1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54  * used in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of install_new_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_ADDRESS_SPACE_NUM
84 #define KVM_ADDRESS_SPACE_NUM	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
100 
101 /*
102  * error pfns indicate that the gfn is in slot but faild to
103  * translate it to pfn on host.
104  */
is_error_pfn(kvm_pfn_t pfn)105 static inline bool is_error_pfn(kvm_pfn_t pfn)
106 {
107 	return !!(pfn & KVM_PFN_ERR_MASK);
108 }
109 
110 /*
111  * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112  * by a pending signal.  Note, the signal may or may not be fatal.
113  */
is_sigpending_pfn(kvm_pfn_t pfn)114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115 {
116 	return pfn == KVM_PFN_ERR_SIGPENDING;
117 }
118 
119 /*
120  * error_noslot pfns indicate that the gfn can not be
121  * translated to pfn - it is not in slot or failed to
122  * translate it to pfn.
123  */
is_error_noslot_pfn(kvm_pfn_t pfn)124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125 {
126 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127 }
128 
129 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)130 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131 {
132 	return pfn == KVM_PFN_NOSLOT;
133 }
134 
135 /*
136  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137  * provide own defines and kvm_is_error_hva
138  */
139 #ifndef KVM_HVA_ERR_BAD
140 
141 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
142 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
143 
kvm_is_error_hva(unsigned long addr)144 static inline bool kvm_is_error_hva(unsigned long addr)
145 {
146 	return addr >= PAGE_OFFSET;
147 }
148 
149 #endif
150 
151 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
152 
is_error_page(struct page * page)153 static inline bool is_error_page(struct page *page)
154 {
155 	return IS_ERR(page);
156 }
157 
158 #define KVM_REQUEST_MASK           GENMASK(7,0)
159 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
160 #define KVM_REQUEST_WAIT           BIT(9)
161 #define KVM_REQUEST_NO_ACTION      BIT(10)
162 /*
163  * Architecture-independent vcpu->requests bit members
164  * Bits 3-7 are reserved for more arch-independent bits.
165  */
166 #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
168 #define KVM_REQ_UNBLOCK			2
169 #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
170 #define KVM_REQUEST_ARCH_BASE		8
171 
172 /*
173  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
174  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
175  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
176  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
177  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
178  * guarantee the vCPU received an IPI and has actually exited guest mode.
179  */
180 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
181 
182 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
183 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
184 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
185 })
186 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
187 
188 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
189 				 unsigned long *vcpu_bitmap);
190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
191 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
192 				      struct kvm_vcpu *except);
193 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
194 				unsigned long *vcpu_bitmap);
195 
196 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
197 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
198 
199 extern struct mutex kvm_lock;
200 extern struct list_head vm_list;
201 
202 struct kvm_io_range {
203 	gpa_t addr;
204 	int len;
205 	struct kvm_io_device *dev;
206 };
207 
208 #define NR_IOBUS_DEVS 1000
209 
210 struct kvm_io_bus {
211 	int dev_count;
212 	int ioeventfd_count;
213 	struct kvm_io_range range[];
214 };
215 
216 enum kvm_bus {
217 	KVM_MMIO_BUS,
218 	KVM_PIO_BUS,
219 	KVM_VIRTIO_CCW_NOTIFY_BUS,
220 	KVM_FAST_MMIO_BUS,
221 	KVM_NR_BUSES
222 };
223 
224 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
225 		     int len, const void *val);
226 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
227 			    gpa_t addr, int len, const void *val, long cookie);
228 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
229 		    int len, void *val);
230 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
231 			    int len, struct kvm_io_device *dev);
232 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
233 			      struct kvm_io_device *dev);
234 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
235 					 gpa_t addr);
236 
237 #ifdef CONFIG_KVM_ASYNC_PF
238 struct kvm_async_pf {
239 	struct work_struct work;
240 	struct list_head link;
241 	struct list_head queue;
242 	struct kvm_vcpu *vcpu;
243 	struct mm_struct *mm;
244 	gpa_t cr2_or_gpa;
245 	unsigned long addr;
246 	struct kvm_arch_async_pf arch;
247 	bool   wakeup_all;
248 	bool notpresent_injected;
249 };
250 
251 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
252 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
253 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
254 			unsigned long hva, struct kvm_arch_async_pf *arch);
255 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
256 #endif
257 
258 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
259 struct kvm_gfn_range {
260 	struct kvm_memory_slot *slot;
261 	gfn_t start;
262 	gfn_t end;
263 	pte_t pte;
264 	bool may_block;
265 };
266 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
267 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
268 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
269 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
270 #endif
271 
272 enum {
273 	OUTSIDE_GUEST_MODE,
274 	IN_GUEST_MODE,
275 	EXITING_GUEST_MODE,
276 	READING_SHADOW_PAGE_TABLES,
277 };
278 
279 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
280 
281 struct kvm_host_map {
282 	/*
283 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
284 	 * a 'struct page' for it. When using mem= kernel parameter some memory
285 	 * can be used as guest memory but they are not managed by host
286 	 * kernel).
287 	 * If 'pfn' is not managed by the host kernel, this field is
288 	 * initialized to KVM_UNMAPPED_PAGE.
289 	 */
290 	struct page *page;
291 	void *hva;
292 	kvm_pfn_t pfn;
293 	kvm_pfn_t gfn;
294 };
295 
296 /*
297  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
298  * directly to check for that.
299  */
kvm_vcpu_mapped(struct kvm_host_map * map)300 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
301 {
302 	return !!map->hva;
303 }
304 
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)305 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
306 {
307 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
308 }
309 
310 /*
311  * Sometimes a large or cross-page mmio needs to be broken up into separate
312  * exits for userspace servicing.
313  */
314 struct kvm_mmio_fragment {
315 	gpa_t gpa;
316 	void *data;
317 	unsigned len;
318 };
319 
320 struct kvm_vcpu {
321 	struct kvm *kvm;
322 #ifdef CONFIG_PREEMPT_NOTIFIERS
323 	struct preempt_notifier preempt_notifier;
324 #endif
325 	int cpu;
326 	int vcpu_id; /* id given by userspace at creation */
327 	int vcpu_idx; /* index into kvm->vcpu_array */
328 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
329 #ifdef CONFIG_PROVE_RCU
330 	int srcu_depth;
331 #endif
332 	int mode;
333 	u64 requests;
334 	unsigned long guest_debug;
335 
336 	struct mutex mutex;
337 	struct kvm_run *run;
338 
339 #ifndef __KVM_HAVE_ARCH_WQP
340 	struct rcuwait wait;
341 #endif
342 	struct pid __rcu *pid;
343 	int sigset_active;
344 	sigset_t sigset;
345 	unsigned int halt_poll_ns;
346 	bool valid_wakeup;
347 
348 #ifdef CONFIG_HAS_IOMEM
349 	int mmio_needed;
350 	int mmio_read_completed;
351 	int mmio_is_write;
352 	int mmio_cur_fragment;
353 	int mmio_nr_fragments;
354 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
355 #endif
356 
357 #ifdef CONFIG_KVM_ASYNC_PF
358 	struct {
359 		u32 queued;
360 		struct list_head queue;
361 		struct list_head done;
362 		spinlock_t lock;
363 	} async_pf;
364 #endif
365 
366 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
367 	/*
368 	 * Cpu relax intercept or pause loop exit optimization
369 	 * in_spin_loop: set when a vcpu does a pause loop exit
370 	 *  or cpu relax intercepted.
371 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
372 	 */
373 	struct {
374 		bool in_spin_loop;
375 		bool dy_eligible;
376 	} spin_loop;
377 #endif
378 	bool preempted;
379 	bool ready;
380 	struct kvm_vcpu_arch arch;
381 	struct kvm_vcpu_stat stat;
382 	char stats_id[KVM_STATS_NAME_SIZE];
383 	struct kvm_dirty_ring dirty_ring;
384 
385 	/*
386 	 * The most recently used memslot by this vCPU and the slots generation
387 	 * for which it is valid.
388 	 * No wraparound protection is needed since generations won't overflow in
389 	 * thousands of years, even assuming 1M memslot operations per second.
390 	 */
391 	struct kvm_memory_slot *last_used_slot;
392 	u64 last_used_slot_gen;
393 };
394 
395 /*
396  * Start accounting time towards a guest.
397  * Must be called before entering guest context.
398  */
guest_timing_enter_irqoff(void)399 static __always_inline void guest_timing_enter_irqoff(void)
400 {
401 	/*
402 	 * This is running in ioctl context so its safe to assume that it's the
403 	 * stime pending cputime to flush.
404 	 */
405 	instrumentation_begin();
406 	vtime_account_guest_enter();
407 	instrumentation_end();
408 }
409 
410 /*
411  * Enter guest context and enter an RCU extended quiescent state.
412  *
413  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
414  * unsafe to use any code which may directly or indirectly use RCU, tracing
415  * (including IRQ flag tracing), or lockdep. All code in this period must be
416  * non-instrumentable.
417  */
guest_context_enter_irqoff(void)418 static __always_inline void guest_context_enter_irqoff(void)
419 {
420 	/*
421 	 * KVM does not hold any references to rcu protected data when it
422 	 * switches CPU into a guest mode. In fact switching to a guest mode
423 	 * is very similar to exiting to userspace from rcu point of view. In
424 	 * addition CPU may stay in a guest mode for quite a long time (up to
425 	 * one time slice). Lets treat guest mode as quiescent state, just like
426 	 * we do with user-mode execution.
427 	 */
428 	if (!context_tracking_guest_enter()) {
429 		instrumentation_begin();
430 		rcu_virt_note_context_switch();
431 		instrumentation_end();
432 	}
433 }
434 
435 /*
436  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
437  * guest_state_enter_irqoff().
438  */
guest_enter_irqoff(void)439 static __always_inline void guest_enter_irqoff(void)
440 {
441 	guest_timing_enter_irqoff();
442 	guest_context_enter_irqoff();
443 }
444 
445 /**
446  * guest_state_enter_irqoff - Fixup state when entering a guest
447  *
448  * Entry to a guest will enable interrupts, but the kernel state is interrupts
449  * disabled when this is invoked. Also tell RCU about it.
450  *
451  * 1) Trace interrupts on state
452  * 2) Invoke context tracking if enabled to adjust RCU state
453  * 3) Tell lockdep that interrupts are enabled
454  *
455  * Invoked from architecture specific code before entering a guest.
456  * Must be called with interrupts disabled and the caller must be
457  * non-instrumentable.
458  * The caller has to invoke guest_timing_enter_irqoff() before this.
459  *
460  * Note: this is analogous to exit_to_user_mode().
461  */
guest_state_enter_irqoff(void)462 static __always_inline void guest_state_enter_irqoff(void)
463 {
464 	instrumentation_begin();
465 	trace_hardirqs_on_prepare();
466 	lockdep_hardirqs_on_prepare();
467 	instrumentation_end();
468 
469 	guest_context_enter_irqoff();
470 	lockdep_hardirqs_on(CALLER_ADDR0);
471 }
472 
473 /*
474  * Exit guest context and exit an RCU extended quiescent state.
475  *
476  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
477  * unsafe to use any code which may directly or indirectly use RCU, tracing
478  * (including IRQ flag tracing), or lockdep. All code in this period must be
479  * non-instrumentable.
480  */
guest_context_exit_irqoff(void)481 static __always_inline void guest_context_exit_irqoff(void)
482 {
483 	context_tracking_guest_exit();
484 }
485 
486 /*
487  * Stop accounting time towards a guest.
488  * Must be called after exiting guest context.
489  */
guest_timing_exit_irqoff(void)490 static __always_inline void guest_timing_exit_irqoff(void)
491 {
492 	instrumentation_begin();
493 	/* Flush the guest cputime we spent on the guest */
494 	vtime_account_guest_exit();
495 	instrumentation_end();
496 }
497 
498 /*
499  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
500  * guest_timing_exit_irqoff().
501  */
guest_exit_irqoff(void)502 static __always_inline void guest_exit_irqoff(void)
503 {
504 	guest_context_exit_irqoff();
505 	guest_timing_exit_irqoff();
506 }
507 
guest_exit(void)508 static inline void guest_exit(void)
509 {
510 	unsigned long flags;
511 
512 	local_irq_save(flags);
513 	guest_exit_irqoff();
514 	local_irq_restore(flags);
515 }
516 
517 /**
518  * guest_state_exit_irqoff - Establish state when returning from guest mode
519  *
520  * Entry from a guest disables interrupts, but guest mode is traced as
521  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
522  *
523  * 1) Tell lockdep that interrupts are disabled
524  * 2) Invoke context tracking if enabled to reactivate RCU
525  * 3) Trace interrupts off state
526  *
527  * Invoked from architecture specific code after exiting a guest.
528  * Must be invoked with interrupts disabled and the caller must be
529  * non-instrumentable.
530  * The caller has to invoke guest_timing_exit_irqoff() after this.
531  *
532  * Note: this is analogous to enter_from_user_mode().
533  */
guest_state_exit_irqoff(void)534 static __always_inline void guest_state_exit_irqoff(void)
535 {
536 	lockdep_hardirqs_off(CALLER_ADDR0);
537 	guest_context_exit_irqoff();
538 
539 	instrumentation_begin();
540 	trace_hardirqs_off_finish();
541 	instrumentation_end();
542 }
543 
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)544 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
545 {
546 	/*
547 	 * The memory barrier ensures a previous write to vcpu->requests cannot
548 	 * be reordered with the read of vcpu->mode.  It pairs with the general
549 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
550 	 */
551 	smp_mb__before_atomic();
552 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
553 }
554 
555 /*
556  * Some of the bitops functions do not support too long bitmaps.
557  * This number must be determined not to exceed such limits.
558  */
559 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
560 
561 /*
562  * Since at idle each memslot belongs to two memslot sets it has to contain
563  * two embedded nodes for each data structure that it forms a part of.
564  *
565  * Two memslot sets (one active and one inactive) are necessary so the VM
566  * continues to run on one memslot set while the other is being modified.
567  *
568  * These two memslot sets normally point to the same set of memslots.
569  * They can, however, be desynchronized when performing a memslot management
570  * operation by replacing the memslot to be modified by its copy.
571  * After the operation is complete, both memslot sets once again point to
572  * the same, common set of memslot data.
573  *
574  * The memslots themselves are independent of each other so they can be
575  * individually added or deleted.
576  */
577 struct kvm_memory_slot {
578 	struct hlist_node id_node[2];
579 	struct interval_tree_node hva_node[2];
580 	struct rb_node gfn_node[2];
581 	gfn_t base_gfn;
582 	unsigned long npages;
583 	unsigned long *dirty_bitmap;
584 	struct kvm_arch_memory_slot arch;
585 	unsigned long userspace_addr;
586 	u32 flags;
587 	short id;
588 	u16 as_id;
589 };
590 
kvm_slot_dirty_track_enabled(const struct kvm_memory_slot * slot)591 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
592 {
593 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
594 }
595 
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)596 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
597 {
598 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
599 }
600 
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)601 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
602 {
603 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
604 
605 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
606 }
607 
608 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
609 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
610 #endif
611 
612 struct kvm_s390_adapter_int {
613 	u64 ind_addr;
614 	u64 summary_addr;
615 	u64 ind_offset;
616 	u32 summary_offset;
617 	u32 adapter_id;
618 };
619 
620 struct kvm_hv_sint {
621 	u32 vcpu;
622 	u32 sint;
623 };
624 
625 struct kvm_xen_evtchn {
626 	u32 port;
627 	u32 vcpu_id;
628 	int vcpu_idx;
629 	u32 priority;
630 };
631 
632 struct kvm_kernel_irq_routing_entry {
633 	u32 gsi;
634 	u32 type;
635 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
636 		   struct kvm *kvm, int irq_source_id, int level,
637 		   bool line_status);
638 	union {
639 		struct {
640 			unsigned irqchip;
641 			unsigned pin;
642 		} irqchip;
643 		struct {
644 			u32 address_lo;
645 			u32 address_hi;
646 			u32 data;
647 			u32 flags;
648 			u32 devid;
649 		} msi;
650 		struct kvm_s390_adapter_int adapter;
651 		struct kvm_hv_sint hv_sint;
652 		struct kvm_xen_evtchn xen_evtchn;
653 	};
654 	struct hlist_node link;
655 };
656 
657 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
658 struct kvm_irq_routing_table {
659 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
660 	u32 nr_rt_entries;
661 	/*
662 	 * Array indexed by gsi. Each entry contains list of irq chips
663 	 * the gsi is connected to.
664 	 */
665 	struct hlist_head map[];
666 };
667 #endif
668 
669 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
670 
671 #ifndef KVM_INTERNAL_MEM_SLOTS
672 #define KVM_INTERNAL_MEM_SLOTS 0
673 #endif
674 
675 #define KVM_MEM_SLOTS_NUM SHRT_MAX
676 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
677 
678 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)679 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
680 {
681 	return 0;
682 }
683 #endif
684 
685 struct kvm_memslots {
686 	u64 generation;
687 	atomic_long_t last_used_slot;
688 	struct rb_root_cached hva_tree;
689 	struct rb_root gfn_tree;
690 	/*
691 	 * The mapping table from slot id to memslot.
692 	 *
693 	 * 7-bit bucket count matches the size of the old id to index array for
694 	 * 512 slots, while giving good performance with this slot count.
695 	 * Higher bucket counts bring only small performance improvements but
696 	 * always result in higher memory usage (even for lower memslot counts).
697 	 */
698 	DECLARE_HASHTABLE(id_hash, 7);
699 	int node_idx;
700 };
701 
702 struct kvm {
703 #ifdef KVM_HAVE_MMU_RWLOCK
704 	rwlock_t mmu_lock;
705 #else
706 	spinlock_t mmu_lock;
707 #endif /* KVM_HAVE_MMU_RWLOCK */
708 
709 	struct mutex slots_lock;
710 
711 	/*
712 	 * Protects the arch-specific fields of struct kvm_memory_slots in
713 	 * use by the VM. To be used under the slots_lock (above) or in a
714 	 * kvm->srcu critical section where acquiring the slots_lock would
715 	 * lead to deadlock with the synchronize_srcu in
716 	 * install_new_memslots.
717 	 */
718 	struct mutex slots_arch_lock;
719 	struct mm_struct *mm; /* userspace tied to this vm */
720 	unsigned long nr_memslot_pages;
721 	/* The two memslot sets - active and inactive (per address space) */
722 	struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
723 	/* The current active memslot set for each address space */
724 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
725 	struct xarray vcpu_array;
726 	/*
727 	 * Protected by slots_lock, but can be read outside if an
728 	 * incorrect answer is acceptable.
729 	 */
730 	atomic_t nr_memslots_dirty_logging;
731 
732 	/* Used to wait for completion of MMU notifiers.  */
733 	spinlock_t mn_invalidate_lock;
734 	unsigned long mn_active_invalidate_count;
735 	struct rcuwait mn_memslots_update_rcuwait;
736 
737 	/* For management / invalidation of gfn_to_pfn_caches */
738 	spinlock_t gpc_lock;
739 	struct list_head gpc_list;
740 
741 	/*
742 	 * created_vcpus is protected by kvm->lock, and is incremented
743 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
744 	 * incremented after storing the kvm_vcpu pointer in vcpus,
745 	 * and is accessed atomically.
746 	 */
747 	atomic_t online_vcpus;
748 	int max_vcpus;
749 	int created_vcpus;
750 	int last_boosted_vcpu;
751 	struct list_head vm_list;
752 	struct mutex lock;
753 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
754 #ifdef CONFIG_HAVE_KVM_EVENTFD
755 	struct {
756 		spinlock_t        lock;
757 		struct list_head  items;
758 		struct list_head  resampler_list;
759 		struct mutex      resampler_lock;
760 	} irqfds;
761 	struct list_head ioeventfds;
762 #endif
763 	struct kvm_vm_stat stat;
764 	struct kvm_arch arch;
765 	refcount_t users_count;
766 #ifdef CONFIG_KVM_MMIO
767 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
768 	spinlock_t ring_lock;
769 	struct list_head coalesced_zones;
770 #endif
771 
772 	struct mutex irq_lock;
773 #ifdef CONFIG_HAVE_KVM_IRQCHIP
774 	/*
775 	 * Update side is protected by irq_lock.
776 	 */
777 	struct kvm_irq_routing_table __rcu *irq_routing;
778 #endif
779 #ifdef CONFIG_HAVE_KVM_IRQFD
780 	struct hlist_head irq_ack_notifier_list;
781 #endif
782 
783 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
784 	struct mmu_notifier mmu_notifier;
785 	unsigned long mmu_invalidate_seq;
786 	long mmu_invalidate_in_progress;
787 	unsigned long mmu_invalidate_range_start;
788 	unsigned long mmu_invalidate_range_end;
789 #endif
790 	struct list_head devices;
791 	u64 manual_dirty_log_protect;
792 	struct dentry *debugfs_dentry;
793 	struct kvm_stat_data **debugfs_stat_data;
794 	struct srcu_struct srcu;
795 	struct srcu_struct irq_srcu;
796 	pid_t userspace_pid;
797 	bool override_halt_poll_ns;
798 	unsigned int max_halt_poll_ns;
799 	u32 dirty_ring_size;
800 	bool dirty_ring_with_bitmap;
801 	bool vm_bugged;
802 	bool vm_dead;
803 
804 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
805 	struct notifier_block pm_notifier;
806 #endif
807 	char stats_id[KVM_STATS_NAME_SIZE];
808 };
809 
810 #define kvm_err(fmt, ...) \
811 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
812 #define kvm_info(fmt, ...) \
813 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
814 #define kvm_debug(fmt, ...) \
815 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
816 #define kvm_debug_ratelimited(fmt, ...) \
817 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
818 			     ## __VA_ARGS__)
819 #define kvm_pr_unimpl(fmt, ...) \
820 	pr_err_ratelimited("kvm [%i]: " fmt, \
821 			   task_tgid_nr(current), ## __VA_ARGS__)
822 
823 /* The guest did something we don't support. */
824 #define vcpu_unimpl(vcpu, fmt, ...)					\
825 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
826 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
827 
828 #define vcpu_debug(vcpu, fmt, ...)					\
829 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
830 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
831 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
832 			      ## __VA_ARGS__)
833 #define vcpu_err(vcpu, fmt, ...)					\
834 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
835 
kvm_vm_dead(struct kvm * kvm)836 static inline void kvm_vm_dead(struct kvm *kvm)
837 {
838 	kvm->vm_dead = true;
839 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
840 }
841 
kvm_vm_bugged(struct kvm * kvm)842 static inline void kvm_vm_bugged(struct kvm *kvm)
843 {
844 	kvm->vm_bugged = true;
845 	kvm_vm_dead(kvm);
846 }
847 
848 
849 #define KVM_BUG(cond, kvm, fmt...)				\
850 ({								\
851 	int __ret = (cond);					\
852 								\
853 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
854 		kvm_vm_bugged(kvm);				\
855 	unlikely(__ret);					\
856 })
857 
858 #define KVM_BUG_ON(cond, kvm)					\
859 ({								\
860 	int __ret = (cond);					\
861 								\
862 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
863 		kvm_vm_bugged(kvm);				\
864 	unlikely(__ret);					\
865 })
866 
kvm_vcpu_srcu_read_lock(struct kvm_vcpu * vcpu)867 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
868 {
869 #ifdef CONFIG_PROVE_RCU
870 	WARN_ONCE(vcpu->srcu_depth++,
871 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
872 #endif
873 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
874 }
875 
kvm_vcpu_srcu_read_unlock(struct kvm_vcpu * vcpu)876 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
877 {
878 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
879 
880 #ifdef CONFIG_PROVE_RCU
881 	WARN_ONCE(--vcpu->srcu_depth,
882 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
883 #endif
884 }
885 
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)886 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
887 {
888 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
889 }
890 
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)891 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
892 {
893 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
894 				      lockdep_is_held(&kvm->slots_lock) ||
895 				      !refcount_read(&kvm->users_count));
896 }
897 
kvm_get_vcpu(struct kvm * kvm,int i)898 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
899 {
900 	int num_vcpus = atomic_read(&kvm->online_vcpus);
901 	i = array_index_nospec(i, num_vcpus);
902 
903 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
904 	smp_rmb();
905 	return xa_load(&kvm->vcpu_array, i);
906 }
907 
908 #define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
909 	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
910 			  (atomic_read(&kvm->online_vcpus) - 1))
911 
kvm_get_vcpu_by_id(struct kvm * kvm,int id)912 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
913 {
914 	struct kvm_vcpu *vcpu = NULL;
915 	unsigned long i;
916 
917 	if (id < 0)
918 		return NULL;
919 	if (id < KVM_MAX_VCPUS)
920 		vcpu = kvm_get_vcpu(kvm, id);
921 	if (vcpu && vcpu->vcpu_id == id)
922 		return vcpu;
923 	kvm_for_each_vcpu(i, vcpu, kvm)
924 		if (vcpu->vcpu_id == id)
925 			return vcpu;
926 	return NULL;
927 }
928 
929 void kvm_destroy_vcpus(struct kvm *kvm);
930 
931 void vcpu_load(struct kvm_vcpu *vcpu);
932 void vcpu_put(struct kvm_vcpu *vcpu);
933 
934 #ifdef __KVM_HAVE_IOAPIC
935 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
936 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
937 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)938 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
939 {
940 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)941 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
942 {
943 }
944 #endif
945 
946 #ifdef CONFIG_HAVE_KVM_IRQFD
947 int kvm_irqfd_init(void);
948 void kvm_irqfd_exit(void);
949 #else
kvm_irqfd_init(void)950 static inline int kvm_irqfd_init(void)
951 {
952 	return 0;
953 }
954 
kvm_irqfd_exit(void)955 static inline void kvm_irqfd_exit(void)
956 {
957 }
958 #endif
959 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
960 void kvm_exit(void);
961 
962 void kvm_get_kvm(struct kvm *kvm);
963 bool kvm_get_kvm_safe(struct kvm *kvm);
964 void kvm_put_kvm(struct kvm *kvm);
965 bool file_is_kvm(struct file *file);
966 void kvm_put_kvm_no_destroy(struct kvm *kvm);
967 
__kvm_memslots(struct kvm * kvm,int as_id)968 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
969 {
970 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
971 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
972 			lockdep_is_held(&kvm->slots_lock) ||
973 			!refcount_read(&kvm->users_count));
974 }
975 
kvm_memslots(struct kvm * kvm)976 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
977 {
978 	return __kvm_memslots(kvm, 0);
979 }
980 
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)981 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
982 {
983 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
984 
985 	return __kvm_memslots(vcpu->kvm, as_id);
986 }
987 
kvm_memslots_empty(struct kvm_memslots * slots)988 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
989 {
990 	return RB_EMPTY_ROOT(&slots->gfn_tree);
991 }
992 
993 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
994 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
995 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
996 		} else
997 
998 static inline
id_to_memslot(struct kvm_memslots * slots,int id)999 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1000 {
1001 	struct kvm_memory_slot *slot;
1002 	int idx = slots->node_idx;
1003 
1004 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1005 		if (slot->id == id)
1006 			return slot;
1007 	}
1008 
1009 	return NULL;
1010 }
1011 
1012 /* Iterator used for walking memslots that overlap a gfn range. */
1013 struct kvm_memslot_iter {
1014 	struct kvm_memslots *slots;
1015 	struct rb_node *node;
1016 	struct kvm_memory_slot *slot;
1017 };
1018 
kvm_memslot_iter_next(struct kvm_memslot_iter * iter)1019 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1020 {
1021 	iter->node = rb_next(iter->node);
1022 	if (!iter->node)
1023 		return;
1024 
1025 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1026 }
1027 
kvm_memslot_iter_start(struct kvm_memslot_iter * iter,struct kvm_memslots * slots,gfn_t start)1028 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1029 					  struct kvm_memslots *slots,
1030 					  gfn_t start)
1031 {
1032 	int idx = slots->node_idx;
1033 	struct rb_node *tmp;
1034 	struct kvm_memory_slot *slot;
1035 
1036 	iter->slots = slots;
1037 
1038 	/*
1039 	 * Find the so called "upper bound" of a key - the first node that has
1040 	 * its key strictly greater than the searched one (the start gfn in our case).
1041 	 */
1042 	iter->node = NULL;
1043 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1044 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1045 		if (start < slot->base_gfn) {
1046 			iter->node = tmp;
1047 			tmp = tmp->rb_left;
1048 		} else {
1049 			tmp = tmp->rb_right;
1050 		}
1051 	}
1052 
1053 	/*
1054 	 * Find the slot with the lowest gfn that can possibly intersect with
1055 	 * the range, so we'll ideally have slot start <= range start
1056 	 */
1057 	if (iter->node) {
1058 		/*
1059 		 * A NULL previous node means that the very first slot
1060 		 * already has a higher start gfn.
1061 		 * In this case slot start > range start.
1062 		 */
1063 		tmp = rb_prev(iter->node);
1064 		if (tmp)
1065 			iter->node = tmp;
1066 	} else {
1067 		/* a NULL node below means no slots */
1068 		iter->node = rb_last(&slots->gfn_tree);
1069 	}
1070 
1071 	if (iter->node) {
1072 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1073 
1074 		/*
1075 		 * It is possible in the slot start < range start case that the
1076 		 * found slot ends before or at range start (slot end <= range start)
1077 		 * and so it does not overlap the requested range.
1078 		 *
1079 		 * In such non-overlapping case the next slot (if it exists) will
1080 		 * already have slot start > range start, otherwise the logic above
1081 		 * would have found it instead of the current slot.
1082 		 */
1083 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1084 			kvm_memslot_iter_next(iter);
1085 	}
1086 }
1087 
kvm_memslot_iter_is_valid(struct kvm_memslot_iter * iter,gfn_t end)1088 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1089 {
1090 	if (!iter->node)
1091 		return false;
1092 
1093 	/*
1094 	 * If this slot starts beyond or at the end of the range so does
1095 	 * every next one
1096 	 */
1097 	return iter->slot->base_gfn < end;
1098 }
1099 
1100 /* Iterate over each memslot at least partially intersecting [start, end) range */
1101 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1102 	for (kvm_memslot_iter_start(iter, slots, start);		\
1103 	     kvm_memslot_iter_is_valid(iter, end);			\
1104 	     kvm_memslot_iter_next(iter))
1105 
1106 /*
1107  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1108  * - create a new memory slot
1109  * - delete an existing memory slot
1110  * - modify an existing memory slot
1111  *   -- move it in the guest physical memory space
1112  *   -- just change its flags
1113  *
1114  * Since flags can be changed by some of these operations, the following
1115  * differentiation is the best we can do for __kvm_set_memory_region():
1116  */
1117 enum kvm_mr_change {
1118 	KVM_MR_CREATE,
1119 	KVM_MR_DELETE,
1120 	KVM_MR_MOVE,
1121 	KVM_MR_FLAGS_ONLY,
1122 };
1123 
1124 int kvm_set_memory_region(struct kvm *kvm,
1125 			  const struct kvm_userspace_memory_region *mem);
1126 int __kvm_set_memory_region(struct kvm *kvm,
1127 			    const struct kvm_userspace_memory_region *mem);
1128 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1129 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1130 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1131 				const struct kvm_memory_slot *old,
1132 				struct kvm_memory_slot *new,
1133 				enum kvm_mr_change change);
1134 void kvm_arch_commit_memory_region(struct kvm *kvm,
1135 				struct kvm_memory_slot *old,
1136 				const struct kvm_memory_slot *new,
1137 				enum kvm_mr_change change);
1138 /* flush all memory translations */
1139 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1140 /* flush memory translations pointing to 'slot' */
1141 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1142 				   struct kvm_memory_slot *slot);
1143 
1144 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1145 			    struct page **pages, int nr_pages);
1146 
1147 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1148 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1149 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1150 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1151 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1152 				      bool *writable);
1153 void kvm_release_page_clean(struct page *page);
1154 void kvm_release_page_dirty(struct page *page);
1155 
1156 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1157 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1158 		      bool *writable);
1159 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1160 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1161 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1162 			       bool atomic, bool interruptible, bool *async,
1163 			       bool write_fault, bool *writable, hva_t *hva);
1164 
1165 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1166 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1167 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1168 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1169 
1170 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1171 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1172 			int len);
1173 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1174 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1175 			   void *data, unsigned long len);
1176 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1177 				 void *data, unsigned int offset,
1178 				 unsigned long len);
1179 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1180 			 int offset, int len);
1181 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1182 		    unsigned long len);
1183 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1184 			   void *data, unsigned long len);
1185 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1186 				  void *data, unsigned int offset,
1187 				  unsigned long len);
1188 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1189 			      gpa_t gpa, unsigned long len);
1190 
1191 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1192 ({									\
1193 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1194 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1195 	int __ret = -EFAULT;						\
1196 									\
1197 	if (!kvm_is_error_hva(__addr))					\
1198 		__ret = get_user(v, __uaddr);				\
1199 	__ret;								\
1200 })
1201 
1202 #define kvm_get_guest(kvm, gpa, v)					\
1203 ({									\
1204 	gpa_t __gpa = gpa;						\
1205 	struct kvm *__kvm = kvm;					\
1206 									\
1207 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1208 			offset_in_page(__gpa), v);			\
1209 })
1210 
1211 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1212 ({									\
1213 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1214 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1215 	int __ret = -EFAULT;						\
1216 									\
1217 	if (!kvm_is_error_hva(__addr))					\
1218 		__ret = put_user(v, __uaddr);				\
1219 	if (!__ret)							\
1220 		mark_page_dirty(kvm, gfn);				\
1221 	__ret;								\
1222 })
1223 
1224 #define kvm_put_guest(kvm, gpa, v)					\
1225 ({									\
1226 	gpa_t __gpa = gpa;						\
1227 	struct kvm *__kvm = kvm;					\
1228 									\
1229 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1230 			offset_in_page(__gpa), v);			\
1231 })
1232 
1233 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1234 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1235 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1236 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1237 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1238 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1239 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1240 
1241 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1242 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1243 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1244 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1245 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1246 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1247 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1248 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1249 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1250 			     int len);
1251 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1252 			       unsigned long len);
1253 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1254 			unsigned long len);
1255 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1256 			      int offset, int len);
1257 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1258 			 unsigned long len);
1259 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1260 
1261 /**
1262  * kvm_gpc_init - initialize gfn_to_pfn_cache.
1263  *
1264  * @gpc:	   struct gfn_to_pfn_cache object.
1265  * @kvm:	   pointer to kvm instance.
1266  * @vcpu:	   vCPU to be used for marking pages dirty and to be woken on
1267  *		   invalidation.
1268  * @usage:	   indicates if the resulting host physical PFN is used while
1269  *		   the @vcpu is IN_GUEST_MODE (in which case invalidation of
1270  *		   the cache from MMU notifiers---but not for KVM memslot
1271  *		   changes!---will also force @vcpu to exit the guest and
1272  *		   refresh the cache); and/or if the PFN used directly
1273  *		   by KVM (and thus needs a kernel virtual mapping).
1274  *
1275  * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1276  * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1277  * the caller before init).
1278  */
1279 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm,
1280 		  struct kvm_vcpu *vcpu, enum pfn_cache_usage usage);
1281 
1282 /**
1283  * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1284  *                    physical address.
1285  *
1286  * @gpc:	   struct gfn_to_pfn_cache object.
1287  * @gpa:	   guest physical address to map.
1288  * @len:	   sanity check; the range being access must fit a single page.
1289  *
1290  * @return:	   0 for success.
1291  *		   -EINVAL for a mapping which would cross a page boundary.
1292  *		   -EFAULT for an untranslatable guest physical address.
1293  *
1294  * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1295  * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1296  * to ensure that the cache is valid before accessing the target page.
1297  */
1298 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1299 
1300 /**
1301  * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1302  *
1303  * @gpc:	   struct gfn_to_pfn_cache object.
1304  * @len:	   sanity check; the range being access must fit a single page.
1305  *
1306  * @return:	   %true if the cache is still valid and the address matches.
1307  *		   %false if the cache is not valid.
1308  *
1309  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1310  * while calling this function, and then continue to hold the lock until the
1311  * access is complete.
1312  *
1313  * Callers in IN_GUEST_MODE may do so without locking, although they should
1314  * still hold a read lock on kvm->scru for the memslot checks.
1315  */
1316 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1317 
1318 /**
1319  * kvm_gpc_refresh - update a previously initialized cache.
1320  *
1321  * @gpc:	   struct gfn_to_pfn_cache object.
1322  * @len:	   sanity check; the range being access must fit a single page.
1323  *
1324  * @return:	   0 for success.
1325  *		   -EINVAL for a mapping which would cross a page boundary.
1326  *		   -EFAULT for an untranslatable guest physical address.
1327  *
1328  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1329  * return from this function does not mean the page can be immediately
1330  * accessed because it may have raced with an invalidation. Callers must
1331  * still lock and check the cache status, as this function does not return
1332  * with the lock still held to permit access.
1333  */
1334 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1335 
1336 /**
1337  * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1338  *
1339  * @gpc:	   struct gfn_to_pfn_cache object.
1340  *
1341  * This removes a cache from the VM's list to be processed on MMU notifier
1342  * invocation.
1343  */
1344 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1345 
1346 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1347 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1348 
1349 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1350 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1351 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1352 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1353 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1354 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1355 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1356 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1357 
1358 void kvm_flush_remote_tlbs(struct kvm *kvm);
1359 
1360 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1361 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1362 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1363 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1364 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1365 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1366 #endif
1367 
1368 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
1369 			      unsigned long end);
1370 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
1371 			    unsigned long end);
1372 
1373 long kvm_arch_dev_ioctl(struct file *filp,
1374 			unsigned int ioctl, unsigned long arg);
1375 long kvm_arch_vcpu_ioctl(struct file *filp,
1376 			 unsigned int ioctl, unsigned long arg);
1377 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1378 
1379 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1380 
1381 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1382 					struct kvm_memory_slot *slot,
1383 					gfn_t gfn_offset,
1384 					unsigned long mask);
1385 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1386 
1387 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1388 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1389 					const struct kvm_memory_slot *memslot);
1390 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1391 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1392 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1393 		      int *is_dirty, struct kvm_memory_slot **memslot);
1394 #endif
1395 
1396 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1397 			bool line_status);
1398 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1399 			    struct kvm_enable_cap *cap);
1400 long kvm_arch_vm_ioctl(struct file *filp,
1401 		       unsigned int ioctl, unsigned long arg);
1402 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1403 			      unsigned long arg);
1404 
1405 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1406 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1407 
1408 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1409 				    struct kvm_translation *tr);
1410 
1411 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1412 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1413 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1414 				  struct kvm_sregs *sregs);
1415 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1416 				  struct kvm_sregs *sregs);
1417 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1418 				    struct kvm_mp_state *mp_state);
1419 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1420 				    struct kvm_mp_state *mp_state);
1421 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1422 					struct kvm_guest_debug *dbg);
1423 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1424 
1425 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1426 
1427 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1428 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1429 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1430 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1431 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1432 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1433 
1434 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1435 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1436 #endif
1437 
1438 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1439 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1440 #else
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)1441 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1442 #endif
1443 
1444 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1445 int kvm_arch_hardware_enable(void);
1446 void kvm_arch_hardware_disable(void);
1447 #endif
1448 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1449 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1450 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1451 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1452 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1453 int kvm_arch_post_init_vm(struct kvm *kvm);
1454 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1455 int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1456 
1457 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1458 /*
1459  * All architectures that want to use vzalloc currently also
1460  * need their own kvm_arch_alloc_vm implementation.
1461  */
kvm_arch_alloc_vm(void)1462 static inline struct kvm *kvm_arch_alloc_vm(void)
1463 {
1464 	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1465 }
1466 #endif
1467 
__kvm_arch_free_vm(struct kvm * kvm)1468 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1469 {
1470 	kvfree(kvm);
1471 }
1472 
1473 #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1474 static inline void kvm_arch_free_vm(struct kvm *kvm)
1475 {
1476 	__kvm_arch_free_vm(kvm);
1477 }
1478 #endif
1479 
1480 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
kvm_arch_flush_remote_tlb(struct kvm * kvm)1481 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1482 {
1483 	return -ENOTSUPP;
1484 }
1485 #endif
1486 
1487 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1488 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1489 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1490 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1491 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1492 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1493 {
1494 }
1495 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1496 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1497 {
1498 }
1499 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1500 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1501 {
1502 	return false;
1503 }
1504 #endif
1505 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1506 void kvm_arch_start_assignment(struct kvm *kvm);
1507 void kvm_arch_end_assignment(struct kvm *kvm);
1508 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1509 #else
kvm_arch_start_assignment(struct kvm * kvm)1510 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1511 {
1512 }
1513 
kvm_arch_end_assignment(struct kvm * kvm)1514 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1515 {
1516 }
1517 
kvm_arch_has_assigned_device(struct kvm * kvm)1518 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1519 {
1520 	return false;
1521 }
1522 #endif
1523 
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1524 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1525 {
1526 #ifdef __KVM_HAVE_ARCH_WQP
1527 	return vcpu->arch.waitp;
1528 #else
1529 	return &vcpu->wait;
1530 #endif
1531 }
1532 
1533 /*
1534  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1535  * true if the vCPU was blocking and was awakened, false otherwise.
1536  */
__kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)1537 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1538 {
1539 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1540 }
1541 
kvm_vcpu_is_blocking(struct kvm_vcpu * vcpu)1542 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1543 {
1544 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1545 }
1546 
1547 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1548 /*
1549  * returns true if the virtual interrupt controller is initialized and
1550  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1551  * controller is dynamically instantiated and this is not always true.
1552  */
1553 bool kvm_arch_intc_initialized(struct kvm *kvm);
1554 #else
kvm_arch_intc_initialized(struct kvm * kvm)1555 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1556 {
1557 	return true;
1558 }
1559 #endif
1560 
1561 #ifdef CONFIG_GUEST_PERF_EVENTS
1562 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1563 
1564 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1565 void kvm_unregister_perf_callbacks(void);
1566 #else
kvm_register_perf_callbacks(void * ign)1567 static inline void kvm_register_perf_callbacks(void *ign) {}
kvm_unregister_perf_callbacks(void)1568 static inline void kvm_unregister_perf_callbacks(void) {}
1569 #endif /* CONFIG_GUEST_PERF_EVENTS */
1570 
1571 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1572 void kvm_arch_destroy_vm(struct kvm *kvm);
1573 void kvm_arch_sync_events(struct kvm *kvm);
1574 
1575 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1576 
1577 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1578 bool kvm_is_zone_device_page(struct page *page);
1579 
1580 struct kvm_irq_ack_notifier {
1581 	struct hlist_node link;
1582 	unsigned gsi;
1583 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1584 };
1585 
1586 int kvm_irq_map_gsi(struct kvm *kvm,
1587 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1588 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1589 
1590 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1591 		bool line_status);
1592 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1593 		int irq_source_id, int level, bool line_status);
1594 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1595 			       struct kvm *kvm, int irq_source_id,
1596 			       int level, bool line_status);
1597 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1598 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1599 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1600 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1601 				   struct kvm_irq_ack_notifier *kian);
1602 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1603 				   struct kvm_irq_ack_notifier *kian);
1604 int kvm_request_irq_source_id(struct kvm *kvm);
1605 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1606 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1607 
1608 /*
1609  * Returns a pointer to the memslot if it contains gfn.
1610  * Otherwise returns NULL.
1611  */
1612 static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1613 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1614 {
1615 	if (!slot)
1616 		return NULL;
1617 
1618 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1619 		return slot;
1620 	else
1621 		return NULL;
1622 }
1623 
1624 /*
1625  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1626  *
1627  * With "approx" set returns the memslot also when the address falls
1628  * in a hole. In that case one of the memslots bordering the hole is
1629  * returned.
1630  */
1631 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,bool approx)1632 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1633 {
1634 	struct kvm_memory_slot *slot;
1635 	struct rb_node *node;
1636 	int idx = slots->node_idx;
1637 
1638 	slot = NULL;
1639 	for (node = slots->gfn_tree.rb_node; node; ) {
1640 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1641 		if (gfn >= slot->base_gfn) {
1642 			if (gfn < slot->base_gfn + slot->npages)
1643 				return slot;
1644 			node = node->rb_right;
1645 		} else
1646 			node = node->rb_left;
1647 	}
1648 
1649 	return approx ? slot : NULL;
1650 }
1651 
1652 static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn,bool approx)1653 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1654 {
1655 	struct kvm_memory_slot *slot;
1656 
1657 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1658 	slot = try_get_memslot(slot, gfn);
1659 	if (slot)
1660 		return slot;
1661 
1662 	slot = search_memslots(slots, gfn, approx);
1663 	if (slot) {
1664 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1665 		return slot;
1666 	}
1667 
1668 	return NULL;
1669 }
1670 
1671 /*
1672  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1673  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1674  * because that would bloat other code too much.
1675  */
1676 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1677 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1678 {
1679 	return ____gfn_to_memslot(slots, gfn, false);
1680 }
1681 
1682 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1683 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1684 {
1685 	/*
1686 	 * The index was checked originally in search_memslots.  To avoid
1687 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1688 	 * table walks, do not let the processor speculate loads outside
1689 	 * the guest's registered memslots.
1690 	 */
1691 	unsigned long offset = gfn - slot->base_gfn;
1692 	offset = array_index_nospec(offset, slot->npages);
1693 	return slot->userspace_addr + offset * PAGE_SIZE;
1694 }
1695 
memslot_id(struct kvm * kvm,gfn_t gfn)1696 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1697 {
1698 	return gfn_to_memslot(kvm, gfn)->id;
1699 }
1700 
1701 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1702 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1703 {
1704 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1705 
1706 	return slot->base_gfn + gfn_offset;
1707 }
1708 
gfn_to_gpa(gfn_t gfn)1709 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1710 {
1711 	return (gpa_t)gfn << PAGE_SHIFT;
1712 }
1713 
gpa_to_gfn(gpa_t gpa)1714 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1715 {
1716 	return (gfn_t)(gpa >> PAGE_SHIFT);
1717 }
1718 
pfn_to_hpa(kvm_pfn_t pfn)1719 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1720 {
1721 	return (hpa_t)pfn << PAGE_SHIFT;
1722 }
1723 
kvm_is_error_gpa(struct kvm * kvm,gpa_t gpa)1724 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1725 {
1726 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1727 
1728 	return kvm_is_error_hva(hva);
1729 }
1730 
1731 enum kvm_stat_kind {
1732 	KVM_STAT_VM,
1733 	KVM_STAT_VCPU,
1734 };
1735 
1736 struct kvm_stat_data {
1737 	struct kvm *kvm;
1738 	const struct _kvm_stats_desc *desc;
1739 	enum kvm_stat_kind kind;
1740 };
1741 
1742 struct _kvm_stats_desc {
1743 	struct kvm_stats_desc desc;
1744 	char name[KVM_STATS_NAME_SIZE];
1745 };
1746 
1747 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1748 	.flags = type | unit | base |					       \
1749 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1750 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1751 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1752 	.exponent = exp,						       \
1753 	.size = sz,							       \
1754 	.bucket_size = bsz
1755 
1756 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1757 	{								       \
1758 		{							       \
1759 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1760 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1761 		},							       \
1762 		.name = #stat,						       \
1763 	}
1764 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1765 	{								       \
1766 		{							       \
1767 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1768 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1769 		},							       \
1770 		.name = #stat,						       \
1771 	}
1772 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1773 	{								       \
1774 		{							       \
1775 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1776 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1777 		},							       \
1778 		.name = #stat,						       \
1779 	}
1780 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1781 	{								       \
1782 		{							       \
1783 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1784 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1785 		},							       \
1786 		.name = #stat,						       \
1787 	}
1788 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1789 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1790 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1791 
1792 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1793 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1794 		unit, base, exponent, 1, 0)
1795 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1796 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1797 		unit, base, exponent, 1, 0)
1798 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1799 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1800 		unit, base, exponent, 1, 0)
1801 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1802 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1803 		unit, base, exponent, sz, bsz)
1804 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1805 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1806 		unit, base, exponent, sz, 0)
1807 
1808 /* Cumulative counter, read/write */
1809 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1810 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1811 		KVM_STATS_BASE_POW10, 0)
1812 /* Instantaneous counter, read only */
1813 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1814 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1815 		KVM_STATS_BASE_POW10, 0)
1816 /* Peak counter, read/write */
1817 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1818 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1819 		KVM_STATS_BASE_POW10, 0)
1820 
1821 /* Instantaneous boolean value, read only */
1822 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
1823 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1824 		KVM_STATS_BASE_POW10, 0)
1825 /* Peak (sticky) boolean value, read/write */
1826 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
1827 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1828 		KVM_STATS_BASE_POW10, 0)
1829 
1830 /* Cumulative time in nanosecond */
1831 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1832 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1833 		KVM_STATS_BASE_POW10, -9)
1834 /* Linear histogram for time in nanosecond */
1835 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
1836 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1837 		KVM_STATS_BASE_POW10, -9, sz, bsz)
1838 /* Logarithmic histogram for time in nanosecond */
1839 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
1840 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1841 		KVM_STATS_BASE_POW10, -9, sz)
1842 
1843 #define KVM_GENERIC_VM_STATS()						       \
1844 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
1845 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1846 
1847 #define KVM_GENERIC_VCPU_STATS()					       \
1848 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1849 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1850 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1851 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1852 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1853 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
1854 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
1855 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1856 			HALT_POLL_HIST_COUNT),				       \
1857 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
1858 			HALT_POLL_HIST_COUNT),				       \
1859 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
1860 			HALT_POLL_HIST_COUNT),				       \
1861 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1862 
1863 extern struct dentry *kvm_debugfs_dir;
1864 
1865 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1866 		       const struct _kvm_stats_desc *desc,
1867 		       void *stats, size_t size_stats,
1868 		       char __user *user_buffer, size_t size, loff_t *offset);
1869 
1870 /**
1871  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1872  * statistics data.
1873  *
1874  * @data: start address of the stats data
1875  * @size: the number of bucket of the stats data
1876  * @value: the new value used to update the linear histogram's bucket
1877  * @bucket_size: the size (width) of a bucket
1878  */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)1879 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1880 						u64 value, size_t bucket_size)
1881 {
1882 	size_t index = div64_u64(value, bucket_size);
1883 
1884 	index = min(index, size - 1);
1885 	++data[index];
1886 }
1887 
1888 /**
1889  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1890  * statistics data.
1891  *
1892  * @data: start address of the stats data
1893  * @size: the number of bucket of the stats data
1894  * @value: the new value used to update the logarithmic histogram's bucket
1895  */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)1896 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1897 {
1898 	size_t index = fls64(value);
1899 
1900 	index = min(index, size - 1);
1901 	++data[index];
1902 }
1903 
1904 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
1905 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1906 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
1907 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1908 
1909 
1910 extern const struct kvm_stats_header kvm_vm_stats_header;
1911 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1912 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1913 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1914 
1915 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_invalidate_retry(struct kvm * kvm,unsigned long mmu_seq)1916 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
1917 {
1918 	if (unlikely(kvm->mmu_invalidate_in_progress))
1919 		return 1;
1920 	/*
1921 	 * Ensure the read of mmu_invalidate_in_progress happens before
1922 	 * the read of mmu_invalidate_seq.  This interacts with the
1923 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
1924 	 * that the caller either sees the old (non-zero) value of
1925 	 * mmu_invalidate_in_progress or the new (incremented) value of
1926 	 * mmu_invalidate_seq.
1927 	 *
1928 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
1929 	 * than under kvm->mmu_lock, for scalability, so can't rely on
1930 	 * kvm->mmu_lock to keep things ordered.
1931 	 */
1932 	smp_rmb();
1933 	if (kvm->mmu_invalidate_seq != mmu_seq)
1934 		return 1;
1935 	return 0;
1936 }
1937 
mmu_invalidate_retry_hva(struct kvm * kvm,unsigned long mmu_seq,unsigned long hva)1938 static inline int mmu_invalidate_retry_hva(struct kvm *kvm,
1939 					   unsigned long mmu_seq,
1940 					   unsigned long hva)
1941 {
1942 	lockdep_assert_held(&kvm->mmu_lock);
1943 	/*
1944 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
1945 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
1946 	 * that might be being invalidated. Note that it may include some false
1947 	 * positives, due to shortcuts when handing concurrent invalidations.
1948 	 */
1949 	if (unlikely(kvm->mmu_invalidate_in_progress) &&
1950 	    hva >= kvm->mmu_invalidate_range_start &&
1951 	    hva < kvm->mmu_invalidate_range_end)
1952 		return 1;
1953 	if (kvm->mmu_invalidate_seq != mmu_seq)
1954 		return 1;
1955 	return 0;
1956 }
1957 #endif
1958 
1959 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1960 
1961 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1962 
1963 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1964 int kvm_set_irq_routing(struct kvm *kvm,
1965 			const struct kvm_irq_routing_entry *entries,
1966 			unsigned nr,
1967 			unsigned flags);
1968 int kvm_set_routing_entry(struct kvm *kvm,
1969 			  struct kvm_kernel_irq_routing_entry *e,
1970 			  const struct kvm_irq_routing_entry *ue);
1971 void kvm_free_irq_routing(struct kvm *kvm);
1972 
1973 #else
1974 
kvm_free_irq_routing(struct kvm * kvm)1975 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1976 
1977 #endif
1978 
1979 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1980 
1981 #ifdef CONFIG_HAVE_KVM_EVENTFD
1982 
1983 void kvm_eventfd_init(struct kvm *kvm);
1984 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1985 
1986 #ifdef CONFIG_HAVE_KVM_IRQFD
1987 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1988 void kvm_irqfd_release(struct kvm *kvm);
1989 void kvm_irq_routing_update(struct kvm *);
1990 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1991 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1992 {
1993 	return -EINVAL;
1994 }
1995 
kvm_irqfd_release(struct kvm * kvm)1996 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1997 #endif
1998 
1999 #else
2000 
kvm_eventfd_init(struct kvm * kvm)2001 static inline void kvm_eventfd_init(struct kvm *kvm) {}
2002 
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)2003 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2004 {
2005 	return -EINVAL;
2006 }
2007 
kvm_irqfd_release(struct kvm * kvm)2008 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2009 
2010 #ifdef CONFIG_HAVE_KVM_IRQCHIP
kvm_irq_routing_update(struct kvm * kvm)2011 static inline void kvm_irq_routing_update(struct kvm *kvm)
2012 {
2013 }
2014 #endif
2015 
kvm_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)2016 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
2017 {
2018 	return -ENOSYS;
2019 }
2020 
2021 #endif /* CONFIG_HAVE_KVM_EVENTFD */
2022 
2023 void kvm_arch_irq_routing_update(struct kvm *kvm);
2024 
__kvm_make_request(int req,struct kvm_vcpu * vcpu)2025 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2026 {
2027 	/*
2028 	 * Ensure the rest of the request is published to kvm_check_request's
2029 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2030 	 */
2031 	smp_wmb();
2032 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2033 }
2034 
kvm_make_request(int req,struct kvm_vcpu * vcpu)2035 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2036 {
2037 	/*
2038 	 * Request that don't require vCPU action should never be logged in
2039 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2040 	 * logged indefinitely and prevent the vCPU from entering the guest.
2041 	 */
2042 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2043 		     (req & KVM_REQUEST_NO_ACTION));
2044 
2045 	__kvm_make_request(req, vcpu);
2046 }
2047 
kvm_request_pending(struct kvm_vcpu * vcpu)2048 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2049 {
2050 	return READ_ONCE(vcpu->requests);
2051 }
2052 
kvm_test_request(int req,struct kvm_vcpu * vcpu)2053 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2054 {
2055 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2056 }
2057 
kvm_clear_request(int req,struct kvm_vcpu * vcpu)2058 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2059 {
2060 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2061 }
2062 
kvm_check_request(int req,struct kvm_vcpu * vcpu)2063 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2064 {
2065 	if (kvm_test_request(req, vcpu)) {
2066 		kvm_clear_request(req, vcpu);
2067 
2068 		/*
2069 		 * Ensure the rest of the request is visible to kvm_check_request's
2070 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2071 		 */
2072 		smp_mb__after_atomic();
2073 		return true;
2074 	} else {
2075 		return false;
2076 	}
2077 }
2078 
2079 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2080 extern bool kvm_rebooting;
2081 #endif
2082 
2083 extern unsigned int halt_poll_ns;
2084 extern unsigned int halt_poll_ns_grow;
2085 extern unsigned int halt_poll_ns_grow_start;
2086 extern unsigned int halt_poll_ns_shrink;
2087 
2088 struct kvm_device {
2089 	const struct kvm_device_ops *ops;
2090 	struct kvm *kvm;
2091 	void *private;
2092 	struct list_head vm_node;
2093 };
2094 
2095 /* create, destroy, and name are mandatory */
2096 struct kvm_device_ops {
2097 	const char *name;
2098 
2099 	/*
2100 	 * create is called holding kvm->lock and any operations not suitable
2101 	 * to do while holding the lock should be deferred to init (see
2102 	 * below).
2103 	 */
2104 	int (*create)(struct kvm_device *dev, u32 type);
2105 
2106 	/*
2107 	 * init is called after create if create is successful and is called
2108 	 * outside of holding kvm->lock.
2109 	 */
2110 	void (*init)(struct kvm_device *dev);
2111 
2112 	/*
2113 	 * Destroy is responsible for freeing dev.
2114 	 *
2115 	 * Destroy may be called before or after destructors are called
2116 	 * on emulated I/O regions, depending on whether a reference is
2117 	 * held by a vcpu or other kvm component that gets destroyed
2118 	 * after the emulated I/O.
2119 	 */
2120 	void (*destroy)(struct kvm_device *dev);
2121 
2122 	/*
2123 	 * Release is an alternative method to free the device. It is
2124 	 * called when the device file descriptor is closed. Once
2125 	 * release is called, the destroy method will not be called
2126 	 * anymore as the device is removed from the device list of
2127 	 * the VM. kvm->lock is held.
2128 	 */
2129 	void (*release)(struct kvm_device *dev);
2130 
2131 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2132 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2133 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2134 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2135 		      unsigned long arg);
2136 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2137 };
2138 
2139 void kvm_device_get(struct kvm_device *dev);
2140 void kvm_device_put(struct kvm_device *dev);
2141 struct kvm_device *kvm_device_from_filp(struct file *filp);
2142 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2143 void kvm_unregister_device_ops(u32 type);
2144 
2145 extern struct kvm_device_ops kvm_mpic_ops;
2146 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2147 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2148 
2149 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2150 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2151 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2152 {
2153 	vcpu->spin_loop.in_spin_loop = val;
2154 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2155 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2156 {
2157 	vcpu->spin_loop.dy_eligible = val;
2158 }
2159 
2160 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2161 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2162 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2163 {
2164 }
2165 
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2166 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2167 {
2168 }
2169 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2170 
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)2171 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2172 {
2173 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2174 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2175 }
2176 
2177 struct kvm_vcpu *kvm_get_running_vcpu(void);
2178 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2179 
2180 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2181 bool kvm_arch_has_irq_bypass(void);
2182 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2183 			   struct irq_bypass_producer *);
2184 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2185 			   struct irq_bypass_producer *);
2186 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2187 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2188 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2189 				  uint32_t guest_irq, bool set);
2190 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2191 				  struct kvm_kernel_irq_routing_entry *);
2192 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2193 
2194 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2195 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2196 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2197 {
2198 	return vcpu->valid_wakeup;
2199 }
2200 
2201 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2202 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2203 {
2204 	return true;
2205 }
2206 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2207 
2208 #ifdef CONFIG_HAVE_KVM_NO_POLL
2209 /* Callback that tells if we must not poll */
2210 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2211 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)2212 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2213 {
2214 	return false;
2215 }
2216 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2217 
2218 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2219 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2220 			       unsigned int ioctl, unsigned long arg);
2221 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2222 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2223 					     unsigned int ioctl,
2224 					     unsigned long arg)
2225 {
2226 	return -ENOIOCTLCMD;
2227 }
2228 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2229 
2230 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
2231 					    unsigned long start, unsigned long end);
2232 
2233 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2234 
2235 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2236 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2237 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)2238 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2239 {
2240 	return 0;
2241 }
2242 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2243 
2244 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2245 
2246 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2247 				uintptr_t data, const char *name,
2248 				struct task_struct **thread_ptr);
2249 
2250 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)2251 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2252 {
2253 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2254 	vcpu->stat.signal_exits++;
2255 }
2256 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2257 
2258 /*
2259  * If more than one page is being (un)accounted, @virt must be the address of
2260  * the first page of a block of pages what were allocated together (i.e
2261  * accounted together).
2262  *
2263  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2264  * is thread-safe.
2265  */
kvm_account_pgtable_pages(void * virt,int nr)2266 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2267 {
2268 	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2269 }
2270 
2271 /*
2272  * This defines how many reserved entries we want to keep before we
2273  * kick the vcpu to the userspace to avoid dirty ring full.  This
2274  * value can be tuned to higher if e.g. PML is enabled on the host.
2275  */
2276 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2277 
2278 /* Max number of entries allowed for each kvm dirty ring */
2279 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2280 
2281 #endif
2282