1 /*
2  *  Elliptic curves over GF(p): generic functions
3  *
4  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
5  *  SPDX-License-Identifier: Apache-2.0
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  *
19  *  This file is part of mbed TLS (https://tls.mbed.org)
20  */
21 
22 /*
23  * References:
24  *
25  * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
26  * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
27  * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
28  * RFC 4492 for the related TLS structures and constants
29  * RFC 7748 for the Curve448 and Curve25519 curve definitions
30  *
31  * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
32  *
33  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
34  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
35  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
36  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
37  *
38  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
39  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
40  *     ePrint Archive, 2004, vol. 2004, p. 342.
41  *     <http://eprint.iacr.org/2004/342.pdf>
42  */
43 
44 #if !defined(MBEDTLS_CONFIG_FILE)
45 #include "mbedtls/config.h"
46 #else
47 #include MBEDTLS_CONFIG_FILE
48 #endif
49 
50 /**
51  * \brief Function level alternative implementation.
52  *
53  * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
54  * replace certain functions in this module. The alternative implementations are
55  * typically hardware accelerators and need to activate the hardware before the
56  * computation starts and deactivate it after it finishes. The
57  * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
58  * this purpose.
59  *
60  * To preserve the correct functionality the following conditions must hold:
61  *
62  * - The alternative implementation must be activated by
63  *   mbedtls_internal_ecp_init() before any of the replaceable functions is
64  *   called.
65  * - mbedtls_internal_ecp_free() must \b only be called when the alternative
66  *   implementation is activated.
67  * - mbedtls_internal_ecp_init() must \b not be called when the alternative
68  *   implementation is activated.
69  * - Public functions must not return while the alternative implementation is
70  *   activated.
71  * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
72  *   before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
73  *   \endcode ensures that the alternative implementation supports the current
74  *   group.
75  */
76 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
77 #endif
78 
79 #if defined(MBEDTLS_ECP_C)
80 
81 #include "mbedtls/ecp.h"
82 #include "mbedtls/threading.h"
83 #include "mbedtls/platform_util.h"
84 
85 #include <string.h>
86 
87 #if !defined(MBEDTLS_ECP_ALT)
88 
89 /* Parameter validation macros based on platform_util.h */
90 #define ECP_VALIDATE_RET( cond )    \
91     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA )
92 #define ECP_VALIDATE( cond )        \
93     MBEDTLS_INTERNAL_VALIDATE( cond )
94 
95 #if defined(MBEDTLS_PLATFORM_C)
96 #include "mbedtls/platform.h"
97 #else
98 #include <stdlib.h>
99 #include <stdio.h>
100 #define mbedtls_printf     printf
101 #define mbedtls_calloc    calloc
102 #define mbedtls_free       free
103 #endif
104 
105 #include "mbedtls/ecp_internal.h"
106 
107 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
108     !defined(inline) && !defined(__cplusplus)
109 #define inline __inline
110 #endif
111 
112 #if defined(MBEDTLS_SELF_TEST)
113 /*
114  * Counts of point addition and doubling, and field multiplications.
115  * Used to test resistance of point multiplication to simple timing attacks.
116  */
117 static unsigned long add_count, dbl_count, mul_count;
118 #endif
119 
120 #if defined(MBEDTLS_ECP_RESTARTABLE)
121 /*
122  * Maximum number of "basic operations" to be done in a row.
123  *
124  * Default value 0 means that ECC operations will not yield.
125  * Note that regardless of the value of ecp_max_ops, always at
126  * least one step is performed before yielding.
127  *
128  * Setting ecp_max_ops=1 can be suitable for testing purposes
129  * as it will interrupt computation at all possible points.
130  */
131 static unsigned ecp_max_ops = 0;
132 
133 /*
134  * Set ecp_max_ops
135  */
mbedtls_ecp_set_max_ops(unsigned max_ops)136 void mbedtls_ecp_set_max_ops( unsigned max_ops )
137 {
138     ecp_max_ops = max_ops;
139 }
140 
141 /*
142  * Check if restart is enabled
143  */
mbedtls_ecp_restart_is_enabled(void)144 int mbedtls_ecp_restart_is_enabled( void )
145 {
146     return( ecp_max_ops != 0 );
147 }
148 
149 /*
150  * Restart sub-context for ecp_mul_comb()
151  */
152 struct mbedtls_ecp_restart_mul
153 {
154     mbedtls_ecp_point R;    /* current intermediate result                  */
155     size_t i;               /* current index in various loops, 0 outside    */
156     mbedtls_ecp_point *T;   /* table for precomputed points                 */
157     unsigned char T_size;   /* number of points in table T                  */
158     enum {                  /* what were we doing last time we returned?    */
159         ecp_rsm_init = 0,       /* nothing so far, dummy initial state      */
160         ecp_rsm_pre_dbl,        /* precompute 2^n multiples                 */
161         ecp_rsm_pre_norm_dbl,   /* normalize precomputed 2^n multiples      */
162         ecp_rsm_pre_add,        /* precompute remaining points by adding    */
163         ecp_rsm_pre_norm_add,   /* normalize all precomputed points         */
164         ecp_rsm_comb_core,      /* ecp_mul_comb_core()                      */
165         ecp_rsm_final_norm,     /* do the final normalization               */
166     } state;
167 };
168 
169 /*
170  * Init restart_mul sub-context
171  */
ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx * ctx)172 static void ecp_restart_rsm_init( mbedtls_ecp_restart_mul_ctx *ctx )
173 {
174     mbedtls_ecp_point_init( &ctx->R );
175     ctx->i = 0;
176     ctx->T = NULL;
177     ctx->T_size = 0;
178     ctx->state = ecp_rsm_init;
179 }
180 
181 /*
182  * Free the components of a restart_mul sub-context
183  */
ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx * ctx)184 static void ecp_restart_rsm_free( mbedtls_ecp_restart_mul_ctx *ctx )
185 {
186     unsigned char i;
187 
188     if( ctx == NULL )
189         return;
190 
191     mbedtls_ecp_point_free( &ctx->R );
192 
193     if( ctx->T != NULL )
194     {
195         for( i = 0; i < ctx->T_size; i++ )
196             mbedtls_ecp_point_free( ctx->T + i );
197         mbedtls_free( ctx->T );
198     }
199 
200     ecp_restart_rsm_init( ctx );
201 }
202 
203 /*
204  * Restart context for ecp_muladd()
205  */
206 struct mbedtls_ecp_restart_muladd
207 {
208     mbedtls_ecp_point mP;       /* mP value                             */
209     mbedtls_ecp_point R;        /* R intermediate result                */
210     enum {                      /* what should we do next?              */
211         ecp_rsma_mul1 = 0,      /* first multiplication                 */
212         ecp_rsma_mul2,          /* second multiplication                */
213         ecp_rsma_add,           /* addition                             */
214         ecp_rsma_norm,          /* normalization                        */
215     } state;
216 };
217 
218 /*
219  * Init restart_muladd sub-context
220  */
ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx * ctx)221 static void ecp_restart_ma_init( mbedtls_ecp_restart_muladd_ctx *ctx )
222 {
223     mbedtls_ecp_point_init( &ctx->mP );
224     mbedtls_ecp_point_init( &ctx->R );
225     ctx->state = ecp_rsma_mul1;
226 }
227 
228 /*
229  * Free the components of a restart_muladd sub-context
230  */
ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx * ctx)231 static void ecp_restart_ma_free( mbedtls_ecp_restart_muladd_ctx *ctx )
232 {
233     if( ctx == NULL )
234         return;
235 
236     mbedtls_ecp_point_free( &ctx->mP );
237     mbedtls_ecp_point_free( &ctx->R );
238 
239     ecp_restart_ma_init( ctx );
240 }
241 
242 /*
243  * Initialize a restart context
244  */
mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx * ctx)245 void mbedtls_ecp_restart_init( mbedtls_ecp_restart_ctx *ctx )
246 {
247     ECP_VALIDATE( ctx != NULL );
248     ctx->ops_done = 0;
249     ctx->depth = 0;
250     ctx->rsm = NULL;
251     ctx->ma = NULL;
252 }
253 
254 /*
255  * Free the components of a restart context
256  */
mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx * ctx)257 void mbedtls_ecp_restart_free( mbedtls_ecp_restart_ctx *ctx )
258 {
259     if( ctx == NULL )
260         return;
261 
262     ecp_restart_rsm_free( ctx->rsm );
263     mbedtls_free( ctx->rsm );
264 
265     ecp_restart_ma_free( ctx->ma );
266     mbedtls_free( ctx->ma );
267 
268     mbedtls_ecp_restart_init( ctx );
269 }
270 
271 /*
272  * Check if we can do the next step
273  */
mbedtls_ecp_check_budget(const mbedtls_ecp_group * grp,mbedtls_ecp_restart_ctx * rs_ctx,unsigned ops)274 int mbedtls_ecp_check_budget( const mbedtls_ecp_group *grp,
275                               mbedtls_ecp_restart_ctx *rs_ctx,
276                               unsigned ops )
277 {
278     ECP_VALIDATE_RET( grp != NULL );
279 
280     if( rs_ctx != NULL && ecp_max_ops != 0 )
281     {
282         /* scale depending on curve size: the chosen reference is 256-bit,
283          * and multiplication is quadratic. Round to the closest integer. */
284         if( grp->pbits >= 512 )
285             ops *= 4;
286         else if( grp->pbits >= 384 )
287             ops *= 2;
288 
289         /* Avoid infinite loops: always allow first step.
290          * Because of that, however, it's not generally true
291          * that ops_done <= ecp_max_ops, so the check
292          * ops_done > ecp_max_ops below is mandatory. */
293         if( ( rs_ctx->ops_done != 0 ) &&
294             ( rs_ctx->ops_done > ecp_max_ops ||
295               ops > ecp_max_ops - rs_ctx->ops_done ) )
296         {
297             return( MBEDTLS_ERR_ECP_IN_PROGRESS );
298         }
299 
300         /* update running count */
301         rs_ctx->ops_done += ops;
302     }
303 
304     return( 0 );
305 }
306 
307 /* Call this when entering a function that needs its own sub-context */
308 #define ECP_RS_ENTER( SUB )   do {                                      \
309     /* reset ops count for this call if top-level */                    \
310     if( rs_ctx != NULL && rs_ctx->depth++ == 0 )                        \
311         rs_ctx->ops_done = 0;                                           \
312                                                                         \
313     /* set up our own sub-context if needed */                          \
314     if( mbedtls_ecp_restart_is_enabled() &&                             \
315         rs_ctx != NULL && rs_ctx->SUB == NULL )                         \
316     {                                                                   \
317         rs_ctx->SUB = mbedtls_calloc( 1, sizeof( *rs_ctx->SUB ) );      \
318         if( rs_ctx->SUB == NULL )                                       \
319             return( MBEDTLS_ERR_ECP_ALLOC_FAILED );                     \
320                                                                         \
321         ecp_restart_## SUB ##_init( rs_ctx->SUB );                      \
322     }                                                                   \
323 } while( 0 )
324 
325 /* Call this when leaving a function that needs its own sub-context */
326 #define ECP_RS_LEAVE( SUB )   do {                                      \
327     /* clear our sub-context when not in progress (done or error) */    \
328     if( rs_ctx != NULL && rs_ctx->SUB != NULL &&                        \
329         ret != MBEDTLS_ERR_ECP_IN_PROGRESS )                            \
330     {                                                                   \
331         ecp_restart_## SUB ##_free( rs_ctx->SUB );                      \
332         mbedtls_free( rs_ctx->SUB );                                    \
333         rs_ctx->SUB = NULL;                                             \
334     }                                                                   \
335                                                                         \
336     if( rs_ctx != NULL )                                                \
337         rs_ctx->depth--;                                                \
338 } while( 0 )
339 
340 #else /* MBEDTLS_ECP_RESTARTABLE */
341 
342 #define ECP_RS_ENTER( sub )     (void) rs_ctx;
343 #define ECP_RS_LEAVE( sub )     (void) rs_ctx;
344 
345 #endif /* MBEDTLS_ECP_RESTARTABLE */
346 
347 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) ||   \
348     defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
349     defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
350     defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) ||   \
351     defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) ||   \
352     defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)   ||   \
353     defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)   ||   \
354     defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)   ||   \
355     defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
356     defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
357     defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
358 #define ECP_SHORTWEIERSTRASS
359 #endif
360 
361 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) || \
362     defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
363 #define ECP_MONTGOMERY
364 #endif
365 
366 /*
367  * Curve types: internal for now, might be exposed later
368  */
369 typedef enum
370 {
371     ECP_TYPE_NONE = 0,
372     ECP_TYPE_SHORT_WEIERSTRASS,    /* y^2 = x^3 + a x + b      */
373     ECP_TYPE_MONTGOMERY,           /* y^2 = x^3 + a x^2 + x    */
374 } ecp_curve_type;
375 
376 /*
377  * List of supported curves:
378  *  - internal ID
379  *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
380  *  - size in bits
381  *  - readable name
382  *
383  * Curves are listed in order: largest curves first, and for a given size,
384  * fastest curves first. This provides the default order for the SSL module.
385  *
386  * Reminder: update profiles in x509_crt.c when adding a new curves!
387  */
388 static const mbedtls_ecp_curve_info ecp_supported_curves[] =
389 {
390 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
391     { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },
392 #endif
393 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
394     { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },
395 #endif
396 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
397     { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },
398 #endif
399 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
400     { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },
401 #endif
402 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
403     { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },
404 #endif
405 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
406     { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         },
407 #endif
408 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
409     { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },
410 #endif
411 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
412     { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },
413 #endif
414 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
415     { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         },
416 #endif
417 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
418     { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },
419 #endif
420 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
421     { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         },
422 #endif
423     { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },
424 };
425 
426 #define ECP_NB_CURVES   sizeof( ecp_supported_curves ) /    \
427                         sizeof( ecp_supported_curves[0] )
428 
429 static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
430 
431 /*
432  * List of supported curves and associated info
433  */
mbedtls_ecp_curve_list(void)434 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list( void )
435 {
436     return( ecp_supported_curves );
437 }
438 
439 /*
440  * List of supported curves, group ID only
441  */
mbedtls_ecp_grp_id_list(void)442 const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list( void )
443 {
444     static int init_done = 0;
445 
446     if( ! init_done )
447     {
448         size_t i = 0;
449         const mbedtls_ecp_curve_info *curve_info;
450 
451         for( curve_info = mbedtls_ecp_curve_list();
452              curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
453              curve_info++ )
454         {
455             ecp_supported_grp_id[i++] = curve_info->grp_id;
456         }
457         ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
458 
459         init_done = 1;
460     }
461 
462     return( ecp_supported_grp_id );
463 }
464 
465 /*
466  * Get the curve info for the internal identifier
467  */
mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)468 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id )
469 {
470     const mbedtls_ecp_curve_info *curve_info;
471 
472     for( curve_info = mbedtls_ecp_curve_list();
473          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
474          curve_info++ )
475     {
476         if( curve_info->grp_id == grp_id )
477             return( curve_info );
478     }
479 
480     return( NULL );
481 }
482 
483 /*
484  * Get the curve info from the TLS identifier
485  */
mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)486 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id )
487 {
488     const mbedtls_ecp_curve_info *curve_info;
489 
490     for( curve_info = mbedtls_ecp_curve_list();
491          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
492          curve_info++ )
493     {
494         if( curve_info->tls_id == tls_id )
495             return( curve_info );
496     }
497 
498     return( NULL );
499 }
500 
501 /*
502  * Get the curve info from the name
503  */
mbedtls_ecp_curve_info_from_name(const char * name)504 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name( const char *name )
505 {
506     const mbedtls_ecp_curve_info *curve_info;
507 
508     if( name == NULL )
509         return( NULL );
510 
511     for( curve_info = mbedtls_ecp_curve_list();
512          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
513          curve_info++ )
514     {
515         if( strcmp( curve_info->name, name ) == 0 )
516             return( curve_info );
517     }
518 
519     return( NULL );
520 }
521 
522 /*
523  * Get the type of a curve
524  */
ecp_get_type(const mbedtls_ecp_group * grp)525 static inline ecp_curve_type ecp_get_type( const mbedtls_ecp_group *grp )
526 {
527     if( grp->G.X.p == NULL )
528         return( ECP_TYPE_NONE );
529 
530     if( grp->G.Y.p == NULL )
531         return( ECP_TYPE_MONTGOMERY );
532     else
533         return( ECP_TYPE_SHORT_WEIERSTRASS );
534 }
535 
536 /*
537  * Initialize (the components of) a point
538  */
mbedtls_ecp_point_init(mbedtls_ecp_point * pt)539 void mbedtls_ecp_point_init( mbedtls_ecp_point *pt )
540 {
541     ECP_VALIDATE( pt != NULL );
542 
543     mbedtls_mpi_init( &pt->X );
544     mbedtls_mpi_init( &pt->Y );
545     mbedtls_mpi_init( &pt->Z );
546 }
547 
548 /*
549  * Initialize (the components of) a group
550  */
mbedtls_ecp_group_init(mbedtls_ecp_group * grp)551 void mbedtls_ecp_group_init( mbedtls_ecp_group *grp )
552 {
553     ECP_VALIDATE( grp != NULL );
554 
555     grp->id = MBEDTLS_ECP_DP_NONE;
556     mbedtls_mpi_init( &grp->P );
557     mbedtls_mpi_init( &grp->A );
558     mbedtls_mpi_init( &grp->B );
559     mbedtls_ecp_point_init( &grp->G );
560     mbedtls_mpi_init( &grp->N );
561     grp->pbits = 0;
562     grp->nbits = 0;
563     grp->h = 0;
564     grp->modp = NULL;
565     grp->t_pre = NULL;
566     grp->t_post = NULL;
567     grp->t_data = NULL;
568     grp->T = NULL;
569     grp->T_size = 0;
570 }
571 
572 /*
573  * Initialize (the components of) a key pair
574  */
mbedtls_ecp_keypair_init(mbedtls_ecp_keypair * key)575 void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair *key )
576 {
577     ECP_VALIDATE( key != NULL );
578 
579     mbedtls_ecp_group_init( &key->grp );
580     mbedtls_mpi_init( &key->d );
581     mbedtls_ecp_point_init( &key->Q );
582 }
583 
584 /*
585  * Unallocate (the components of) a point
586  */
mbedtls_ecp_point_free(mbedtls_ecp_point * pt)587 void mbedtls_ecp_point_free( mbedtls_ecp_point *pt )
588 {
589     if( pt == NULL )
590         return;
591 
592     mbedtls_mpi_free( &( pt->X ) );
593     mbedtls_mpi_free( &( pt->Y ) );
594     mbedtls_mpi_free( &( pt->Z ) );
595 }
596 
597 /*
598  * Unallocate (the components of) a group
599  */
mbedtls_ecp_group_free(mbedtls_ecp_group * grp)600 void mbedtls_ecp_group_free( mbedtls_ecp_group *grp )
601 {
602     size_t i;
603 
604     if( grp == NULL )
605         return;
606 
607     if( grp->h != 1 )
608     {
609         mbedtls_mpi_free( &grp->P );
610         mbedtls_mpi_free( &grp->A );
611         mbedtls_mpi_free( &grp->B );
612         mbedtls_ecp_point_free( &grp->G );
613         mbedtls_mpi_free( &grp->N );
614     }
615 
616     if( grp->T != NULL )
617     {
618         for( i = 0; i < grp->T_size; i++ )
619             mbedtls_ecp_point_free( &grp->T[i] );
620         mbedtls_free( grp->T );
621     }
622 
623     mbedtls_platform_zeroize( grp, sizeof( mbedtls_ecp_group ) );
624 }
625 
626 /*
627  * Unallocate (the components of) a key pair
628  */
mbedtls_ecp_keypair_free(mbedtls_ecp_keypair * key)629 void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair *key )
630 {
631     if( key == NULL )
632         return;
633 
634     mbedtls_ecp_group_free( &key->grp );
635     mbedtls_mpi_free( &key->d );
636     mbedtls_ecp_point_free( &key->Q );
637 }
638 
639 /*
640  * Copy the contents of a point
641  */
mbedtls_ecp_copy(mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)642 int mbedtls_ecp_copy( mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
643 {
644     int ret;
645     ECP_VALIDATE_RET( P != NULL );
646     ECP_VALIDATE_RET( Q != NULL );
647 
648     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->X, &Q->X ) );
649     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Y, &Q->Y ) );
650     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Z, &Q->Z ) );
651 
652 cleanup:
653     return( ret );
654 }
655 
656 /*
657  * Copy the contents of a group object
658  */
mbedtls_ecp_group_copy(mbedtls_ecp_group * dst,const mbedtls_ecp_group * src)659 int mbedtls_ecp_group_copy( mbedtls_ecp_group *dst, const mbedtls_ecp_group *src )
660 {
661     ECP_VALIDATE_RET( dst != NULL );
662     ECP_VALIDATE_RET( src != NULL );
663 
664     return( mbedtls_ecp_group_load( dst, src->id ) );
665 }
666 
667 /*
668  * Set point to zero
669  */
mbedtls_ecp_set_zero(mbedtls_ecp_point * pt)670 int mbedtls_ecp_set_zero( mbedtls_ecp_point *pt )
671 {
672     int ret;
673     ECP_VALIDATE_RET( pt != NULL );
674 
675     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->X , 1 ) );
676     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Y , 1 ) );
677     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z , 0 ) );
678 
679 cleanup:
680     return( ret );
681 }
682 
683 /*
684  * Tell if a point is zero
685  */
mbedtls_ecp_is_zero(mbedtls_ecp_point * pt)686 int mbedtls_ecp_is_zero( mbedtls_ecp_point *pt )
687 {
688     ECP_VALIDATE_RET( pt != NULL );
689 
690     return( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 );
691 }
692 
693 /*
694  * Compare two points lazily
695  */
mbedtls_ecp_point_cmp(const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)696 int mbedtls_ecp_point_cmp( const mbedtls_ecp_point *P,
697                            const mbedtls_ecp_point *Q )
698 {
699     ECP_VALIDATE_RET( P != NULL );
700     ECP_VALIDATE_RET( Q != NULL );
701 
702     if( mbedtls_mpi_cmp_mpi( &P->X, &Q->X ) == 0 &&
703         mbedtls_mpi_cmp_mpi( &P->Y, &Q->Y ) == 0 &&
704         mbedtls_mpi_cmp_mpi( &P->Z, &Q->Z ) == 0 )
705     {
706         return( 0 );
707     }
708 
709     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
710 }
711 
712 /*
713  * Import a non-zero point from ASCII strings
714  */
mbedtls_ecp_point_read_string(mbedtls_ecp_point * P,int radix,const char * x,const char * y)715 int mbedtls_ecp_point_read_string( mbedtls_ecp_point *P, int radix,
716                            const char *x, const char *y )
717 {
718     int ret;
719     ECP_VALIDATE_RET( P != NULL );
720     ECP_VALIDATE_RET( x != NULL );
721     ECP_VALIDATE_RET( y != NULL );
722 
723     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->X, radix, x ) );
724     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->Y, radix, y ) );
725     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
726 
727 cleanup:
728     return( ret );
729 }
730 
731 /*
732  * Export a point into unsigned binary data (SEC1 2.3.3)
733  */
mbedtls_ecp_point_write_binary(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * P,int format,size_t * olen,unsigned char * buf,size_t buflen)734 int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group *grp,
735                                     const mbedtls_ecp_point *P,
736                                     int format, size_t *olen,
737                                     unsigned char *buf, size_t buflen )
738 {
739     int ret = 0;
740     size_t plen;
741     ECP_VALIDATE_RET( grp  != NULL );
742     ECP_VALIDATE_RET( P    != NULL );
743     ECP_VALIDATE_RET( olen != NULL );
744     ECP_VALIDATE_RET( buf  != NULL );
745     ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
746                       format == MBEDTLS_ECP_PF_COMPRESSED );
747 
748     /*
749      * Common case: P == 0
750      */
751     if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
752     {
753         if( buflen < 1 )
754             return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
755 
756         buf[0] = 0x00;
757         *olen = 1;
758 
759         return( 0 );
760     }
761 
762     plen = mbedtls_mpi_size( &grp->P );
763 
764     if( format == MBEDTLS_ECP_PF_UNCOMPRESSED )
765     {
766         *olen = 2 * plen + 1;
767 
768         if( buflen < *olen )
769             return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
770 
771         buf[0] = 0x04;
772         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
773         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
774     }
775     else if( format == MBEDTLS_ECP_PF_COMPRESSED )
776     {
777         *olen = plen + 1;
778 
779         if( buflen < *olen )
780             return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
781 
782         buf[0] = 0x02 + mbedtls_mpi_get_bit( &P->Y, 0 );
783         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
784     }
785 
786 cleanup:
787     return( ret );
788 }
789 
790 /*
791  * Import a point from unsigned binary data (SEC1 2.3.4)
792  */
mbedtls_ecp_point_read_binary(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char * buf,size_t ilen)793 int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp,
794                                    mbedtls_ecp_point *pt,
795                                    const unsigned char *buf, size_t ilen )
796 {
797     int ret;
798     size_t plen;
799     ECP_VALIDATE_RET( grp != NULL );
800     ECP_VALIDATE_RET( pt  != NULL );
801     ECP_VALIDATE_RET( buf != NULL );
802 
803     if( ilen < 1 )
804         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
805 
806     if( buf[0] == 0x00 )
807     {
808         if( ilen == 1 )
809             return( mbedtls_ecp_set_zero( pt ) );
810         else
811             return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
812     }
813 
814     plen = mbedtls_mpi_size( &grp->P );
815 
816     if( buf[0] != 0x04 )
817         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
818 
819     if( ilen != 2 * plen + 1 )
820         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
821 
822     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->X, buf + 1, plen ) );
823     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) );
824     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
825 
826 cleanup:
827     return( ret );
828 }
829 
830 /*
831  * Import a point from a TLS ECPoint record (RFC 4492)
832  *      struct {
833  *          opaque point <1..2^8-1>;
834  *      } ECPoint;
835  */
mbedtls_ecp_tls_read_point(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char ** buf,size_t buf_len)836 int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group *grp,
837                                 mbedtls_ecp_point *pt,
838                                 const unsigned char **buf, size_t buf_len )
839 {
840     unsigned char data_len;
841     const unsigned char *buf_start;
842     ECP_VALIDATE_RET( grp != NULL );
843     ECP_VALIDATE_RET( pt  != NULL );
844     ECP_VALIDATE_RET( buf != NULL );
845     ECP_VALIDATE_RET( *buf != NULL );
846 
847     /*
848      * We must have at least two bytes (1 for length, at least one for data)
849      */
850     if( buf_len < 2 )
851         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
852 
853     data_len = *(*buf)++;
854     if( data_len < 1 || data_len > buf_len - 1 )
855         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
856 
857     /*
858      * Save buffer start for read_binary and update buf
859      */
860     buf_start = *buf;
861     *buf += data_len;
862 
863     return( mbedtls_ecp_point_read_binary( grp, pt, buf_start, data_len ) );
864 }
865 
866 /*
867  * Export a point as a TLS ECPoint record (RFC 4492)
868  *      struct {
869  *          opaque point <1..2^8-1>;
870  *      } ECPoint;
871  */
mbedtls_ecp_tls_write_point(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt,int format,size_t * olen,unsigned char * buf,size_t blen)872 int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
873                          int format, size_t *olen,
874                          unsigned char *buf, size_t blen )
875 {
876     int ret;
877     ECP_VALIDATE_RET( grp  != NULL );
878     ECP_VALIDATE_RET( pt   != NULL );
879     ECP_VALIDATE_RET( olen != NULL );
880     ECP_VALIDATE_RET( buf  != NULL );
881     ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
882                       format == MBEDTLS_ECP_PF_COMPRESSED );
883 
884     /*
885      * buffer length must be at least one, for our length byte
886      */
887     if( blen < 1 )
888         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
889 
890     if( ( ret = mbedtls_ecp_point_write_binary( grp, pt, format,
891                     olen, buf + 1, blen - 1) ) != 0 )
892         return( ret );
893 
894     /*
895      * write length to the first byte and update total length
896      */
897     buf[0] = (unsigned char) *olen;
898     ++*olen;
899 
900     return( 0 );
901 }
902 
903 /*
904  * Set a group from an ECParameters record (RFC 4492)
905  */
mbedtls_ecp_tls_read_group(mbedtls_ecp_group * grp,const unsigned char ** buf,size_t len)906 int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp,
907                                 const unsigned char **buf, size_t len )
908 {
909     int ret;
910     mbedtls_ecp_group_id grp_id;
911     ECP_VALIDATE_RET( grp  != NULL );
912     ECP_VALIDATE_RET( buf  != NULL );
913     ECP_VALIDATE_RET( *buf != NULL );
914 
915     if( ( ret = mbedtls_ecp_tls_read_group_id( &grp_id, buf, len ) ) != 0 )
916         return( ret );
917 
918     return( mbedtls_ecp_group_load( grp, grp_id ) );
919 }
920 
921 /*
922  * Read a group id from an ECParameters record (RFC 4492) and convert it to
923  * mbedtls_ecp_group_id.
924  */
mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id * grp,const unsigned char ** buf,size_t len)925 int mbedtls_ecp_tls_read_group_id( mbedtls_ecp_group_id *grp,
926                                    const unsigned char **buf, size_t len )
927 {
928     uint16_t tls_id;
929     const mbedtls_ecp_curve_info *curve_info;
930     ECP_VALIDATE_RET( grp  != NULL );
931     ECP_VALIDATE_RET( buf  != NULL );
932     ECP_VALIDATE_RET( *buf != NULL );
933 
934     /*
935      * We expect at least three bytes (see below)
936      */
937     if( len < 3 )
938         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
939 
940     /*
941      * First byte is curve_type; only named_curve is handled
942      */
943     if( *(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE )
944         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
945 
946     /*
947      * Next two bytes are the namedcurve value
948      */
949     tls_id = *(*buf)++;
950     tls_id <<= 8;
951     tls_id |= *(*buf)++;
952 
953     if( ( curve_info = mbedtls_ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
954         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
955 
956     *grp = curve_info->grp_id;
957 
958     return( 0 );
959 }
960 
961 /*
962  * Write the ECParameters record corresponding to a group (RFC 4492)
963  */
mbedtls_ecp_tls_write_group(const mbedtls_ecp_group * grp,size_t * olen,unsigned char * buf,size_t blen)964 int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen,
965                          unsigned char *buf, size_t blen )
966 {
967     const mbedtls_ecp_curve_info *curve_info;
968     ECP_VALIDATE_RET( grp  != NULL );
969     ECP_VALIDATE_RET( buf  != NULL );
970     ECP_VALIDATE_RET( olen != NULL );
971 
972     if( ( curve_info = mbedtls_ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
973         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
974 
975     /*
976      * We are going to write 3 bytes (see below)
977      */
978     *olen = 3;
979     if( blen < *olen )
980         return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
981 
982     /*
983      * First byte is curve_type, always named_curve
984      */
985     *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
986 
987     /*
988      * Next two bytes are the namedcurve value
989      */
990     buf[0] = curve_info->tls_id >> 8;
991     buf[1] = curve_info->tls_id & 0xFF;
992 
993     return( 0 );
994 }
995 
996 /*
997  * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
998  * See the documentation of struct mbedtls_ecp_group.
999  *
1000  * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
1001  */
ecp_modp(mbedtls_mpi * N,const mbedtls_ecp_group * grp)1002 static int ecp_modp( mbedtls_mpi *N, const mbedtls_ecp_group *grp )
1003 {
1004     int ret;
1005 
1006     if( grp->modp == NULL )
1007         return( mbedtls_mpi_mod_mpi( N, N, &grp->P ) );
1008 
1009     /* N->s < 0 is a much faster test, which fails only if N is 0 */
1010     if( ( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) ||
1011         mbedtls_mpi_bitlen( N ) > 2 * grp->pbits )
1012     {
1013         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1014     }
1015 
1016     MBEDTLS_MPI_CHK( grp->modp( N ) );
1017 
1018     /* N->s < 0 is a much faster test, which fails only if N is 0 */
1019     while( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 )
1020         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &grp->P ) );
1021 
1022     while( mbedtls_mpi_cmp_mpi( N, &grp->P ) >= 0 )
1023         /* we known P, N and the result are positive */
1024         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, N, &grp->P ) );
1025 
1026 cleanup:
1027     return( ret );
1028 }
1029 
1030 /*
1031  * Fast mod-p functions expect their argument to be in the 0..p^2 range.
1032  *
1033  * In order to guarantee that, we need to ensure that operands of
1034  * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1035  * bring the result back to this range.
1036  *
1037  * The following macros are shortcuts for doing that.
1038  */
1039 
1040 /*
1041  * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1042  */
1043 #if defined(MBEDTLS_SELF_TEST)
1044 #define INC_MUL_COUNT   mul_count++;
1045 #else
1046 #define INC_MUL_COUNT
1047 #endif
1048 
1049 #define MOD_MUL( N )    do { MBEDTLS_MPI_CHK( ecp_modp( &N, grp ) ); INC_MUL_COUNT } \
1050                         while( 0 )
1051 
1052 /*
1053  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1054  * N->s < 0 is a very fast test, which fails only if N is 0
1055  */
1056 #define MOD_SUB( N )                                \
1057     while( N.s < 0 && mbedtls_mpi_cmp_int( &N, 0 ) != 0 )   \
1058         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &N, &N, &grp->P ) )
1059 
1060 /*
1061  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1062  * We known P, N and the result are positive, so sub_abs is correct, and
1063  * a bit faster.
1064  */
1065 #define MOD_ADD( N )                                \
1066     while( mbedtls_mpi_cmp_mpi( &N, &grp->P ) >= 0 )        \
1067         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &N, &N, &grp->P ) )
1068 
1069 #if defined(ECP_SHORTWEIERSTRASS)
1070 /*
1071  * For curves in short Weierstrass form, we do all the internal operations in
1072  * Jacobian coordinates.
1073  *
1074  * For multiplication, we'll use a comb method with coutermeasueres against
1075  * SPA, hence timing attacks.
1076  */
1077 
1078 /*
1079  * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
1080  * Cost: 1N := 1I + 3M + 1S
1081  */
ecp_normalize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt)1082 static int ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt )
1083 {
1084     int ret;
1085     mbedtls_mpi Zi, ZZi;
1086 
1087     if( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 )
1088         return( 0 );
1089 
1090 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1091     if( mbedtls_internal_ecp_grp_capable( grp ) )
1092         return( mbedtls_internal_ecp_normalize_jac( grp, pt ) );
1093 #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1094 
1095     mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
1096 
1097     /*
1098      * X = X / Z^2  mod p
1099      */
1100     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi,      &pt->Z,     &grp->P ) );
1101     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi,     &Zi,        &Zi     ) ); MOD_MUL( ZZi );
1102     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X,   &pt->X,     &ZZi    ) ); MOD_MUL( pt->X );
1103 
1104     /*
1105      * Y = Y / Z^3  mod p
1106      */
1107     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &ZZi    ) ); MOD_MUL( pt->Y );
1108     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &Zi     ) ); MOD_MUL( pt->Y );
1109 
1110     /*
1111      * Z = 1
1112      */
1113     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
1114 
1115 cleanup:
1116 
1117     mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
1118 
1119     return( ret );
1120 }
1121 
1122 /*
1123  * Normalize jacobian coordinates of an array of (pointers to) points,
1124  * using Montgomery's trick to perform only one inversion mod P.
1125  * (See for example Cohen's "A Course in Computational Algebraic Number
1126  * Theory", Algorithm 10.3.4.)
1127  *
1128  * Warning: fails (returning an error) if one of the points is zero!
1129  * This should never happen, see choice of w in ecp_mul_comb().
1130  *
1131  * Cost: 1N(t) := 1I + (6t - 3)M + 1S
1132  */
ecp_normalize_jac_many(const mbedtls_ecp_group * grp,mbedtls_ecp_point * T[],size_t T_size)1133 static int ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
1134                                    mbedtls_ecp_point *T[], size_t T_size )
1135 {
1136     int ret;
1137     size_t i;
1138     mbedtls_mpi *c, u, Zi, ZZi;
1139 
1140     if( T_size < 2 )
1141         return( ecp_normalize_jac( grp, *T ) );
1142 
1143 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1144     if( mbedtls_internal_ecp_grp_capable( grp ) )
1145         return( mbedtls_internal_ecp_normalize_jac_many( grp, T, T_size ) );
1146 #endif
1147 
1148     if( ( c = mbedtls_calloc( T_size, sizeof( mbedtls_mpi ) ) ) == NULL )
1149         return( MBEDTLS_ERR_ECP_ALLOC_FAILED );
1150 
1151     for( i = 0; i < T_size; i++ )
1152         mbedtls_mpi_init( &c[i] );
1153 
1154     mbedtls_mpi_init( &u ); mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
1155 
1156     /*
1157      * c[i] = Z_0 * ... * Z_i
1158      */
1159     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &c[0], &T[0]->Z ) );
1160     for( i = 1; i < T_size; i++ )
1161     {
1162         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) );
1163         MOD_MUL( c[i] );
1164     }
1165 
1166     /*
1167      * u = 1 / (Z_0 * ... * Z_n) mod P
1168      */
1169     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &u, &c[T_size-1], &grp->P ) );
1170 
1171     for( i = T_size - 1; ; i-- )
1172     {
1173         /*
1174          * Zi = 1 / Z_i mod p
1175          * u = 1 / (Z_0 * ... * Z_i) mod P
1176          */
1177         if( i == 0 ) {
1178             MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Zi, &u ) );
1179         }
1180         else
1181         {
1182             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Zi, &u, &c[i-1]  ) ); MOD_MUL( Zi );
1183             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u,  &u, &T[i]->Z ) ); MOD_MUL( u );
1184         }
1185 
1186         /*
1187          * proceed as in normalize()
1188          */
1189         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi,     &Zi,      &Zi  ) ); MOD_MUL( ZZi );
1190         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X );
1191         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y );
1192         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi  ) ); MOD_MUL( T[i]->Y );
1193 
1194         /*
1195          * Post-precessing: reclaim some memory by shrinking coordinates
1196          * - not storing Z (always 1)
1197          * - shrinking other coordinates, but still keeping the same number of
1198          *   limbs as P, as otherwise it will too likely be regrown too fast.
1199          */
1200         MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->X, grp->P.n ) );
1201         MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->Y, grp->P.n ) );
1202         mbedtls_mpi_free( &T[i]->Z );
1203 
1204         if( i == 0 )
1205             break;
1206     }
1207 
1208 cleanup:
1209 
1210     mbedtls_mpi_free( &u ); mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
1211     for( i = 0; i < T_size; i++ )
1212         mbedtls_mpi_free( &c[i] );
1213     mbedtls_free( c );
1214 
1215     return( ret );
1216 }
1217 
1218 /*
1219  * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1220  * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1221  */
ecp_safe_invert_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * Q,unsigned char inv)1222 static int ecp_safe_invert_jac( const mbedtls_ecp_group *grp,
1223                             mbedtls_ecp_point *Q,
1224                             unsigned char inv )
1225 {
1226     int ret;
1227     unsigned char nonzero;
1228     mbedtls_mpi mQY;
1229 
1230     mbedtls_mpi_init( &mQY );
1231 
1232     /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
1233     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) );
1234     nonzero = mbedtls_mpi_cmp_int( &Q->Y, 0 ) != 0;
1235     MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) );
1236 
1237 cleanup:
1238     mbedtls_mpi_free( &mQY );
1239 
1240     return( ret );
1241 }
1242 
1243 /*
1244  * Point doubling R = 2 P, Jacobian coordinates
1245  *
1246  * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1247  *
1248  * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1249  * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1250  *
1251  * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1252  *
1253  * Cost: 1D := 3M + 4S          (A ==  0)
1254  *             4M + 4S          (A == -3)
1255  *             3M + 6S + 1a     otherwise
1256  */
ecp_double_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P)1257 static int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1258                            const mbedtls_ecp_point *P )
1259 {
1260     int ret;
1261     mbedtls_mpi M, S, T, U;
1262 
1263 #if defined(MBEDTLS_SELF_TEST)
1264     dbl_count++;
1265 #endif
1266 
1267 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1268     if( mbedtls_internal_ecp_grp_capable( grp ) )
1269         return( mbedtls_internal_ecp_double_jac( grp, R, P ) );
1270 #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1271 
1272     mbedtls_mpi_init( &M ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &U );
1273 
1274     /* Special case for A = -3 */
1275     if( grp->A.p == NULL )
1276     {
1277         /* M = 3(X + Z^2)(X - Z^2) */
1278         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->Z,  &P->Z   ) ); MOD_MUL( S );
1279         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T,  &P->X,  &S      ) ); MOD_ADD( T );
1280         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U,  &P->X,  &S      ) ); MOD_SUB( U );
1281         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &T,     &U      ) ); MOD_MUL( S );
1282         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M );
1283     }
1284     else
1285     {
1286         /* M = 3.X^2 */
1287         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->X,  &P->X   ) ); MOD_MUL( S );
1288         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M );
1289 
1290         /* Optimize away for "koblitz" curves with A = 0 */
1291         if( mbedtls_mpi_cmp_int( &grp->A, 0 ) != 0 )
1292         {
1293             /* M += A.Z^4 */
1294             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->Z,  &P->Z   ) ); MOD_MUL( S );
1295             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &S,     &S      ) ); MOD_MUL( T );
1296             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &T,     &grp->A ) ); MOD_MUL( S );
1297             MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M,  &M,     &S      ) ); MOD_ADD( M );
1298         }
1299     }
1300 
1301     /* S = 4.X.Y^2 */
1302     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &P->Y,  &P->Y   ) ); MOD_MUL( T );
1303     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T,  1               ) ); MOD_ADD( T );
1304     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->X,  &T      ) ); MOD_MUL( S );
1305     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &S,  1               ) ); MOD_ADD( S );
1306 
1307     /* U = 8.Y^4 */
1308     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U,  &T,     &T      ) ); MOD_MUL( U );
1309     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U,  1               ) ); MOD_ADD( U );
1310 
1311     /* T = M^2 - 2.S */
1312     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &M,     &M      ) ); MOD_MUL( T );
1313     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T,  &T,     &S      ) ); MOD_SUB( T );
1314     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T,  &T,     &S      ) ); MOD_SUB( T );
1315 
1316     /* S = M(S - T) - U */
1317     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S,  &S,     &T      ) ); MOD_SUB( S );
1318     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &S,     &M      ) ); MOD_MUL( S );
1319     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S,  &S,     &U      ) ); MOD_SUB( S );
1320 
1321     /* U = 2.Y.Z */
1322     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U,  &P->Y,  &P->Z   ) ); MOD_MUL( U );
1323     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U,  1               ) ); MOD_ADD( U );
1324 
1325     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &T ) );
1326     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &S ) );
1327     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &U ) );
1328 
1329 cleanup:
1330     mbedtls_mpi_free( &M ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &U );
1331 
1332     return( ret );
1333 }
1334 
1335 /*
1336  * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1337  *
1338  * The coordinates of Q must be normalized (= affine),
1339  * but those of P don't need to. R is not normalized.
1340  *
1341  * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1342  * None of these cases can happen as intermediate step in ecp_mul_comb():
1343  * - at each step, P, Q and R are multiples of the base point, the factor
1344  *   being less than its order, so none of them is zero;
1345  * - Q is an odd multiple of the base point, P an even multiple,
1346  *   due to the choice of precomputed points in the modified comb method.
1347  * So branches for these cases do not leak secret information.
1348  *
1349  * We accept Q->Z being unset (saving memory in tables) as meaning 1.
1350  *
1351  * Cost: 1A := 8M + 3S
1352  */
ecp_add_mixed(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)1353 static int ecp_add_mixed( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1354                           const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
1355 {
1356     int ret;
1357     mbedtls_mpi T1, T2, T3, T4, X, Y, Z;
1358 
1359 #if defined(MBEDTLS_SELF_TEST)
1360     add_count++;
1361 #endif
1362 
1363 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1364     if( mbedtls_internal_ecp_grp_capable( grp ) )
1365         return( mbedtls_internal_ecp_add_mixed( grp, R, P, Q ) );
1366 #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1367 
1368     /*
1369      * Trivial cases: P == 0 or Q == 0 (case 1)
1370      */
1371     if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
1372         return( mbedtls_ecp_copy( R, Q ) );
1373 
1374     if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 0 ) == 0 )
1375         return( mbedtls_ecp_copy( R, P ) );
1376 
1377     /*
1378      * Make sure Q coordinates are normalized
1379      */
1380     if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 1 ) != 0 )
1381         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1382 
1383     mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 ); mbedtls_mpi_init( &T3 ); mbedtls_mpi_init( &T4 );
1384     mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
1385 
1386     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1,  &P->Z,  &P->Z ) );  MOD_MUL( T1 );
1387     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2,  &T1,    &P->Z ) );  MOD_MUL( T2 );
1388     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1,  &T1,    &Q->X ) );  MOD_MUL( T1 );
1389     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2,  &T2,    &Q->Y ) );  MOD_MUL( T2 );
1390     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T1,  &T1,    &P->X ) );  MOD_SUB( T1 );
1391     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T2,  &T2,    &P->Y ) );  MOD_SUB( T2 );
1392 
1393     /* Special cases (2) and (3) */
1394     if( mbedtls_mpi_cmp_int( &T1, 0 ) == 0 )
1395     {
1396         if( mbedtls_mpi_cmp_int( &T2, 0 ) == 0 )
1397         {
1398             ret = ecp_double_jac( grp, R, P );
1399             goto cleanup;
1400         }
1401         else
1402         {
1403             ret = mbedtls_ecp_set_zero( R );
1404             goto cleanup;
1405         }
1406     }
1407 
1408     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Z,   &P->Z,  &T1   ) );  MOD_MUL( Z  );
1409     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T1,    &T1   ) );  MOD_MUL( T3 );
1410     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4,  &T3,    &T1   ) );  MOD_MUL( T4 );
1411     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T3,    &P->X ) );  MOD_MUL( T3 );
1412     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1,  &T3,    2     ) );  MOD_ADD( T1 );
1413     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X,   &T2,    &T2   ) );  MOD_MUL( X  );
1414     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X,   &X,     &T1   ) );  MOD_SUB( X  );
1415     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X,   &X,     &T4   ) );  MOD_SUB( X  );
1416     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T3,  &T3,    &X    ) );  MOD_SUB( T3 );
1417     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T3,    &T2   ) );  MOD_MUL( T3 );
1418     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4,  &T4,    &P->Y ) );  MOD_MUL( T4 );
1419     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &Y,   &T3,    &T4   ) );  MOD_SUB( Y  );
1420 
1421     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &X ) );
1422     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &Y ) );
1423     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &Z ) );
1424 
1425 cleanup:
1426 
1427     mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 ); mbedtls_mpi_free( &T3 ); mbedtls_mpi_free( &T4 );
1428     mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
1429 
1430     return( ret );
1431 }
1432 
1433 /*
1434  * Randomize jacobian coordinates:
1435  * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1436  * This is sort of the reverse operation of ecp_normalize_jac().
1437  *
1438  * This countermeasure was first suggested in [2].
1439  */
ecp_randomize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1440 static int ecp_randomize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1441                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1442 {
1443     int ret;
1444     mbedtls_mpi l, ll;
1445     size_t p_size;
1446     int count = 0;
1447 
1448 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1449     if( mbedtls_internal_ecp_grp_capable( grp ) )
1450         return( mbedtls_internal_ecp_randomize_jac( grp, pt, f_rng, p_rng ) );
1451 #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1452 
1453     p_size = ( grp->pbits + 7 ) / 8;
1454     mbedtls_mpi_init( &l ); mbedtls_mpi_init( &ll );
1455 
1456     /* Generate l such that 1 < l < p */
1457     do
1458     {
1459         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) );
1460 
1461         while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
1462             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
1463 
1464         if( count++ > 10 )
1465             return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
1466     }
1467     while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
1468 
1469     /* Z = l * Z */
1470     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Z,   &pt->Z,     &l  ) ); MOD_MUL( pt->Z );
1471 
1472     /* X = l^2 * X */
1473     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll,      &l,         &l  ) ); MOD_MUL( ll );
1474     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X,   &pt->X,     &ll ) ); MOD_MUL( pt->X );
1475 
1476     /* Y = l^3 * Y */
1477     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll,      &ll,        &l  ) ); MOD_MUL( ll );
1478     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &ll ) ); MOD_MUL( pt->Y );
1479 
1480 cleanup:
1481     mbedtls_mpi_free( &l ); mbedtls_mpi_free( &ll );
1482 
1483     return( ret );
1484 }
1485 
1486 /*
1487  * Check and define parameters used by the comb method (see below for details)
1488  */
1489 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1490 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1491 #endif
1492 
1493 /* d = ceil( n / w ) */
1494 #define COMB_MAX_D      ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2
1495 
1496 /* number of precomputed points */
1497 #define COMB_MAX_PRE    ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) )
1498 
1499 /*
1500  * Compute the representation of m that will be used with our comb method.
1501  *
1502  * The basic comb method is described in GECC 3.44 for example. We use a
1503  * modified version that provides resistance to SPA by avoiding zero
1504  * digits in the representation as in [3]. We modify the method further by
1505  * requiring that all K_i be odd, which has the small cost that our
1506  * representation uses one more K_i, due to carries, but saves on the size of
1507  * the precomputed table.
1508  *
1509  * Summary of the comb method and its modifications:
1510  *
1511  * - The goal is to compute m*P for some w*d-bit integer m.
1512  *
1513  * - The basic comb method splits m into the w-bit integers
1514  *   x[0] .. x[d-1] where x[i] consists of the bits in m whose
1515  *   index has residue i modulo d, and computes m * P as
1516  *   S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1517  *   S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1518  *
1519  * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1520  *    .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1521  *   thereby successively converting it into a form where all summands
1522  *   are nonzero, at the cost of negative summands. This is the basic idea of [3].
1523  *
1524  * - More generally, even if x[i+1] != 0, we can first transform the sum as
1525  *   .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1526  *   and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1527  *   Performing and iterating this procedure for those x[i] that are even
1528  *   (keeping track of carry), we can transform the original sum into one of the form
1529  *   S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1530  *   with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1531  *   which is why we are only computing half of it in the first place in
1532  *   ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1533  *
1534  * - For the sake of compactness, only the seven low-order bits of x[i]
1535  *   are used to represent its absolute value (K_i in the paper), and the msb
1536  *   of x[i] encodes the sign (s_i in the paper): it is set if and only if
1537  *   if s_i == -1;
1538  *
1539  * Calling conventions:
1540  * - x is an array of size d + 1
1541  * - w is the size, ie number of teeth, of the comb, and must be between
1542  *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1543  * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1544  *   (the result will be incorrect if these assumptions are not satisfied)
1545  */
ecp_comb_recode_core(unsigned char x[],size_t d,unsigned char w,const mbedtls_mpi * m)1546 static void ecp_comb_recode_core( unsigned char x[], size_t d,
1547                                   unsigned char w, const mbedtls_mpi *m )
1548 {
1549     size_t i, j;
1550     unsigned char c, cc, adjust;
1551 
1552     memset( x, 0, d+1 );
1553 
1554     /* First get the classical comb values (except for x_d = 0) */
1555     for( i = 0; i < d; i++ )
1556         for( j = 0; j < w; j++ )
1557             x[i] |= mbedtls_mpi_get_bit( m, i + d * j ) << j;
1558 
1559     /* Now make sure x_1 .. x_d are odd */
1560     c = 0;
1561     for( i = 1; i <= d; i++ )
1562     {
1563         /* Add carry and update it */
1564         cc   = x[i] & c;
1565         x[i] = x[i] ^ c;
1566         c = cc;
1567 
1568         /* Adjust if needed, avoiding branches */
1569         adjust = 1 - ( x[i] & 0x01 );
1570         c   |= x[i] & ( x[i-1] * adjust );
1571         x[i] = x[i] ^ ( x[i-1] * adjust );
1572         x[i-1] |= adjust << 7;
1573     }
1574 }
1575 
1576 /*
1577  * Precompute points for the adapted comb method
1578  *
1579  * Assumption: T must be able to hold 2^{w - 1} elements.
1580  *
1581  * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1582  *            sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
1583  *
1584  * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1585  *
1586  * Note: Even comb values (those where P would be omitted from the
1587  *       sum defining T[i] above) are not needed in our adaption
1588  *       the comb method. See ecp_comb_recode_core().
1589  *
1590  * This function currently works in four steps:
1591  * (1) [dbl]      Computation of intermediate T[i] for 2-power values of i
1592  * (2) [norm_dbl] Normalization of coordinates of these T[i]
1593  * (3) [add]      Computation of all T[i]
1594  * (4) [norm_add] Normalization of all T[i]
1595  *
1596  * Step 1 can be interrupted but not the others; together with the final
1597  * coordinate normalization they are the largest steps done at once, depending
1598  * on the window size. Here are operation counts for P-256:
1599  *
1600  * step     (2)     (3)     (4)
1601  * w = 5    142     165     208
1602  * w = 4    136      77     160
1603  * w = 3    130      33     136
1604  * w = 2    124      11     124
1605  *
1606  * So if ECC operations are blocking for too long even with a low max_ops
1607  * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1608  * to minimize maximum blocking time.
1609  */
ecp_precompute_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point T[],const mbedtls_ecp_point * P,unsigned char w,size_t d,mbedtls_ecp_restart_ctx * rs_ctx)1610 static int ecp_precompute_comb( const mbedtls_ecp_group *grp,
1611                                 mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1612                                 unsigned char w, size_t d,
1613                                 mbedtls_ecp_restart_ctx *rs_ctx )
1614 {
1615     int ret;
1616     unsigned char i;
1617     size_t j = 0;
1618     const unsigned char T_size = 1U << ( w - 1 );
1619     mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1];
1620 
1621 #if defined(MBEDTLS_ECP_RESTARTABLE)
1622     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1623     {
1624         if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
1625             goto dbl;
1626         if( rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl )
1627             goto norm_dbl;
1628         if( rs_ctx->rsm->state == ecp_rsm_pre_add )
1629             goto add;
1630         if( rs_ctx->rsm->state == ecp_rsm_pre_norm_add )
1631             goto norm_add;
1632     }
1633 #else
1634     (void) rs_ctx;
1635 #endif
1636 
1637 #if defined(MBEDTLS_ECP_RESTARTABLE)
1638     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1639     {
1640         rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1641 
1642         /* initial state for the loop */
1643         rs_ctx->rsm->i = 0;
1644     }
1645 
1646 dbl:
1647 #endif
1648     /*
1649      * Set T[0] = P and
1650      * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1651      */
1652     MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T[0], P ) );
1653 
1654 #if defined(MBEDTLS_ECP_RESTARTABLE)
1655     if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
1656         j = rs_ctx->rsm->i;
1657     else
1658 #endif
1659         j = 0;
1660 
1661     for( ; j < d * ( w - 1 ); j++ )
1662     {
1663         MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL );
1664 
1665         i = 1U << ( j / d );
1666         cur = T + i;
1667 
1668         if( j % d == 0 )
1669             MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur, T + ( i >> 1 ) ) );
1670 
1671         MBEDTLS_MPI_CHK( ecp_double_jac( grp, cur, cur ) );
1672     }
1673 
1674 #if defined(MBEDTLS_ECP_RESTARTABLE)
1675     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1676         rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
1677 
1678 norm_dbl:
1679 #endif
1680     /*
1681      * Normalize current elements in T. As T has holes,
1682      * use an auxiliary array of pointers to elements in T.
1683      */
1684     j = 0;
1685     for( i = 1; i < T_size; i <<= 1 )
1686         TT[j++] = T + i;
1687 
1688     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );
1689 
1690     MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );
1691 
1692 #if defined(MBEDTLS_ECP_RESTARTABLE)
1693     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1694         rs_ctx->rsm->state = ecp_rsm_pre_add;
1695 
1696 add:
1697 #endif
1698     /*
1699      * Compute the remaining ones using the minimal number of additions
1700      * Be careful to update T[2^l] only after using it!
1701      */
1702     MBEDTLS_ECP_BUDGET( ( T_size - 1 ) * MBEDTLS_ECP_OPS_ADD );
1703 
1704     for( i = 1; i < T_size; i <<= 1 )
1705     {
1706         j = i;
1707         while( j-- )
1708             MBEDTLS_MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) );
1709     }
1710 
1711 #if defined(MBEDTLS_ECP_RESTARTABLE)
1712     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1713         rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1714 
1715 norm_add:
1716 #endif
1717     /*
1718      * Normalize final elements in T. Even though there are no holes now, we
1719      * still need the auxiliary array for homogeneity with the previous
1720      * call. Also, skip T[0] which is already normalised, being a copy of P.
1721      */
1722     for( j = 0; j + 1 < T_size; j++ )
1723         TT[j] = T + j + 1;
1724 
1725     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );
1726 
1727     MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );
1728 
1729 cleanup:
1730 #if defined(MBEDTLS_ECP_RESTARTABLE)
1731     if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1732         ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
1733     {
1734         if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
1735             rs_ctx->rsm->i = j;
1736     }
1737 #endif
1738 
1739     return( ret );
1740 }
1741 
1742 /*
1743  * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
1744  *
1745  * See ecp_comb_recode_core() for background
1746  */
ecp_select_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,unsigned char i)1747 static int ecp_select_comb( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1748                             const mbedtls_ecp_point T[], unsigned char T_size,
1749                             unsigned char i )
1750 {
1751     int ret;
1752     unsigned char ii, j;
1753 
1754     /* Ignore the "sign" bit and scale down */
1755     ii =  ( i & 0x7Fu ) >> 1;
1756 
1757     /* Read the whole table to thwart cache-based timing attacks */
1758     for( j = 0; j < T_size; j++ )
1759     {
1760         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) );
1761         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) );
1762     }
1763 
1764     /* Safely invert result if i is "negative" */
1765     MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) );
1766 
1767 cleanup:
1768     return( ret );
1769 }
1770 
1771 /*
1772  * Core multiplication algorithm for the (modified) comb method.
1773  * This part is actually common with the basic comb method (GECC 3.44)
1774  *
1775  * Cost: d A + d D + 1 R
1776  */
ecp_mul_comb_core(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,const unsigned char x[],size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)1777 static int ecp_mul_comb_core( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1778                               const mbedtls_ecp_point T[], unsigned char T_size,
1779                               const unsigned char x[], size_t d,
1780                               int (*f_rng)(void *, unsigned char *, size_t),
1781                               void *p_rng,
1782                               mbedtls_ecp_restart_ctx *rs_ctx )
1783 {
1784     int ret;
1785     mbedtls_ecp_point Txi;
1786     size_t i;
1787 
1788     mbedtls_ecp_point_init( &Txi );
1789 
1790 #if !defined(MBEDTLS_ECP_RESTARTABLE)
1791     (void) rs_ctx;
1792 #endif
1793 
1794 #if defined(MBEDTLS_ECP_RESTARTABLE)
1795     if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1796         rs_ctx->rsm->state != ecp_rsm_comb_core )
1797     {
1798         rs_ctx->rsm->i = 0;
1799         rs_ctx->rsm->state = ecp_rsm_comb_core;
1800     }
1801 
1802     /* new 'if' instead of nested for the sake of the 'else' branch */
1803     if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
1804     {
1805         /* restore current index (R already pointing to rs_ctx->rsm->R) */
1806         i = rs_ctx->rsm->i;
1807     }
1808     else
1809 #endif
1810     {
1811         /* Start with a non-zero point and randomize its coordinates */
1812         i = d;
1813         MBEDTLS_MPI_CHK( ecp_select_comb( grp, R, T, T_size, x[i] ) );
1814         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 1 ) );
1815         if( f_rng != 0 )
1816             MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );
1817     }
1818 
1819     while( i != 0 )
1820     {
1821         MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD );
1822         --i;
1823 
1824         MBEDTLS_MPI_CHK( ecp_double_jac( grp, R, R ) );
1825         MBEDTLS_MPI_CHK( ecp_select_comb( grp, &Txi, T, T_size, x[i] ) );
1826         MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) );
1827     }
1828 
1829 cleanup:
1830 
1831     mbedtls_ecp_point_free( &Txi );
1832 
1833 #if defined(MBEDTLS_ECP_RESTARTABLE)
1834     if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1835         ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
1836     {
1837         rs_ctx->rsm->i = i;
1838         /* no need to save R, already pointing to rs_ctx->rsm->R */
1839     }
1840 #endif
1841 
1842     return( ret );
1843 }
1844 
1845 /*
1846  * Recode the scalar to get constant-time comb multiplication
1847  *
1848  * As the actual scalar recoding needs an odd scalar as a starting point,
1849  * this wrapper ensures that by replacing m by N - m if necessary, and
1850  * informs the caller that the result of multiplication will be negated.
1851  *
1852  * This works because we only support large prime order for Short Weierstrass
1853  * curves, so N is always odd hence either m or N - m is.
1854  *
1855  * See ecp_comb_recode_core() for background.
1856  */
ecp_comb_recode_scalar(const mbedtls_ecp_group * grp,const mbedtls_mpi * m,unsigned char k[COMB_MAX_D+1],size_t d,unsigned char w,unsigned char * parity_trick)1857 static int ecp_comb_recode_scalar( const mbedtls_ecp_group *grp,
1858                                    const mbedtls_mpi *m,
1859                                    unsigned char k[COMB_MAX_D + 1],
1860                                    size_t d,
1861                                    unsigned char w,
1862                                    unsigned char *parity_trick )
1863 {
1864     int ret;
1865     mbedtls_mpi M, mm;
1866 
1867     mbedtls_mpi_init( &M );
1868     mbedtls_mpi_init( &mm );
1869 
1870     /* N is always odd (see above), just make extra sure */
1871     if( mbedtls_mpi_get_bit( &grp->N, 0 ) != 1 )
1872         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1873 
1874     /* do we need the parity trick? */
1875     *parity_trick = ( mbedtls_mpi_get_bit( m, 0 ) == 0 );
1876 
1877     /* execute parity fix in constant time */
1878     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M, m ) );
1879     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm, &grp->N, m ) );
1880     MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M, &mm, *parity_trick ) );
1881 
1882     /* actual scalar recoding */
1883     ecp_comb_recode_core( k, d, w, &M );
1884 
1885 cleanup:
1886     mbedtls_mpi_free( &mm );
1887     mbedtls_mpi_free( &M );
1888 
1889     return( ret );
1890 }
1891 
1892 /*
1893  * Perform comb multiplication (for short Weierstrass curves)
1894  * once the auxiliary table has been pre-computed.
1895  *
1896  * Scalar recoding may use a parity trick that makes us compute -m * P,
1897  * if that is the case we'll need to recover m * P at the end.
1898  */
ecp_mul_comb_after_precomp(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * T,unsigned char T_size,unsigned char w,size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)1899 static int ecp_mul_comb_after_precomp( const mbedtls_ecp_group *grp,
1900                                 mbedtls_ecp_point *R,
1901                                 const mbedtls_mpi *m,
1902                                 const mbedtls_ecp_point *T,
1903                                 unsigned char T_size,
1904                                 unsigned char w,
1905                                 size_t d,
1906                                 int (*f_rng)(void *, unsigned char *, size_t),
1907                                 void *p_rng,
1908                                 mbedtls_ecp_restart_ctx *rs_ctx )
1909 {
1910     int ret;
1911     unsigned char parity_trick;
1912     unsigned char k[COMB_MAX_D + 1];
1913     mbedtls_ecp_point *RR = R;
1914 
1915 #if defined(MBEDTLS_ECP_RESTARTABLE)
1916     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1917     {
1918         RR = &rs_ctx->rsm->R;
1919 
1920         if( rs_ctx->rsm->state == ecp_rsm_final_norm )
1921             goto final_norm;
1922     }
1923 #endif
1924 
1925     MBEDTLS_MPI_CHK( ecp_comb_recode_scalar( grp, m, k, d, w,
1926                                             &parity_trick ) );
1927     MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp, RR, T, T_size, k, d,
1928                                         f_rng, p_rng, rs_ctx ) );
1929     MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, RR, parity_trick ) );
1930 
1931 #if defined(MBEDTLS_ECP_RESTARTABLE)
1932     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1933         rs_ctx->rsm->state = ecp_rsm_final_norm;
1934 
1935 final_norm:
1936 #endif
1937     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
1938     MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, RR ) );
1939 
1940 #if defined(MBEDTLS_ECP_RESTARTABLE)
1941     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1942         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, RR ) );
1943 #endif
1944 
1945 cleanup:
1946     return( ret );
1947 }
1948 
1949 /*
1950  * Pick window size based on curve size and whether we optimize for base point
1951  */
ecp_pick_window_size(const mbedtls_ecp_group * grp,unsigned char p_eq_g)1952 static unsigned char ecp_pick_window_size( const mbedtls_ecp_group *grp,
1953                                            unsigned char p_eq_g )
1954 {
1955     unsigned char w;
1956 
1957     /*
1958      * Minimize the number of multiplications, that is minimize
1959      * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
1960      * (see costs of the various parts, with 1S = 1M)
1961      */
1962     w = grp->nbits >= 384 ? 5 : 4;
1963 
1964     /*
1965      * If P == G, pre-compute a bit more, since this may be re-used later.
1966      * Just adding one avoids upping the cost of the first mul too much,
1967      * and the memory cost too.
1968      */
1969     if( p_eq_g )
1970         w++;
1971 
1972     /*
1973      * Make sure w is within bounds.
1974      * (The last test is useful only for very small curves in the test suite.)
1975      */
1976     if( w > MBEDTLS_ECP_WINDOW_SIZE )
1977         w = MBEDTLS_ECP_WINDOW_SIZE;
1978     if( w >= grp->nbits )
1979         w = 2;
1980 
1981     return( w );
1982 }
1983 
1984 /*
1985  * Multiplication using the comb method - for curves in short Weierstrass form
1986  *
1987  * This function is mainly responsible for administrative work:
1988  * - managing the restart context if enabled
1989  * - managing the table of precomputed points (passed between the below two
1990  *   functions): allocation, computation, ownership tranfer, freeing.
1991  *
1992  * It delegates the actual arithmetic work to:
1993  *      ecp_precompute_comb() and ecp_mul_comb_with_precomp()
1994  *
1995  * See comments on ecp_comb_recode_core() regarding the computation strategy.
1996  */
ecp_mul_comb(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)1997 static int ecp_mul_comb( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1998                          const mbedtls_mpi *m, const mbedtls_ecp_point *P,
1999                          int (*f_rng)(void *, unsigned char *, size_t),
2000                          void *p_rng,
2001                          mbedtls_ecp_restart_ctx *rs_ctx )
2002 {
2003     int ret;
2004     unsigned char w, p_eq_g, i;
2005     size_t d;
2006     unsigned char T_size, T_ok;
2007     mbedtls_ecp_point *T;
2008 
2009     ECP_RS_ENTER( rsm );
2010 
2011     /* Is P the base point ? */
2012 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2013     p_eq_g = ( mbedtls_mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
2014                mbedtls_mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
2015 #else
2016     p_eq_g = 0;
2017 #endif
2018 
2019     /* Pick window size and deduce related sizes */
2020     w = ecp_pick_window_size( grp, p_eq_g );
2021     T_size = 1U << ( w - 1 );
2022     d = ( grp->nbits + w - 1 ) / w;
2023 
2024     /* Pre-computed table: do we have it already for the base point? */
2025     if( p_eq_g && grp->T != NULL )
2026     {
2027         /* second pointer to the same table, will be deleted on exit */
2028         T = grp->T;
2029         T_ok = 1;
2030     }
2031     else
2032 #if defined(MBEDTLS_ECP_RESTARTABLE)
2033     /* Pre-computed table: do we have one in progress? complete? */
2034     if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL )
2035     {
2036         /* transfer ownership of T from rsm to local function */
2037         T = rs_ctx->rsm->T;
2038         rs_ctx->rsm->T = NULL;
2039         rs_ctx->rsm->T_size = 0;
2040 
2041         /* This effectively jumps to the call to mul_comb_after_precomp() */
2042         T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2043     }
2044     else
2045 #endif
2046     /* Allocate table if we didn't have any */
2047     {
2048         T = mbedtls_calloc( T_size, sizeof( mbedtls_ecp_point ) );
2049         if( T == NULL )
2050         {
2051             ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2052             goto cleanup;
2053         }
2054 
2055         for( i = 0; i < T_size; i++ )
2056             mbedtls_ecp_point_init( &T[i] );
2057 
2058         T_ok = 0;
2059     }
2060 
2061     /* Compute table (or finish computing it) if not done already */
2062     if( !T_ok )
2063     {
2064         MBEDTLS_MPI_CHK( ecp_precompute_comb( grp, T, P, w, d, rs_ctx ) );
2065 
2066         if( p_eq_g )
2067         {
2068             /* almost transfer ownership of T to the group, but keep a copy of
2069              * the pointer to use for calling the next function more easily */
2070             grp->T = T;
2071             grp->T_size = T_size;
2072         }
2073     }
2074 
2075     /* Actual comb multiplication using precomputed points */
2076     MBEDTLS_MPI_CHK( ecp_mul_comb_after_precomp( grp, R, m,
2077                                                  T, T_size, w, d,
2078                                                  f_rng, p_rng, rs_ctx ) );
2079 
2080 cleanup:
2081 
2082     /* does T belong to the group? */
2083     if( T == grp->T )
2084         T = NULL;
2085 
2086     /* does T belong to the restart context? */
2087 #if defined(MBEDTLS_ECP_RESTARTABLE)
2088     if( rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL )
2089     {
2090         /* transfer ownership of T from local function to rsm */
2091         rs_ctx->rsm->T_size = T_size;
2092         rs_ctx->rsm->T = T;
2093         T = NULL;
2094     }
2095 #endif
2096 
2097     /* did T belong to us? then let's destroy it! */
2098     if( T != NULL )
2099     {
2100         for( i = 0; i < T_size; i++ )
2101             mbedtls_ecp_point_free( &T[i] );
2102         mbedtls_free( T );
2103     }
2104 
2105     /* don't free R while in progress in case R == P */
2106 #if defined(MBEDTLS_ECP_RESTARTABLE)
2107     if( ret != MBEDTLS_ERR_ECP_IN_PROGRESS )
2108 #endif
2109     /* prevent caller from using invalid value */
2110     if( ret != 0 )
2111         mbedtls_ecp_point_free( R );
2112 
2113     ECP_RS_LEAVE( rsm );
2114 
2115     return( ret );
2116 }
2117 
2118 #endif /* ECP_SHORTWEIERSTRASS */
2119 
2120 #if defined(ECP_MONTGOMERY)
2121 /*
2122  * For Montgomery curves, we do all the internal arithmetic in projective
2123  * coordinates. Import/export of points uses only the x coordinates, which is
2124  * internaly represented as X / Z.
2125  *
2126  * For scalar multiplication, we'll use a Montgomery ladder.
2127  */
2128 
2129 /*
2130  * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2131  * Cost: 1M + 1I
2132  */
ecp_normalize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P)2133 static int ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P )
2134 {
2135     int ret;
2136 
2137 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2138     if( mbedtls_internal_ecp_grp_capable( grp ) )
2139         return( mbedtls_internal_ecp_normalize_mxz( grp, P ) );
2140 #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2141 
2142     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P->Z, &P->Z, &grp->P ) );
2143     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &P->Z ) ); MOD_MUL( P->X );
2144     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
2145 
2146 cleanup:
2147     return( ret );
2148 }
2149 
2150 /*
2151  * Randomize projective x/z coordinates:
2152  * (X, Z) -> (l X, l Z) for random l
2153  * This is sort of the reverse operation of ecp_normalize_mxz().
2154  *
2155  * This countermeasure was first suggested in [2].
2156  * Cost: 2M
2157  */
ecp_randomize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2158 static int ecp_randomize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2159                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2160 {
2161     int ret;
2162     mbedtls_mpi l;
2163     size_t p_size;
2164     int count = 0;
2165 
2166 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2167     if( mbedtls_internal_ecp_grp_capable( grp ) )
2168         return( mbedtls_internal_ecp_randomize_mxz( grp, P, f_rng, p_rng );
2169 #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2170 
2171     p_size = ( grp->pbits + 7 ) / 8;
2172     mbedtls_mpi_init( &l );
2173 
2174     /* Generate l such that 1 < l < p */
2175     do
2176     {
2177         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) );
2178 
2179         while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
2180             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
2181 
2182         if( count++ > 10 )
2183             return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
2184     }
2185     while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
2186 
2187     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &l ) ); MOD_MUL( P->X );
2188     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->Z, &P->Z, &l ) ); MOD_MUL( P->Z );
2189 
2190 cleanup:
2191     mbedtls_mpi_free( &l );
2192 
2193     return( ret );
2194 }
2195 
2196 /*
2197  * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2198  * for Montgomery curves in x/z coordinates.
2199  *
2200  * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2201  * with
2202  * d =  X1
2203  * P = (X2, Z2)
2204  * Q = (X3, Z3)
2205  * R = (X4, Z4)
2206  * S = (X5, Z5)
2207  * and eliminating temporary variables tO, ..., t4.
2208  *
2209  * Cost: 5M + 4S
2210  */
2211 static int ecp_double_add_mxz( const mbedtls_ecp_group *grp,
2212                                mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2213                                const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2214                                const mbedtls_mpi *d )
2215 {
2216     int ret;
2217     mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB;
2218 
2219 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2220     if( mbedtls_internal_ecp_grp_capable( grp ) )
2221         return( mbedtls_internal_ecp_double_add_mxz( grp, R, S, P, Q, d ) );
2222 #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2223 
2224     mbedtls_mpi_init( &A ); mbedtls_mpi_init( &AA ); mbedtls_mpi_init( &B );
2225     mbedtls_mpi_init( &BB ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &C );
2226     mbedtls_mpi_init( &D ); mbedtls_mpi_init( &DA ); mbedtls_mpi_init( &CB );
2227 
2228     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &A,    &P->X,   &P->Z ) ); MOD_ADD( A    );
2229     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &AA,   &A,      &A    ) ); MOD_MUL( AA   );
2230     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &B,    &P->X,   &P->Z ) ); MOD_SUB( B    );
2231     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &BB,   &B,      &B    ) ); MOD_MUL( BB   );
2232     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &E,    &AA,     &BB   ) ); MOD_SUB( E    );
2233     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &C,    &Q->X,   &Q->Z ) ); MOD_ADD( C    );
2234     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &D,    &Q->X,   &Q->Z ) ); MOD_SUB( D    );
2235     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DA,   &D,      &A    ) ); MOD_MUL( DA   );
2236     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &CB,   &C,      &B    ) ); MOD_MUL( CB   );
2237     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &S->X, &DA,     &CB   ) ); MOD_MUL( S->X );
2238     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->X, &S->X,   &S->X ) ); MOD_MUL( S->X );
2239     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S->Z, &DA,     &CB   ) ); MOD_SUB( S->Z );
2240     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, &S->Z,   &S->Z ) ); MOD_MUL( S->Z );
2241     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, d,       &S->Z ) ); MOD_MUL( S->Z );
2242     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->X, &AA,     &BB   ) ); MOD_MUL( R->X );
2243     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &grp->A, &E    ) ); MOD_MUL( R->Z );
2244     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &R->Z, &BB,     &R->Z ) ); MOD_ADD( R->Z );
2245     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &E,      &R->Z ) ); MOD_MUL( R->Z );
2246 
2247 cleanup:
2248     mbedtls_mpi_free( &A ); mbedtls_mpi_free( &AA ); mbedtls_mpi_free( &B );
2249     mbedtls_mpi_free( &BB ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &C );
2250     mbedtls_mpi_free( &D ); mbedtls_mpi_free( &DA ); mbedtls_mpi_free( &CB );
2251 
2252     return( ret );
2253 }
2254 
2255 /*
2256  * Multiplication with Montgomery ladder in x/z coordinates,
2257  * for curves in Montgomery form
2258  */
2259 static int ecp_mul_mxz( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2260                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2261                         int (*f_rng)(void *, unsigned char *, size_t),
2262                         void *p_rng )
2263 {
2264     int ret;
2265     size_t i;
2266     unsigned char b;
2267     mbedtls_ecp_point RP;
2268     mbedtls_mpi PX;
2269 
2270     mbedtls_ecp_point_init( &RP ); mbedtls_mpi_init( &PX );
2271 
2272     /* Save PX and read from P before writing to R, in case P == R */
2273     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX, &P->X ) );
2274     MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP, P ) );
2275 
2276     /* Set R to zero in modified x/z coordinates */
2277     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->X, 1 ) );
2278     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 0 ) );
2279     mbedtls_mpi_free( &R->Y );
2280 
2281     /* RP.X might be sligtly larger than P, so reduce it */
2282     MOD_ADD( RP.X );
2283 
2284     /* Randomize coordinates of the starting point */
2285     if( f_rng != NULL )
2286         MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );
2287 
2288     /* Loop invariant: R = result so far, RP = R + P */
2289     i = mbedtls_mpi_bitlen( m ); /* one past the (zero-based) most significant bit */
2290     while( i-- > 0 )
2291     {
2292         b = mbedtls_mpi_get_bit( m, i );
2293         /*
2294          *  if (b) R = 2R + P else R = 2R,
2295          * which is:
2296          *  if (b) double_add( RP, R, RP, R )
2297          *  else   double_add( R, RP, R, RP )
2298          * but using safe conditional swaps to avoid leaks
2299          */
2300         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
2301         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
2302         MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) );
2303         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
2304         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
2305     }
2306 
2307     MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) );
2308 
2309 cleanup:
2310     mbedtls_ecp_point_free( &RP ); mbedtls_mpi_free( &PX );
2311 
2312     return( ret );
2313 }
2314 
2315 #endif /* ECP_MONTGOMERY */
2316 
2317 /*
2318  * Restartable multiplication R = m * P
2319  */
2320 int mbedtls_ecp_mul_restartable( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2321              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2322              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2323              mbedtls_ecp_restart_ctx *rs_ctx )
2324 {
2325     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2326 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2327     char is_grp_capable = 0;
2328 #endif
2329     ECP_VALIDATE_RET( grp != NULL );
2330     ECP_VALIDATE_RET( R   != NULL );
2331     ECP_VALIDATE_RET( m   != NULL );
2332     ECP_VALIDATE_RET( P   != NULL );
2333 
2334 #if defined(MBEDTLS_ECP_RESTARTABLE)
2335     /* reset ops count for this call if top-level */
2336     if( rs_ctx != NULL && rs_ctx->depth++ == 0 )
2337         rs_ctx->ops_done = 0;
2338 #endif
2339 
2340 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2341     if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
2342         MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
2343 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2344 
2345 #if defined(MBEDTLS_ECP_RESTARTABLE)
2346     /* skip argument check when restarting */
2347     if( rs_ctx == NULL || rs_ctx->rsm == NULL )
2348 #endif
2349     {
2350         /* check_privkey is free */
2351         MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_CHK );
2352 
2353         /* Common sanity checks */
2354         MBEDTLS_MPI_CHK( mbedtls_ecp_check_privkey( grp, m ) );
2355         MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, P ) );
2356     }
2357 
2358     ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2359 #if defined(ECP_MONTGOMERY)
2360     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
2361         MBEDTLS_MPI_CHK( ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ) );
2362 #endif
2363 #if defined(ECP_SHORTWEIERSTRASS)
2364     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
2365         MBEDTLS_MPI_CHK( ecp_mul_comb( grp, R, m, P, f_rng, p_rng, rs_ctx ) );
2366 #endif
2367 
2368 cleanup:
2369 
2370 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2371     if( is_grp_capable )
2372         mbedtls_internal_ecp_free( grp );
2373 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2374 
2375 #if defined(MBEDTLS_ECP_RESTARTABLE)
2376     if( rs_ctx != NULL )
2377         rs_ctx->depth--;
2378 #endif
2379 
2380     return( ret );
2381 }
2382 
2383 /*
2384  * Multiplication R = m * P
2385  */
2386 int mbedtls_ecp_mul( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2387              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2388              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2389 {
2390     ECP_VALIDATE_RET( grp != NULL );
2391     ECP_VALIDATE_RET( R   != NULL );
2392     ECP_VALIDATE_RET( m   != NULL );
2393     ECP_VALIDATE_RET( P   != NULL );
2394     return( mbedtls_ecp_mul_restartable( grp, R, m, P, f_rng, p_rng, NULL ) );
2395 }
2396 
2397 #if defined(ECP_SHORTWEIERSTRASS)
2398 /*
2399  * Check that an affine point is valid as a public key,
2400  * short weierstrass curves (SEC1 3.2.3.1)
2401  */
2402 static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
2403 {
2404     int ret;
2405     mbedtls_mpi YY, RHS;
2406 
2407     /* pt coordinates must be normalized for our checks */
2408     if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 ||
2409         mbedtls_mpi_cmp_int( &pt->Y, 0 ) < 0 ||
2410         mbedtls_mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
2411         mbedtls_mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
2412         return( MBEDTLS_ERR_ECP_INVALID_KEY );
2413 
2414     mbedtls_mpi_init( &YY ); mbedtls_mpi_init( &RHS );
2415 
2416     /*
2417      * YY = Y^2
2418      * RHS = X (X^2 + A) + B = X^3 + A X + B
2419      */
2420     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &YY,  &pt->Y,   &pt->Y  ) );  MOD_MUL( YY  );
2421     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &pt->X,   &pt->X  ) );  MOD_MUL( RHS );
2422 
2423     /* Special case for A = -3 */
2424     if( grp->A.p == NULL )
2425     {
2426         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &RHS, &RHS, 3       ) );  MOD_SUB( RHS );
2427     }
2428     else
2429     {
2430         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS, &grp->A ) );  MOD_ADD( RHS );
2431     }
2432 
2433     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &RHS,     &pt->X  ) );  MOD_MUL( RHS );
2434     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS,     &grp->B ) );  MOD_ADD( RHS );
2435 
2436     if( mbedtls_mpi_cmp_mpi( &YY, &RHS ) != 0 )
2437         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2438 
2439 cleanup:
2440 
2441     mbedtls_mpi_free( &YY ); mbedtls_mpi_free( &RHS );
2442 
2443     return( ret );
2444 }
2445 #endif /* ECP_SHORTWEIERSTRASS */
2446 
2447 /*
2448  * R = m * P with shortcuts for m == 1 and m == -1
2449  * NOT constant-time - ONLY for short Weierstrass!
2450  */
2451 static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group *grp,
2452                                       mbedtls_ecp_point *R,
2453                                       const mbedtls_mpi *m,
2454                                       const mbedtls_ecp_point *P,
2455                                       mbedtls_ecp_restart_ctx *rs_ctx )
2456 {
2457     int ret;
2458 
2459     if( mbedtls_mpi_cmp_int( m, 1 ) == 0 )
2460     {
2461         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
2462     }
2463     else if( mbedtls_mpi_cmp_int( m, -1 ) == 0 )
2464     {
2465         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
2466         if( mbedtls_mpi_cmp_int( &R->Y, 0 ) != 0 )
2467             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R->Y, &grp->P, &R->Y ) );
2468     }
2469     else
2470     {
2471         MBEDTLS_MPI_CHK( mbedtls_ecp_mul_restartable( grp, R, m, P,
2472                                                       NULL, NULL, rs_ctx ) );
2473     }
2474 
2475 cleanup:
2476     return( ret );
2477 }
2478 
2479 /*
2480  * Restartable linear combination
2481  * NOT constant-time
2482  */
2483 int mbedtls_ecp_muladd_restartable(
2484              mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2485              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2486              const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2487              mbedtls_ecp_restart_ctx *rs_ctx )
2488 {
2489     int ret;
2490     mbedtls_ecp_point mP;
2491     mbedtls_ecp_point *pmP = &mP;
2492     mbedtls_ecp_point *pR = R;
2493 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2494     char is_grp_capable = 0;
2495 #endif
2496     ECP_VALIDATE_RET( grp != NULL );
2497     ECP_VALIDATE_RET( R   != NULL );
2498     ECP_VALIDATE_RET( m   != NULL );
2499     ECP_VALIDATE_RET( P   != NULL );
2500     ECP_VALIDATE_RET( n   != NULL );
2501     ECP_VALIDATE_RET( Q   != NULL );
2502 
2503     if( ecp_get_type( grp ) != ECP_TYPE_SHORT_WEIERSTRASS )
2504         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2505 
2506     mbedtls_ecp_point_init( &mP );
2507 
2508     ECP_RS_ENTER( ma );
2509 
2510 #if defined(MBEDTLS_ECP_RESTARTABLE)
2511     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2512     {
2513         /* redirect intermediate results to restart context */
2514         pmP = &rs_ctx->ma->mP;
2515         pR  = &rs_ctx->ma->R;
2516 
2517         /* jump to next operation */
2518         if( rs_ctx->ma->state == ecp_rsma_mul2 )
2519             goto mul2;
2520         if( rs_ctx->ma->state == ecp_rsma_add )
2521             goto add;
2522         if( rs_ctx->ma->state == ecp_rsma_norm )
2523             goto norm;
2524     }
2525 #endif /* MBEDTLS_ECP_RESTARTABLE */
2526 
2527     MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pmP, m, P, rs_ctx ) );
2528 #if defined(MBEDTLS_ECP_RESTARTABLE)
2529     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2530         rs_ctx->ma->state = ecp_rsma_mul2;
2531 
2532 mul2:
2533 #endif
2534     MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pR,  n, Q, rs_ctx ) );
2535 
2536 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2537     if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
2538         MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
2539 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2540 
2541 #if defined(MBEDTLS_ECP_RESTARTABLE)
2542     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2543         rs_ctx->ma->state = ecp_rsma_add;
2544 
2545 add:
2546 #endif
2547     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_ADD );
2548     MBEDTLS_MPI_CHK( ecp_add_mixed( grp, pR, pmP, pR ) );
2549 #if defined(MBEDTLS_ECP_RESTARTABLE)
2550     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2551         rs_ctx->ma->state = ecp_rsma_norm;
2552 
2553 norm:
2554 #endif
2555     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
2556     MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, pR ) );
2557 
2558 #if defined(MBEDTLS_ECP_RESTARTABLE)
2559     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2560         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, pR ) );
2561 #endif
2562 
2563 cleanup:
2564 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2565     if( is_grp_capable )
2566         mbedtls_internal_ecp_free( grp );
2567 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2568 
2569     mbedtls_ecp_point_free( &mP );
2570 
2571     ECP_RS_LEAVE( ma );
2572 
2573     return( ret );
2574 }
2575 
2576 /*
2577  * Linear combination
2578  * NOT constant-time
2579  */
2580 int mbedtls_ecp_muladd( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2581              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2582              const mbedtls_mpi *n, const mbedtls_ecp_point *Q )
2583 {
2584     ECP_VALIDATE_RET( grp != NULL );
2585     ECP_VALIDATE_RET( R   != NULL );
2586     ECP_VALIDATE_RET( m   != NULL );
2587     ECP_VALIDATE_RET( P   != NULL );
2588     ECP_VALIDATE_RET( n   != NULL );
2589     ECP_VALIDATE_RET( Q   != NULL );
2590     return( mbedtls_ecp_muladd_restartable( grp, R, m, P, n, Q, NULL ) );
2591 }
2592 
2593 #if defined(ECP_MONTGOMERY)
2594 /*
2595  * Check validity of a public key for Montgomery curves with x-only schemes
2596  */
2597 static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
2598 {
2599     /* [Curve25519 p. 5] Just check X is the correct number of bytes */
2600     /* Allow any public value, if it's too big then we'll just reduce it mod p
2601      * (RFC 7748 sec. 5 para. 3). */
2602     if( mbedtls_mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 )
2603         return( MBEDTLS_ERR_ECP_INVALID_KEY );
2604 
2605     return( 0 );
2606 }
2607 #endif /* ECP_MONTGOMERY */
2608 
2609 /*
2610  * Check that a point is valid as a public key
2611  */
2612 int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group *grp,
2613                               const mbedtls_ecp_point *pt )
2614 {
2615     ECP_VALIDATE_RET( grp != NULL );
2616     ECP_VALIDATE_RET( pt  != NULL );
2617 
2618     /* Must use affine coordinates */
2619     if( mbedtls_mpi_cmp_int( &pt->Z, 1 ) != 0 )
2620         return( MBEDTLS_ERR_ECP_INVALID_KEY );
2621 
2622 #if defined(ECP_MONTGOMERY)
2623     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
2624         return( ecp_check_pubkey_mx( grp, pt ) );
2625 #endif
2626 #if defined(ECP_SHORTWEIERSTRASS)
2627     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
2628         return( ecp_check_pubkey_sw( grp, pt ) );
2629 #endif
2630     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2631 }
2632 
2633 /*
2634  * Check that an mbedtls_mpi is valid as a private key
2635  */
2636 int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp,
2637                                const mbedtls_mpi *d )
2638 {
2639     ECP_VALIDATE_RET( grp != NULL );
2640     ECP_VALIDATE_RET( d   != NULL );
2641 
2642 #if defined(ECP_MONTGOMERY)
2643     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
2644     {
2645         /* see RFC 7748 sec. 5 para. 5 */
2646         if( mbedtls_mpi_get_bit( d, 0 ) != 0 ||
2647             mbedtls_mpi_get_bit( d, 1 ) != 0 ||
2648             mbedtls_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedtls_mpi_bitlen is one-based! */
2649             return( MBEDTLS_ERR_ECP_INVALID_KEY );
2650 
2651         /* see [Curve25519] page 5 */
2652         if( grp->nbits == 254 && mbedtls_mpi_get_bit( d, 2 ) != 0 )
2653             return( MBEDTLS_ERR_ECP_INVALID_KEY );
2654 
2655         return( 0 );
2656     }
2657 #endif /* ECP_MONTGOMERY */
2658 #if defined(ECP_SHORTWEIERSTRASS)
2659     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
2660     {
2661         /* see SEC1 3.2 */
2662         if( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
2663             mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 )
2664             return( MBEDTLS_ERR_ECP_INVALID_KEY );
2665         else
2666             return( 0 );
2667     }
2668 #endif /* ECP_SHORTWEIERSTRASS */
2669 
2670     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2671 }
2672 
2673 /*
2674  * Generate a private key
2675  */
2676 int mbedtls_ecp_gen_privkey( const mbedtls_ecp_group *grp,
2677                      mbedtls_mpi *d,
2678                      int (*f_rng)(void *, unsigned char *, size_t),
2679                      void *p_rng )
2680 {
2681     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2682     size_t n_size;
2683 
2684     ECP_VALIDATE_RET( grp   != NULL );
2685     ECP_VALIDATE_RET( d     != NULL );
2686     ECP_VALIDATE_RET( f_rng != NULL );
2687 
2688     n_size = ( grp->nbits + 7 ) / 8;
2689 
2690 #if defined(ECP_MONTGOMERY)
2691     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
2692     {
2693         /* [M225] page 5 */
2694         size_t b;
2695 
2696         do {
2697             MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
2698         } while( mbedtls_mpi_bitlen( d ) == 0);
2699 
2700         /* Make sure the most significant bit is nbits */
2701         b = mbedtls_mpi_bitlen( d ) - 1; /* mbedtls_mpi_bitlen is one-based */
2702         if( b > grp->nbits )
2703             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, b - grp->nbits ) );
2704         else
2705             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, grp->nbits, 1 ) );
2706 
2707         /* Make sure the last two bits are unset for Curve448, three bits for
2708            Curve25519 */
2709         MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) );
2710         MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) );
2711         if( grp->nbits == 254 )
2712         {
2713             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) );
2714         }
2715     }
2716 #endif /* ECP_MONTGOMERY */
2717 
2718 #if defined(ECP_SHORTWEIERSTRASS)
2719     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
2720     {
2721         /* SEC1 3.2.1: Generate d such that 1 <= n < N */
2722         int count = 0;
2723 
2724         /*
2725          * Match the procedure given in RFC 6979 (deterministic ECDSA):
2726          * - use the same byte ordering;
2727          * - keep the leftmost nbits bits of the generated octet string;
2728          * - try until result is in the desired range.
2729          * This also avoids any biais, which is especially important for ECDSA.
2730          */
2731         do
2732         {
2733             MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
2734             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_size - grp->nbits ) );
2735 
2736             /*
2737              * Each try has at worst a probability 1/2 of failing (the msb has
2738              * a probability 1/2 of being 0, and then the result will be < N),
2739              * so after 30 tries failure probability is a most 2**(-30).
2740              *
2741              * For most curves, 1 try is enough with overwhelming probability,
2742              * since N starts with a lot of 1s in binary, but some curves
2743              * such as secp224k1 are actually very close to the worst case.
2744              */
2745             if( ++count > 30 )
2746                 return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
2747         }
2748         while( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
2749                mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 );
2750     }
2751 #endif /* ECP_SHORTWEIERSTRASS */
2752 
2753 cleanup:
2754     return( ret );
2755 }
2756 
2757 /*
2758  * Generate a keypair with configurable base point
2759  */
2760 int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp,
2761                      const mbedtls_ecp_point *G,
2762                      mbedtls_mpi *d, mbedtls_ecp_point *Q,
2763                      int (*f_rng)(void *, unsigned char *, size_t),
2764                      void *p_rng )
2765 {
2766     int ret;
2767     ECP_VALIDATE_RET( grp   != NULL );
2768     ECP_VALIDATE_RET( d     != NULL );
2769     ECP_VALIDATE_RET( G     != NULL );
2770     ECP_VALIDATE_RET( Q     != NULL );
2771     ECP_VALIDATE_RET( f_rng != NULL );
2772 
2773     MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, d, f_rng, p_rng ) );
2774     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, Q, d, G, f_rng, p_rng ) );
2775 
2776 cleanup:
2777     return( ret );
2778 }
2779 
2780 /*
2781  * Generate key pair, wrapper for conventional base point
2782  */
2783 int mbedtls_ecp_gen_keypair( mbedtls_ecp_group *grp,
2784                              mbedtls_mpi *d, mbedtls_ecp_point *Q,
2785                              int (*f_rng)(void *, unsigned char *, size_t),
2786                              void *p_rng )
2787 {
2788     ECP_VALIDATE_RET( grp   != NULL );
2789     ECP_VALIDATE_RET( d     != NULL );
2790     ECP_VALIDATE_RET( Q     != NULL );
2791     ECP_VALIDATE_RET( f_rng != NULL );
2792 
2793     return( mbedtls_ecp_gen_keypair_base( grp, &grp->G, d, Q, f_rng, p_rng ) );
2794 }
2795 
2796 /*
2797  * Generate a keypair, prettier wrapper
2798  */
2799 int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
2800                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2801 {
2802     int ret;
2803     ECP_VALIDATE_RET( key   != NULL );
2804     ECP_VALIDATE_RET( f_rng != NULL );
2805 
2806     if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 )
2807         return( ret );
2808 
2809     return( mbedtls_ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) );
2810 }
2811 
2812 /*
2813  * Check a public-private key pair
2814  */
2815 int mbedtls_ecp_check_pub_priv( const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv )
2816 {
2817     int ret;
2818     mbedtls_ecp_point Q;
2819     mbedtls_ecp_group grp;
2820     ECP_VALIDATE_RET( pub != NULL );
2821     ECP_VALIDATE_RET( prv != NULL );
2822 
2823     if( pub->grp.id == MBEDTLS_ECP_DP_NONE ||
2824         pub->grp.id != prv->grp.id ||
2825         mbedtls_mpi_cmp_mpi( &pub->Q.X, &prv->Q.X ) ||
2826         mbedtls_mpi_cmp_mpi( &pub->Q.Y, &prv->Q.Y ) ||
2827         mbedtls_mpi_cmp_mpi( &pub->Q.Z, &prv->Q.Z ) )
2828     {
2829         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2830     }
2831 
2832     mbedtls_ecp_point_init( &Q );
2833     mbedtls_ecp_group_init( &grp );
2834 
2835     /* mbedtls_ecp_mul() needs a non-const group... */
2836     mbedtls_ecp_group_copy( &grp, &prv->grp );
2837 
2838     /* Also checks d is valid */
2839     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &Q, &prv->d, &prv->grp.G, NULL, NULL ) );
2840 
2841     if( mbedtls_mpi_cmp_mpi( &Q.X, &prv->Q.X ) ||
2842         mbedtls_mpi_cmp_mpi( &Q.Y, &prv->Q.Y ) ||
2843         mbedtls_mpi_cmp_mpi( &Q.Z, &prv->Q.Z ) )
2844     {
2845         ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2846         goto cleanup;
2847     }
2848 
2849 cleanup:
2850     mbedtls_ecp_point_free( &Q );
2851     mbedtls_ecp_group_free( &grp );
2852 
2853     return( ret );
2854 }
2855 
2856 #if defined(MBEDTLS_SELF_TEST)
2857 
2858 /*
2859  * Checkup routine
2860  */
2861 int mbedtls_ecp_self_test( int verbose )
2862 {
2863     int ret;
2864     size_t i;
2865     mbedtls_ecp_group grp;
2866     mbedtls_ecp_point R, P;
2867     mbedtls_mpi m;
2868     unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
2869     /* exponents especially adapted for secp192r1 */
2870     const char *exponents[] =
2871     {
2872         "000000000000000000000000000000000000000000000001", /* one */
2873         "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */
2874         "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
2875         "400000000000000000000000000000000000000000000000", /* one and zeros */
2876         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
2877         "555555555555555555555555555555555555555555555555", /* 101010... */
2878     };
2879 
2880     mbedtls_ecp_group_init( &grp );
2881     mbedtls_ecp_point_init( &R );
2882     mbedtls_ecp_point_init( &P );
2883     mbedtls_mpi_init( &m );
2884 
2885     /* Use secp192r1 if available, or any available curve */
2886 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
2887     MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_SECP192R1 ) );
2888 #else
2889     MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, mbedtls_ecp_curve_list()->grp_id ) );
2890 #endif
2891 
2892     if( verbose != 0 )
2893         mbedtls_printf( "  ECP test #1 (constant op_count, base point G): " );
2894 
2895     /* Do a dummy multiplication first to trigger precomputation */
2896     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m, 2 ) );
2897     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
2898 
2899     add_count = 0;
2900     dbl_count = 0;
2901     mul_count = 0;
2902     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
2903     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
2904 
2905     for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2906     {
2907         add_c_prev = add_count;
2908         dbl_c_prev = dbl_count;
2909         mul_c_prev = mul_count;
2910         add_count = 0;
2911         dbl_count = 0;
2912         mul_count = 0;
2913 
2914         MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
2915         MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
2916 
2917         if( add_count != add_c_prev ||
2918             dbl_count != dbl_c_prev ||
2919             mul_count != mul_c_prev )
2920         {
2921             if( verbose != 0 )
2922                 mbedtls_printf( "failed (%u)\n", (unsigned int) i );
2923 
2924             ret = 1;
2925             goto cleanup;
2926         }
2927     }
2928 
2929     if( verbose != 0 )
2930         mbedtls_printf( "passed\n" );
2931 
2932     if( verbose != 0 )
2933         mbedtls_printf( "  ECP test #2 (constant op_count, other point): " );
2934     /* We computed P = 2G last time, use it */
2935 
2936     add_count = 0;
2937     dbl_count = 0;
2938     mul_count = 0;
2939     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
2940     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2941 
2942     for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2943     {
2944         add_c_prev = add_count;
2945         dbl_c_prev = dbl_count;
2946         mul_c_prev = mul_count;
2947         add_count = 0;
2948         dbl_count = 0;
2949         mul_count = 0;
2950 
2951         MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
2952         MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2953 
2954         if( add_count != add_c_prev ||
2955             dbl_count != dbl_c_prev ||
2956             mul_count != mul_c_prev )
2957         {
2958             if( verbose != 0 )
2959                 mbedtls_printf( "failed (%u)\n", (unsigned int) i );
2960 
2961             ret = 1;
2962             goto cleanup;
2963         }
2964     }
2965 
2966     if( verbose != 0 )
2967         mbedtls_printf( "passed\n" );
2968 
2969 cleanup:
2970 
2971     if( ret < 0 && verbose != 0 )
2972         mbedtls_printf( "Unexpected error, return code = %08X\n", ret );
2973 
2974     mbedtls_ecp_group_free( &grp );
2975     mbedtls_ecp_point_free( &R );
2976     mbedtls_ecp_point_free( &P );
2977     mbedtls_mpi_free( &m );
2978 
2979     if( verbose != 0 )
2980         mbedtls_printf( "\n" );
2981 
2982     return( ret );
2983 }
2984 
2985 #endif /* MBEDTLS_SELF_TEST */
2986 
2987 #endif /* !MBEDTLS_ECP_ALT */
2988 
2989 #endif /* MBEDTLS_ECP_C */
2990