183 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
184 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
185 })
186 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
187
188 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
189 unsigned long *vcpu_bitmap);
190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
191 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
192 struct kvm_vcpu *except);
193 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
194 unsigned long *vcpu_bitmap);
195
196 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
197 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
198
199 extern struct mutex kvm_lock;
200 extern struct list_head vm_list;
201
202 struct kvm_io_range {
203 gpa_t addr;
204 int len;
205 struct kvm_io_device *dev;
206 };
207
208 #define NR_IOBUS_DEVS 1000
209
210 struct kvm_io_bus {
211 int dev_count;
212 int ioeventfd_count;
213 struct kvm_io_range range[];
214 };
215
216 enum kvm_bus {
217 KVM_MMIO_BUS,
218 KVM_PIO_BUS,
219 KVM_VIRTIO_CCW_NOTIFY_BUS,
220 KVM_FAST_MMIO_BUS,
221 KVM_NR_BUSES
222 };
223
224 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
225 int len, const void *val);
226 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
227 gpa_t addr, int len, const void *val, long cookie);
228 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
229 int len, void *val);
230 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
231 int len, struct kvm_io_device *dev);
232 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
233 struct kvm_io_device *dev);
234 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
235 gpa_t addr);
236
237 #ifdef CONFIG_KVM_ASYNC_PF
238 struct kvm_async_pf {
239 struct work_struct work;
240 struct list_head link;
241 struct list_head queue;
242 struct kvm_vcpu *vcpu;
243 struct mm_struct *mm;
244 gpa_t cr2_or_gpa;
245 unsigned long addr;
246 struct kvm_arch_async_pf arch;
247 bool wakeup_all;
248 bool notpresent_injected;
249 };
250
251 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
252 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
253 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
254 unsigned long hva, struct kvm_arch_async_pf *arch);
255 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
256 #endif
257
258 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
259 struct kvm_gfn_range {
260 struct kvm_memory_slot *slot;
261 gfn_t start;
262 gfn_t end;
263 pte_t pte;
264 bool may_block;
265 };
266 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
267 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
268 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
269 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
270 #endif
271
272 enum {
273 OUTSIDE_GUEST_MODE,
274 IN_GUEST_MODE,
275 EXITING_GUEST_MODE,
276 READING_SHADOW_PAGE_TABLES,
277 };
278
279 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
280
281 struct kvm_host_map {
282 /*
283 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
284 * a 'struct page' for it. When using mem= kernel parameter some memory
285 * can be used as guest memory but they are not managed by host
286 * kernel).
287 * If 'pfn' is not managed by the host kernel, this field is
288 * initialized to KVM_UNMAPPED_PAGE.
289 */
290 struct page *page;
291 void *hva;
292 kvm_pfn_t pfn;
293 kvm_pfn_t gfn;
294 };
295
296 /*
297 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
298 * directly to check for that.
299 */
kvm_vcpu_mapped(struct kvm_host_map * map)300 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
301 {
302 return !!map->hva;
303 }
304
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)305 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
306 {
307 return single_task_running() && !need_resched() && ktime_before(cur, stop);
308 }
309
310 /*
311 * Sometimes a large or cross-page mmio needs to be broken up into separate
312 * exits for userspace servicing.
313 */
314 struct kvm_mmio_fragment {
315 gpa_t gpa;
316 void *data;
317 unsigned len;
318 };
319
320 struct kvm_vcpu {
321 struct kvm *kvm;
322 #ifdef CONFIG_PREEMPT_NOTIFIERS
323 struct preempt_notifier preempt_notifier;
324 #endif
325 int cpu;
326 int vcpu_id; /* id given by userspace at creation */
327 int vcpu_idx; /* index into kvm->vcpu_array */
328 int ____srcu_idx; /* Don't use this directly. You've been warned. */
329 #ifdef CONFIG_PROVE_RCU
330 int srcu_depth;
331 #endif
332 int mode;
333 u64 requests;
334 unsigned long guest_debug;
335
336 struct mutex mutex;
337 struct kvm_run *run;
338
339 #ifndef __KVM_HAVE_ARCH_WQP
340 struct rcuwait wait;
341 #endif
342 struct pid __rcu *pid;
343 int sigset_active;
344 sigset_t sigset;
345 unsigned int halt_poll_ns;
346 bool valid_wakeup;
347
348 #ifdef CONFIG_HAS_IOMEM
349 int mmio_needed;
350 int mmio_read_completed;
351 int mmio_is_write;
352 int mmio_cur_fragment;
353 int mmio_nr_fragments;
354 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
355 #endif
356
357 #ifdef CONFIG_KVM_ASYNC_PF
358 struct {
359 u32 queued;
360 struct list_head queue;
361 struct list_head done;
362 spinlock_t lock;
363 } async_pf;
364 #endif
365
366 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
367 /*
368 * Cpu relax intercept or pause loop exit optimization
369 * in_spin_loop: set when a vcpu does a pause loop exit
370 * or cpu relax intercepted.
371 * dy_eligible: indicates whether vcpu is eligible for directed yield.
372 */
373 struct {
374 bool in_spin_loop;
375 bool dy_eligible;
376 } spin_loop;
377 #endif
378 bool preempted;
379 bool ready;
380 struct kvm_vcpu_arch arch;
381 struct kvm_vcpu_stat stat;
382 char stats_id[KVM_STATS_NAME_SIZE];
383 struct kvm_dirty_ring dirty_ring;
384
385 /*
386 * The most recently used memslot by this vCPU and the slots generation
387 * for which it is valid.
388 * No wraparound protection is needed since generations won't overflow in
389 * thousands of years, even assuming 1M memslot operations per second.
390 */
391 struct kvm_memory_slot *last_used_slot;
392 u64 last_used_slot_gen;
393 };
394
395 /*
396 * Start accounting time towards a guest.
397 * Must be called before entering guest context.
398 */
guest_timing_enter_irqoff(void)399 static __always_inline void guest_timing_enter_irqoff(void)
400 {
401 /*
402 * This is running in ioctl context so its safe to assume that it's the
403 * stime pending cputime to flush.
404 */
405 instrumentation_begin();
406 vtime_account_guest_enter();
407 instrumentation_end();
408 }
409
410 /*
411 * Enter guest context and enter an RCU extended quiescent state.
412 *
413 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
414 * unsafe to use any code which may directly or indirectly use RCU, tracing
415 * (including IRQ flag tracing), or lockdep. All code in this period must be
416 * non-instrumentable.
417 */
guest_context_enter_irqoff(void)418 static __always_inline void guest_context_enter_irqoff(void)
419 {
420 /*
421 * KVM does not hold any references to rcu protected data when it
422 * switches CPU into a guest mode. In fact switching to a guest mode
423 * is very similar to exiting to userspace from rcu point of view. In
424 * addition CPU may stay in a guest mode for quite a long time (up to
425 * one time slice). Lets treat guest mode as quiescent state, just like
426 * we do with user-mode execution.
427 */
428 if (!context_tracking_guest_enter()) {
429 instrumentation_begin();
430 rcu_virt_note_context_switch();
431 instrumentation_end();
432 }
433 }
434
435 /*
436 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
437 * guest_state_enter_irqoff().
438 */
guest_enter_irqoff(void)439 static __always_inline void guest_enter_irqoff(void)
440 {
441 guest_timing_enter_irqoff();
442 guest_context_enter_irqoff();
443 }
444
445 /**
446 * guest_state_enter_irqoff - Fixup state when entering a guest
447 *
448 * Entry to a guest will enable interrupts, but the kernel state is interrupts
449 * disabled when this is invoked. Also tell RCU about it.
450 *
451 * 1) Trace interrupts on state
452 * 2) Invoke context tracking if enabled to adjust RCU state
453 * 3) Tell lockdep that interrupts are enabled
454 *
455 * Invoked from architecture specific code before entering a guest.
456 * Must be called with interrupts disabled and the caller must be
457 * non-instrumentable.
458 * The caller has to invoke guest_timing_enter_irqoff() before this.
459 *
460 * Note: this is analogous to exit_to_user_mode().
461 */
guest_state_enter_irqoff(void)462 static __always_inline void guest_state_enter_irqoff(void)
463 {
464 instrumentation_begin();
465 trace_hardirqs_on_prepare();
466 lockdep_hardirqs_on_prepare();
467 instrumentation_end();
468
469 guest_context_enter_irqoff();
470 lockdep_hardirqs_on(CALLER_ADDR0);
471 }
472
473 /*
474 * Exit guest context and exit an RCU extended quiescent state.
475 *
476 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
477 * unsafe to use any code which may directly or indirectly use RCU, tracing
478 * (including IRQ flag tracing), or lockdep. All code in this period must be
479 * non-instrumentable.
480 */
guest_context_exit_irqoff(void)481 static __always_inline void guest_context_exit_irqoff(void)
482 {
483 context_tracking_guest_exit();
484 }
485
486 /*
487 * Stop accounting time towards a guest.
488 * Must be called after exiting guest context.
489 */
guest_timing_exit_irqoff(void)490 static __always_inline void guest_timing_exit_irqoff(void)
491 {
492 instrumentation_begin();
493 /* Flush the guest cputime we spent on the guest */
494 vtime_account_guest_exit();
495 instrumentation_end();
496 }
497
498 /*
499 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
500 * guest_timing_exit_irqoff().
501 */
guest_exit_irqoff(void)502 static __always_inline void guest_exit_irqoff(void)
503 {
504 guest_context_exit_irqoff();
505 guest_timing_exit_irqoff();
506 }
507
guest_exit(void)508 static inline void guest_exit(void)
509 {
510 unsigned long flags;
511
512 local_irq_save(flags);
513 guest_exit_irqoff();
514 local_irq_restore(flags);
515 }
516
517 /**
518 * guest_state_exit_irqoff - Establish state when returning from guest mode
519 *
520 * Entry from a guest disables interrupts, but guest mode is traced as
521 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
522 *
523 * 1) Tell lockdep that interrupts are disabled
524 * 2) Invoke context tracking if enabled to reactivate RCU
525 * 3) Trace interrupts off state
526 *
527 * Invoked from architecture specific code after exiting a guest.
528 * Must be invoked with interrupts disabled and the caller must be
529 * non-instrumentable.
530 * The caller has to invoke guest_timing_exit_irqoff() after this.
531 *
532 * Note: this is analogous to enter_from_user_mode().
533 */
guest_state_exit_irqoff(void)534 static __always_inline void guest_state_exit_irqoff(void)
535 {
536 lockdep_hardirqs_off(CALLER_ADDR0);
537 guest_context_exit_irqoff();
538
539 instrumentation_begin();
540 trace_hardirqs_off_finish();
541 instrumentation_end();
542 }
543
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)544 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
545 {
546 /*
547 * The memory barrier ensures a previous write to vcpu->requests cannot
548 * be reordered with the read of vcpu->mode. It pairs with the general
549 * memory barrier following the write of vcpu->mode in VCPU RUN.
550 */
551 smp_mb__before_atomic();
552 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
553 }
554
555 /*
556 * Some of the bitops functions do not support too long bitmaps.
557 * This number must be determined not to exceed such limits.
558 */
559 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
560
561 /*
562 * Since at idle each memslot belongs to two memslot sets it has to contain
563 * two embedded nodes for each data structure that it forms a part of.
564 *
565 * Two memslot sets (one active and one inactive) are necessary so the VM
566 * continues to run on one memslot set while the other is being modified.
567 *
568 * These two memslot sets normally point to the same set of memslots.
569 * They can, however, be desynchronized when performing a memslot management
570 * operation by replacing the memslot to be modified by its copy.
571 * After the operation is complete, both memslot sets once again point to
572 * the same, common set of memslot data.
573 *
574 * The memslots themselves are independent of each other so they can be
575 * individually added or deleted.
576 */
577 struct kvm_memory_slot {
578 struct hlist_node id_node[2];
579 struct interval_tree_node hva_node[2];
580 struct rb_node gfn_node[2];
581 gfn_t base_gfn;
582 unsigned long npages;
583 unsigned long *dirty_bitmap;
584 struct kvm_arch_memory_slot arch;
585 unsigned long userspace_addr;
586 u32 flags;
587 short id;
588 u16 as_id;
589 };
590
kvm_slot_dirty_track_enabled(const struct kvm_memory_slot * slot)591 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
592 {
593 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
594 }
595
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)596 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
597 {
598 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
599 }
600
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)601 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
602 {
603 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
604
605 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
606 }
607
608 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
609 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
610 #endif
611
612 struct kvm_s390_adapter_int {
613 u64 ind_addr;
614 u64 summary_addr;
615 u64 ind_offset;
616 u32 summary_offset;
617 u32 adapter_id;
618 };
619
620 struct kvm_hv_sint {
621 u32 vcpu;
622 u32 sint;
623 };
624
625 struct kvm_xen_evtchn {
626 u32 port;
627 u32 vcpu_id;
628 int vcpu_idx;
629 u32 priority;
630 };
631
632 struct kvm_kernel_irq_routing_entry {
633 u32 gsi;
634 u32 type;
635 int (*set)(struct kvm_kernel_irq_routing_entry *e,
636 struct kvm *kvm, int irq_source_id, int level,
637 bool line_status);
638 union {
639 struct {
640 unsigned irqchip;
641 unsigned pin;
642 } irqchip;
643 struct {
644 u32 address_lo;
645 u32 address_hi;
646 u32 data;
647 u32 flags;
648 u32 devid;
649 } msi;
650 struct kvm_s390_adapter_int adapter;
651 struct kvm_hv_sint hv_sint;
652 struct kvm_xen_evtchn xen_evtchn;
653 };
654 struct hlist_node link;
655 };
656
657 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
658 struct kvm_irq_routing_table {
659 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
660 u32 nr_rt_entries;
661 /*
662 * Array indexed by gsi. Each entry contains list of irq chips
663 * the gsi is connected to.
664 */
665 struct hlist_head map[];
666 };
667 #endif
668
669 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
670
671 #ifndef KVM_INTERNAL_MEM_SLOTS
672 #define KVM_INTERNAL_MEM_SLOTS 0
673 #endif
674
675 #define KVM_MEM_SLOTS_NUM SHRT_MAX
676 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
677
678 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)679 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
680 {
681 return 0;
682 }
683 #endif
684
685 struct kvm_memslots {
686 u64 generation;
687 atomic_long_t last_used_slot;
688 struct rb_root_cached hva_tree;
689 struct rb_root gfn_tree;
690 /*
691 * The mapping table from slot id to memslot.
692 *
693 * 7-bit bucket count matches the size of the old id to index array for
694 * 512 slots, while giving good performance with this slot count.
695 * Higher bucket counts bring only small performance improvements but
696 * always result in higher memory usage (even for lower memslot counts).
697 */
698 DECLARE_HASHTABLE(id_hash, 7);
699 int node_idx;
700 };
701
702 struct kvm {
703 #ifdef KVM_HAVE_MMU_RWLOCK
704 rwlock_t mmu_lock;
705 #else
706 spinlock_t mmu_lock;
707 #endif /* KVM_HAVE_MMU_RWLOCK */
708
709 struct mutex slots_lock;
710
711 /*
712 * Protects the arch-specific fields of struct kvm_memory_slots in
713 * use by the VM. To be used under the slots_lock (above) or in a
714 * kvm->srcu critical section where acquiring the slots_lock would
715 * lead to deadlock with the synchronize_srcu in
716 * install_new_memslots.
717 */
718 struct mutex slots_arch_lock;
719 struct mm_struct *mm; /* userspace tied to this vm */
720 unsigned long nr_memslot_pages;
721 /* The two memslot sets - active and inactive (per address space) */
722 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
723 /* The current active memslot set for each address space */
724 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
725 struct xarray vcpu_array;
726 /*
727 * Protected by slots_lock, but can be read outside if an
728 * incorrect answer is acceptable.
729 */
730 atomic_t nr_memslots_dirty_logging;
731
732 /* Used to wait for completion of MMU notifiers. */
733 spinlock_t mn_invalidate_lock;
734 unsigned long mn_active_invalidate_count;
735 struct rcuwait mn_memslots_update_rcuwait;
736
737 /* For management / invalidation of gfn_to_pfn_caches */
738 spinlock_t gpc_lock;
739 struct list_head gpc_list;
740
741 /*
742 * created_vcpus is protected by kvm->lock, and is incremented
743 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
744 * incremented after storing the kvm_vcpu pointer in vcpus,
745 * and is accessed atomically.
746 */
747 atomic_t online_vcpus;
748 int max_vcpus;
749 int created_vcpus;
750 int last_boosted_vcpu;
751 struct list_head vm_list;
752 struct mutex lock;
753 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
754 #ifdef CONFIG_HAVE_KVM_EVENTFD
755 struct {
756 spinlock_t lock;
757 struct list_head items;
758 struct list_head resampler_list;
759 struct mutex resampler_lock;
760 } irqfds;
761 struct list_head ioeventfds;
762 #endif
763 struct kvm_vm_stat stat;
764 struct kvm_arch arch;
765 refcount_t users_count;
766 #ifdef CONFIG_KVM_MMIO
767 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
768 spinlock_t ring_lock;
769 struct list_head coalesced_zones;
770 #endif
771
772 struct mutex irq_lock;
773 #ifdef CONFIG_HAVE_KVM_IRQCHIP
774 /*
775 * Update side is protected by irq_lock.
776 */
777 struct kvm_irq_routing_table __rcu *irq_routing;
778 #endif
779 #ifdef CONFIG_HAVE_KVM_IRQFD
780 struct hlist_head irq_ack_notifier_list;
781 #endif
782
783 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
784 struct mmu_notifier mmu_notifier;
785 unsigned long mmu_invalidate_seq;
786 long mmu_invalidate_in_progress;
787 unsigned long mmu_invalidate_range_start;
788 unsigned long mmu_invalidate_range_end;
789 #endif
790 struct list_head devices;
791 u64 manual_dirty_log_protect;
792 struct dentry *debugfs_dentry;
793 struct kvm_stat_data **debugfs_stat_data;
794 struct srcu_struct srcu;
795 struct srcu_struct irq_srcu;
796 pid_t userspace_pid;
797 bool override_halt_poll_ns;
798 unsigned int max_halt_poll_ns;
799 u32 dirty_ring_size;
800 bool dirty_ring_with_bitmap;
801 bool vm_bugged;
802 bool vm_dead;
803
804 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
805 struct notifier_block pm_notifier;
806 #endif
807 char stats_id[KVM_STATS_NAME_SIZE];
808 };
809
810 #define kvm_err(fmt, ...) \
811 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
812 #define kvm_info(fmt, ...) \
813 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
814 #define kvm_debug(fmt, ...) \
815 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
816 #define kvm_debug_ratelimited(fmt, ...) \
817 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
818 ## __VA_ARGS__)
819 #define kvm_pr_unimpl(fmt, ...) \
820 pr_err_ratelimited("kvm [%i]: " fmt, \
821 task_tgid_nr(current), ## __VA_ARGS__)
822
823 /* The guest did something we don't support. */
824 #define vcpu_unimpl(vcpu, fmt, ...) \
825 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
826 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
827
828 #define vcpu_debug(vcpu, fmt, ...) \
829 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
830 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
831 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
832 ## __VA_ARGS__)
833 #define vcpu_err(vcpu, fmt, ...) \
834 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
835
kvm_vm_dead(struct kvm * kvm)836 static inline void kvm_vm_dead(struct kvm *kvm)
837 {
838 kvm->vm_dead = true;
839 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
840 }
841
kvm_vm_bugged(struct kvm * kvm)842 static inline void kvm_vm_bugged(struct kvm *kvm)
843 {
844 kvm->vm_bugged = true;
845 kvm_vm_dead(kvm);
846 }
847
848
849 #define KVM_BUG(cond, kvm, fmt...) \
850 ({ \
851 int __ret = (cond); \
852 \
853 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
854 kvm_vm_bugged(kvm); \
855 unlikely(__ret); \
856 })
857
858 #define KVM_BUG_ON(cond, kvm) \
859 ({ \
860 int __ret = (cond); \
861 \
862 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
863 kvm_vm_bugged(kvm); \
864 unlikely(__ret); \
865 })
866
kvm_vcpu_srcu_read_lock(struct kvm_vcpu * vcpu)867 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
868 {
869 #ifdef CONFIG_PROVE_RCU
870 WARN_ONCE(vcpu->srcu_depth++,
871 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
872 #endif
873 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
874 }
875
kvm_vcpu_srcu_read_unlock(struct kvm_vcpu * vcpu)876 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
877 {
878 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
879
880 #ifdef CONFIG_PROVE_RCU
881 WARN_ONCE(--vcpu->srcu_depth,
882 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
883 #endif
884 }
885
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)886 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
887 {
888 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
889 }
890
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)891 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
892 {
893 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
894 lockdep_is_held(&kvm->slots_lock) ||
895 !refcount_read(&kvm->users_count));
896 }
897
kvm_get_vcpu(struct kvm * kvm,int i)898 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
899 {
900 int num_vcpus = atomic_read(&kvm->online_vcpus);
901 i = array_index_nospec(i, num_vcpus);
902
903 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
904 smp_rmb();
905 return xa_load(&kvm->vcpu_array, i);
906 }
907
908 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
909 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
910 (atomic_read(&kvm->online_vcpus) - 1))
911
kvm_get_vcpu_by_id(struct kvm * kvm,int id)912 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
913 {
914 struct kvm_vcpu *vcpu = NULL;
915 unsigned long i;
916
917 if (id < 0)
918 return NULL;
919 if (id < KVM_MAX_VCPUS)
920 vcpu = kvm_get_vcpu(kvm, id);
921 if (vcpu && vcpu->vcpu_id == id)
922 return vcpu;
923 kvm_for_each_vcpu(i, vcpu, kvm)
924 if (vcpu->vcpu_id == id)
925 return vcpu;
926 return NULL;
927 }
928
929 void kvm_destroy_vcpus(struct kvm *kvm);
930
931 void vcpu_load(struct kvm_vcpu *vcpu);
932 void vcpu_put(struct kvm_vcpu *vcpu);
933
934 #ifdef __KVM_HAVE_IOAPIC
935 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
936 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
937 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)938 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
939 {
940 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)941 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
942 {
943 }
944 #endif
945
946 #ifdef CONFIG_HAVE_KVM_IRQFD
947 int kvm_irqfd_init(void);
948 void kvm_irqfd_exit(void);
949 #else
kvm_irqfd_init(void)950 static inline int kvm_irqfd_init(void)
951 {
952 return 0;
953 }
954
kvm_irqfd_exit(void)955 static inline void kvm_irqfd_exit(void)
956 {
957 }
958 #endif
959 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
960 void kvm_exit(void);
961
962 void kvm_get_kvm(struct kvm *kvm);
963 bool kvm_get_kvm_safe(struct kvm *kvm);
964 void kvm_put_kvm(struct kvm *kvm);
965 bool file_is_kvm(struct file *file);
966 void kvm_put_kvm_no_destroy(struct kvm *kvm);
967
__kvm_memslots(struct kvm * kvm,int as_id)968 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
969 {
970 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
971 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
972 lockdep_is_held(&kvm->slots_lock) ||
973 !refcount_read(&kvm->users_count));
974 }
975
kvm_memslots(struct kvm * kvm)976 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
977 {
978 return __kvm_memslots(kvm, 0);
979 }
980
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)981 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
982 {
983 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
984
985 return __kvm_memslots(vcpu->kvm, as_id);
986 }
987
kvm_memslots_empty(struct kvm_memslots * slots)988 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
989 {
990 return RB_EMPTY_ROOT(&slots->gfn_tree);
991 }
992
993 #define kvm_for_each_memslot(memslot, bkt, slots) \
994 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
995 if (WARN_ON_ONCE(!memslot->npages)) { \
996 } else
997
998 static inline
id_to_memslot(struct kvm_memslots * slots,int id)999 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1000 {
1001 struct kvm_memory_slot *slot;
1002 int idx = slots->node_idx;
1003
1004 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1005 if (slot->id == id)
1006 return slot;
1007 }
1008
1009 return NULL;
1010 }
1011
1012 /* Iterator used for walking memslots that overlap a gfn range. */
1013 struct kvm_memslot_iter {
1014 struct kvm_memslots *slots;
1015 struct rb_node *node;
1016 struct kvm_memory_slot *slot;
1017 };
1018
kvm_memslot_iter_next(struct kvm_memslot_iter * iter)1019 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1020 {
1021 iter->node = rb_next(iter->node);
1022 if (!iter->node)
1023 return;
1024
1025 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1026 }
1027
kvm_memslot_iter_start(struct kvm_memslot_iter * iter,struct kvm_memslots * slots,gfn_t start)1028 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1029 struct kvm_memslots *slots,
1030 gfn_t start)
1031 {
1032 int idx = slots->node_idx;
1033 struct rb_node *tmp;
1034 struct kvm_memory_slot *slot;
1035
1036 iter->slots = slots;
1037
1038 /*
1039 * Find the so called "upper bound" of a key - the first node that has
1040 * its key strictly greater than the searched one (the start gfn in our case).
1041 */
1042 iter->node = NULL;
1043 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1044 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1045 if (start < slot->base_gfn) {
1046 iter->node = tmp;
1047 tmp = tmp->rb_left;
1048 } else {
1049 tmp = tmp->rb_right;
1050 }
1051 }
1052
1053 /*
1054 * Find the slot with the lowest gfn that can possibly intersect with
1055 * the range, so we'll ideally have slot start <= range start
1056 */
1057 if (iter->node) {
1058 /*
1059 * A NULL previous node means that the very first slot
1060 * already has a higher start gfn.
1061 * In this case slot start > range start.
1062 */
1063 tmp = rb_prev(iter->node);
1064 if (tmp)
1065 iter->node = tmp;
1066 } else {
1067 /* a NULL node below means no slots */
1068 iter->node = rb_last(&slots->gfn_tree);
1069 }
1070
1071 if (iter->node) {
1072 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1073
1074 /*
1075 * It is possible in the slot start < range start case that the
1076 * found slot ends before or at range start (slot end <= range start)
1077 * and so it does not overlap the requested range.
1078 *
1079 * In such non-overlapping case the next slot (if it exists) will
1080 * already have slot start > range start, otherwise the logic above
1081 * would have found it instead of the current slot.
1082 */
1083 if (iter->slot->base_gfn + iter->slot->npages <= start)
1084 kvm_memslot_iter_next(iter);
1085 }
1086 }
1087
kvm_memslot_iter_is_valid(struct kvm_memslot_iter * iter,gfn_t end)1088 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1089 {
1090 if (!iter->node)
1091 return false;
1092
1093 /*
1094 * If this slot starts beyond or at the end of the range so does
1095 * every next one
1096 */
1097 return iter->slot->base_gfn < end;
1098 }
1099
1100 /* Iterate over each memslot at least partially intersecting [start, end) range */
1101 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1102 for (kvm_memslot_iter_start(iter, slots, start); \
1103 kvm_memslot_iter_is_valid(iter, end); \
1104 kvm_memslot_iter_next(iter))
1105
1106 /*
1107 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1108 * - create a new memory slot
1109 * - delete an existing memory slot
1110 * - modify an existing memory slot
1111 * -- move it in the guest physical memory space
1112 * -- just change its flags
1113 *
1114 * Since flags can be changed by some of these operations, the following
1115 * differentiation is the best we can do for __kvm_set_memory_region():
1116 */
1117 enum kvm_mr_change {
1118 KVM_MR_CREATE,
1119 KVM_MR_DELETE,
1120 KVM_MR_MOVE,
1121 KVM_MR_FLAGS_ONLY,
1122 };
1123
1124 int kvm_set_memory_region(struct kvm *kvm,
1125 const struct kvm_userspace_memory_region *mem);
1126 int __kvm_set_memory_region(struct kvm *kvm,
1127 const struct kvm_userspace_memory_region *mem);
1128 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1129 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1130 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1131 const struct kvm_memory_slot *old,
1132 struct kvm_memory_slot *new,
1133 enum kvm_mr_change change);
1134 void kvm_arch_commit_memory_region(struct kvm *kvm,
1135 struct kvm_memory_slot *old,
1136 const struct kvm_memory_slot *new,
1137 enum kvm_mr_change change);
1138 /* flush all memory translations */
1139 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1140 /* flush memory translations pointing to 'slot' */
1141 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1142 struct kvm_memory_slot *slot);
1143
1144 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1145 struct page **pages, int nr_pages);
1146
1147 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1148 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1149 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1150 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1151 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1152 bool *writable);
1153 void kvm_release_page_clean(struct page *page);
1154 void kvm_release_page_dirty(struct page *page);
1155
1156 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1157 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1158 bool *writable);
1159 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1160 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1161 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1162 bool atomic, bool interruptible, bool *async,
1163 bool write_fault, bool *writable, hva_t *hva);
1164
1165 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1166 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1167 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1168 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1169
1170 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1171 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1172 int len);
1173 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1174 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1175 void *data, unsigned long len);
1176 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1177 void *data, unsigned int offset,
1178 unsigned long len);
1179 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1180 int offset, int len);
1181 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1182 unsigned long len);
1183 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1184 void *data, unsigned long len);
1185 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1186 void *data, unsigned int offset,
1187 unsigned long len);
1188 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1189 gpa_t gpa, unsigned long len);
1190
1191 #define __kvm_get_guest(kvm, gfn, offset, v) \
1192 ({ \
1193 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1194 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1195 int __ret = -EFAULT; \
1196 \
1197 if (!kvm_is_error_hva(__addr)) \
1198 __ret = get_user(v, __uaddr); \
1199 __ret; \
1200 })
1201
1202 #define kvm_get_guest(kvm, gpa, v) \
1203 ({ \
1204 gpa_t __gpa = gpa; \
1205 struct kvm *__kvm = kvm; \
1206 \
1207 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1208 offset_in_page(__gpa), v); \
1209 })
1210
1211 #define __kvm_put_guest(kvm, gfn, offset, v) \
1212 ({ \
1213 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1214 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1215 int __ret = -EFAULT; \
1216 \
1217 if (!kvm_is_error_hva(__addr)) \
1218 __ret = put_user(v, __uaddr); \
1219 if (!__ret) \
1220 mark_page_dirty(kvm, gfn); \
1221 __ret; \
1222 })
1223
1224 #define kvm_put_guest(kvm, gpa, v) \
1225 ({ \
1226 gpa_t __gpa = gpa; \
1227 struct kvm *__kvm = kvm; \
1228 \
1229 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1230 offset_in_page(__gpa), v); \
1231 })
1232
1233 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1234 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1235 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1236 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1237 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1238 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1239 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1240
1241 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1242 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1243 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1244 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1245 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1246 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1247 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1248 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1249 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1250 int len);
1251 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1252 unsigned long len);
1253 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1254 unsigned long len);
1255 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1256 int offset, int len);
1257 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1258 unsigned long len);
1259 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1260
1261 /**
1262 * kvm_gpc_init - initialize gfn_to_pfn_cache.
1263 *
1264 * @gpc: struct gfn_to_pfn_cache object.
1265 * @kvm: pointer to kvm instance.
1266 * @vcpu: vCPU to be used for marking pages dirty and to be woken on
1267 * invalidation.
1268 * @usage: indicates if the resulting host physical PFN is used while
1269 * the @vcpu is IN_GUEST_MODE (in which case invalidation of
1270 * the cache from MMU notifiers---but not for KVM memslot
1271 * changes!---will also force @vcpu to exit the guest and
1272 * refresh the cache); and/or if the PFN used directly
1273 * by KVM (and thus needs a kernel virtual mapping).
1274 *
1275 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1276 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by
1277 * the caller before init).
1278 */
1279 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm,
1280 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage);
1281
1282 /**
1283 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1284 * physical address.
1285 *
1286 * @gpc: struct gfn_to_pfn_cache object.
1287 * @gpa: guest physical address to map.
1288 * @len: sanity check; the range being access must fit a single page.
1289 *
1290 * @return: 0 for success.
1291 * -EINVAL for a mapping which would cross a page boundary.
1292 * -EFAULT for an untranslatable guest physical address.
1293 *
1294 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1295 * invalidations to be processed. Callers are required to use kvm_gpc_check()
1296 * to ensure that the cache is valid before accessing the target page.
1297 */
1298 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1299
1300 /**
1301 * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1302 *
1303 * @gpc: struct gfn_to_pfn_cache object.
1304 * @len: sanity check; the range being access must fit a single page.
1305 *
1306 * @return: %true if the cache is still valid and the address matches.
1307 * %false if the cache is not valid.
1308 *
1309 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1310 * while calling this function, and then continue to hold the lock until the
1311 * access is complete.
1312 *
1313 * Callers in IN_GUEST_MODE may do so without locking, although they should
1314 * still hold a read lock on kvm->scru for the memslot checks.
1315 */
1316 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1317
1318 /**
1319 * kvm_gpc_refresh - update a previously initialized cache.
1320 *
1321 * @gpc: struct gfn_to_pfn_cache object.
1322 * @len: sanity check; the range being access must fit a single page.
1323 *
1324 * @return: 0 for success.
1325 * -EINVAL for a mapping which would cross a page boundary.
1326 * -EFAULT for an untranslatable guest physical address.
1327 *
1328 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1329 * return from this function does not mean the page can be immediately
1330 * accessed because it may have raced with an invalidation. Callers must
1331 * still lock and check the cache status, as this function does not return
1332 * with the lock still held to permit access.
1333 */
1334 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1335
1336 /**
1337 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1338 *
1339 * @gpc: struct gfn_to_pfn_cache object.
1340 *
1341 * This removes a cache from the VM's list to be processed on MMU notifier
1342 * invocation.
1343 */
1344 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1345
1346 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1347 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1348
1349 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1350 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1351 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1352 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1353 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1354 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1355 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1356 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1357
1358 void kvm_flush_remote_tlbs(struct kvm *kvm);
1359
1360 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1361 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1362 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1363 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1364 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1365 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1366 #endif
1367
1368 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
1369 unsigned long end);
1370 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
1371 unsigned long end);
1372
1373 long kvm_arch_dev_ioctl(struct file *filp,
1374 unsigned int ioctl, unsigned long arg);
1375 long kvm_arch_vcpu_ioctl(struct file *filp,
1376 unsigned int ioctl, unsigned long arg);
1377 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1378
1379 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1380
1381 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1382 struct kvm_memory_slot *slot,
1383 gfn_t gfn_offset,
1384 unsigned long mask);
1385 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1386
1387 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1388 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1389 const struct kvm_memory_slot *memslot);
1390 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1391 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1392 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1393 int *is_dirty, struct kvm_memory_slot **memslot);
1394 #endif
1395
1396 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1397 bool line_status);
1398 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1399 struct kvm_enable_cap *cap);
1400 long kvm_arch_vm_ioctl(struct file *filp,
1401 unsigned int ioctl, unsigned long arg);
1402 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1403 unsigned long arg);
1404
1405 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1406 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1407
1408 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1409 struct kvm_translation *tr);
1410
1411 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1412 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1413 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1414 struct kvm_sregs *sregs);
1415 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1416 struct kvm_sregs *sregs);
1417 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1418 struct kvm_mp_state *mp_state);
1419 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1420 struct kvm_mp_state *mp_state);
1421 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1422 struct kvm_guest_debug *dbg);
1423 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1424
1425 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1426
1427 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1428 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1429 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1430 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1431 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1432 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1433
1434 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1435 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1436 #endif
1437
1438 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1439 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1440 #else
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)1441 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1442 #endif
1443
1444 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1445 int kvm_arch_hardware_enable(void);
1446 void kvm_arch_hardware_disable(void);
1447 #endif
1448 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1449 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1450 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1451 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1452 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1453 int kvm_arch_post_init_vm(struct kvm *kvm);
1454 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1455 int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1456
1457 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1458 /*
1459 * All architectures that want to use vzalloc currently also
1460 * need their own kvm_arch_alloc_vm implementation.
1461 */
kvm_arch_alloc_vm(void)1462 static inline struct kvm *kvm_arch_alloc_vm(void)
1463 {
1464 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1465 }
1466 #endif
1467
__kvm_arch_free_vm(struct kvm * kvm)1468 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1469 {
1470 kvfree(kvm);
1471 }
1472
1473 #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1474 static inline void kvm_arch_free_vm(struct kvm *kvm)
1475 {
1476 __kvm_arch_free_vm(kvm);
1477 }
1478 #endif
1479
1480 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
kvm_arch_flush_remote_tlb(struct kvm * kvm)1481 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1482 {
1483 return -ENOTSUPP;
1484 }
1485 #endif
1486
1487 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1488 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1489 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1490 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1491 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1492 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1493 {
1494 }
1495
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1496 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1497 {
1498 }
1499
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1500 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1501 {
1502 return false;
1503 }
1504 #endif
1505 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1506 void kvm_arch_start_assignment(struct kvm *kvm);
1507 void kvm_arch_end_assignment(struct kvm *kvm);
1508 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1509 #else
kvm_arch_start_assignment(struct kvm * kvm)1510 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1511 {
1512 }
1513
kvm_arch_end_assignment(struct kvm * kvm)1514 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1515 {
1516 }
1517
kvm_arch_has_assigned_device(struct kvm * kvm)1518 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1519 {
1520 return false;
1521 }
1522 #endif
1523
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1524 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1525 {
1526 #ifdef __KVM_HAVE_ARCH_WQP
1527 return vcpu->arch.waitp;
1528 #else
1529 return &vcpu->wait;
1530 #endif
1531 }
1532
1533 /*
1534 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1535 * true if the vCPU was blocking and was awakened, false otherwise.
1536 */
__kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)1537 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1538 {
1539 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1540 }
1541
kvm_vcpu_is_blocking(struct kvm_vcpu * vcpu)1542 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1543 {
1544 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1545 }
1546
1547 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1548 /*
1549 * returns true if the virtual interrupt controller is initialized and
1550 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1551 * controller is dynamically instantiated and this is not always true.
1552 */
1553 bool kvm_arch_intc_initialized(struct kvm *kvm);
1554 #else
kvm_arch_intc_initialized(struct kvm * kvm)1555 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1556 {
1557 return true;
1558 }
1559 #endif
1560
1561 #ifdef CONFIG_GUEST_PERF_EVENTS
1562 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1563
1564 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1565 void kvm_unregister_perf_callbacks(void);
1566 #else
kvm_register_perf_callbacks(void * ign)1567 static inline void kvm_register_perf_callbacks(void *ign) {}
kvm_unregister_perf_callbacks(void)1568 static inline void kvm_unregister_perf_callbacks(void) {}
1569 #endif /* CONFIG_GUEST_PERF_EVENTS */
1570
1571 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1572 void kvm_arch_destroy_vm(struct kvm *kvm);
1573 void kvm_arch_sync_events(struct kvm *kvm);
1574
1575 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1576
1577 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1578 bool kvm_is_zone_device_page(struct page *page);
1579
1580 struct kvm_irq_ack_notifier {
1581 struct hlist_node link;
1582 unsigned gsi;
1583 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1584 };
1585
1586 int kvm_irq_map_gsi(struct kvm *kvm,
1587 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1588 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1589
1590 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1591 bool line_status);
1592 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1593 int irq_source_id, int level, bool line_status);
1594 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1595 struct kvm *kvm, int irq_source_id,
1596 int level, bool line_status);
1597 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1598 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1599 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1600 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1601 struct kvm_irq_ack_notifier *kian);
1602 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1603 struct kvm_irq_ack_notifier *kian);
1604 int kvm_request_irq_source_id(struct kvm *kvm);
1605 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1606 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1607
1608 /*
1609 * Returns a pointer to the memslot if it contains gfn.
1610 * Otherwise returns NULL.
1611 */
1612 static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1613 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1614 {
1615 if (!slot)
1616 return NULL;
1617
1618 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1619 return slot;
1620 else
1621 return NULL;
1622 }
1623
1624 /*
1625 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1626 *
1627 * With "approx" set returns the memslot also when the address falls
1628 * in a hole. In that case one of the memslots bordering the hole is
1629 * returned.
1630 */
1631 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,bool approx)1632 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1633 {
1634 struct kvm_memory_slot *slot;
1635 struct rb_node *node;
1636 int idx = slots->node_idx;
1637
1638 slot = NULL;
1639 for (node = slots->gfn_tree.rb_node; node; ) {
1640 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1641 if (gfn >= slot->base_gfn) {
1642 if (gfn < slot->base_gfn + slot->npages)
1643 return slot;
1644 node = node->rb_right;
1645 } else
1646 node = node->rb_left;
1647 }
1648
1649 return approx ? slot : NULL;
1650 }
1651
1652 static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn,bool approx)1653 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1654 {
1655 struct kvm_memory_slot *slot;
1656
1657 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1658 slot = try_get_memslot(slot, gfn);
1659 if (slot)
1660 return slot;
1661
1662 slot = search_memslots(slots, gfn, approx);
1663 if (slot) {
1664 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1665 return slot;
1666 }
1667
1668 return NULL;
1669 }
1670
1671 /*
1672 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1673 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1674 * because that would bloat other code too much.
1675 */
1676 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1677 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1678 {
1679 return ____gfn_to_memslot(slots, gfn, false);
1680 }
1681
1682 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1683 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1684 {
1685 /*
1686 * The index was checked originally in search_memslots. To avoid
1687 * that a malicious guest builds a Spectre gadget out of e.g. page
1688 * table walks, do not let the processor speculate loads outside
1689 * the guest's registered memslots.
1690 */
1691 unsigned long offset = gfn - slot->base_gfn;
1692 offset = array_index_nospec(offset, slot->npages);
1693 return slot->userspace_addr + offset * PAGE_SIZE;
1694 }
1695
memslot_id(struct kvm * kvm,gfn_t gfn)1696 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1697 {
1698 return gfn_to_memslot(kvm, gfn)->id;
1699 }
1700
1701 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1702 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1703 {
1704 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1705
1706 return slot->base_gfn + gfn_offset;
1707 }
1708
gfn_to_gpa(gfn_t gfn)1709 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1710 {
1711 return (gpa_t)gfn << PAGE_SHIFT;
1712 }
1713
gpa_to_gfn(gpa_t gpa)1714 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1715 {
1716 return (gfn_t)(gpa >> PAGE_SHIFT);
1717 }
1718
pfn_to_hpa(kvm_pfn_t pfn)1719 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1720 {
1721 return (hpa_t)pfn << PAGE_SHIFT;
1722 }
1723
kvm_is_error_gpa(struct kvm * kvm,gpa_t gpa)1724 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1725 {
1726 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1727
1728 return kvm_is_error_hva(hva);
1729 }
1730
1731 enum kvm_stat_kind {
1732 KVM_STAT_VM,
1733 KVM_STAT_VCPU,
1734 };
1735
1736 struct kvm_stat_data {
1737 struct kvm *kvm;
1738 const struct _kvm_stats_desc *desc;
1739 enum kvm_stat_kind kind;
1740 };
1741
1742 struct _kvm_stats_desc {
1743 struct kvm_stats_desc desc;
1744 char name[KVM_STATS_NAME_SIZE];
1745 };
1746
1747 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1748 .flags = type | unit | base | \
1749 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1750 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1751 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1752 .exponent = exp, \
1753 .size = sz, \
1754 .bucket_size = bsz
1755
1756 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1757 { \
1758 { \
1759 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1760 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1761 }, \
1762 .name = #stat, \
1763 }
1764 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1765 { \
1766 { \
1767 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1768 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1769 }, \
1770 .name = #stat, \
1771 }
1772 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1773 { \
1774 { \
1775 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1776 .offset = offsetof(struct kvm_vm_stat, stat) \
1777 }, \
1778 .name = #stat, \
1779 }
1780 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1781 { \
1782 { \
1783 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1784 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1785 }, \
1786 .name = #stat, \
1787 }
1788 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1789 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1790 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1791
1792 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1793 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1794 unit, base, exponent, 1, 0)
1795 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1796 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1797 unit, base, exponent, 1, 0)
1798 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1799 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1800 unit, base, exponent, 1, 0)
1801 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1802 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1803 unit, base, exponent, sz, bsz)
1804 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1805 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1806 unit, base, exponent, sz, 0)
1807
1808 /* Cumulative counter, read/write */
1809 #define STATS_DESC_COUNTER(SCOPE, name) \
1810 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1811 KVM_STATS_BASE_POW10, 0)
1812 /* Instantaneous counter, read only */
1813 #define STATS_DESC_ICOUNTER(SCOPE, name) \
1814 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1815 KVM_STATS_BASE_POW10, 0)
1816 /* Peak counter, read/write */
1817 #define STATS_DESC_PCOUNTER(SCOPE, name) \
1818 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1819 KVM_STATS_BASE_POW10, 0)
1820
1821 /* Instantaneous boolean value, read only */
1822 #define STATS_DESC_IBOOLEAN(SCOPE, name) \
1823 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1824 KVM_STATS_BASE_POW10, 0)
1825 /* Peak (sticky) boolean value, read/write */
1826 #define STATS_DESC_PBOOLEAN(SCOPE, name) \
1827 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1828 KVM_STATS_BASE_POW10, 0)
1829
1830 /* Cumulative time in nanosecond */
1831 #define STATS_DESC_TIME_NSEC(SCOPE, name) \
1832 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1833 KVM_STATS_BASE_POW10, -9)
1834 /* Linear histogram for time in nanosecond */
1835 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
1836 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1837 KVM_STATS_BASE_POW10, -9, sz, bsz)
1838 /* Logarithmic histogram for time in nanosecond */
1839 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
1840 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1841 KVM_STATS_BASE_POW10, -9, sz)
1842
1843 #define KVM_GENERIC_VM_STATS() \
1844 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
1845 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1846
1847 #define KVM_GENERIC_VCPU_STATS() \
1848 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
1849 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
1850 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
1851 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
1852 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
1853 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
1854 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
1855 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
1856 HALT_POLL_HIST_COUNT), \
1857 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
1858 HALT_POLL_HIST_COUNT), \
1859 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
1860 HALT_POLL_HIST_COUNT), \
1861 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1862
1863 extern struct dentry *kvm_debugfs_dir;
1864
1865 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1866 const struct _kvm_stats_desc *desc,
1867 void *stats, size_t size_stats,
1868 char __user *user_buffer, size_t size, loff_t *offset);
1869
1870 /**
1871 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1872 * statistics data.
1873 *
1874 * @data: start address of the stats data
1875 * @size: the number of bucket of the stats data
1876 * @value: the new value used to update the linear histogram's bucket
1877 * @bucket_size: the size (width) of a bucket
1878 */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)1879 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1880 u64 value, size_t bucket_size)
1881 {
1882 size_t index = div64_u64(value, bucket_size);
1883
1884 index = min(index, size - 1);
1885 ++data[index];
1886 }
1887
1888 /**
1889 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1890 * statistics data.
1891 *
1892 * @data: start address of the stats data
1893 * @size: the number of bucket of the stats data
1894 * @value: the new value used to update the logarithmic histogram's bucket
1895 */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)1896 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1897 {
1898 size_t index = fls64(value);
1899
1900 index = min(index, size - 1);
1901 ++data[index];
1902 }
1903
1904 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
1905 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1906 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \
1907 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1908
1909
1910 extern const struct kvm_stats_header kvm_vm_stats_header;
1911 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1912 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1913 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1914
1915 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_invalidate_retry(struct kvm * kvm,unsigned long mmu_seq)1916 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
1917 {
1918 if (unlikely(kvm->mmu_invalidate_in_progress))
1919 return 1;
1920 /*
1921 * Ensure the read of mmu_invalidate_in_progress happens before
1922 * the read of mmu_invalidate_seq. This interacts with the
1923 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
1924 * that the caller either sees the old (non-zero) value of
1925 * mmu_invalidate_in_progress or the new (incremented) value of
1926 * mmu_invalidate_seq.
1927 *
1928 * PowerPC Book3s HV KVM calls this under a per-page lock rather
1929 * than under kvm->mmu_lock, for scalability, so can't rely on
1930 * kvm->mmu_lock to keep things ordered.
1931 */
1932 smp_rmb();
1933 if (kvm->mmu_invalidate_seq != mmu_seq)
1934 return 1;
1935 return 0;
1936 }
1937
mmu_invalidate_retry_hva(struct kvm * kvm,unsigned long mmu_seq,unsigned long hva)1938 static inline int mmu_invalidate_retry_hva(struct kvm *kvm,
1939 unsigned long mmu_seq,
1940 unsigned long hva)
1941 {
1942 lockdep_assert_held(&kvm->mmu_lock);
1943 /*
1944 * If mmu_invalidate_in_progress is non-zero, then the range maintained
1945 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
1946 * that might be being invalidated. Note that it may include some false
1947 * positives, due to shortcuts when handing concurrent invalidations.
1948 */
1949 if (unlikely(kvm->mmu_invalidate_in_progress) &&
1950 hva >= kvm->mmu_invalidate_range_start &&
1951 hva < kvm->mmu_invalidate_range_end)
1952 return 1;
1953 if (kvm->mmu_invalidate_seq != mmu_seq)
1954 return 1;
1955 return 0;
1956 }
1957 #endif
1958
1959 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1960
1961 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1962
1963 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1964 int kvm_set_irq_routing(struct kvm *kvm,
1965 const struct kvm_irq_routing_entry *entries,
1966 unsigned nr,
1967 unsigned flags);
1968 int kvm_set_routing_entry(struct kvm *kvm,
1969 struct kvm_kernel_irq_routing_entry *e,
1970 const struct kvm_irq_routing_entry *ue);
1971 void kvm_free_irq_routing(struct kvm *kvm);
1972
1973 #else
1974
kvm_free_irq_routing(struct kvm * kvm)1975 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1976
1977 #endif
1978
1979 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1980
1981 #ifdef CONFIG_HAVE_KVM_EVENTFD
1982
1983 void kvm_eventfd_init(struct kvm *kvm);
1984 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1985
1986 #ifdef CONFIG_HAVE_KVM_IRQFD
1987 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1988 void kvm_irqfd_release(struct kvm *kvm);
1989 void kvm_irq_routing_update(struct kvm *);
1990 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1991 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1992 {
1993 return -EINVAL;
1994 }
1995
kvm_irqfd_release(struct kvm * kvm)1996 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1997 #endif
1998
1999 #else
2000
kvm_eventfd_init(struct kvm * kvm)2001 static inline void kvm_eventfd_init(struct kvm *kvm) {}
2002
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)2003 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2004 {
2005 return -EINVAL;
2006 }
2007
kvm_irqfd_release(struct kvm * kvm)2008 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2009
2010 #ifdef CONFIG_HAVE_KVM_IRQCHIP
kvm_irq_routing_update(struct kvm * kvm)2011 static inline void kvm_irq_routing_update(struct kvm *kvm)
2012 {
2013 }
2014 #endif
2015
kvm_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)2016 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
2017 {
2018 return -ENOSYS;
2019 }
2020
2021 #endif /* CONFIG_HAVE_KVM_EVENTFD */
2022
2023 void kvm_arch_irq_routing_update(struct kvm *kvm);
2024
__kvm_make_request(int req,struct kvm_vcpu * vcpu)2025 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2026 {
2027 /*
2028 * Ensure the rest of the request is published to kvm_check_request's
2029 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2030 */
2031 smp_wmb();
2032 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2033 }
2034
kvm_make_request(int req,struct kvm_vcpu * vcpu)2035 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2036 {
2037 /*
2038 * Request that don't require vCPU action should never be logged in
2039 * vcpu->requests. The vCPU won't clear the request, so it will stay
2040 * logged indefinitely and prevent the vCPU from entering the guest.
2041 */
2042 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2043 (req & KVM_REQUEST_NO_ACTION));
2044
2045 __kvm_make_request(req, vcpu);
2046 }
2047
kvm_request_pending(struct kvm_vcpu * vcpu)2048 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2049 {
2050 return READ_ONCE(vcpu->requests);
2051 }
2052
kvm_test_request(int req,struct kvm_vcpu * vcpu)2053 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2054 {
2055 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2056 }
2057
kvm_clear_request(int req,struct kvm_vcpu * vcpu)2058 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2059 {
2060 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2061 }
2062
kvm_check_request(int req,struct kvm_vcpu * vcpu)2063 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2064 {
2065 if (kvm_test_request(req, vcpu)) {
2066 kvm_clear_request(req, vcpu);
2067
2068 /*
2069 * Ensure the rest of the request is visible to kvm_check_request's
2070 * caller. Paired with the smp_wmb in kvm_make_request.
2071 */
2072 smp_mb__after_atomic();
2073 return true;
2074 } else {
2075 return false;
2076 }
2077 }
2078
2079 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2080 extern bool kvm_rebooting;
2081 #endif
2082
2083 extern unsigned int halt_poll_ns;
2084 extern unsigned int halt_poll_ns_grow;
2085 extern unsigned int halt_poll_ns_grow_start;
2086 extern unsigned int halt_poll_ns_shrink;
2087
2088 struct kvm_device {
2089 const struct kvm_device_ops *ops;
2090 struct kvm *kvm;
2091 void *private;
2092 struct list_head vm_node;
2093 };
2094
2095 /* create, destroy, and name are mandatory */
2096 struct kvm_device_ops {
2097 const char *name;
2098
2099 /*
2100 * create is called holding kvm->lock and any operations not suitable
2101 * to do while holding the lock should be deferred to init (see
2102 * below).
2103 */
2104 int (*create)(struct kvm_device *dev, u32 type);
2105
2106 /*
2107 * init is called after create if create is successful and is called
2108 * outside of holding kvm->lock.
2109 */
2110 void (*init)(struct kvm_device *dev);
2111
2112 /*
2113 * Destroy is responsible for freeing dev.
2114 *
2115 * Destroy may be called before or after destructors are called
2116 * on emulated I/O regions, depending on whether a reference is
2117 * held by a vcpu or other kvm component that gets destroyed
2118 * after the emulated I/O.
2119 */
2120 void (*destroy)(struct kvm_device *dev);
2121
2122 /*
2123 * Release is an alternative method to free the device. It is
2124 * called when the device file descriptor is closed. Once
2125 * release is called, the destroy method will not be called
2126 * anymore as the device is removed from the device list of
2127 * the VM. kvm->lock is held.
2128 */
2129 void (*release)(struct kvm_device *dev);
2130
2131 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2132 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2133 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2134 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2135 unsigned long arg);
2136 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2137 };
2138
2139 void kvm_device_get(struct kvm_device *dev);
2140 void kvm_device_put(struct kvm_device *dev);
2141 struct kvm_device *kvm_device_from_filp(struct file *filp);
2142 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2143 void kvm_unregister_device_ops(u32 type);
2144
2145 extern struct kvm_device_ops kvm_mpic_ops;
2146 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2147 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2148
2149 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2150
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2151 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2152 {
2153 vcpu->spin_loop.in_spin_loop = val;
2154 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2155 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2156 {
2157 vcpu->spin_loop.dy_eligible = val;
2158 }
2159
2160 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2161
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2162 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2163 {
2164 }
2165
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2166 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2167 {
2168 }
2169 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2170
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)2171 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2172 {
2173 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2174 !(memslot->flags & KVM_MEMSLOT_INVALID));
2175 }
2176
2177 struct kvm_vcpu *kvm_get_running_vcpu(void);
2178 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2179
2180 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2181 bool kvm_arch_has_irq_bypass(void);
2182 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2183 struct irq_bypass_producer *);
2184 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2185 struct irq_bypass_producer *);
2186 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2187 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2188 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2189 uint32_t guest_irq, bool set);
2190 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2191 struct kvm_kernel_irq_routing_entry *);
2192 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2193
2194 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2195 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2196 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2197 {
2198 return vcpu->valid_wakeup;
2199 }
2200
2201 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2202 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2203 {
2204 return true;
2205 }
2206 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2207
2208 #ifdef CONFIG_HAVE_KVM_NO_POLL
2209 /* Callback that tells if we must not poll */
2210 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2211 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)2212 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2213 {
2214 return false;
2215 }
2216 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2217
2218 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2219 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2220 unsigned int ioctl, unsigned long arg);
2221 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2222 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2223 unsigned int ioctl,
2224 unsigned long arg)
2225 {
2226 return -ENOIOCTLCMD;
2227 }
2228 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2229
2230 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
2231 unsigned long start, unsigned long end);
2232
2233 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2234
2235 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2236 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2237 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)2238 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2239 {
2240 return 0;
2241 }
2242 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2243
2244 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2245
2246 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2247 uintptr_t data, const char *name,
2248 struct task_struct **thread_ptr);
2249
2250 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)2251 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2252 {
2253 vcpu->run->exit_reason = KVM_EXIT_INTR;
2254 vcpu->stat.signal_exits++;
2255 }
2256 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2257
2258 /*
2259 * If more than one page is being (un)accounted, @virt must be the address of
2260 * the first page of a block of pages what were allocated together (i.e
2261 * accounted together).
2262 *
2263 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2264 * is thread-safe.
2265 */
kvm_account_pgtable_pages(void * virt,int nr)2266 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2267 {
2268 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2269 }
2270
2271 /*
2272 * This defines how many reserved entries we want to keep before we
2273 * kick the vcpu to the userspace to avoid dirty ring full. This
2274 * value can be tuned to higher if e.g. PML is enabled on the host.
2275 */
2276 #define KVM_DIRTY_RING_RSVD_ENTRIES 64
2277
2278 /* Max number of entries allowed for each kvm dirty ring */
2279 #define KVM_DIRTY_RING_MAX_ENTRIES 65536
2280
2281 #endif
2282