1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 * Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2016 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more details.
17 ***********************************************************************/
18 #include <linux/pci.h>
19 #include <linux/netdevice.h>
20 #include "liquidio_common.h"
21 #include "octeon_droq.h"
22 #include "octeon_iq.h"
23 #include "response_manager.h"
24 #include "octeon_device.h"
25 #include "octeon_main.h"
26 #include "cn66xx_regs.h"
27 #include "cn66xx_device.h"
28
lio_cn6xxx_soft_reset(struct octeon_device * oct)29 int lio_cn6xxx_soft_reset(struct octeon_device *oct)
30 {
31 octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);
32
33 dev_dbg(&oct->pci_dev->dev, "BIST enabled for soft reset\n");
34
35 lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_BIST);
36 octeon_write_csr64(oct, CN6XXX_SLI_SCRATCH1, 0x1234ULL);
37
38 lio_pci_readq(oct, CN6XXX_CIU_SOFT_RST);
39 lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_RST);
40
41 /* Wait for 10ms as Octeon resets. */
42 mdelay(100);
43
44 if (octeon_read_csr64(oct, CN6XXX_SLI_SCRATCH1)) {
45 dev_err(&oct->pci_dev->dev, "Soft reset failed\n");
46 return 1;
47 }
48
49 dev_dbg(&oct->pci_dev->dev, "Reset completed\n");
50 octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);
51
52 return 0;
53 }
54
lio_cn6xxx_enable_error_reporting(struct octeon_device * oct)55 void lio_cn6xxx_enable_error_reporting(struct octeon_device *oct)
56 {
57 u32 val;
58
59 pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
60 if (val & 0x000c0000) {
61 dev_err(&oct->pci_dev->dev, "PCI-E Link error detected: 0x%08x\n",
62 val & 0x000c0000);
63 }
64
65 val |= 0xf; /* Enable Link error reporting */
66
67 dev_dbg(&oct->pci_dev->dev, "Enabling PCI-E error reporting..\n");
68 pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
69 }
70
lio_cn6xxx_setup_pcie_mps(struct octeon_device * oct,enum octeon_pcie_mps mps)71 void lio_cn6xxx_setup_pcie_mps(struct octeon_device *oct,
72 enum octeon_pcie_mps mps)
73 {
74 u32 val;
75 u64 r64;
76
77 /* Read config register for MPS */
78 pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
79
80 if (mps == PCIE_MPS_DEFAULT) {
81 mps = ((val & (0x7 << 5)) >> 5);
82 } else {
83 val &= ~(0x7 << 5); /* Turn off any MPS bits */
84 val |= (mps << 5); /* Set MPS */
85 pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
86 }
87
88 /* Set MPS in DPI_SLI_PRT0_CFG to the same value. */
89 r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
90 r64 |= (mps << 4);
91 lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
92 }
93
lio_cn6xxx_setup_pcie_mrrs(struct octeon_device * oct,enum octeon_pcie_mrrs mrrs)94 void lio_cn6xxx_setup_pcie_mrrs(struct octeon_device *oct,
95 enum octeon_pcie_mrrs mrrs)
96 {
97 u32 val;
98 u64 r64;
99
100 /* Read config register for MRRS */
101 pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
102
103 if (mrrs == PCIE_MRRS_DEFAULT) {
104 mrrs = ((val & (0x7 << 12)) >> 12);
105 } else {
106 val &= ~(0x7 << 12); /* Turn off any MRRS bits */
107 val |= (mrrs << 12); /* Set MRRS */
108 pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
109 }
110
111 /* Set MRRS in SLI_S2M_PORT0_CTL to the same value. */
112 r64 = octeon_read_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port));
113 r64 |= mrrs;
114 octeon_write_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port), r64);
115
116 /* Set MRRS in DPI_SLI_PRT0_CFG to the same value. */
117 r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
118 r64 |= mrrs;
119 lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
120 }
121
lio_cn6xxx_coprocessor_clock(struct octeon_device * oct)122 u32 lio_cn6xxx_coprocessor_clock(struct octeon_device *oct)
123 {
124 /* Bits 29:24 of MIO_RST_BOOT holds the ref. clock multiplier
125 * for SLI.
126 */
127 return ((lio_pci_readq(oct, CN6XXX_MIO_RST_BOOT) >> 24) & 0x3f) * 50;
128 }
129
lio_cn6xxx_get_oq_ticks(struct octeon_device * oct,u32 time_intr_in_us)130 u32 lio_cn6xxx_get_oq_ticks(struct octeon_device *oct,
131 u32 time_intr_in_us)
132 {
133 /* This gives the SLI clock per microsec */
134 u32 oqticks_per_us = lio_cn6xxx_coprocessor_clock(oct);
135
136 /* core clock per us / oq ticks will be fractional. TO avoid that
137 * we use the method below.
138 */
139
140 /* This gives the clock cycles per millisecond */
141 oqticks_per_us *= 1000;
142
143 /* This gives the oq ticks (1024 core clock cycles) per millisecond */
144 oqticks_per_us /= 1024;
145
146 /* time_intr is in microseconds. The next 2 steps gives the oq ticks
147 * corressponding to time_intr.
148 */
149 oqticks_per_us *= time_intr_in_us;
150 oqticks_per_us /= 1000;
151
152 return oqticks_per_us;
153 }
154
lio_cn6xxx_setup_global_input_regs(struct octeon_device * oct)155 void lio_cn6xxx_setup_global_input_regs(struct octeon_device *oct)
156 {
157 /* Select Round-Robin Arb, ES, RO, NS for Input Queues */
158 octeon_write_csr(oct, CN6XXX_SLI_PKT_INPUT_CONTROL,
159 CN6XXX_INPUT_CTL_MASK);
160
161 /* Instruction Read Size - Max 4 instructions per PCIE Read */
162 octeon_write_csr64(oct, CN6XXX_SLI_PKT_INSTR_RD_SIZE,
163 0xFFFFFFFFFFFFFFFFULL);
164
165 /* Select PCIE Port for all Input rings. */
166 octeon_write_csr64(oct, CN6XXX_SLI_IN_PCIE_PORT,
167 (oct->pcie_port * 0x5555555555555555ULL));
168 }
169
lio_cn66xx_setup_pkt_ctl_regs(struct octeon_device * oct)170 static void lio_cn66xx_setup_pkt_ctl_regs(struct octeon_device *oct)
171 {
172 u64 pktctl;
173
174 struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
175
176 pktctl = octeon_read_csr64(oct, CN6XXX_SLI_PKT_CTL);
177
178 /* 66XX SPECIFIC */
179 if (CFG_GET_OQ_MAX_Q(cn6xxx->conf) <= 4)
180 /* Disable RING_EN if only upto 4 rings are used. */
181 pktctl &= ~(1 << 4);
182 else
183 pktctl |= (1 << 4);
184
185 if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf))
186 pktctl |= 0xF;
187 else
188 /* Disable per-port backpressure. */
189 pktctl &= ~0xF;
190 octeon_write_csr64(oct, CN6XXX_SLI_PKT_CTL, pktctl);
191 }
192
lio_cn6xxx_setup_global_output_regs(struct octeon_device * oct)193 void lio_cn6xxx_setup_global_output_regs(struct octeon_device *oct)
194 {
195 u32 time_threshold;
196 struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
197
198 /* / Select PCI-E Port for all Output queues */
199 octeon_write_csr64(oct, CN6XXX_SLI_PKT_PCIE_PORT64,
200 (oct->pcie_port * 0x5555555555555555ULL));
201
202 if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf)) {
203 octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 32);
204 } else {
205 /* / Set Output queue watermark to 0 to disable backpressure */
206 octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 0);
207 }
208
209 /* / Select Packet count instead of bytes for SLI_PKTi_CNTS[CNT] */
210 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_BMODE, 0);
211
212 /* Select ES, RO, NS setting from register for Output Queue Packet
213 * Address
214 */
215 octeon_write_csr(oct, CN6XXX_SLI_PKT_DPADDR, 0xFFFFFFFF);
216
217 /* No Relaxed Ordering, No Snoop, 64-bit swap for Output
218 * Queue ScatterList
219 */
220 octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_ROR, 0);
221 octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_NS, 0);
222
223 /* / ENDIAN_SPECIFIC CHANGES - 0 works for LE. */
224 #ifdef __BIG_ENDIAN_BITFIELD
225 octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64,
226 0x5555555555555555ULL);
227 #else
228 octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64, 0ULL);
229 #endif
230
231 /* / No Relaxed Ordering, No Snoop, 64-bit swap for Output Queue Data */
232 octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_ROR, 0);
233 octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_NS, 0);
234 octeon_write_csr64(oct, CN6XXX_SLI_PKT_DATA_OUT_ES64,
235 0x5555555555555555ULL);
236
237 /* / Set up interrupt packet and time threshold */
238 octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_PKTS,
239 (u32)CFG_GET_OQ_INTR_PKT(cn6xxx->conf));
240 time_threshold =
241 lio_cn6xxx_get_oq_ticks(oct, (u32)
242 CFG_GET_OQ_INTR_TIME(cn6xxx->conf));
243
244 octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_TIME, time_threshold);
245 }
246
lio_cn6xxx_setup_device_regs(struct octeon_device * oct)247 static int lio_cn6xxx_setup_device_regs(struct octeon_device *oct)
248 {
249 lio_cn6xxx_setup_pcie_mps(oct, PCIE_MPS_DEFAULT);
250 lio_cn6xxx_setup_pcie_mrrs(oct, PCIE_MRRS_512B);
251 lio_cn6xxx_enable_error_reporting(oct);
252
253 lio_cn6xxx_setup_global_input_regs(oct);
254 lio_cn66xx_setup_pkt_ctl_regs(oct);
255 lio_cn6xxx_setup_global_output_regs(oct);
256
257 /* Default error timeout value should be 0x200000 to avoid host hang
258 * when reads invalid register
259 */
260 octeon_write_csr64(oct, CN6XXX_SLI_WINDOW_CTL, 0x200000ULL);
261 return 0;
262 }
263
lio_cn6xxx_setup_iq_regs(struct octeon_device * oct,u32 iq_no)264 void lio_cn6xxx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
265 {
266 struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
267
268 octeon_write_csr64(oct, CN6XXX_SLI_IQ_PKT_INSTR_HDR64(iq_no), 0);
269
270 /* Write the start of the input queue's ring and its size */
271 octeon_write_csr64(oct, CN6XXX_SLI_IQ_BASE_ADDR64(iq_no),
272 iq->base_addr_dma);
273 octeon_write_csr(oct, CN6XXX_SLI_IQ_SIZE(iq_no), iq->max_count);
274
275 /* Remember the doorbell & instruction count register addr for this
276 * queue
277 */
278 iq->doorbell_reg = oct->mmio[0].hw_addr + CN6XXX_SLI_IQ_DOORBELL(iq_no);
279 iq->inst_cnt_reg = oct->mmio[0].hw_addr
280 + CN6XXX_SLI_IQ_INSTR_COUNT(iq_no);
281 dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n",
282 iq_no, iq->doorbell_reg, iq->inst_cnt_reg);
283
284 /* Store the current instruction counter
285 * (used in flush_iq calculation)
286 */
287 iq->reset_instr_cnt = readl(iq->inst_cnt_reg);
288 }
289
lio_cn66xx_setup_iq_regs(struct octeon_device * oct,u32 iq_no)290 static void lio_cn66xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
291 {
292 lio_cn6xxx_setup_iq_regs(oct, iq_no);
293
294 /* Backpressure for this queue - WMARK set to all F's. This effectively
295 * disables the backpressure mechanism.
296 */
297 octeon_write_csr64(oct, CN66XX_SLI_IQ_BP64(iq_no),
298 (0xFFFFFFFFULL << 32));
299 }
300
lio_cn6xxx_setup_oq_regs(struct octeon_device * oct,u32 oq_no)301 void lio_cn6xxx_setup_oq_regs(struct octeon_device *oct, u32 oq_no)
302 {
303 u32 intr;
304 struct octeon_droq *droq = oct->droq[oq_no];
305
306 octeon_write_csr64(oct, CN6XXX_SLI_OQ_BASE_ADDR64(oq_no),
307 droq->desc_ring_dma);
308 octeon_write_csr(oct, CN6XXX_SLI_OQ_SIZE(oq_no), droq->max_count);
309
310 octeon_write_csr(oct, CN6XXX_SLI_OQ_BUFF_INFO_SIZE(oq_no),
311 droq->buffer_size);
312
313 /* Get the mapped address of the pkt_sent and pkts_credit regs */
314 droq->pkts_sent_reg =
315 oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_SENT(oq_no);
316 droq->pkts_credit_reg =
317 oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_CREDIT(oq_no);
318
319 /* Enable this output queue to generate Packet Timer Interrupt */
320 intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
321 intr |= (1 << oq_no);
322 octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB, intr);
323
324 /* Enable this output queue to generate Packet Timer Interrupt */
325 intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
326 intr |= (1 << oq_no);
327 octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB, intr);
328 }
329
lio_cn6xxx_enable_io_queues(struct octeon_device * oct)330 int lio_cn6xxx_enable_io_queues(struct octeon_device *oct)
331 {
332 u32 mask;
333
334 mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE);
335 mask |= oct->io_qmask.iq64B;
336 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE, mask);
337
338 mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
339 mask |= oct->io_qmask.iq;
340 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);
341
342 mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
343 mask |= oct->io_qmask.oq;
344 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);
345
346 return 0;
347 }
348
lio_cn6xxx_disable_io_queues(struct octeon_device * oct)349 void lio_cn6xxx_disable_io_queues(struct octeon_device *oct)
350 {
351 int i;
352 u32 mask, loop = HZ;
353 u32 d32;
354
355 /* Reset the Enable bits for Input Queues. */
356 mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
357 mask ^= oct->io_qmask.iq;
358 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);
359
360 /* Wait until hardware indicates that the queues are out of reset. */
361 mask = (u32)oct->io_qmask.iq;
362 d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
363 while (((d32 & mask) != mask) && loop--) {
364 d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
365 schedule_timeout_uninterruptible(1);
366 }
367
368 /* Reset the doorbell register for each Input queue. */
369 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
370 if (!(oct->io_qmask.iq & BIT_ULL(i)))
371 continue;
372 octeon_write_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i), 0xFFFFFFFF);
373 d32 = octeon_read_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i));
374 }
375
376 /* Reset the Enable bits for Output Queues. */
377 mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
378 mask ^= oct->io_qmask.oq;
379 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);
380
381 /* Wait until hardware indicates that the queues are out of reset. */
382 loop = HZ;
383 mask = (u32)oct->io_qmask.oq;
384 d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
385 while (((d32 & mask) != mask) && loop--) {
386 d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
387 schedule_timeout_uninterruptible(1);
388 }
389 ;
390
391 /* Reset the doorbell register for each Output queue. */
392 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
393 if (!(oct->io_qmask.oq & BIT_ULL(i)))
394 continue;
395 octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i), 0xFFFFFFFF);
396 d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i));
397
398 d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i));
399 octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i), d32);
400 }
401
402 d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
403 if (d32)
404 octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, d32);
405
406 d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
407 if (d32)
408 octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, d32);
409 }
410
411 void
lio_cn6xxx_bar1_idx_setup(struct octeon_device * oct,u64 core_addr,u32 idx,int valid)412 lio_cn6xxx_bar1_idx_setup(struct octeon_device *oct,
413 u64 core_addr,
414 u32 idx,
415 int valid)
416 {
417 u64 bar1;
418
419 if (valid == 0) {
420 bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
421 lio_pci_writeq(oct, (bar1 & 0xFFFFFFFEULL),
422 CN6XXX_BAR1_REG(idx, oct->pcie_port));
423 bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
424 return;
425 }
426
427 /* Bits 17:4 of the PCI_BAR1_INDEXx stores bits 35:22 of
428 * the Core Addr
429 */
430 lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK),
431 CN6XXX_BAR1_REG(idx, oct->pcie_port));
432
433 bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
434 }
435
lio_cn6xxx_bar1_idx_write(struct octeon_device * oct,u32 idx,u32 mask)436 void lio_cn6xxx_bar1_idx_write(struct octeon_device *oct,
437 u32 idx,
438 u32 mask)
439 {
440 lio_pci_writeq(oct, mask, CN6XXX_BAR1_REG(idx, oct->pcie_port));
441 }
442
lio_cn6xxx_bar1_idx_read(struct octeon_device * oct,u32 idx)443 u32 lio_cn6xxx_bar1_idx_read(struct octeon_device *oct, u32 idx)
444 {
445 return (u32)lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
446 }
447
448 u32
lio_cn6xxx_update_read_index(struct octeon_instr_queue * iq)449 lio_cn6xxx_update_read_index(struct octeon_instr_queue *iq)
450 {
451 u32 new_idx = readl(iq->inst_cnt_reg);
452
453 /* The new instr cnt reg is a 32-bit counter that can roll over. We have
454 * noted the counter's initial value at init time into
455 * reset_instr_cnt
456 */
457 if (iq->reset_instr_cnt < new_idx)
458 new_idx -= iq->reset_instr_cnt;
459 else
460 new_idx += (0xffffffff - iq->reset_instr_cnt) + 1;
461
462 /* Modulo of the new index with the IQ size will give us
463 * the new index.
464 */
465 new_idx %= iq->max_count;
466
467 return new_idx;
468 }
469
lio_cn6xxx_enable_interrupt(struct octeon_device * oct,u8 unused)470 void lio_cn6xxx_enable_interrupt(struct octeon_device *oct,
471 u8 unused __attribute__((unused)))
472 {
473 struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
474 u64 mask = cn6xxx->intr_mask64 | CN6XXX_INTR_DMA0_FORCE;
475
476 /* Enable Interrupt */
477 writeq(mask, cn6xxx->intr_enb_reg64);
478 }
479
lio_cn6xxx_disable_interrupt(struct octeon_device * oct,u8 unused)480 void lio_cn6xxx_disable_interrupt(struct octeon_device *oct,
481 u8 unused __attribute__((unused)))
482 {
483 struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
484
485 /* Disable Interrupts */
486 writeq(0, cn6xxx->intr_enb_reg64);
487 }
488
lio_cn6xxx_get_pcie_qlmport(struct octeon_device * oct)489 static void lio_cn6xxx_get_pcie_qlmport(struct octeon_device *oct)
490 {
491 /* CN63xx Pass2 and newer parts implements the SLI_MAC_NUMBER register
492 * to determine the PCIE port #
493 */
494 oct->pcie_port = octeon_read_csr(oct, CN6XXX_SLI_MAC_NUMBER) & 0xff;
495
496 dev_dbg(&oct->pci_dev->dev, "Using PCIE Port %d\n", oct->pcie_port);
497 }
498
499 static void
lio_cn6xxx_process_pcie_error_intr(struct octeon_device * oct,u64 intr64)500 lio_cn6xxx_process_pcie_error_intr(struct octeon_device *oct, u64 intr64)
501 {
502 dev_err(&oct->pci_dev->dev, "Error Intr: 0x%016llx\n",
503 CVM_CAST64(intr64));
504 }
505
lio_cn6xxx_process_droq_intr_regs(struct octeon_device * oct)506 static int lio_cn6xxx_process_droq_intr_regs(struct octeon_device *oct)
507 {
508 struct octeon_droq *droq;
509 int oq_no;
510 u32 pkt_count, droq_time_mask, droq_mask, droq_int_enb;
511 u32 droq_cnt_enb, droq_cnt_mask;
512
513 droq_cnt_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
514 droq_cnt_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
515 droq_mask = droq_cnt_mask & droq_cnt_enb;
516
517 droq_time_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
518 droq_int_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
519 droq_mask |= (droq_time_mask & droq_int_enb);
520
521 droq_mask &= oct->io_qmask.oq;
522
523 oct->droq_intr = 0;
524
525 for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct); oq_no++) {
526 if (!(droq_mask & BIT_ULL(oq_no)))
527 continue;
528
529 droq = oct->droq[oq_no];
530 pkt_count = octeon_droq_check_hw_for_pkts(droq);
531 if (pkt_count) {
532 oct->droq_intr |= BIT_ULL(oq_no);
533 if (droq->ops.poll_mode) {
534 u32 value;
535 u32 reg;
536
537 struct octeon_cn6xxx *cn6xxx =
538 (struct octeon_cn6xxx *)oct->chip;
539
540 /* disable interrupts for this droq */
541 spin_lock
542 (&cn6xxx->lock_for_droq_int_enb_reg);
543 reg = CN6XXX_SLI_PKT_TIME_INT_ENB;
544 value = octeon_read_csr(oct, reg);
545 value &= ~(1 << oq_no);
546 octeon_write_csr(oct, reg, value);
547 reg = CN6XXX_SLI_PKT_CNT_INT_ENB;
548 value = octeon_read_csr(oct, reg);
549 value &= ~(1 << oq_no);
550 octeon_write_csr(oct, reg, value);
551
552 spin_unlock(&cn6xxx->lock_for_droq_int_enb_reg);
553 }
554 }
555 }
556
557 droq_time_mask &= oct->io_qmask.oq;
558 droq_cnt_mask &= oct->io_qmask.oq;
559
560 /* Reset the PKT_CNT/TIME_INT registers. */
561 if (droq_time_mask)
562 octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, droq_time_mask);
563
564 if (droq_cnt_mask) /* reset PKT_CNT register:66xx */
565 octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, droq_cnt_mask);
566
567 return 0;
568 }
569
lio_cn6xxx_process_interrupt_regs(void * dev)570 irqreturn_t lio_cn6xxx_process_interrupt_regs(void *dev)
571 {
572 struct octeon_device *oct = (struct octeon_device *)dev;
573 struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
574 u64 intr64;
575
576 intr64 = readq(cn6xxx->intr_sum_reg64);
577
578 /* If our device has interrupted, then proceed.
579 * Also check for all f's if interrupt was triggered on an error
580 * and the PCI read fails.
581 */
582 if (!intr64 || (intr64 == 0xFFFFFFFFFFFFFFFFULL))
583 return IRQ_NONE;
584
585 oct->int_status = 0;
586
587 if (intr64 & CN6XXX_INTR_ERR)
588 lio_cn6xxx_process_pcie_error_intr(oct, intr64);
589
590 if (intr64 & CN6XXX_INTR_PKT_DATA) {
591 lio_cn6xxx_process_droq_intr_regs(oct);
592 oct->int_status |= OCT_DEV_INTR_PKT_DATA;
593 }
594
595 if (intr64 & CN6XXX_INTR_DMA0_FORCE)
596 oct->int_status |= OCT_DEV_INTR_DMA0_FORCE;
597
598 if (intr64 & CN6XXX_INTR_DMA1_FORCE)
599 oct->int_status |= OCT_DEV_INTR_DMA1_FORCE;
600
601 /* Clear the current interrupts */
602 writeq(intr64, cn6xxx->intr_sum_reg64);
603
604 return IRQ_HANDLED;
605 }
606
lio_cn6xxx_setup_reg_address(struct octeon_device * oct,void * chip,struct octeon_reg_list * reg_list)607 void lio_cn6xxx_setup_reg_address(struct octeon_device *oct,
608 void *chip,
609 struct octeon_reg_list *reg_list)
610 {
611 u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr;
612 struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)chip;
613
614 reg_list->pci_win_wr_addr_hi =
615 (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_HI);
616 reg_list->pci_win_wr_addr_lo =
617 (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_LO);
618 reg_list->pci_win_wr_addr =
619 (u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR64);
620
621 reg_list->pci_win_rd_addr_hi =
622 (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_HI);
623 reg_list->pci_win_rd_addr_lo =
624 (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_LO);
625 reg_list->pci_win_rd_addr =
626 (u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR64);
627
628 reg_list->pci_win_wr_data_hi =
629 (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_HI);
630 reg_list->pci_win_wr_data_lo =
631 (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_LO);
632 reg_list->pci_win_wr_data =
633 (u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA64);
634
635 reg_list->pci_win_rd_data_hi =
636 (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_HI);
637 reg_list->pci_win_rd_data_lo =
638 (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_LO);
639 reg_list->pci_win_rd_data =
640 (u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA64);
641
642 lio_cn6xxx_get_pcie_qlmport(oct);
643
644 cn6xxx->intr_sum_reg64 = bar0_pciaddr + CN6XXX_SLI_INT_SUM64;
645 cn6xxx->intr_mask64 = CN6XXX_INTR_MASK;
646 cn6xxx->intr_enb_reg64 =
647 bar0_pciaddr + CN6XXX_SLI_INT_ENB64(oct->pcie_port);
648 }
649
lio_setup_cn66xx_octeon_device(struct octeon_device * oct)650 int lio_setup_cn66xx_octeon_device(struct octeon_device *oct)
651 {
652 struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
653
654 if (octeon_map_pci_barx(oct, 0, 0))
655 return 1;
656
657 if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) {
658 dev_err(&oct->pci_dev->dev, "%s CN66XX BAR1 map failed\n",
659 __func__);
660 octeon_unmap_pci_barx(oct, 0);
661 return 1;
662 }
663
664 spin_lock_init(&cn6xxx->lock_for_droq_int_enb_reg);
665
666 oct->fn_list.setup_iq_regs = lio_cn66xx_setup_iq_regs;
667 oct->fn_list.setup_oq_regs = lio_cn6xxx_setup_oq_regs;
668
669 oct->fn_list.soft_reset = lio_cn6xxx_soft_reset;
670 oct->fn_list.setup_device_regs = lio_cn6xxx_setup_device_regs;
671 oct->fn_list.update_iq_read_idx = lio_cn6xxx_update_read_index;
672
673 oct->fn_list.bar1_idx_setup = lio_cn6xxx_bar1_idx_setup;
674 oct->fn_list.bar1_idx_write = lio_cn6xxx_bar1_idx_write;
675 oct->fn_list.bar1_idx_read = lio_cn6xxx_bar1_idx_read;
676
677 oct->fn_list.process_interrupt_regs = lio_cn6xxx_process_interrupt_regs;
678 oct->fn_list.enable_interrupt = lio_cn6xxx_enable_interrupt;
679 oct->fn_list.disable_interrupt = lio_cn6xxx_disable_interrupt;
680
681 oct->fn_list.enable_io_queues = lio_cn6xxx_enable_io_queues;
682 oct->fn_list.disable_io_queues = lio_cn6xxx_disable_io_queues;
683
684 lio_cn6xxx_setup_reg_address(oct, oct->chip, &oct->reg_list);
685
686 cn6xxx->conf = (struct octeon_config *)
687 oct_get_config_info(oct, LIO_210SV);
688 if (!cn6xxx->conf) {
689 dev_err(&oct->pci_dev->dev, "%s No Config found for CN66XX\n",
690 __func__);
691 octeon_unmap_pci_barx(oct, 0);
692 octeon_unmap_pci_barx(oct, 1);
693 return 1;
694 }
695
696 oct->coproc_clock_rate = 1000000ULL * lio_cn6xxx_coprocessor_clock(oct);
697
698 return 0;
699 }
700
lio_validate_cn6xxx_config_info(struct octeon_device * oct,struct octeon_config * conf6xxx)701 int lio_validate_cn6xxx_config_info(struct octeon_device *oct,
702 struct octeon_config *conf6xxx)
703 {
704 if (CFG_GET_IQ_MAX_Q(conf6xxx) > CN6XXX_MAX_INPUT_QUEUES) {
705 dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n",
706 __func__, CFG_GET_IQ_MAX_Q(conf6xxx),
707 CN6XXX_MAX_INPUT_QUEUES);
708 return 1;
709 }
710
711 if (CFG_GET_OQ_MAX_Q(conf6xxx) > CN6XXX_MAX_OUTPUT_QUEUES) {
712 dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n",
713 __func__, CFG_GET_OQ_MAX_Q(conf6xxx),
714 CN6XXX_MAX_OUTPUT_QUEUES);
715 return 1;
716 }
717
718 if (CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_32BYTE_INSTR &&
719 CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_64BYTE_INSTR) {
720 dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n",
721 __func__);
722 return 1;
723 }
724 if (!CFG_GET_OQ_REFILL_THRESHOLD(conf6xxx)) {
725 dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n",
726 __func__);
727 return 1;
728 }
729
730 if (!(CFG_GET_OQ_INTR_TIME(conf6xxx))) {
731 dev_err(&oct->pci_dev->dev, "%s: No Time Interrupt for OQ\n",
732 __func__);
733 return 1;
734 }
735
736 return 0;
737 }
738