1 /**
2  *  Constant-time functions
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  */
19 
20  /*
21  * The following functions are implemented without using comparison operators, as those
22  * might be translated to branches by some compilers on some platforms.
23  */
24 
25 #include "common.h"
26 #include "constant_time_internal.h"
27 #include "mbedtls/constant_time.h"
28 #include "mbedtls/error.h"
29 #include "mbedtls/platform_util.h"
30 
31 #if defined(MBEDTLS_BIGNUM_C)
32 #include "mbedtls/bignum.h"
33 #endif
34 
35 #if defined(MBEDTLS_SSL_TLS_C)
36 #include "mbedtls/ssl_internal.h"
37 #endif
38 
39 #if defined(MBEDTLS_RSA_C)
40 #include "mbedtls/rsa.h"
41 #endif
42 
43 #if defined(MBEDTLS_BASE64_C)
44 #include "constant_time_invasive.h"
45 #endif
46 
47 #include <string.h>
48 
mbedtls_ct_memcmp(const void * a,const void * b,size_t n)49 int mbedtls_ct_memcmp( const void *a,
50                        const void *b,
51                        size_t n )
52 {
53     size_t i;
54     volatile const unsigned char *A = (volatile const unsigned char *) a;
55     volatile const unsigned char *B = (volatile const unsigned char *) b;
56     volatile unsigned char diff = 0;
57 
58     for( i = 0; i < n; i++ )
59     {
60         /* Read volatile data in order before computing diff.
61          * This avoids IAR compiler warning:
62          * 'the order of volatile accesses is undefined ..' */
63         unsigned char x = A[i], y = B[i];
64         diff |= x ^ y;
65     }
66 
67     return( (int)diff );
68 }
69 
mbedtls_ct_uint_mask(unsigned value)70 unsigned mbedtls_ct_uint_mask( unsigned value )
71 {
72     /* MSVC has a warning about unary minus on unsigned, but this is
73      * well-defined and precisely what we want to do here */
74 #if defined(_MSC_VER)
75 #pragma warning( push )
76 #pragma warning( disable : 4146 )
77 #endif
78     return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
79 #if defined(_MSC_VER)
80 #pragma warning( pop )
81 #endif
82 }
83 
84 #if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
85 
mbedtls_ct_size_mask(size_t value)86 size_t mbedtls_ct_size_mask( size_t value )
87 {
88     /* MSVC has a warning about unary minus on unsigned integer types,
89      * but this is well-defined and precisely what we want to do here. */
90 #if defined(_MSC_VER)
91 #pragma warning( push )
92 #pragma warning( disable : 4146 )
93 #endif
94     return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
95 #if defined(_MSC_VER)
96 #pragma warning( pop )
97 #endif
98 }
99 
100 #endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
101 
102 #if defined(MBEDTLS_BIGNUM_C)
103 
mbedtls_ct_mpi_uint_mask(mbedtls_mpi_uint value)104 mbedtls_mpi_uint mbedtls_ct_mpi_uint_mask( mbedtls_mpi_uint value )
105 {
106     /* MSVC has a warning about unary minus on unsigned, but this is
107      * well-defined and precisely what we want to do here */
108 #if defined(_MSC_VER)
109 #pragma warning( push )
110 #pragma warning( disable : 4146 )
111 #endif
112     return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
113 #if defined(_MSC_VER)
114 #pragma warning( pop )
115 #endif
116 }
117 
118 #endif /* MBEDTLS_BIGNUM_C */
119 
120 #if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
121 
122 /** Constant-flow mask generation for "less than" comparison:
123  * - if \p x < \p y, return all-bits 1, that is (size_t) -1
124  * - otherwise, return all bits 0, that is 0
125  *
126  * This function can be used to write constant-time code by replacing branches
127  * with bit operations using masks.
128  *
129  * \param x     The first value to analyze.
130  * \param y     The second value to analyze.
131  *
132  * \return      All-bits-one if \p x is less than \p y, otherwise zero.
133  */
mbedtls_ct_size_mask_lt(size_t x,size_t y)134 static size_t mbedtls_ct_size_mask_lt( size_t x,
135                                        size_t y )
136 {
137     /* This has the most significant bit set if and only if x < y */
138     const size_t sub = x - y;
139 
140     /* sub1 = (x < y) ? 1 : 0 */
141     const size_t sub1 = sub >> ( sizeof( sub ) * 8 - 1 );
142 
143     /* mask = (x < y) ? 0xff... : 0x00... */
144     const size_t mask = mbedtls_ct_size_mask( sub1 );
145 
146     return( mask );
147 }
148 
mbedtls_ct_size_mask_ge(size_t x,size_t y)149 size_t mbedtls_ct_size_mask_ge( size_t x,
150                                 size_t y )
151 {
152     return( ~mbedtls_ct_size_mask_lt( x, y ) );
153 }
154 
155 #endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
156 
157 #if defined(MBEDTLS_BASE64_C)
158 
159 /* Return 0xff if low <= c <= high, 0 otherwise.
160  *
161  * Constant flow with respect to c.
162  */
163 MBEDTLS_STATIC_TESTABLE
mbedtls_ct_uchar_mask_of_range(unsigned char low,unsigned char high,unsigned char c)164 unsigned char mbedtls_ct_uchar_mask_of_range( unsigned char low,
165                                               unsigned char high,
166                                               unsigned char c )
167 {
168     /* low_mask is: 0 if low <= c, 0x...ff if low > c */
169     unsigned low_mask = ( (unsigned) c - low ) >> 8;
170     /* high_mask is: 0 if c <= high, 0x...ff if c > high */
171     unsigned high_mask = ( (unsigned) high - c ) >> 8;
172     return( ~( low_mask | high_mask ) & 0xff );
173 }
174 
175 #endif /* MBEDTLS_BASE64_C */
176 
mbedtls_ct_size_bool_eq(size_t x,size_t y)177 unsigned mbedtls_ct_size_bool_eq( size_t x,
178                                   size_t y )
179 {
180     /* diff = 0 if x == y, non-zero otherwise */
181     const size_t diff = x ^ y;
182 
183     /* MSVC has a warning about unary minus on unsigned integer types,
184      * but this is well-defined and precisely what we want to do here. */
185 #if defined(_MSC_VER)
186 #pragma warning( push )
187 #pragma warning( disable : 4146 )
188 #endif
189 
190     /* diff_msb's most significant bit is equal to x != y */
191     const size_t diff_msb = ( diff | (size_t) -diff );
192 
193 #if defined(_MSC_VER)
194 #pragma warning( pop )
195 #endif
196 
197     /* diff1 = (x != y) ? 1 : 0 */
198     const unsigned diff1 = diff_msb >> ( sizeof( diff_msb ) * 8 - 1 );
199 
200     return( 1 ^ diff1 );
201 }
202 
203 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
204 
205 /** Constant-flow "greater than" comparison:
206  * return x > y
207  *
208  * This is equivalent to \p x > \p y, but is likely to be compiled
209  * to code using bitwise operation rather than a branch.
210  *
211  * \param x     The first value to analyze.
212  * \param y     The second value to analyze.
213  *
214  * \return      1 if \p x greater than \p y, otherwise 0.
215  */
mbedtls_ct_size_gt(size_t x,size_t y)216 static unsigned mbedtls_ct_size_gt( size_t x,
217                                     size_t y )
218 {
219     /* Return the sign bit (1 for negative) of (y - x). */
220     return( ( y - x ) >> ( sizeof( size_t ) * 8 - 1 ) );
221 }
222 
223 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
224 
225 #if defined(MBEDTLS_BIGNUM_C)
226 
mbedtls_ct_mpi_uint_lt(const mbedtls_mpi_uint x,const mbedtls_mpi_uint y)227 unsigned mbedtls_ct_mpi_uint_lt( const mbedtls_mpi_uint x,
228                                  const mbedtls_mpi_uint y )
229 {
230     mbedtls_mpi_uint ret;
231     mbedtls_mpi_uint cond;
232 
233     /*
234      * Check if the most significant bits (MSB) of the operands are different.
235      */
236     cond = ( x ^ y );
237     /*
238      * If the MSB are the same then the difference x-y will be negative (and
239      * have its MSB set to 1 during conversion to unsigned) if and only if x<y.
240      */
241     ret = ( x - y ) & ~cond;
242     /*
243      * If the MSB are different, then the operand with the MSB of 1 is the
244      * bigger. (That is if y has MSB of 1, then x<y is true and it is false if
245      * the MSB of y is 0.)
246      */
247     ret |= y & cond;
248 
249 
250     ret = ret >> ( sizeof( mbedtls_mpi_uint ) * 8 - 1 );
251 
252     return (unsigned) ret;
253 }
254 
255 #endif /* MBEDTLS_BIGNUM_C */
256 
mbedtls_ct_uint_if(unsigned condition,unsigned if1,unsigned if0)257 unsigned mbedtls_ct_uint_if( unsigned condition,
258                              unsigned if1,
259                              unsigned if0 )
260 {
261     unsigned mask = mbedtls_ct_uint_mask( condition );
262     return( ( mask & if1 ) | (~mask & if0 ) );
263 }
264 
265 #if defined(MBEDTLS_BIGNUM_C)
266 
267 /** Select between two sign values without branches.
268  *
269  * This is functionally equivalent to `condition ? if1 : if0` but uses only bit
270  * operations in order to avoid branches.
271  *
272  * \note if1 and if0 must be either 1 or -1, otherwise the result
273  *       is undefined.
274  *
275  * \param condition     Condition to test.
276  * \param if1           The first sign; must be either +1 or -1.
277  * \param if0           The second sign; must be either +1 or -1.
278  *
279  * \return  \c if1 if \p condition is nonzero, otherwise \c if0.
280  * */
mbedtls_ct_cond_select_sign(unsigned char condition,int if1,int if0)281 static int mbedtls_ct_cond_select_sign( unsigned char condition,
282                                         int if1,
283                                         int if0 )
284 {
285     /* In order to avoid questions about what we can reasonably assume about
286      * the representations of signed integers, move everything to unsigned
287      * by taking advantage of the fact that if1 and if0 are either +1 or -1. */
288     unsigned uif1 = if1 + 1;
289     unsigned uif0 = if0 + 1;
290 
291     /* condition was 0 or 1, mask is 0 or 2 as are uif1 and uif0 */
292     const unsigned mask = condition << 1;
293 
294     /* select uif1 or uif0 */
295     unsigned ur = ( uif0 & ~mask ) | ( uif1 & mask );
296 
297     /* ur is now 0 or 2, convert back to -1 or +1 */
298     return( (int) ur - 1 );
299 }
300 
mbedtls_ct_mpi_uint_cond_assign(size_t n,mbedtls_mpi_uint * dest,const mbedtls_mpi_uint * src,unsigned char condition)301 void mbedtls_ct_mpi_uint_cond_assign( size_t n,
302                                       mbedtls_mpi_uint *dest,
303                                       const mbedtls_mpi_uint *src,
304                                       unsigned char condition )
305 {
306     size_t i;
307 
308     /* MSVC has a warning about unary minus on unsigned integer types,
309      * but this is well-defined and precisely what we want to do here. */
310 #if defined(_MSC_VER)
311 #pragma warning( push )
312 #pragma warning( disable : 4146 )
313 #endif
314 
315     /* all-bits 1 if condition is 1, all-bits 0 if condition is 0 */
316     const mbedtls_mpi_uint mask = -condition;
317 
318 #if defined(_MSC_VER)
319 #pragma warning( pop )
320 #endif
321 
322     for( i = 0; i < n; i++ )
323         dest[i] = ( src[i] & mask ) | ( dest[i] & ~mask );
324 }
325 
326 #endif /* MBEDTLS_BIGNUM_C */
327 
328 #if defined(MBEDTLS_BASE64_C)
329 
mbedtls_ct_base64_enc_char(unsigned char value)330 unsigned char mbedtls_ct_base64_enc_char( unsigned char value )
331 {
332     unsigned char digit = 0;
333     /* For each range of values, if value is in that range, mask digit with
334      * the corresponding value. Since value can only be in a single range,
335      * only at most one masking will change digit. */
336     digit |= mbedtls_ct_uchar_mask_of_range(  0, 25, value ) & ( 'A' + value );
337     digit |= mbedtls_ct_uchar_mask_of_range( 26, 51, value ) & ( 'a' + value - 26 );
338     digit |= mbedtls_ct_uchar_mask_of_range( 52, 61, value ) & ( '0' + value - 52 );
339     digit |= mbedtls_ct_uchar_mask_of_range( 62, 62, value ) & '+';
340     digit |= mbedtls_ct_uchar_mask_of_range( 63, 63, value ) & '/';
341     return( digit );
342 }
343 
mbedtls_ct_base64_dec_value(unsigned char c)344 signed char mbedtls_ct_base64_dec_value( unsigned char c )
345 {
346     unsigned char val = 0;
347     /* For each range of digits, if c is in that range, mask val with
348      * the corresponding value. Since c can only be in a single range,
349      * only at most one masking will change val. Set val to one plus
350      * the desired value so that it stays 0 if c is in none of the ranges. */
351     val |= mbedtls_ct_uchar_mask_of_range( 'A', 'Z', c ) & ( c - 'A' +  0 + 1 );
352     val |= mbedtls_ct_uchar_mask_of_range( 'a', 'z', c ) & ( c - 'a' + 26 + 1 );
353     val |= mbedtls_ct_uchar_mask_of_range( '0', '9', c ) & ( c - '0' + 52 + 1 );
354     val |= mbedtls_ct_uchar_mask_of_range( '+', '+', c ) & ( c - '+' + 62 + 1 );
355     val |= mbedtls_ct_uchar_mask_of_range( '/', '/', c ) & ( c - '/' + 63 + 1 );
356     /* At this point, val is 0 if c is an invalid digit and v+1 if c is
357      * a digit with the value v. */
358     return( val - 1 );
359 }
360 
361 #endif /* MBEDTLS_BASE64_C */
362 
363 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
364 
365 /** Shift some data towards the left inside a buffer.
366  *
367  * `mbedtls_ct_mem_move_to_left(start, total, offset)` is functionally
368  * equivalent to
369  * ```
370  * memmove(start, start + offset, total - offset);
371  * memset(start + offset, 0, total - offset);
372  * ```
373  * but it strives to use a memory access pattern (and thus total timing)
374  * that does not depend on \p offset. This timing independence comes at
375  * the expense of performance.
376  *
377  * \param start     Pointer to the start of the buffer.
378  * \param total     Total size of the buffer.
379  * \param offset    Offset from which to copy \p total - \p offset bytes.
380  */
mbedtls_ct_mem_move_to_left(void * start,size_t total,size_t offset)381 static void mbedtls_ct_mem_move_to_left( void *start,
382                                          size_t total,
383                                          size_t offset )
384 {
385     volatile unsigned char *buf = start;
386     size_t i, n;
387     if( total == 0 )
388         return;
389     for( i = 0; i < total; i++ )
390     {
391         unsigned no_op = mbedtls_ct_size_gt( total - offset, i );
392         /* The first `total - offset` passes are a no-op. The last
393          * `offset` passes shift the data one byte to the left and
394          * zero out the last byte. */
395         for( n = 0; n < total - 1; n++ )
396         {
397             unsigned char current = buf[n];
398             unsigned char next = buf[n+1];
399             buf[n] = mbedtls_ct_uint_if( no_op, current, next );
400         }
401         buf[total-1] = mbedtls_ct_uint_if( no_op, buf[total-1], 0 );
402     }
403 }
404 
405 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
406 
407 #if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
408 
mbedtls_ct_memcpy_if_eq(unsigned char * dest,const unsigned char * src,size_t len,size_t c1,size_t c2)409 void mbedtls_ct_memcpy_if_eq( unsigned char *dest,
410                               const unsigned char *src,
411                               size_t len,
412                               size_t c1,
413                               size_t c2 )
414 {
415     /* mask = c1 == c2 ? 0xff : 0x00 */
416     const size_t equal = mbedtls_ct_size_bool_eq( c1, c2 );
417     const unsigned char mask = (unsigned char) mbedtls_ct_size_mask( equal );
418 
419     /* dest[i] = c1 == c2 ? src[i] : dest[i] */
420     for( size_t i = 0; i < len; i++ )
421         dest[i] = ( src[i] & mask ) | ( dest[i] & ~mask );
422 }
423 
mbedtls_ct_memcpy_offset(unsigned char * dest,const unsigned char * src,size_t offset,size_t offset_min,size_t offset_max,size_t len)424 void mbedtls_ct_memcpy_offset( unsigned char *dest,
425                                const unsigned char *src,
426                                size_t offset,
427                                size_t offset_min,
428                                size_t offset_max,
429                                size_t len )
430 {
431     size_t offsetval;
432 
433     for( offsetval = offset_min; offsetval <= offset_max; offsetval++ )
434     {
435         mbedtls_ct_memcpy_if_eq( dest, src + offsetval, len,
436                                  offsetval, offset );
437     }
438 }
439 
mbedtls_ct_hmac(mbedtls_md_context_t * ctx,const unsigned char * add_data,size_t add_data_len,const unsigned char * data,size_t data_len_secret,size_t min_data_len,size_t max_data_len,unsigned char * output)440 int mbedtls_ct_hmac( mbedtls_md_context_t *ctx,
441                      const unsigned char *add_data,
442                      size_t add_data_len,
443                      const unsigned char *data,
444                      size_t data_len_secret,
445                      size_t min_data_len,
446                      size_t max_data_len,
447                      unsigned char *output )
448 {
449     /*
450      * This function breaks the HMAC abstraction and uses the md_clone()
451      * extension to the MD API in order to get constant-flow behaviour.
452      *
453      * HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
454      * concatenation, and okey/ikey are the XOR of the key with some fixed bit
455      * patterns (see RFC 2104, sec. 2), which are stored in ctx->hmac_ctx.
456      *
457      * We'll first compute inner_hash = HASH(ikey + msg) by hashing up to
458      * minlen, then cloning the context, and for each byte up to maxlen
459      * finishing up the hash computation, keeping only the correct result.
460      *
461      * Then we only need to compute HASH(okey + inner_hash) and we're done.
462      */
463     const mbedtls_md_type_t md_alg = mbedtls_md_get_type( ctx->md_info );
464     /* TLS 1.0-1.2 only support SHA-384, SHA-256, SHA-1, MD-5,
465      * all of which have the same block size except SHA-384. */
466     const size_t block_size = md_alg == MBEDTLS_MD_SHA384 ? 128 : 64;
467     const unsigned char * const ikey = ctx->hmac_ctx;
468     const unsigned char * const okey = ikey + block_size;
469     const size_t hash_size = mbedtls_md_get_size( ctx->md_info );
470 
471     unsigned char aux_out[MBEDTLS_MD_MAX_SIZE];
472     mbedtls_md_context_t aux;
473     size_t offset;
474     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
475 
476     mbedtls_md_init( &aux );
477 
478 #define MD_CHK( func_call ) \
479     do {                    \
480         ret = (func_call);  \
481         if( ret != 0 )      \
482             goto cleanup;   \
483     } while( 0 )
484 
485     MD_CHK( mbedtls_md_setup( &aux, ctx->md_info, 0 ) );
486 
487     /* After hmac_start() of hmac_reset(), ikey has already been hashed,
488      * so we can start directly with the message */
489     MD_CHK( mbedtls_md_update( ctx, add_data, add_data_len ) );
490     MD_CHK( mbedtls_md_update( ctx, data, min_data_len ) );
491 
492     /* Fill the hash buffer in advance with something that is
493      * not a valid hash (barring an attack on the hash and
494      * deliberately-crafted input), in case the caller doesn't
495      * check the return status properly. */
496     memset( output, '!', hash_size );
497 
498     /* For each possible length, compute the hash up to that point */
499     for( offset = min_data_len; offset <= max_data_len; offset++ )
500     {
501         MD_CHK( mbedtls_md_clone( &aux, ctx ) );
502         MD_CHK( mbedtls_md_finish( &aux, aux_out ) );
503         /* Keep only the correct inner_hash in the output buffer */
504         mbedtls_ct_memcpy_if_eq( output, aux_out, hash_size,
505                                  offset, data_len_secret );
506 
507         if( offset < max_data_len )
508             MD_CHK( mbedtls_md_update( ctx, data + offset, 1 ) );
509     }
510 
511     /* The context needs to finish() before it starts() again */
512     MD_CHK( mbedtls_md_finish( ctx, aux_out ) );
513 
514     /* Now compute HASH(okey + inner_hash) */
515     MD_CHK( mbedtls_md_starts( ctx ) );
516     MD_CHK( mbedtls_md_update( ctx, okey, block_size ) );
517     MD_CHK( mbedtls_md_update( ctx, output, hash_size ) );
518     MD_CHK( mbedtls_md_finish( ctx, output ) );
519 
520     /* Done, get ready for next time */
521     MD_CHK( mbedtls_md_hmac_reset( ctx ) );
522 
523 #undef MD_CHK
524 
525 cleanup:
526     mbedtls_md_free( &aux );
527     return( ret );
528 }
529 
530 #endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
531 
532 #if defined(MBEDTLS_BIGNUM_C)
533 
534 #define MPI_VALIDATE_RET( cond )                                       \
535     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
536 
537 /*
538  * Conditionally assign X = Y, without leaking information
539  * about whether the assignment was made or not.
540  * (Leaking information about the respective sizes of X and Y is ok however.)
541  */
542 #if defined(_MSC_VER) && defined(_M_ARM64) && (_MSC_FULL_VER < 193131103)
543 /*
544  * MSVC miscompiles this function if it's inlined prior to Visual Studio 2022 version 17.1. See:
545  * https://developercommunity.visualstudio.com/t/c-compiler-miscompiles-part-of-mbedtls-library-on/1646989
546  */
547 __declspec(noinline)
548 #endif
mbedtls_mpi_safe_cond_assign(mbedtls_mpi * X,const mbedtls_mpi * Y,unsigned char assign)549 int mbedtls_mpi_safe_cond_assign( mbedtls_mpi *X,
550                                   const mbedtls_mpi *Y,
551                                   unsigned char assign )
552 {
553     int ret = 0;
554     size_t i;
555     mbedtls_mpi_uint limb_mask;
556     MPI_VALIDATE_RET( X != NULL );
557     MPI_VALIDATE_RET( Y != NULL );
558 
559     /* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */
560     limb_mask = mbedtls_ct_mpi_uint_mask( assign );;
561 
562     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
563 
564     X->s = mbedtls_ct_cond_select_sign( assign, Y->s, X->s );
565 
566     mbedtls_ct_mpi_uint_cond_assign( Y->n, X->p, Y->p, assign );
567 
568     for( i = Y->n; i < X->n; i++ )
569         X->p[i] &= ~limb_mask;
570 
571 cleanup:
572     return( ret );
573 }
574 
575 /*
576  * Conditionally swap X and Y, without leaking information
577  * about whether the swap was made or not.
578  * Here it is not ok to simply swap the pointers, which would lead to
579  * different memory access patterns when X and Y are used afterwards.
580  */
mbedtls_mpi_safe_cond_swap(mbedtls_mpi * X,mbedtls_mpi * Y,unsigned char swap)581 int mbedtls_mpi_safe_cond_swap( mbedtls_mpi *X,
582                                 mbedtls_mpi *Y,
583                                 unsigned char swap )
584 {
585     int ret, s;
586     size_t i;
587     mbedtls_mpi_uint limb_mask;
588     mbedtls_mpi_uint tmp;
589     MPI_VALIDATE_RET( X != NULL );
590     MPI_VALIDATE_RET( Y != NULL );
591 
592     if( X == Y )
593         return( 0 );
594 
595     /* all-bits 1 if swap is 1, all-bits 0 if swap is 0 */
596     limb_mask = mbedtls_ct_mpi_uint_mask( swap );
597 
598     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
599     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( Y, X->n ) );
600 
601     s = X->s;
602     X->s = mbedtls_ct_cond_select_sign( swap, Y->s, X->s );
603     Y->s = mbedtls_ct_cond_select_sign( swap, s, Y->s );
604 
605 
606     for( i = 0; i < X->n; i++ )
607     {
608         tmp = X->p[i];
609         X->p[i] = ( X->p[i] & ~limb_mask ) | ( Y->p[i] & limb_mask );
610         Y->p[i] = ( Y->p[i] & ~limb_mask ) | (     tmp & limb_mask );
611     }
612 
613 cleanup:
614     return( ret );
615 }
616 
617 /*
618  * Compare signed values in constant time
619  */
mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi * X,const mbedtls_mpi * Y,unsigned * ret)620 int mbedtls_mpi_lt_mpi_ct( const mbedtls_mpi *X,
621                            const mbedtls_mpi *Y,
622                            unsigned *ret )
623 {
624     size_t i;
625     /* The value of any of these variables is either 0 or 1 at all times. */
626     unsigned cond, done, X_is_negative, Y_is_negative;
627 
628     MPI_VALIDATE_RET( X != NULL );
629     MPI_VALIDATE_RET( Y != NULL );
630     MPI_VALIDATE_RET( ret != NULL );
631 
632     if( X->n != Y->n )
633         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
634 
635     /*
636      * Set sign_N to 1 if N >= 0, 0 if N < 0.
637      * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
638      */
639     X_is_negative = ( X->s & 2 ) >> 1;
640     Y_is_negative = ( Y->s & 2 ) >> 1;
641 
642     /*
643      * If the signs are different, then the positive operand is the bigger.
644      * That is if X is negative (X_is_negative == 1), then X < Y is true and it
645      * is false if X is positive (X_is_negative == 0).
646      */
647     cond = ( X_is_negative ^ Y_is_negative );
648     *ret = cond & X_is_negative;
649 
650     /*
651      * This is a constant-time function. We might have the result, but we still
652      * need to go through the loop. Record if we have the result already.
653      */
654     done = cond;
655 
656     for( i = X->n; i > 0; i-- )
657     {
658         /*
659          * If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both
660          * X and Y are negative.
661          *
662          * Again even if we can make a decision, we just mark the result and
663          * the fact that we are done and continue looping.
664          */
665         cond = mbedtls_ct_mpi_uint_lt( Y->p[i - 1], X->p[i - 1] );
666         *ret |= cond & ( 1 - done ) & X_is_negative;
667         done |= cond;
668 
669         /*
670          * If X->p[i - 1] < Y->p[i - 1] then X < Y is true if and only if both
671          * X and Y are positive.
672          *
673          * Again even if we can make a decision, we just mark the result and
674          * the fact that we are done and continue looping.
675          */
676         cond = mbedtls_ct_mpi_uint_lt( X->p[i - 1], Y->p[i - 1] );
677         *ret |= cond & ( 1 - done ) & ( 1 - X_is_negative );
678         done |= cond;
679     }
680 
681     return( 0 );
682 }
683 
684 #endif /* MBEDTLS_BIGNUM_C */
685 
686 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
687 
mbedtls_ct_rsaes_pkcs1_v15_unpadding(int mode,unsigned char * input,size_t ilen,unsigned char * output,size_t output_max_len,size_t * olen)688 int mbedtls_ct_rsaes_pkcs1_v15_unpadding( int mode,
689                                           unsigned char *input,
690                                           size_t ilen,
691                                           unsigned char *output,
692                                           size_t output_max_len,
693                                           size_t *olen )
694 {
695     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
696     size_t i, plaintext_max_size;
697 
698     /* The following variables take sensitive values: their value must
699      * not leak into the observable behavior of the function other than
700      * the designated outputs (output, olen, return value). Otherwise
701      * this would open the execution of the function to
702      * side-channel-based variants of the Bleichenbacher padding oracle
703      * attack. Potential side channels include overall timing, memory
704      * access patterns (especially visible to an adversary who has access
705      * to a shared memory cache), and branches (especially visible to
706      * an adversary who has access to a shared code cache or to a shared
707      * branch predictor). */
708     size_t pad_count = 0;
709     unsigned bad = 0;
710     unsigned char pad_done = 0;
711     size_t plaintext_size = 0;
712     unsigned output_too_large;
713 
714     plaintext_max_size = ( output_max_len > ilen - 11 ) ? ilen - 11
715                                                         : output_max_len;
716 
717     /* Check and get padding length in constant time and constant
718      * memory trace. The first byte must be 0. */
719     bad |= input[0];
720 
721     if( mode == MBEDTLS_RSA_PRIVATE )
722     {
723         /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
724          * where PS must be at least 8 nonzero bytes. */
725         bad |= input[1] ^ MBEDTLS_RSA_CRYPT;
726 
727         /* Read the whole buffer. Set pad_done to nonzero if we find
728          * the 0x00 byte and remember the padding length in pad_count. */
729         for( i = 2; i < ilen; i++ )
730         {
731             pad_done  |= ((input[i] | (unsigned char)-input[i]) >> 7) ^ 1;
732             pad_count += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
733         }
734     }
735     else
736     {
737         /* Decode EMSA-PKCS1-v1_5 padding: 0x00 || 0x01 || PS || 0x00
738          * where PS must be at least 8 bytes with the value 0xFF. */
739         bad |= input[1] ^ MBEDTLS_RSA_SIGN;
740 
741         /* Read the whole buffer. Set pad_done to nonzero if we find
742          * the 0x00 byte and remember the padding length in pad_count.
743          * If there's a non-0xff byte in the padding, the padding is bad. */
744         for( i = 2; i < ilen; i++ )
745         {
746             pad_done |= mbedtls_ct_uint_if( input[i], 0, 1 );
747             pad_count += mbedtls_ct_uint_if( pad_done, 0, 1 );
748             bad |= mbedtls_ct_uint_if( pad_done, 0, input[i] ^ 0xFF );
749         }
750     }
751 
752     /* If pad_done is still zero, there's no data, only unfinished padding. */
753     bad |= mbedtls_ct_uint_if( pad_done, 0, 1 );
754 
755     /* There must be at least 8 bytes of padding. */
756     bad |= mbedtls_ct_size_gt( 8, pad_count );
757 
758     /* If the padding is valid, set plaintext_size to the number of
759      * remaining bytes after stripping the padding. If the padding
760      * is invalid, avoid leaking this fact through the size of the
761      * output: use the maximum message size that fits in the output
762      * buffer. Do it without branches to avoid leaking the padding
763      * validity through timing. RSA keys are small enough that all the
764      * size_t values involved fit in unsigned int. */
765     plaintext_size = mbedtls_ct_uint_if(
766                         bad, (unsigned) plaintext_max_size,
767                         (unsigned) ( ilen - pad_count - 3 ) );
768 
769     /* Set output_too_large to 0 if the plaintext fits in the output
770      * buffer and to 1 otherwise. */
771     output_too_large = mbedtls_ct_size_gt( plaintext_size,
772                                            plaintext_max_size );
773 
774     /* Set ret without branches to avoid timing attacks. Return:
775      * - INVALID_PADDING if the padding is bad (bad != 0).
776      * - OUTPUT_TOO_LARGE if the padding is good but the decrypted
777      *   plaintext does not fit in the output buffer.
778      * - 0 if the padding is correct. */
779     ret = - (int) mbedtls_ct_uint_if(
780                     bad, - MBEDTLS_ERR_RSA_INVALID_PADDING,
781                     mbedtls_ct_uint_if( output_too_large,
782                                         - MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
783                                         0 ) );
784 
785     /* If the padding is bad or the plaintext is too large, zero the
786      * data that we're about to copy to the output buffer.
787      * We need to copy the same amount of data
788      * from the same buffer whether the padding is good or not to
789      * avoid leaking the padding validity through overall timing or
790      * through memory or cache access patterns. */
791     bad = mbedtls_ct_uint_mask( bad | output_too_large );
792     for( i = 11; i < ilen; i++ )
793         input[i] &= ~bad;
794 
795     /* If the plaintext is too large, truncate it to the buffer size.
796      * Copy anyway to avoid revealing the length through timing, because
797      * revealing the length is as bad as revealing the padding validity
798      * for a Bleichenbacher attack. */
799     plaintext_size = mbedtls_ct_uint_if( output_too_large,
800                                          (unsigned) plaintext_max_size,
801                                          (unsigned) plaintext_size );
802 
803     /* Move the plaintext to the leftmost position where it can start in
804      * the working buffer, i.e. make it start plaintext_max_size from
805      * the end of the buffer. Do this with a memory access trace that
806      * does not depend on the plaintext size. After this move, the
807      * starting location of the plaintext is no longer sensitive
808      * information. */
809     mbedtls_ct_mem_move_to_left( input + ilen - plaintext_max_size,
810                                  plaintext_max_size,
811                                  plaintext_max_size - plaintext_size );
812 
813     /* Finally copy the decrypted plaintext plus trailing zeros into the output
814      * buffer. If output_max_len is 0, then output may be an invalid pointer
815      * and the result of memcpy() would be undefined; prevent undefined
816      * behavior making sure to depend only on output_max_len (the size of the
817      * user-provided output buffer), which is independent from plaintext
818      * length, validity of padding, success of the decryption, and other
819      * secrets. */
820     if( output_max_len != 0 )
821         memcpy( output, input + ilen - plaintext_max_size, plaintext_max_size );
822 
823     /* Report the amount of data we copied to the output buffer. In case
824      * of errors (bad padding or output too large), the value of *olen
825      * when this function returns is not specified. Making it equivalent
826      * to the good case limits the risks of leaking the padding validity. */
827     *olen = plaintext_size;
828 
829     return( ret );
830 }
831 
832 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
833