1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cacheinfo support - processor cache information via sysfs
4 *
5 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6 * Author: Sudeep Holla <sudeep.holla@arm.com>
7 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of_device.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list)
28 #define per_cpu_cacheinfo_idx(cpu, idx) \
29 (per_cpu_cacheinfo(cpu) + (idx))
30
get_cpu_cacheinfo(unsigned int cpu)31 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
32 {
33 return ci_cacheinfo(cpu);
34 }
35
cache_leaves_are_shared(struct cacheinfo * this_leaf,struct cacheinfo * sib_leaf)36 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
37 struct cacheinfo *sib_leaf)
38 {
39 /*
40 * For non DT/ACPI systems, assume unique level 1 caches,
41 * system-wide shared caches for all other levels. This will be used
42 * only if arch specific code has not populated shared_cpu_map
43 */
44 if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)))
45 return !(this_leaf->level == 1);
46
47 if ((sib_leaf->attributes & CACHE_ID) &&
48 (this_leaf->attributes & CACHE_ID))
49 return sib_leaf->id == this_leaf->id;
50
51 return sib_leaf->fw_token == this_leaf->fw_token;
52 }
53
last_level_cache_is_valid(unsigned int cpu)54 bool last_level_cache_is_valid(unsigned int cpu)
55 {
56 struct cacheinfo *llc;
57
58 if (!cache_leaves(cpu))
59 return false;
60
61 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
62
63 return (llc->attributes & CACHE_ID) || !!llc->fw_token;
64
65 }
66
last_level_cache_is_shared(unsigned int cpu_x,unsigned int cpu_y)67 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
68 {
69 struct cacheinfo *llc_x, *llc_y;
70
71 if (!last_level_cache_is_valid(cpu_x) ||
72 !last_level_cache_is_valid(cpu_y))
73 return false;
74
75 llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
76 llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
77
78 return cache_leaves_are_shared(llc_x, llc_y);
79 }
80
81 #ifdef CONFIG_OF
82 /* OF properties to query for a given cache type */
83 struct cache_type_info {
84 const char *size_prop;
85 const char *line_size_props[2];
86 const char *nr_sets_prop;
87 };
88
89 static const struct cache_type_info cache_type_info[] = {
90 {
91 .size_prop = "cache-size",
92 .line_size_props = { "cache-line-size",
93 "cache-block-size", },
94 .nr_sets_prop = "cache-sets",
95 }, {
96 .size_prop = "i-cache-size",
97 .line_size_props = { "i-cache-line-size",
98 "i-cache-block-size", },
99 .nr_sets_prop = "i-cache-sets",
100 }, {
101 .size_prop = "d-cache-size",
102 .line_size_props = { "d-cache-line-size",
103 "d-cache-block-size", },
104 .nr_sets_prop = "d-cache-sets",
105 },
106 };
107
get_cacheinfo_idx(enum cache_type type)108 static inline int get_cacheinfo_idx(enum cache_type type)
109 {
110 if (type == CACHE_TYPE_UNIFIED)
111 return 0;
112 return type;
113 }
114
cache_size(struct cacheinfo * this_leaf,struct device_node * np)115 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
116 {
117 const char *propname;
118 int ct_idx;
119
120 ct_idx = get_cacheinfo_idx(this_leaf->type);
121 propname = cache_type_info[ct_idx].size_prop;
122
123 of_property_read_u32(np, propname, &this_leaf->size);
124 }
125
126 /* not cache_line_size() because that's a macro in include/linux/cache.h */
cache_get_line_size(struct cacheinfo * this_leaf,struct device_node * np)127 static void cache_get_line_size(struct cacheinfo *this_leaf,
128 struct device_node *np)
129 {
130 int i, lim, ct_idx;
131
132 ct_idx = get_cacheinfo_idx(this_leaf->type);
133 lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
134
135 for (i = 0; i < lim; i++) {
136 int ret;
137 u32 line_size;
138 const char *propname;
139
140 propname = cache_type_info[ct_idx].line_size_props[i];
141 ret = of_property_read_u32(np, propname, &line_size);
142 if (!ret) {
143 this_leaf->coherency_line_size = line_size;
144 break;
145 }
146 }
147 }
148
cache_nr_sets(struct cacheinfo * this_leaf,struct device_node * np)149 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
150 {
151 const char *propname;
152 int ct_idx;
153
154 ct_idx = get_cacheinfo_idx(this_leaf->type);
155 propname = cache_type_info[ct_idx].nr_sets_prop;
156
157 of_property_read_u32(np, propname, &this_leaf->number_of_sets);
158 }
159
cache_associativity(struct cacheinfo * this_leaf)160 static void cache_associativity(struct cacheinfo *this_leaf)
161 {
162 unsigned int line_size = this_leaf->coherency_line_size;
163 unsigned int nr_sets = this_leaf->number_of_sets;
164 unsigned int size = this_leaf->size;
165
166 /*
167 * If the cache is fully associative, there is no need to
168 * check the other properties.
169 */
170 if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
171 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
172 }
173
cache_node_is_unified(struct cacheinfo * this_leaf,struct device_node * np)174 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
175 struct device_node *np)
176 {
177 return of_property_read_bool(np, "cache-unified");
178 }
179
cache_of_set_props(struct cacheinfo * this_leaf,struct device_node * np)180 static void cache_of_set_props(struct cacheinfo *this_leaf,
181 struct device_node *np)
182 {
183 /*
184 * init_cache_level must setup the cache level correctly
185 * overriding the architecturally specified levels, so
186 * if type is NONE at this stage, it should be unified
187 */
188 if (this_leaf->type == CACHE_TYPE_NOCACHE &&
189 cache_node_is_unified(this_leaf, np))
190 this_leaf->type = CACHE_TYPE_UNIFIED;
191 cache_size(this_leaf, np);
192 cache_get_line_size(this_leaf, np);
193 cache_nr_sets(this_leaf, np);
194 cache_associativity(this_leaf);
195 }
196
cache_setup_of_node(unsigned int cpu)197 static int cache_setup_of_node(unsigned int cpu)
198 {
199 struct device_node *np, *prev;
200 struct cacheinfo *this_leaf;
201 unsigned int index = 0;
202
203 np = of_cpu_device_node_get(cpu);
204 if (!np) {
205 pr_err("Failed to find cpu%d device node\n", cpu);
206 return -ENOENT;
207 }
208
209 prev = np;
210
211 while (index < cache_leaves(cpu)) {
212 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
213 if (this_leaf->level != 1) {
214 np = of_find_next_cache_node(np);
215 of_node_put(prev);
216 prev = np;
217 if (!np)
218 break;
219 }
220 cache_of_set_props(this_leaf, np);
221 this_leaf->fw_token = np;
222 index++;
223 }
224
225 of_node_put(np);
226
227 if (index != cache_leaves(cpu)) /* not all OF nodes populated */
228 return -ENOENT;
229
230 return 0;
231 }
232
of_count_cache_leaves(struct device_node * np)233 static int of_count_cache_leaves(struct device_node *np)
234 {
235 unsigned int leaves = 0;
236
237 if (of_property_read_bool(np, "cache-size"))
238 ++leaves;
239 if (of_property_read_bool(np, "i-cache-size"))
240 ++leaves;
241 if (of_property_read_bool(np, "d-cache-size"))
242 ++leaves;
243
244 if (!leaves) {
245 /* The '[i-|d-|]cache-size' property is required, but
246 * if absent, fallback on the 'cache-unified' property.
247 */
248 if (of_property_read_bool(np, "cache-unified"))
249 return 1;
250 else
251 return 2;
252 }
253
254 return leaves;
255 }
256
init_of_cache_level(unsigned int cpu)257 int init_of_cache_level(unsigned int cpu)
258 {
259 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
260 struct device_node *np = of_cpu_device_node_get(cpu);
261 struct device_node *prev = NULL;
262 unsigned int levels = 0, leaves, level;
263
264 leaves = of_count_cache_leaves(np);
265 if (leaves > 0)
266 levels = 1;
267
268 prev = np;
269 while ((np = of_find_next_cache_node(np))) {
270 of_node_put(prev);
271 prev = np;
272 if (!of_device_is_compatible(np, "cache"))
273 goto err_out;
274 if (of_property_read_u32(np, "cache-level", &level))
275 goto err_out;
276 if (level <= levels)
277 goto err_out;
278
279 leaves += of_count_cache_leaves(np);
280 levels = level;
281 }
282
283 of_node_put(np);
284 this_cpu_ci->num_levels = levels;
285 this_cpu_ci->num_leaves = leaves;
286
287 return 0;
288
289 err_out:
290 of_node_put(np);
291 return -EINVAL;
292 }
293
294 #else
cache_setup_of_node(unsigned int cpu)295 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
init_of_cache_level(unsigned int cpu)296 int init_of_cache_level(unsigned int cpu) { return 0; }
297 #endif
298
cache_setup_acpi(unsigned int cpu)299 int __weak cache_setup_acpi(unsigned int cpu)
300 {
301 return -ENOTSUPP;
302 }
303
304 unsigned int coherency_max_size;
305
cache_setup_properties(unsigned int cpu)306 static int cache_setup_properties(unsigned int cpu)
307 {
308 int ret = 0;
309
310 if (of_have_populated_dt())
311 ret = cache_setup_of_node(cpu);
312 else if (!acpi_disabled)
313 ret = cache_setup_acpi(cpu);
314
315 return ret;
316 }
317
cache_shared_cpu_map_setup(unsigned int cpu)318 static int cache_shared_cpu_map_setup(unsigned int cpu)
319 {
320 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
321 struct cacheinfo *this_leaf, *sib_leaf;
322 unsigned int index, sib_index;
323 int ret = 0;
324
325 if (this_cpu_ci->cpu_map_populated)
326 return 0;
327
328 /*
329 * skip setting up cache properties if LLC is valid, just need
330 * to update the shared cpu_map if the cache attributes were
331 * populated early before all the cpus are brought online
332 */
333 if (!last_level_cache_is_valid(cpu)) {
334 ret = cache_setup_properties(cpu);
335 if (ret)
336 return ret;
337 }
338
339 for (index = 0; index < cache_leaves(cpu); index++) {
340 unsigned int i;
341
342 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
343
344 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
345 for_each_online_cpu(i) {
346 struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
347
348 if (i == cpu || !sib_cpu_ci->info_list)
349 continue;/* skip if itself or no cacheinfo */
350 for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
351 sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);
352 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
353 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
354 cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
355 break;
356 }
357 }
358 }
359 /* record the maximum cache line size */
360 if (this_leaf->coherency_line_size > coherency_max_size)
361 coherency_max_size = this_leaf->coherency_line_size;
362 }
363
364 return 0;
365 }
366
cache_shared_cpu_map_remove(unsigned int cpu)367 static void cache_shared_cpu_map_remove(unsigned int cpu)
368 {
369 struct cacheinfo *this_leaf, *sib_leaf;
370 unsigned int sibling, index, sib_index;
371
372 for (index = 0; index < cache_leaves(cpu); index++) {
373 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
374 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
375 struct cpu_cacheinfo *sib_cpu_ci =
376 get_cpu_cacheinfo(sibling);
377
378 if (sibling == cpu || !sib_cpu_ci->info_list)
379 continue;/* skip if itself or no cacheinfo */
380
381 for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
382 sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);
383 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
384 cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
385 cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
386 break;
387 }
388 }
389 }
390 }
391 }
392
free_cache_attributes(unsigned int cpu)393 static void free_cache_attributes(unsigned int cpu)
394 {
395 if (!per_cpu_cacheinfo(cpu))
396 return;
397
398 cache_shared_cpu_map_remove(cpu);
399 }
400
init_cache_level(unsigned int cpu)401 int __weak init_cache_level(unsigned int cpu)
402 {
403 return -ENOENT;
404 }
405
populate_cache_leaves(unsigned int cpu)406 int __weak populate_cache_leaves(unsigned int cpu)
407 {
408 return -ENOENT;
409 }
410
411 static inline
allocate_cache_info(int cpu)412 int allocate_cache_info(int cpu)
413 {
414 per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
415 sizeof(struct cacheinfo), GFP_ATOMIC);
416 if (!per_cpu_cacheinfo(cpu)) {
417 cache_leaves(cpu) = 0;
418 return -ENOMEM;
419 }
420
421 return 0;
422 }
423
fetch_cache_info(unsigned int cpu)424 int fetch_cache_info(unsigned int cpu)
425 {
426 struct cpu_cacheinfo *this_cpu_ci;
427 unsigned int levels = 0, split_levels = 0;
428 int ret;
429
430 if (acpi_disabled) {
431 ret = init_of_cache_level(cpu);
432 if (ret < 0)
433 return ret;
434 } else {
435 ret = acpi_get_cache_info(cpu, &levels, &split_levels);
436 if (ret < 0)
437 return ret;
438
439 this_cpu_ci = get_cpu_cacheinfo(cpu);
440 this_cpu_ci->num_levels = levels;
441 /*
442 * This assumes that:
443 * - there cannot be any split caches (data/instruction)
444 * above a unified cache
445 * - data/instruction caches come by pair
446 */
447 this_cpu_ci->num_leaves = levels + split_levels;
448 }
449 if (!cache_leaves(cpu))
450 return -ENOENT;
451
452 return allocate_cache_info(cpu);
453 }
454
detect_cache_attributes(unsigned int cpu)455 int detect_cache_attributes(unsigned int cpu)
456 {
457 int ret;
458
459 /* Since early initialization/allocation of the cacheinfo is allowed
460 * via fetch_cache_info() and this also gets called as CPU hotplug
461 * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped
462 * as it will happen only once (the cacheinfo memory is never freed).
463 * Just populate the cacheinfo.
464 */
465 if (per_cpu_cacheinfo(cpu))
466 goto populate_leaves;
467
468 if (init_cache_level(cpu) || !cache_leaves(cpu))
469 return -ENOENT;
470
471 ret = allocate_cache_info(cpu);
472 if (ret)
473 return ret;
474
475 populate_leaves:
476 /*
477 * populate_cache_leaves() may completely setup the cache leaves and
478 * shared_cpu_map or it may leave it partially setup.
479 */
480 ret = populate_cache_leaves(cpu);
481 if (ret)
482 goto free_ci;
483
484 /*
485 * For systems using DT for cache hierarchy, fw_token
486 * and shared_cpu_map will be set up here only if they are
487 * not populated already
488 */
489 ret = cache_shared_cpu_map_setup(cpu);
490 if (ret) {
491 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
492 goto free_ci;
493 }
494
495 return 0;
496
497 free_ci:
498 free_cache_attributes(cpu);
499 return ret;
500 }
501
502 /* pointer to cpuX/cache device */
503 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
504 #define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu))
505
506 static cpumask_t cache_dev_map;
507
508 /* pointer to array of devices for cpuX/cache/indexY */
509 static DEFINE_PER_CPU(struct device **, ci_index_dev);
510 #define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu))
511 #define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx])
512
513 #define show_one(file_name, object) \
514 static ssize_t file_name##_show(struct device *dev, \
515 struct device_attribute *attr, char *buf) \
516 { \
517 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
518 return sysfs_emit(buf, "%u\n", this_leaf->object); \
519 }
520
521 show_one(id, id);
522 show_one(level, level);
523 show_one(coherency_line_size, coherency_line_size);
524 show_one(number_of_sets, number_of_sets);
525 show_one(physical_line_partition, physical_line_partition);
526 show_one(ways_of_associativity, ways_of_associativity);
527
size_show(struct device * dev,struct device_attribute * attr,char * buf)528 static ssize_t size_show(struct device *dev,
529 struct device_attribute *attr, char *buf)
530 {
531 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
532
533 return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
534 }
535
shared_cpu_map_show(struct device * dev,struct device_attribute * attr,char * buf)536 static ssize_t shared_cpu_map_show(struct device *dev,
537 struct device_attribute *attr, char *buf)
538 {
539 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
540 const struct cpumask *mask = &this_leaf->shared_cpu_map;
541
542 return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
543 }
544
shared_cpu_list_show(struct device * dev,struct device_attribute * attr,char * buf)545 static ssize_t shared_cpu_list_show(struct device *dev,
546 struct device_attribute *attr, char *buf)
547 {
548 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
549 const struct cpumask *mask = &this_leaf->shared_cpu_map;
550
551 return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
552 }
553
type_show(struct device * dev,struct device_attribute * attr,char * buf)554 static ssize_t type_show(struct device *dev,
555 struct device_attribute *attr, char *buf)
556 {
557 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
558 const char *output;
559
560 switch (this_leaf->type) {
561 case CACHE_TYPE_DATA:
562 output = "Data";
563 break;
564 case CACHE_TYPE_INST:
565 output = "Instruction";
566 break;
567 case CACHE_TYPE_UNIFIED:
568 output = "Unified";
569 break;
570 default:
571 return -EINVAL;
572 }
573
574 return sysfs_emit(buf, "%s\n", output);
575 }
576
allocation_policy_show(struct device * dev,struct device_attribute * attr,char * buf)577 static ssize_t allocation_policy_show(struct device *dev,
578 struct device_attribute *attr, char *buf)
579 {
580 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
581 unsigned int ci_attr = this_leaf->attributes;
582 const char *output;
583
584 if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
585 output = "ReadWriteAllocate";
586 else if (ci_attr & CACHE_READ_ALLOCATE)
587 output = "ReadAllocate";
588 else if (ci_attr & CACHE_WRITE_ALLOCATE)
589 output = "WriteAllocate";
590 else
591 return 0;
592
593 return sysfs_emit(buf, "%s\n", output);
594 }
595
write_policy_show(struct device * dev,struct device_attribute * attr,char * buf)596 static ssize_t write_policy_show(struct device *dev,
597 struct device_attribute *attr, char *buf)
598 {
599 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
600 unsigned int ci_attr = this_leaf->attributes;
601 int n = 0;
602
603 if (ci_attr & CACHE_WRITE_THROUGH)
604 n = sysfs_emit(buf, "WriteThrough\n");
605 else if (ci_attr & CACHE_WRITE_BACK)
606 n = sysfs_emit(buf, "WriteBack\n");
607 return n;
608 }
609
610 static DEVICE_ATTR_RO(id);
611 static DEVICE_ATTR_RO(level);
612 static DEVICE_ATTR_RO(type);
613 static DEVICE_ATTR_RO(coherency_line_size);
614 static DEVICE_ATTR_RO(ways_of_associativity);
615 static DEVICE_ATTR_RO(number_of_sets);
616 static DEVICE_ATTR_RO(size);
617 static DEVICE_ATTR_RO(allocation_policy);
618 static DEVICE_ATTR_RO(write_policy);
619 static DEVICE_ATTR_RO(shared_cpu_map);
620 static DEVICE_ATTR_RO(shared_cpu_list);
621 static DEVICE_ATTR_RO(physical_line_partition);
622
623 static struct attribute *cache_default_attrs[] = {
624 &dev_attr_id.attr,
625 &dev_attr_type.attr,
626 &dev_attr_level.attr,
627 &dev_attr_shared_cpu_map.attr,
628 &dev_attr_shared_cpu_list.attr,
629 &dev_attr_coherency_line_size.attr,
630 &dev_attr_ways_of_associativity.attr,
631 &dev_attr_number_of_sets.attr,
632 &dev_attr_size.attr,
633 &dev_attr_allocation_policy.attr,
634 &dev_attr_write_policy.attr,
635 &dev_attr_physical_line_partition.attr,
636 NULL
637 };
638
639 static umode_t
cache_default_attrs_is_visible(struct kobject * kobj,struct attribute * attr,int unused)640 cache_default_attrs_is_visible(struct kobject *kobj,
641 struct attribute *attr, int unused)
642 {
643 struct device *dev = kobj_to_dev(kobj);
644 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
645 const struct cpumask *mask = &this_leaf->shared_cpu_map;
646 umode_t mode = attr->mode;
647
648 if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
649 return mode;
650 if ((attr == &dev_attr_type.attr) && this_leaf->type)
651 return mode;
652 if ((attr == &dev_attr_level.attr) && this_leaf->level)
653 return mode;
654 if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
655 return mode;
656 if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
657 return mode;
658 if ((attr == &dev_attr_coherency_line_size.attr) &&
659 this_leaf->coherency_line_size)
660 return mode;
661 if ((attr == &dev_attr_ways_of_associativity.attr) &&
662 this_leaf->size) /* allow 0 = full associativity */
663 return mode;
664 if ((attr == &dev_attr_number_of_sets.attr) &&
665 this_leaf->number_of_sets)
666 return mode;
667 if ((attr == &dev_attr_size.attr) && this_leaf->size)
668 return mode;
669 if ((attr == &dev_attr_write_policy.attr) &&
670 (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
671 return mode;
672 if ((attr == &dev_attr_allocation_policy.attr) &&
673 (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
674 return mode;
675 if ((attr == &dev_attr_physical_line_partition.attr) &&
676 this_leaf->physical_line_partition)
677 return mode;
678
679 return 0;
680 }
681
682 static const struct attribute_group cache_default_group = {
683 .attrs = cache_default_attrs,
684 .is_visible = cache_default_attrs_is_visible,
685 };
686
687 static const struct attribute_group *cache_default_groups[] = {
688 &cache_default_group,
689 NULL,
690 };
691
692 static const struct attribute_group *cache_private_groups[] = {
693 &cache_default_group,
694 NULL, /* Place holder for private group */
695 NULL,
696 };
697
698 const struct attribute_group *
cache_get_priv_group(struct cacheinfo * this_leaf)699 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
700 {
701 return NULL;
702 }
703
704 static const struct attribute_group **
cache_get_attribute_groups(struct cacheinfo * this_leaf)705 cache_get_attribute_groups(struct cacheinfo *this_leaf)
706 {
707 const struct attribute_group *priv_group =
708 cache_get_priv_group(this_leaf);
709
710 if (!priv_group)
711 return cache_default_groups;
712
713 if (!cache_private_groups[1])
714 cache_private_groups[1] = priv_group;
715
716 return cache_private_groups;
717 }
718
719 /* Add/Remove cache interface for CPU device */
cpu_cache_sysfs_exit(unsigned int cpu)720 static void cpu_cache_sysfs_exit(unsigned int cpu)
721 {
722 int i;
723 struct device *ci_dev;
724
725 if (per_cpu_index_dev(cpu)) {
726 for (i = 0; i < cache_leaves(cpu); i++) {
727 ci_dev = per_cache_index_dev(cpu, i);
728 if (!ci_dev)
729 continue;
730 device_unregister(ci_dev);
731 }
732 kfree(per_cpu_index_dev(cpu));
733 per_cpu_index_dev(cpu) = NULL;
734 }
735 device_unregister(per_cpu_cache_dev(cpu));
736 per_cpu_cache_dev(cpu) = NULL;
737 }
738
cpu_cache_sysfs_init(unsigned int cpu)739 static int cpu_cache_sysfs_init(unsigned int cpu)
740 {
741 struct device *dev = get_cpu_device(cpu);
742
743 if (per_cpu_cacheinfo(cpu) == NULL)
744 return -ENOENT;
745
746 per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
747 if (IS_ERR(per_cpu_cache_dev(cpu)))
748 return PTR_ERR(per_cpu_cache_dev(cpu));
749
750 /* Allocate all required memory */
751 per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
752 sizeof(struct device *), GFP_KERNEL);
753 if (unlikely(per_cpu_index_dev(cpu) == NULL))
754 goto err_out;
755
756 return 0;
757
758 err_out:
759 cpu_cache_sysfs_exit(cpu);
760 return -ENOMEM;
761 }
762
cache_add_dev(unsigned int cpu)763 static int cache_add_dev(unsigned int cpu)
764 {
765 unsigned int i;
766 int rc;
767 struct device *ci_dev, *parent;
768 struct cacheinfo *this_leaf;
769 const struct attribute_group **cache_groups;
770
771 rc = cpu_cache_sysfs_init(cpu);
772 if (unlikely(rc < 0))
773 return rc;
774
775 parent = per_cpu_cache_dev(cpu);
776 for (i = 0; i < cache_leaves(cpu); i++) {
777 this_leaf = per_cpu_cacheinfo_idx(cpu, i);
778 if (this_leaf->disable_sysfs)
779 continue;
780 if (this_leaf->type == CACHE_TYPE_NOCACHE)
781 break;
782 cache_groups = cache_get_attribute_groups(this_leaf);
783 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
784 "index%1u", i);
785 if (IS_ERR(ci_dev)) {
786 rc = PTR_ERR(ci_dev);
787 goto err;
788 }
789 per_cache_index_dev(cpu, i) = ci_dev;
790 }
791 cpumask_set_cpu(cpu, &cache_dev_map);
792
793 return 0;
794 err:
795 cpu_cache_sysfs_exit(cpu);
796 return rc;
797 }
798
cacheinfo_cpu_online(unsigned int cpu)799 static int cacheinfo_cpu_online(unsigned int cpu)
800 {
801 int rc = detect_cache_attributes(cpu);
802
803 if (rc)
804 return rc;
805 rc = cache_add_dev(cpu);
806 if (rc)
807 free_cache_attributes(cpu);
808 return rc;
809 }
810
cacheinfo_cpu_pre_down(unsigned int cpu)811 static int cacheinfo_cpu_pre_down(unsigned int cpu)
812 {
813 if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
814 cpu_cache_sysfs_exit(cpu);
815
816 free_cache_attributes(cpu);
817 return 0;
818 }
819
cacheinfo_sysfs_init(void)820 static int __init cacheinfo_sysfs_init(void)
821 {
822 return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
823 "base/cacheinfo:online",
824 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
825 }
826 device_initcall(cacheinfo_sysfs_init);
827