1 /*
2 ** $Id: ltable.c $
3 ** Lua tables (hash)
4 ** See Copyright Notice in lua.h
5 */
6 
7 #define ltable_c
8 #define LUA_CORE
9 
10 #include "lprefix.h"
11 
12 
13 /*
14 ** Implementation of tables (aka arrays, objects, or hash tables).
15 ** Tables keep its elements in two parts: an array part and a hash part.
16 ** Non-negative integer keys are all candidates to be kept in the array
17 ** part. The actual size of the array is the largest 'n' such that
18 ** more than half the slots between 1 and n are in use.
19 ** Hash uses a mix of chained scatter table with Brent's variation.
20 ** A main invariant of these tables is that, if an element is not
21 ** in its main position (i.e. the 'original' position that its hash gives
22 ** to it), then the colliding element is in its own main position.
23 ** Hence even when the load factor reaches 100%, performance remains good.
24 */
25 
26 #include <math.h>
27 #include <limits.h>
28 
29 #include "lua.h"
30 
31 #include "ldebug.h"
32 #include "ldo.h"
33 #include "lgc.h"
34 #include "lmem.h"
35 #include "lobject.h"
36 #include "lstate.h"
37 #include "lstring.h"
38 #include "ltable.h"
39 #include "lvm.h"
40 
41 
42 /*
43 ** MAXABITS is the largest integer such that MAXASIZE fits in an
44 ** unsigned int.
45 */
46 #define MAXABITS	cast_int(sizeof(int) * CHAR_BIT - 1)
47 
48 
49 /*
50 ** MAXASIZE is the maximum size of the array part. It is the minimum
51 ** between 2^MAXABITS and the maximum size that, measured in bytes,
52 ** fits in a 'size_t'.
53 */
54 #define MAXASIZE	luaM_limitN(1u << MAXABITS, TValue)
55 
56 /*
57 ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
58 ** signed int.
59 */
60 #define MAXHBITS	(MAXABITS - 1)
61 
62 
63 /*
64 ** MAXHSIZE is the maximum size of the hash part. It is the minimum
65 ** between 2^MAXHBITS and the maximum size such that, measured in bytes,
66 ** it fits in a 'size_t'.
67 */
68 #define MAXHSIZE	luaM_limitN(1u << MAXHBITS, Node)
69 
70 
71 /*
72 ** When the original hash value is good, hashing by a power of 2
73 ** avoids the cost of '%'.
74 */
75 #define hashpow2(t,n)		(gnode(t, lmod((n), sizenode(t))))
76 
77 /*
78 ** for other types, it is better to avoid modulo by power of 2, as
79 ** they can have many 2 factors.
80 */
81 #define hashmod(t,n)	(gnode(t, ((n) % ((sizenode(t)-1)|1))))
82 
83 
84 #define hashstr(t,str)		hashpow2(t, (str)->hash)
85 #define hashboolean(t,p)	hashpow2(t, p)
86 
87 #define hashint(t,i)		hashpow2(t, i)
88 
89 
90 #define hashpointer(t,p)	hashmod(t, point2uint(p))
91 
92 
93 #define dummynode		(&dummynode_)
94 
95 static const Node dummynode_ = {
96   {{NULL}, LUA_VEMPTY,  /* value's value and type */
97    LUA_VNIL, 0, {NULL}}  /* key type, next, and key value */
98 };
99 
100 
101 static const TValue absentkey = {ABSTKEYCONSTANT};
102 
103 
104 
105 /*
106 ** Hash for floating-point numbers.
107 ** The main computation should be just
108 **     n = frexp(n, &i); return (n * INT_MAX) + i
109 ** but there are some numerical subtleties.
110 ** In a two-complement representation, INT_MAX does not has an exact
111 ** representation as a float, but INT_MIN does; because the absolute
112 ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
113 ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
114 ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
115 ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
116 ** INT_MIN.
117 */
118 #if !defined(l_hashfloat)
l_hashfloat(lua_Number n)119 static int l_hashfloat (lua_Number n) {
120   int i;
121   lua_Integer ni;
122   n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
123   if (!lua_numbertointeger(n, &ni)) {  /* is 'n' inf/-inf/NaN? */
124     lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
125     return 0;
126   }
127   else {  /* normal case */
128     unsigned int u = cast_uint(i) + cast_uint(ni);
129     return cast_int(u <= cast_uint(INT_MAX) ? u : ~u);
130   }
131 }
132 #endif
133 
134 
135 /*
136 ** returns the 'main' position of an element in a table (that is,
137 ** the index of its hash value). The key comes broken (tag in 'ktt'
138 ** and value in 'vkl') so that we can call it on keys inserted into
139 ** nodes.
140 */
mainposition(const Table * t,int ktt,const Value * kvl)141 static Node *mainposition (const Table *t, int ktt, const Value *kvl) {
142   switch (withvariant(ktt)) {
143     case LUA_VNUMINT: {
144       lua_Integer key = ivalueraw(*kvl);
145       return hashint(t, key);
146     }
147     case LUA_VNUMFLT: {
148       lua_Number n = fltvalueraw(*kvl);
149       return hashmod(t, l_hashfloat(n));
150     }
151     case LUA_VSHRSTR: {
152       TString *ts = tsvalueraw(*kvl);
153       return hashstr(t, ts);
154     }
155     case LUA_VLNGSTR: {
156       TString *ts = tsvalueraw(*kvl);
157       return hashpow2(t, luaS_hashlongstr(ts));
158     }
159     case LUA_VFALSE:
160       return hashboolean(t, 0);
161     case LUA_VTRUE:
162       return hashboolean(t, 1);
163     case LUA_VLIGHTUSERDATA: {
164       void *p = pvalueraw(*kvl);
165       return hashpointer(t, p);
166     }
167     case LUA_VLCF: {
168       lua_CFunction f = fvalueraw(*kvl);
169       return hashpointer(t, f);
170     }
171     default: {
172       GCObject *o = gcvalueraw(*kvl);
173       return hashpointer(t, o);
174     }
175   }
176 }
177 
178 
179 /*
180 ** Returns the main position of an element given as a 'TValue'
181 */
mainpositionTV(const Table * t,const TValue * key)182 static Node *mainpositionTV (const Table *t, const TValue *key) {
183   return mainposition(t, rawtt(key), valraw(key));
184 }
185 
186 
187 /*
188 ** Check whether key 'k1' is equal to the key in node 'n2'. This
189 ** equality is raw, so there are no metamethods. Floats with integer
190 ** values have been normalized, so integers cannot be equal to
191 ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
192 ** that short strings are handled in the default case.
193 ** A true 'deadok' means to accept dead keys as equal to their original
194 ** values. All dead keys are compared in the default case, by pointer
195 ** identity. (Only collectable objects can produce dead keys.) Note that
196 ** dead long strings are also compared by identity.
197 ** Once a key is dead, its corresponding value may be collected, and
198 ** then another value can be created with the same address. If this
199 ** other value is given to 'next', 'equalkey' will signal a false
200 ** positive. In a regular traversal, this situation should never happen,
201 ** as all keys given to 'next' came from the table itself, and therefore
202 ** could not have been collected. Outside a regular traversal, we
203 ** have garbage in, garbage out. What is relevant is that this false
204 ** positive does not break anything.  (In particular, 'next' will return
205 ** some other valid item on the table or nil.)
206 */
equalkey(const TValue * k1,const Node * n2,int deadok)207 static int equalkey (const TValue *k1, const Node *n2, int deadok) {
208   if ((rawtt(k1) != keytt(n2)) &&  /* not the same variants? */
209        !(deadok && keyisdead(n2) && iscollectable(k1)))
210    return 0;  /* cannot be same key */
211   switch (keytt(n2)) {
212     case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE:
213       return 1;
214     case LUA_VNUMINT:
215       return (ivalue(k1) == keyival(n2));
216     case LUA_VNUMFLT:
217       return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
218     case LUA_VLIGHTUSERDATA:
219       return pvalue(k1) == pvalueraw(keyval(n2));
220     case LUA_VLCF:
221       return fvalue(k1) == fvalueraw(keyval(n2));
222     case ctb(LUA_VLNGSTR):
223       return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
224     default:
225       return gcvalue(k1) == gcvalueraw(keyval(n2));
226   }
227 }
228 
229 
230 /*
231 ** True if value of 'alimit' is equal to the real size of the array
232 ** part of table 't'. (Otherwise, the array part must be larger than
233 ** 'alimit'.)
234 */
235 #define limitequalsasize(t)	(isrealasize(t) || ispow2((t)->alimit))
236 
237 
238 /*
239 ** Returns the real size of the 'array' array
240 */
luaH_realasize(const Table * t)241 LUAI_FUNC unsigned int luaH_realasize (const Table *t) {
242   if (limitequalsasize(t))
243     return t->alimit;  /* this is the size */
244   else {
245     unsigned int size = t->alimit;
246     /* compute the smallest power of 2 not smaller than 'n' */
247     size |= (size >> 1);
248     size |= (size >> 2);
249     size |= (size >> 4);
250     size |= (size >> 8);
251     size |= (size >> 16);
252 #if (UINT_MAX >> 30) > 3
253     size |= (size >> 32);  /* unsigned int has more than 32 bits */
254 #endif
255     size++;
256     lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size);
257     return size;
258   }
259 }
260 
261 
262 /*
263 ** Check whether real size of the array is a power of 2.
264 ** (If it is not, 'alimit' cannot be changed to any other value
265 ** without changing the real size.)
266 */
ispow2realasize(const Table * t)267 static int ispow2realasize (const Table *t) {
268   return (!isrealasize(t) || ispow2(t->alimit));
269 }
270 
271 
setlimittosize(Table * t)272 static unsigned int setlimittosize (Table *t) {
273   t->alimit = luaH_realasize(t);
274   setrealasize(t);
275   return t->alimit;
276 }
277 
278 
279 #define limitasasize(t)	check_exp(isrealasize(t), t->alimit)
280 
281 
282 
283 /*
284 ** "Generic" get version. (Not that generic: not valid for integers,
285 ** which may be in array part, nor for floats with integral values.)
286 ** See explanation about 'deadok' in function 'equalkey'.
287 */
getgeneric(Table * t,const TValue * key,int deadok)288 static const TValue *getgeneric (Table *t, const TValue *key, int deadok) {
289   Node *n = mainpositionTV(t, key);
290   for (;;) {  /* check whether 'key' is somewhere in the chain */
291     if (equalkey(key, n, deadok))
292       return gval(n);  /* that's it */
293     else {
294       int nx = gnext(n);
295       if (nx == 0)
296         return &absentkey;  /* not found */
297       n += nx;
298     }
299   }
300 }
301 
302 
303 /*
304 ** returns the index for 'k' if 'k' is an appropriate key to live in
305 ** the array part of a table, 0 otherwise.
306 */
arrayindex(lua_Integer k)307 static unsigned int arrayindex (lua_Integer k) {
308   if (l_castS2U(k) - 1u < MAXASIZE)  /* 'k' in [1, MAXASIZE]? */
309     return cast_uint(k);  /* 'key' is an appropriate array index */
310   else
311     return 0;
312 }
313 
314 
315 /*
316 ** returns the index of a 'key' for table traversals. First goes all
317 ** elements in the array part, then elements in the hash part. The
318 ** beginning of a traversal is signaled by 0.
319 */
findindex(lua_State * L,Table * t,TValue * key,unsigned int asize)320 static unsigned int findindex (lua_State *L, Table *t, TValue *key,
321                                unsigned int asize) {
322   unsigned int i;
323   if (ttisnil(key)) return 0;  /* first iteration */
324   i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0;
325   if (i - 1u < asize)  /* is 'key' inside array part? */
326     return i;  /* yes; that's the index */
327   else {
328     const TValue *n = getgeneric(t, key, 1);
329     if (l_unlikely(isabstkey(n)))
330       luaG_runerror(L, "invalid key to 'next'");  /* key not found */
331     i = cast_int(nodefromval(n) - gnode(t, 0));  /* key index in hash table */
332     /* hash elements are numbered after array ones */
333     return (i + 1) + asize;
334   }
335 }
336 
337 
luaH_next(lua_State * L,Table * t,StkId key)338 int luaH_next (lua_State *L, Table *t, StkId key) {
339   unsigned int asize = luaH_realasize(t);
340   unsigned int i = findindex(L, t, s2v(key), asize);  /* find original key */
341   for (; i < asize; i++) {  /* try first array part */
342     if (!isempty(&t->array[i])) {  /* a non-empty entry? */
343       setivalue(s2v(key), i + 1);
344       setobj2s(L, key + 1, &t->array[i]);
345       return 1;
346     }
347   }
348   for (i -= asize; cast_int(i) < sizenode(t); i++) {  /* hash part */
349     if (!isempty(gval(gnode(t, i)))) {  /* a non-empty entry? */
350       Node *n = gnode(t, i);
351       getnodekey(L, s2v(key), n);
352       setobj2s(L, key + 1, gval(n));
353       return 1;
354     }
355   }
356   return 0;  /* no more elements */
357 }
358 
359 
freehash(lua_State * L,Table * t)360 static void freehash (lua_State *L, Table *t) {
361   if (!isdummy(t))
362     luaM_freearray(L, t->node, cast_sizet(sizenode(t)));
363 }
364 
365 
366 /*
367 ** {=============================================================
368 ** Rehash
369 ** ==============================================================
370 */
371 
372 /*
373 ** Compute the optimal size for the array part of table 't'. 'nums' is a
374 ** "count array" where 'nums[i]' is the number of integers in the table
375 ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
376 ** integer keys in the table and leaves with the number of keys that
377 ** will go to the array part; return the optimal size.  (The condition
378 ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
379 */
computesizes(unsigned int nums[],unsigned int * pna)380 static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
381   int i;
382   unsigned int twotoi;  /* 2^i (candidate for optimal size) */
383   unsigned int a = 0;  /* number of elements smaller than 2^i */
384   unsigned int na = 0;  /* number of elements to go to array part */
385   unsigned int optimal = 0;  /* optimal size for array part */
386   /* loop while keys can fill more than half of total size */
387   for (i = 0, twotoi = 1;
388        twotoi > 0 && *pna > twotoi / 2;
389        i++, twotoi *= 2) {
390     a += nums[i];
391     if (a > twotoi/2) {  /* more than half elements present? */
392       optimal = twotoi;  /* optimal size (till now) */
393       na = a;  /* all elements up to 'optimal' will go to array part */
394     }
395   }
396   lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
397   *pna = na;
398   return optimal;
399 }
400 
401 
countint(lua_Integer key,unsigned int * nums)402 static int countint (lua_Integer key, unsigned int *nums) {
403   unsigned int k = arrayindex(key);
404   if (k != 0) {  /* is 'key' an appropriate array index? */
405     nums[luaO_ceillog2(k)]++;  /* count as such */
406     return 1;
407   }
408   else
409     return 0;
410 }
411 
412 
413 /*
414 ** Count keys in array part of table 't': Fill 'nums[i]' with
415 ** number of keys that will go into corresponding slice and return
416 ** total number of non-nil keys.
417 */
numusearray(const Table * t,unsigned int * nums)418 static unsigned int numusearray (const Table *t, unsigned int *nums) {
419   int lg;
420   unsigned int ttlg;  /* 2^lg */
421   unsigned int ause = 0;  /* summation of 'nums' */
422   unsigned int i = 1;  /* count to traverse all array keys */
423   unsigned int asize = limitasasize(t);  /* real array size */
424   /* traverse each slice */
425   for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
426     unsigned int lc = 0;  /* counter */
427     unsigned int lim = ttlg;
428     if (lim > asize) {
429       lim = asize;  /* adjust upper limit */
430       if (i > lim)
431         break;  /* no more elements to count */
432     }
433     /* count elements in range (2^(lg - 1), 2^lg] */
434     for (; i <= lim; i++) {
435       if (!isempty(&t->array[i-1]))
436         lc++;
437     }
438     nums[lg] += lc;
439     ause += lc;
440   }
441   return ause;
442 }
443 
444 
numusehash(const Table * t,unsigned int * nums,unsigned int * pna)445 static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
446   int totaluse = 0;  /* total number of elements */
447   int ause = 0;  /* elements added to 'nums' (can go to array part) */
448   int i = sizenode(t);
449   while (i--) {
450     Node *n = &t->node[i];
451     if (!isempty(gval(n))) {
452       if (keyisinteger(n))
453         ause += countint(keyival(n), nums);
454       totaluse++;
455     }
456   }
457   *pna += ause;
458   return totaluse;
459 }
460 
461 
462 /*
463 ** Creates an array for the hash part of a table with the given
464 ** size, or reuses the dummy node if size is zero.
465 ** The computation for size overflow is in two steps: the first
466 ** comparison ensures that the shift in the second one does not
467 ** overflow.
468 */
setnodevector(lua_State * L,Table * t,unsigned int size)469 static void setnodevector (lua_State *L, Table *t, unsigned int size) {
470   if (size == 0) {  /* no elements to hash part? */
471     t->node = cast(Node *, dummynode);  /* use common 'dummynode' */
472     t->lsizenode = 0;
473     t->lastfree = NULL;  /* signal that it is using dummy node */
474   }
475   else {
476     int i;
477     int lsize = luaO_ceillog2(size);
478     if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
479       luaG_runerror(L, "table overflow");
480     size = twoto(lsize);
481     t->node = luaM_newvector(L, size, Node);
482     for (i = 0; i < (int)size; i++) {
483       Node *n = gnode(t, i);
484       gnext(n) = 0;
485       setnilkey(n);
486       setempty(gval(n));
487     }
488     t->lsizenode = cast_byte(lsize);
489     t->lastfree = gnode(t, size);  /* all positions are free */
490   }
491 }
492 
493 
494 /*
495 ** (Re)insert all elements from the hash part of 'ot' into table 't'.
496 */
reinsert(lua_State * L,Table * ot,Table * t)497 static void reinsert (lua_State *L, Table *ot, Table *t) {
498   int j;
499   int size = sizenode(ot);
500   for (j = 0; j < size; j++) {
501     Node *old = gnode(ot, j);
502     if (!isempty(gval(old))) {
503       /* doesn't need barrier/invalidate cache, as entry was
504          already present in the table */
505       TValue k;
506       getnodekey(L, &k, old);
507       luaH_set(L, t, &k, gval(old));
508     }
509   }
510 }
511 
512 
513 /*
514 ** Exchange the hash part of 't1' and 't2'.
515 */
exchangehashpart(Table * t1,Table * t2)516 static void exchangehashpart (Table *t1, Table *t2) {
517   lu_byte lsizenode = t1->lsizenode;
518   Node *node = t1->node;
519   Node *lastfree = t1->lastfree;
520   t1->lsizenode = t2->lsizenode;
521   t1->node = t2->node;
522   t1->lastfree = t2->lastfree;
523   t2->lsizenode = lsizenode;
524   t2->node = node;
525   t2->lastfree = lastfree;
526 }
527 
528 
529 /*
530 ** Resize table 't' for the new given sizes. Both allocations (for
531 ** the hash part and for the array part) can fail, which creates some
532 ** subtleties. If the first allocation, for the hash part, fails, an
533 ** error is raised and that is it. Otherwise, it copies the elements from
534 ** the shrinking part of the array (if it is shrinking) into the new
535 ** hash. Then it reallocates the array part.  If that fails, the table
536 ** is in its original state; the function frees the new hash part and then
537 ** raises the allocation error. Otherwise, it sets the new hash part
538 ** into the table, initializes the new part of the array (if any) with
539 ** nils and reinserts the elements of the old hash back into the new
540 ** parts of the table.
541 */
luaH_resize(lua_State * L,Table * t,unsigned int newasize,unsigned int nhsize)542 void luaH_resize (lua_State *L, Table *t, unsigned int newasize,
543                                           unsigned int nhsize) {
544   unsigned int i;
545   Table newt;  /* to keep the new hash part */
546   unsigned int oldasize = setlimittosize(t);
547   TValue *newarray;
548   /* create new hash part with appropriate size into 'newt' */
549   setnodevector(L, &newt, nhsize);
550   if (newasize < oldasize) {  /* will array shrink? */
551     t->alimit = newasize;  /* pretend array has new size... */
552     exchangehashpart(t, &newt);  /* and new hash */
553     /* re-insert into the new hash the elements from vanishing slice */
554     for (i = newasize; i < oldasize; i++) {
555       if (!isempty(&t->array[i]))
556         luaH_setint(L, t, i + 1, &t->array[i]);
557     }
558     t->alimit = oldasize;  /* restore current size... */
559     exchangehashpart(t, &newt);  /* and hash (in case of errors) */
560   }
561   /* allocate new array */
562   newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue);
563   if (l_unlikely(newarray == NULL && newasize > 0)) {  /* allocation failed? */
564     freehash(L, &newt);  /* release new hash part */
565     luaM_error(L);  /* raise error (with array unchanged) */
566   }
567   /* allocation ok; initialize new part of the array */
568   exchangehashpart(t, &newt);  /* 't' has the new hash ('newt' has the old) */
569   t->array = newarray;  /* set new array part */
570   t->alimit = newasize;
571   for (i = oldasize; i < newasize; i++)  /* clear new slice of the array */
572      setempty(&t->array[i]);
573   /* re-insert elements from old hash part into new parts */
574   reinsert(L, &newt, t);  /* 'newt' now has the old hash */
575   freehash(L, &newt);  /* free old hash part */
576 }
577 
578 
luaH_resizearray(lua_State * L,Table * t,unsigned int nasize)579 void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
580   int nsize = allocsizenode(t);
581   luaH_resize(L, t, nasize, nsize);
582 }
583 
584 /*
585 ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
586 */
rehash(lua_State * L,Table * t,const TValue * ek)587 static void rehash (lua_State *L, Table *t, const TValue *ek) {
588   unsigned int asize;  /* optimal size for array part */
589   unsigned int na;  /* number of keys in the array part */
590   unsigned int nums[MAXABITS + 1];
591   int i;
592   int totaluse;
593   for (i = 0; i <= MAXABITS; i++) nums[i] = 0;  /* reset counts */
594   setlimittosize(t);
595   na = numusearray(t, nums);  /* count keys in array part */
596   totaluse = na;  /* all those keys are integer keys */
597   totaluse += numusehash(t, nums, &na);  /* count keys in hash part */
598   /* count extra key */
599   if (ttisinteger(ek))
600     na += countint(ivalue(ek), nums);
601   totaluse++;
602   /* compute new size for array part */
603   asize = computesizes(nums, &na);
604   /* resize the table to new computed sizes */
605   luaH_resize(L, t, asize, totaluse - na);
606 }
607 
608 
609 
610 /*
611 ** }=============================================================
612 */
613 
614 
luaH_new(lua_State * L)615 Table *luaH_new (lua_State *L) {
616   GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
617   Table *t = gco2t(o);
618   t->metatable = NULL;
619   t->flags = cast_byte(maskflags);  /* table has no metamethod fields */
620   t->array = NULL;
621   t->alimit = 0;
622   setnodevector(L, t, 0);
623   return t;
624 }
625 
626 
luaH_free(lua_State * L,Table * t)627 void luaH_free (lua_State *L, Table *t) {
628   freehash(L, t);
629   luaM_freearray(L, t->array, luaH_realasize(t));
630   luaM_free(L, t);
631 }
632 
633 
getfreepos(Table * t)634 static Node *getfreepos (Table *t) {
635   if (!isdummy(t)) {
636     while (t->lastfree > t->node) {
637       t->lastfree--;
638       if (keyisnil(t->lastfree))
639         return t->lastfree;
640     }
641   }
642   return NULL;  /* could not find a free place */
643 }
644 
645 
646 
647 /*
648 ** inserts a new key into a hash table; first, check whether key's main
649 ** position is free. If not, check whether colliding node is in its main
650 ** position or not: if it is not, move colliding node to an empty place and
651 ** put new key in its main position; otherwise (colliding node is in its main
652 ** position), new key goes to an empty position.
653 */
luaH_newkey(lua_State * L,Table * t,const TValue * key,TValue * value)654 void luaH_newkey (lua_State *L, Table *t, const TValue *key, TValue *value) {
655   Node *mp;
656   TValue aux;
657   if (l_unlikely(ttisnil(key)))
658     luaG_runerror(L, "table index is nil");
659   else if (ttisfloat(key)) {
660     lua_Number f = fltvalue(key);
661     lua_Integer k;
662     if (luaV_flttointeger(f, &k, F2Ieq)) {  /* does key fit in an integer? */
663       setivalue(&aux, k);
664       key = &aux;  /* insert it as an integer */
665     }
666     else if (l_unlikely(luai_numisnan(f)))
667       luaG_runerror(L, "table index is NaN");
668   }
669   if (ttisnil(value))
670     return;  /* do not insert nil values */
671   mp = mainpositionTV(t, key);
672   if (!isempty(gval(mp)) || isdummy(t)) {  /* main position is taken? */
673     Node *othern;
674     Node *f = getfreepos(t);  /* get a free place */
675     if (f == NULL) {  /* cannot find a free place? */
676       rehash(L, t, key);  /* grow table */
677       /* whatever called 'newkey' takes care of TM cache */
678       luaH_set(L, t, key, value);  /* insert key into grown table */
679       return;
680     }
681     lua_assert(!isdummy(t));
682     othern = mainposition(t, keytt(mp), &keyval(mp));
683     if (othern != mp) {  /* is colliding node out of its main position? */
684       /* yes; move colliding node into free position */
685       while (othern + gnext(othern) != mp)  /* find previous */
686         othern += gnext(othern);
687       gnext(othern) = cast_int(f - othern);  /* rechain to point to 'f' */
688       *f = *mp;  /* copy colliding node into free pos. (mp->next also goes) */
689       if (gnext(mp) != 0) {
690         gnext(f) += cast_int(mp - f);  /* correct 'next' */
691         gnext(mp) = 0;  /* now 'mp' is free */
692       }
693       setempty(gval(mp));
694     }
695     else {  /* colliding node is in its own main position */
696       /* new node will go into free position */
697       if (gnext(mp) != 0)
698         gnext(f) = cast_int((mp + gnext(mp)) - f);  /* chain new position */
699       else lua_assert(gnext(f) == 0);
700       gnext(mp) = cast_int(f - mp);
701       mp = f;
702     }
703   }
704   setnodekey(L, mp, key);
705   luaC_barrierback(L, obj2gco(t), key);
706   lua_assert(isempty(gval(mp)));
707   setobj2t(L, gval(mp), value);
708 }
709 
710 
711 /*
712 ** Search function for integers. If integer is inside 'alimit', get it
713 ** directly from the array part. Otherwise, if 'alimit' is not equal to
714 ** the real size of the array, key still can be in the array part. In
715 ** this case, try to avoid a call to 'luaH_realasize' when key is just
716 ** one more than the limit (so that it can be incremented without
717 ** changing the real size of the array).
718 */
luaH_getint(Table * t,lua_Integer key)719 const TValue *luaH_getint (Table *t, lua_Integer key) {
720   if (l_castS2U(key) - 1u < t->alimit)  /* 'key' in [1, t->alimit]? */
721     return &t->array[key - 1];
722   else if (!limitequalsasize(t) &&  /* key still may be in the array part? */
723            (l_castS2U(key) == t->alimit + 1 ||
724             l_castS2U(key) - 1u < luaH_realasize(t))) {
725     t->alimit = cast_uint(key);  /* probably '#t' is here now */
726     return &t->array[key - 1];
727   }
728   else {
729     Node *n = hashint(t, key);
730     for (;;) {  /* check whether 'key' is somewhere in the chain */
731       if (keyisinteger(n) && keyival(n) == key)
732         return gval(n);  /* that's it */
733       else {
734         int nx = gnext(n);
735         if (nx == 0) break;
736         n += nx;
737       }
738     }
739     return &absentkey;
740   }
741 }
742 
743 
744 /*
745 ** search function for short strings
746 */
luaH_getshortstr(Table * t,TString * key)747 const TValue *luaH_getshortstr (Table *t, TString *key) {
748   Node *n = hashstr(t, key);
749   lua_assert(key->tt == LUA_VSHRSTR);
750   for (;;) {  /* check whether 'key' is somewhere in the chain */
751     if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
752       return gval(n);  /* that's it */
753     else {
754       int nx = gnext(n);
755       if (nx == 0)
756         return &absentkey;  /* not found */
757       n += nx;
758     }
759   }
760 }
761 
762 
luaH_getstr(Table * t,TString * key)763 const TValue *luaH_getstr (Table *t, TString *key) {
764   if (key->tt == LUA_VSHRSTR)
765     return luaH_getshortstr(t, key);
766   else {  /* for long strings, use generic case */
767     TValue ko;
768     setsvalue(cast(lua_State *, NULL), &ko, key);
769     return getgeneric(t, &ko, 0);
770   }
771 }
772 
773 
774 /*
775 ** main search function
776 */
luaH_get(Table * t,const TValue * key)777 const TValue *luaH_get (Table *t, const TValue *key) {
778   switch (ttypetag(key)) {
779     case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key));
780     case LUA_VNUMINT: return luaH_getint(t, ivalue(key));
781     case LUA_VNIL: return &absentkey;
782     case LUA_VNUMFLT: {
783       lua_Integer k;
784       if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
785         return luaH_getint(t, k);  /* use specialized version */
786       /* else... */
787     }  /* FALLTHROUGH */
788     default:
789       return getgeneric(t, key, 0);
790   }
791 }
792 
793 
794 /*
795 ** Finish a raw "set table" operation, where 'slot' is where the value
796 ** should have been (the result of a previous "get table").
797 ** Beware: when using this function you probably need to check a GC
798 ** barrier and invalidate the TM cache.
799 */
luaH_finishset(lua_State * L,Table * t,const TValue * key,const TValue * slot,TValue * value)800 void luaH_finishset (lua_State *L, Table *t, const TValue *key,
801                                    const TValue *slot, TValue *value) {
802   if (isabstkey(slot))
803     luaH_newkey(L, t, key, value);
804   else
805     setobj2t(L, cast(TValue *, slot), value);
806 }
807 
808 
809 /*
810 ** beware: when using this function you probably need to check a GC
811 ** barrier and invalidate the TM cache.
812 */
luaH_set(lua_State * L,Table * t,const TValue * key,TValue * value)813 void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) {
814   const TValue *slot = luaH_get(t, key);
815   luaH_finishset(L, t, key, slot, value);
816 }
817 
818 
luaH_setint(lua_State * L,Table * t,lua_Integer key,TValue * value)819 void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
820   const TValue *p = luaH_getint(t, key);
821   if (isabstkey(p)) {
822     TValue k;
823     setivalue(&k, key);
824     luaH_newkey(L, t, &k, value);
825   }
826   else
827     setobj2t(L, cast(TValue *, p), value);
828 }
829 
830 
831 /*
832 ** Try to find a boundary in the hash part of table 't'. From the
833 ** caller, we know that 'j' is zero or present and that 'j + 1' is
834 ** present. We want to find a larger key that is absent from the
835 ** table, so that we can do a binary search between the two keys to
836 ** find a boundary. We keep doubling 'j' until we get an absent index.
837 ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
838 ** absent, we are ready for the binary search. ('j', being max integer,
839 ** is larger or equal to 'i', but it cannot be equal because it is
840 ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
841 ** boundary. ('j + 1' cannot be a present integer key because it is
842 ** not a valid integer in Lua.)
843 */
hash_search(Table * t,lua_Unsigned j)844 static lua_Unsigned hash_search (Table *t, lua_Unsigned j) {
845   lua_Unsigned i;
846   if (j == 0) j++;  /* the caller ensures 'j + 1' is present */
847   do {
848     i = j;  /* 'i' is a present index */
849     if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
850       j *= 2;
851     else {
852       j = LUA_MAXINTEGER;
853       if (isempty(luaH_getint(t, j)))  /* t[j] not present? */
854         break;  /* 'j' now is an absent index */
855       else  /* weird case */
856         return j;  /* well, max integer is a boundary... */
857     }
858   } while (!isempty(luaH_getint(t, j)));  /* repeat until an absent t[j] */
859   /* i < j  &&  t[i] present  &&  t[j] absent */
860   while (j - i > 1u) {  /* do a binary search between them */
861     lua_Unsigned m = (i + j) / 2;
862     if (isempty(luaH_getint(t, m))) j = m;
863     else i = m;
864   }
865   return i;
866 }
867 
868 
binsearch(const TValue * array,unsigned int i,unsigned int j)869 static unsigned int binsearch (const TValue *array, unsigned int i,
870                                                     unsigned int j) {
871   while (j - i > 1u) {  /* binary search */
872     unsigned int m = (i + j) / 2;
873     if (isempty(&array[m - 1])) j = m;
874     else i = m;
875   }
876   return i;
877 }
878 
879 
880 /*
881 ** Try to find a boundary in table 't'. (A 'boundary' is an integer index
882 ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
883 ** and 'maxinteger' if t[maxinteger] is present.)
884 ** (In the next explanation, we use Lua indices, that is, with base 1.
885 ** The code itself uses base 0 when indexing the array part of the table.)
886 ** The code starts with 'limit = t->alimit', a position in the array
887 ** part that may be a boundary.
888 **
889 ** (1) If 't[limit]' is empty, there must be a boundary before it.
890 ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1'
891 ** is present. If so, it is a boundary. Otherwise, do a binary search
892 ** between 0 and limit to find a boundary. In both cases, try to
893 ** use this boundary as the new 'alimit', as a hint for the next call.
894 **
895 ** (2) If 't[limit]' is not empty and the array has more elements
896 ** after 'limit', try to find a boundary there. Again, try first
897 ** the special case (which should be quite frequent) where 'limit+1'
898 ** is empty, so that 'limit' is a boundary. Otherwise, check the
899 ** last element of the array part. If it is empty, there must be a
900 ** boundary between the old limit (present) and the last element
901 ** (absent), which is found with a binary search. (This boundary always
902 ** can be a new limit.)
903 **
904 ** (3) The last case is when there are no elements in the array part
905 ** (limit == 0) or its last element (the new limit) is present.
906 ** In this case, must check the hash part. If there is no hash part
907 ** or 'limit+1' is absent, 'limit' is a boundary.  Otherwise, call
908 ** 'hash_search' to find a boundary in the hash part of the table.
909 ** (In those cases, the boundary is not inside the array part, and
910 ** therefore cannot be used as a new limit.)
911 */
luaH_getn(Table * t)912 lua_Unsigned luaH_getn (Table *t) {
913   unsigned int limit = t->alimit;
914   if (limit > 0 && isempty(&t->array[limit - 1])) {  /* (1)? */
915     /* there must be a boundary before 'limit' */
916     if (limit >= 2 && !isempty(&t->array[limit - 2])) {
917       /* 'limit - 1' is a boundary; can it be a new limit? */
918       if (ispow2realasize(t) && !ispow2(limit - 1)) {
919         t->alimit = limit - 1;
920         setnorealasize(t);  /* now 'alimit' is not the real size */
921       }
922       return limit - 1;
923     }
924     else {  /* must search for a boundary in [0, limit] */
925       unsigned int boundary = binsearch(t->array, 0, limit);
926       /* can this boundary represent the real size of the array? */
927       if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
928         t->alimit = boundary;  /* use it as the new limit */
929         setnorealasize(t);
930       }
931       return boundary;
932     }
933   }
934   /* 'limit' is zero or present in table */
935   if (!limitequalsasize(t)) {  /* (2)? */
936     /* 'limit' > 0 and array has more elements after 'limit' */
937     if (isempty(&t->array[limit]))  /* 'limit + 1' is empty? */
938       return limit;  /* this is the boundary */
939     /* else, try last element in the array */
940     limit = luaH_realasize(t);
941     if (isempty(&t->array[limit - 1])) {  /* empty? */
942       /* there must be a boundary in the array after old limit,
943          and it must be a valid new limit */
944       unsigned int boundary = binsearch(t->array, t->alimit, limit);
945       t->alimit = boundary;
946       return boundary;
947     }
948     /* else, new limit is present in the table; check the hash part */
949   }
950   /* (3) 'limit' is the last element and either is zero or present in table */
951   lua_assert(limit == luaH_realasize(t) &&
952              (limit == 0 || !isempty(&t->array[limit - 1])));
953   if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1))))
954     return limit;  /* 'limit + 1' is absent */
955   else  /* 'limit + 1' is also present */
956     return hash_search(t, limit);
957 }
958 
959 
960 
961 #if defined(LUA_DEBUG)
962 
963 /* export these functions for the test library */
964 
luaH_mainposition(const Table * t,const TValue * key)965 Node *luaH_mainposition (const Table *t, const TValue *key) {
966   return mainpositionTV(t, key);
967 }
968 
luaH_isdummy(const Table * t)969 int luaH_isdummy (const Table *t) { return isdummy(t); }
970 
971 #endif
972