1 /*
2  *  The RSA public-key cryptosystem
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  */
19 
20 /*
21  *  The following sources were referenced in the design of this implementation
22  *  of the RSA algorithm:
23  *
24  *  [1] A method for obtaining digital signatures and public-key cryptosystems
25  *      R Rivest, A Shamir, and L Adleman
26  *      http://people.csail.mit.edu/rivest/pubs.html#RSA78
27  *
28  *  [2] Handbook of Applied Cryptography - 1997, Chapter 8
29  *      Menezes, van Oorschot and Vanstone
30  *
31  *  [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
32  *      Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and
33  *      Stefan Mangard
34  *      https://arxiv.org/abs/1702.08719v2
35  *
36  */
37 
38 #include "common.h"
39 
40 #if defined(MBEDTLS_RSA_C)
41 
42 #include "mbedtls/rsa.h"
43 #include "mbedtls/rsa_internal.h"
44 #include "mbedtls/oid.h"
45 #include "mbedtls/platform_util.h"
46 #include "mbedtls/error.h"
47 #include "constant_time_internal.h"
48 #include "mbedtls/constant_time.h"
49 
50 #include <string.h>
51 
52 #if defined(MBEDTLS_PKCS1_V21)
53 #include "mbedtls/md.h"
54 #endif
55 
56 #if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__) && !defined(__NetBSD__)
57 #include <stdlib.h>
58 #endif
59 
60 #if defined(MBEDTLS_PLATFORM_C)
61 #include "mbedtls/platform.h"
62 #else
63 #include <stdio.h>
64 #define mbedtls_printf printf
65 #define mbedtls_calloc calloc
66 #define mbedtls_free   free
67 #endif
68 
69 #include <fault_mitigation.h>
70 
71 #if !defined(MBEDTLS_RSA_ALT)
72 
73 /* Parameter validation macros */
74 #define RSA_VALIDATE_RET( cond )                                       \
75     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_RSA_BAD_INPUT_DATA )
76 #define RSA_VALIDATE( cond )                                           \
77     MBEDTLS_INTERNAL_VALIDATE( cond )
78 
mbedtls_rsa_import(mbedtls_rsa_context * ctx,const mbedtls_mpi * N,const mbedtls_mpi * P,const mbedtls_mpi * Q,const mbedtls_mpi * D,const mbedtls_mpi * E)79 int mbedtls_rsa_import( mbedtls_rsa_context *ctx,
80                         const mbedtls_mpi *N,
81                         const mbedtls_mpi *P, const mbedtls_mpi *Q,
82                         const mbedtls_mpi *D, const mbedtls_mpi *E )
83 {
84     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
85     RSA_VALIDATE_RET( ctx != NULL );
86 
87     if( ( N != NULL && ( ret = mbedtls_mpi_copy( &ctx->N, N ) ) != 0 ) ||
88         ( P != NULL && ( ret = mbedtls_mpi_copy( &ctx->P, P ) ) != 0 ) ||
89         ( Q != NULL && ( ret = mbedtls_mpi_copy( &ctx->Q, Q ) ) != 0 ) ||
90         ( D != NULL && ( ret = mbedtls_mpi_copy( &ctx->D, D ) ) != 0 ) ||
91         ( E != NULL && ( ret = mbedtls_mpi_copy( &ctx->E, E ) ) != 0 ) )
92     {
93         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
94     }
95 
96     if( N != NULL )
97         ctx->len = mbedtls_mpi_size( &ctx->N );
98 
99     return( 0 );
100 }
101 
mbedtls_rsa_import_raw(mbedtls_rsa_context * ctx,unsigned char const * N,size_t N_len,unsigned char const * P,size_t P_len,unsigned char const * Q,size_t Q_len,unsigned char const * D,size_t D_len,unsigned char const * E,size_t E_len)102 int mbedtls_rsa_import_raw( mbedtls_rsa_context *ctx,
103                             unsigned char const *N, size_t N_len,
104                             unsigned char const *P, size_t P_len,
105                             unsigned char const *Q, size_t Q_len,
106                             unsigned char const *D, size_t D_len,
107                             unsigned char const *E, size_t E_len )
108 {
109     int ret = 0;
110     RSA_VALIDATE_RET( ctx != NULL );
111 
112     if( N != NULL )
113     {
114         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->N, N, N_len ) );
115         ctx->len = mbedtls_mpi_size( &ctx->N );
116     }
117 
118     if( P != NULL )
119         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->P, P, P_len ) );
120 
121     if( Q != NULL )
122         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->Q, Q, Q_len ) );
123 
124     if( D != NULL )
125         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->D, D, D_len ) );
126 
127     if( E != NULL )
128         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->E, E, E_len ) );
129 
130 cleanup:
131 
132     if( ret != 0 )
133         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
134 
135     return( 0 );
136 }
137 
138 /*
139  * Checks whether the context fields are set in such a way
140  * that the RSA primitives will be able to execute without error.
141  * It does *not* make guarantees for consistency of the parameters.
142  */
rsa_check_context(mbedtls_rsa_context const * ctx,int is_priv,int blinding_needed)143 static int rsa_check_context( mbedtls_rsa_context const *ctx, int is_priv,
144                               int blinding_needed )
145 {
146 #if !defined(MBEDTLS_RSA_NO_CRT)
147     /* blinding_needed is only used for NO_CRT to decide whether
148      * P,Q need to be present or not. */
149     ((void) blinding_needed);
150 #endif
151 
152     if( ctx->len != mbedtls_mpi_size( &ctx->N ) ||
153         ctx->len > MBEDTLS_MPI_MAX_SIZE )
154     {
155         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
156     }
157 
158     /*
159      * 1. Modular exponentiation needs positive, odd moduli.
160      */
161 
162     /* Modular exponentiation wrt. N is always used for
163      * RSA public key operations. */
164     if( mbedtls_mpi_cmp_int( &ctx->N, 0 ) <= 0 ||
165         mbedtls_mpi_get_bit( &ctx->N, 0 ) == 0  )
166     {
167         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
168     }
169 
170 #if !defined(MBEDTLS_RSA_NO_CRT)
171     /* Modular exponentiation for P and Q is only
172      * used for private key operations and if CRT
173      * is used. */
174     if( is_priv &&
175         ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
176           mbedtls_mpi_get_bit( &ctx->P, 0 ) == 0 ||
177           mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ||
178           mbedtls_mpi_get_bit( &ctx->Q, 0 ) == 0  ) )
179     {
180         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
181     }
182 #endif /* !MBEDTLS_RSA_NO_CRT */
183 
184     /*
185      * 2. Exponents must be positive
186      */
187 
188     /* Always need E for public key operations */
189     if( mbedtls_mpi_cmp_int( &ctx->E, 0 ) <= 0 )
190         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
191 
192 #if defined(MBEDTLS_RSA_NO_CRT)
193     /* For private key operations, use D or DP & DQ
194      * as (unblinded) exponents. */
195     if( is_priv && mbedtls_mpi_cmp_int( &ctx->D, 0 ) <= 0 )
196         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
197 #else
198     if( is_priv &&
199         ( mbedtls_mpi_cmp_int( &ctx->DP, 0 ) <= 0 ||
200           mbedtls_mpi_cmp_int( &ctx->DQ, 0 ) <= 0  ) )
201     {
202         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
203     }
204 #endif /* MBEDTLS_RSA_NO_CRT */
205 
206     /* Blinding shouldn't make exponents negative either,
207      * so check that P, Q >= 1 if that hasn't yet been
208      * done as part of 1. */
209 #if defined(MBEDTLS_RSA_NO_CRT)
210     if( is_priv && blinding_needed &&
211         ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
212           mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ) )
213     {
214         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
215     }
216 #endif
217 
218     /* It wouldn't lead to an error if it wasn't satisfied,
219      * but check for QP >= 1 nonetheless. */
220 #if !defined(MBEDTLS_RSA_NO_CRT)
221     if( is_priv &&
222         mbedtls_mpi_cmp_int( &ctx->QP, 0 ) <= 0 )
223     {
224         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
225     }
226 #endif
227 
228     return( 0 );
229 }
230 
mbedtls_rsa_complete(mbedtls_rsa_context * ctx)231 int mbedtls_rsa_complete( mbedtls_rsa_context *ctx )
232 {
233     int ret = 0;
234     int have_N, have_P, have_Q, have_D, have_E;
235 #if !defined(MBEDTLS_RSA_NO_CRT)
236     int have_DP, have_DQ, have_QP;
237 #endif
238     int n_missing, pq_missing, d_missing, is_pub, is_priv;
239 
240     RSA_VALIDATE_RET( ctx != NULL );
241 
242     have_N = ( mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 );
243     have_P = ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 );
244     have_Q = ( mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 );
245     have_D = ( mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 );
246     have_E = ( mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0 );
247 
248 #if !defined(MBEDTLS_RSA_NO_CRT)
249     have_DP = ( mbedtls_mpi_cmp_int( &ctx->DP, 0 ) != 0 );
250     have_DQ = ( mbedtls_mpi_cmp_int( &ctx->DQ, 0 ) != 0 );
251     have_QP = ( mbedtls_mpi_cmp_int( &ctx->QP, 0 ) != 0 );
252 #endif
253 
254     /*
255      * Check whether provided parameters are enough
256      * to deduce all others. The following incomplete
257      * parameter sets for private keys are supported:
258      *
259      * (1) P, Q missing.
260      * (2) D and potentially N missing.
261      *
262      */
263 
264     n_missing  =              have_P &&  have_Q &&  have_D && have_E;
265     pq_missing =   have_N && !have_P && !have_Q &&  have_D && have_E;
266     d_missing  =              have_P &&  have_Q && !have_D && have_E;
267     is_pub     =   have_N && !have_P && !have_Q && !have_D && have_E;
268 
269     /* These three alternatives are mutually exclusive */
270     is_priv = n_missing || pq_missing || d_missing;
271 
272     if( !is_priv && !is_pub )
273         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
274 
275     /*
276      * Step 1: Deduce N if P, Q are provided.
277      */
278 
279     if( !have_N && have_P && have_Q )
280     {
281         if( ( ret = mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P,
282                                          &ctx->Q ) ) != 0 )
283         {
284             return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
285         }
286 
287         ctx->len = mbedtls_mpi_size( &ctx->N );
288     }
289 
290     /*
291      * Step 2: Deduce and verify all remaining core parameters.
292      */
293 
294     if( pq_missing )
295     {
296         ret = mbedtls_rsa_deduce_primes( &ctx->N, &ctx->E, &ctx->D,
297                                          &ctx->P, &ctx->Q );
298         if( ret != 0 )
299             return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
300 
301     }
302     else if( d_missing )
303     {
304         if( ( ret = mbedtls_rsa_deduce_private_exponent( &ctx->P,
305                                                          &ctx->Q,
306                                                          &ctx->E,
307                                                          &ctx->D ) ) != 0 )
308         {
309             return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
310         }
311     }
312 
313     /*
314      * Step 3: Deduce all additional parameters specific
315      *         to our current RSA implementation.
316      */
317 
318 #if !defined(MBEDTLS_RSA_NO_CRT)
319     if( is_priv && ! ( have_DP && have_DQ && have_QP ) )
320     {
321         ret = mbedtls_rsa_deduce_crt( &ctx->P,  &ctx->Q,  &ctx->D,
322                                       &ctx->DP, &ctx->DQ, &ctx->QP );
323         if( ret != 0 )
324             return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
325     }
326 #endif /* MBEDTLS_RSA_NO_CRT */
327 
328     /*
329      * Step 3: Basic sanity checks
330      */
331 
332     return( rsa_check_context( ctx, is_priv, 1 ) );
333 }
334 
mbedtls_rsa_export_raw(const mbedtls_rsa_context * ctx,unsigned char * N,size_t N_len,unsigned char * P,size_t P_len,unsigned char * Q,size_t Q_len,unsigned char * D,size_t D_len,unsigned char * E,size_t E_len)335 int mbedtls_rsa_export_raw( const mbedtls_rsa_context *ctx,
336                             unsigned char *N, size_t N_len,
337                             unsigned char *P, size_t P_len,
338                             unsigned char *Q, size_t Q_len,
339                             unsigned char *D, size_t D_len,
340                             unsigned char *E, size_t E_len )
341 {
342     int ret = 0;
343     int is_priv;
344     RSA_VALIDATE_RET( ctx != NULL );
345 
346     /* Check if key is private or public */
347     is_priv =
348         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
349         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
350         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
351         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
352         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
353 
354     if( !is_priv )
355     {
356         /* If we're trying to export private parameters for a public key,
357          * something must be wrong. */
358         if( P != NULL || Q != NULL || D != NULL )
359             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
360 
361     }
362 
363     if( N != NULL )
364         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->N, N, N_len ) );
365 
366     if( P != NULL )
367         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->P, P, P_len ) );
368 
369     if( Q != NULL )
370         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->Q, Q, Q_len ) );
371 
372     if( D != NULL )
373         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->D, D, D_len ) );
374 
375     if( E != NULL )
376         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->E, E, E_len ) );
377 
378 cleanup:
379 
380     return( ret );
381 }
382 
mbedtls_rsa_export(const mbedtls_rsa_context * ctx,mbedtls_mpi * N,mbedtls_mpi * P,mbedtls_mpi * Q,mbedtls_mpi * D,mbedtls_mpi * E)383 int mbedtls_rsa_export( const mbedtls_rsa_context *ctx,
384                         mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q,
385                         mbedtls_mpi *D, mbedtls_mpi *E )
386 {
387     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
388     int is_priv;
389     RSA_VALIDATE_RET( ctx != NULL );
390 
391     /* Check if key is private or public */
392     is_priv =
393         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
394         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
395         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
396         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
397         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
398 
399     if( !is_priv )
400     {
401         /* If we're trying to export private parameters for a public key,
402          * something must be wrong. */
403         if( P != NULL || Q != NULL || D != NULL )
404             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
405 
406     }
407 
408     /* Export all requested core parameters. */
409 
410     if( ( N != NULL && ( ret = mbedtls_mpi_copy( N, &ctx->N ) ) != 0 ) ||
411         ( P != NULL && ( ret = mbedtls_mpi_copy( P, &ctx->P ) ) != 0 ) ||
412         ( Q != NULL && ( ret = mbedtls_mpi_copy( Q, &ctx->Q ) ) != 0 ) ||
413         ( D != NULL && ( ret = mbedtls_mpi_copy( D, &ctx->D ) ) != 0 ) ||
414         ( E != NULL && ( ret = mbedtls_mpi_copy( E, &ctx->E ) ) != 0 ) )
415     {
416         return( ret );
417     }
418 
419     return( 0 );
420 }
421 
422 /*
423  * Export CRT parameters
424  * This must also be implemented if CRT is not used, for being able to
425  * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt
426  * can be used in this case.
427  */
mbedtls_rsa_export_crt(const mbedtls_rsa_context * ctx,mbedtls_mpi * DP,mbedtls_mpi * DQ,mbedtls_mpi * QP)428 int mbedtls_rsa_export_crt( const mbedtls_rsa_context *ctx,
429                             mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP )
430 {
431     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
432     int is_priv;
433     RSA_VALIDATE_RET( ctx != NULL );
434 
435     /* Check if key is private or public */
436     is_priv =
437         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
438         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
439         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
440         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
441         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
442 
443     if( !is_priv )
444         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
445 
446 #if !defined(MBEDTLS_RSA_NO_CRT)
447     /* Export all requested blinding parameters. */
448     if( ( DP != NULL && ( ret = mbedtls_mpi_copy( DP, &ctx->DP ) ) != 0 ) ||
449         ( DQ != NULL && ( ret = mbedtls_mpi_copy( DQ, &ctx->DQ ) ) != 0 ) ||
450         ( QP != NULL && ( ret = mbedtls_mpi_copy( QP, &ctx->QP ) ) != 0 ) )
451     {
452         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
453     }
454 #else
455     if( ( ret = mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
456                                         DP, DQ, QP ) ) != 0 )
457     {
458         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
459     }
460 #endif
461 
462     return( 0 );
463 }
464 
465 /*
466  * Initialize an RSA context
467  */
mbedtls_rsa_init(mbedtls_rsa_context * ctx,int padding,int hash_id)468 void mbedtls_rsa_init( mbedtls_rsa_context *ctx,
469                int padding,
470                int hash_id )
471 {
472     RSA_VALIDATE( ctx != NULL );
473     RSA_VALIDATE( padding == MBEDTLS_RSA_PKCS_V15 ||
474                   padding == MBEDTLS_RSA_PKCS_V21 );
475 
476     memset( ctx, 0, sizeof( mbedtls_rsa_context ) );
477 
478     mbedtls_rsa_set_padding( ctx, padding, hash_id );
479 
480 #if defined(MBEDTLS_THREADING_C)
481     /* Set ctx->ver to nonzero to indicate that the mutex has been
482      * initialized and will need to be freed. */
483     ctx->ver = 1;
484     mbedtls_mutex_init( &ctx->mutex );
485 #endif
486 }
487 
488 /*
489  * Set padding for an existing RSA context
490  */
mbedtls_rsa_set_padding(mbedtls_rsa_context * ctx,int padding,int hash_id)491 void mbedtls_rsa_set_padding( mbedtls_rsa_context *ctx, int padding,
492                               int hash_id )
493 {
494     RSA_VALIDATE( ctx != NULL );
495     RSA_VALIDATE( padding == MBEDTLS_RSA_PKCS_V15 ||
496                   padding == MBEDTLS_RSA_PKCS_V21 );
497 
498     ctx->padding = padding;
499     ctx->hash_id = hash_id;
500 }
501 
502 /*
503  * Get length in bytes of RSA modulus
504  */
505 
mbedtls_rsa_get_len(const mbedtls_rsa_context * ctx)506 size_t mbedtls_rsa_get_len( const mbedtls_rsa_context *ctx )
507 {
508     return( ctx->len );
509 }
510 
511 
512 #if defined(MBEDTLS_GENPRIME)
513 
514 /*
515  * Generate an RSA keypair
516  *
517  * This generation method follows the RSA key pair generation procedure of
518  * FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072.
519  */
mbedtls_rsa_gen_key(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,unsigned int nbits,int exponent)520 int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx,
521                  int (*f_rng)(void *, unsigned char *, size_t),
522                  void *p_rng,
523                  unsigned int nbits, int exponent )
524 {
525     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
526     mbedtls_mpi H, G, L;
527     int prime_quality = 0;
528     RSA_VALIDATE_RET( ctx != NULL );
529     RSA_VALIDATE_RET( f_rng != NULL );
530 
531     /*
532      * If the modulus is 1024 bit long or shorter, then the security strength of
533      * the RSA algorithm is less than or equal to 80 bits and therefore an error
534      * rate of 2^-80 is sufficient.
535      */
536     if( nbits > 1024 )
537         prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR;
538 
539     mbedtls_mpi_init( &H );
540     mbedtls_mpi_init( &G );
541     mbedtls_mpi_init( &L );
542 
543     if( nbits < 128 || exponent < 3 || nbits % 2 != 0 )
544     {
545         ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
546         goto cleanup;
547     }
548 
549     /*
550      * find primes P and Q with Q < P so that:
551      * 1.  |P-Q| > 2^( nbits / 2 - 100 )
552      * 2.  GCD( E, (P-1)*(Q-1) ) == 1
553      * 3.  E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 )
554      */
555     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &ctx->E, exponent ) );
556 
557     do
558     {
559         MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->P, nbits >> 1,
560                                                 prime_quality, f_rng, p_rng ) );
561 
562         MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->Q, nbits >> 1,
563                                                 prime_quality, f_rng, p_rng ) );
564 
565         /* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */
566         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &H, &ctx->P, &ctx->Q ) );
567         if( mbedtls_mpi_bitlen( &H ) <= ( ( nbits >= 200 ) ? ( ( nbits >> 1 ) - 99 ) : 0 ) )
568             continue;
569 
570         /* not required by any standards, but some users rely on the fact that P > Q */
571         if( H.s < 0 )
572             mbedtls_mpi_swap( &ctx->P, &ctx->Q );
573 
574         /* Temporarily replace P,Q by P-1, Q-1 */
575         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->P, &ctx->P, 1 ) );
576         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->Q, &ctx->Q, 1 ) );
577         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &H, &ctx->P, &ctx->Q ) );
578 
579         /* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */
580         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->E, &H  ) );
581         if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
582             continue;
583 
584         /* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */
585         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->P, &ctx->Q ) );
586         MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &L, NULL, &H, &G ) );
587         MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &ctx->D, &ctx->E, &L ) );
588 
589         if( mbedtls_mpi_bitlen( &ctx->D ) <= ( ( nbits + 1 ) / 2 ) ) // (FIPS 186-4 §B.3.1 criterion 3(a))
590             continue;
591 
592         break;
593     }
594     while( 1 );
595 
596     /* Restore P,Q */
597     MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->P,  &ctx->P, 1 ) );
598     MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->Q,  &ctx->Q, 1 ) );
599 
600     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
601 
602     ctx->len = mbedtls_mpi_size( &ctx->N );
603 
604 #if !defined(MBEDTLS_RSA_NO_CRT)
605     /*
606      * DP = D mod (P - 1)
607      * DQ = D mod (Q - 1)
608      * QP = Q^-1 mod P
609      */
610     MBEDTLS_MPI_CHK( mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
611                                              &ctx->DP, &ctx->DQ, &ctx->QP ) );
612 #endif /* MBEDTLS_RSA_NO_CRT */
613 
614     /* Double-check */
615     MBEDTLS_MPI_CHK( mbedtls_rsa_check_privkey( ctx ) );
616 
617 cleanup:
618 
619     mbedtls_mpi_free( &H );
620     mbedtls_mpi_free( &G );
621     mbedtls_mpi_free( &L );
622 
623     if( ret != 0 )
624     {
625         mbedtls_rsa_free( ctx );
626 
627         if( ( -ret & ~0x7f ) == 0 )
628             ret = MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_KEY_GEN_FAILED, ret );
629         return( ret );
630     }
631 
632     return( 0 );
633 }
634 
635 #endif /* MBEDTLS_GENPRIME */
636 
637 /*
638  * Check a public RSA key
639  */
mbedtls_rsa_check_pubkey(const mbedtls_rsa_context * ctx)640 int mbedtls_rsa_check_pubkey( const mbedtls_rsa_context *ctx )
641 {
642     RSA_VALIDATE_RET( ctx != NULL );
643 
644     if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) != 0 )
645         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
646 
647     if( mbedtls_mpi_bitlen( &ctx->N ) < 128 )
648     {
649         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
650     }
651 
652     if( mbedtls_mpi_get_bit( &ctx->E, 0 ) == 0 ||
653         mbedtls_mpi_bitlen( &ctx->E )     < 2  ||
654         mbedtls_mpi_cmp_mpi( &ctx->E, &ctx->N ) >= 0 )
655     {
656         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
657     }
658 
659     return( 0 );
660 }
661 
662 /*
663  * Check for the consistency of all fields in an RSA private key context
664  */
mbedtls_rsa_check_privkey(const mbedtls_rsa_context * ctx)665 int mbedtls_rsa_check_privkey( const mbedtls_rsa_context *ctx )
666 {
667     RSA_VALIDATE_RET( ctx != NULL );
668 
669     if( mbedtls_rsa_check_pubkey( ctx ) != 0 ||
670         rsa_check_context( ctx, 1 /* private */, 1 /* blinding */ ) != 0 )
671     {
672         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
673     }
674 
675     if( mbedtls_rsa_validate_params( &ctx->N, &ctx->P, &ctx->Q,
676                                      &ctx->D, &ctx->E, NULL, NULL ) != 0 )
677     {
678         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
679     }
680 
681 #if !defined(MBEDTLS_RSA_NO_CRT)
682     else if( mbedtls_rsa_validate_crt( &ctx->P, &ctx->Q, &ctx->D,
683                                        &ctx->DP, &ctx->DQ, &ctx->QP ) != 0 )
684     {
685         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
686     }
687 #endif
688 
689     return( 0 );
690 }
691 
692 /*
693  * Check if contexts holding a public and private key match
694  */
mbedtls_rsa_check_pub_priv(const mbedtls_rsa_context * pub,const mbedtls_rsa_context * prv)695 int mbedtls_rsa_check_pub_priv( const mbedtls_rsa_context *pub,
696                                 const mbedtls_rsa_context *prv )
697 {
698     RSA_VALIDATE_RET( pub != NULL );
699     RSA_VALIDATE_RET( prv != NULL );
700 
701     if( mbedtls_rsa_check_pubkey( pub )  != 0 ||
702         mbedtls_rsa_check_privkey( prv ) != 0 )
703     {
704         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
705     }
706 
707     if( mbedtls_mpi_cmp_mpi( &pub->N, &prv->N ) != 0 ||
708         mbedtls_mpi_cmp_mpi( &pub->E, &prv->E ) != 0 )
709     {
710         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
711     }
712 
713     return( 0 );
714 }
715 
716 /*
717  * Do an RSA public key operation
718  */
mbedtls_rsa_public(mbedtls_rsa_context * ctx,const unsigned char * input,unsigned char * output)719 int mbedtls_rsa_public( mbedtls_rsa_context *ctx,
720                 const unsigned char *input,
721                 unsigned char *output )
722 {
723     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
724     size_t olen;
725     mbedtls_mpi T;
726     RSA_VALIDATE_RET( ctx != NULL );
727     RSA_VALIDATE_RET( input != NULL );
728     RSA_VALIDATE_RET( output != NULL );
729 
730     if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) )
731         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
732 
733     mbedtls_mpi_init( &T );
734 
735 #if defined(MBEDTLS_THREADING_C)
736     if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
737         return( ret );
738 #endif
739 
740     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
741 
742     if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
743     {
744         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
745         goto cleanup;
746     }
747 
748     olen = ctx->len;
749     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) );
750     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
751 
752 cleanup:
753 #if defined(MBEDTLS_THREADING_C)
754     if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
755         return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
756 #endif
757 
758     mbedtls_mpi_free( &T );
759 
760     if( ret != 0 )
761         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_PUBLIC_FAILED, ret ) );
762 
763     return( 0 );
764 }
765 
766 /*
767  * Generate or update blinding values, see section 10 of:
768  *  KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
769  *  DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
770  *  Berlin Heidelberg, 1996. p. 104-113.
771  */
rsa_prepare_blinding(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)772 static int rsa_prepare_blinding( mbedtls_rsa_context *ctx,
773                  int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
774 {
775     int ret, count = 0;
776     mbedtls_mpi R;
777 
778     mbedtls_mpi_init( &R );
779 
780     if( ctx->Vf.p != NULL )
781     {
782         /* We already have blinding values, just update them by squaring */
783         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) );
784         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
785         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) );
786         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->N ) );
787 
788         goto cleanup;
789     }
790 
791     /* Unblinding value: Vf = random number, invertible mod N */
792     do {
793         if( count++ > 10 )
794         {
795             ret = MBEDTLS_ERR_RSA_RNG_FAILED;
796             goto cleanup;
797         }
798 
799         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &ctx->Vf, ctx->len - 1, f_rng, p_rng ) );
800 
801         /* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */
802         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, ctx->len - 1, f_rng, p_rng ) );
803         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vf, &R ) );
804         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
805 
806         /* At this point, Vi is invertible mod N if and only if both Vf and R
807          * are invertible mod N. If one of them isn't, we don't need to know
808          * which one, we just loop and choose new values for both of them.
809          * (Each iteration succeeds with overwhelming probability.) */
810         ret = mbedtls_mpi_inv_mod( &ctx->Vi, &ctx->Vi, &ctx->N );
811         if( ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
812             goto cleanup;
813 
814     } while( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
815 
816     /* Finish the computation of Vf^-1 = R * (R Vf)^-1 */
817     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &R ) );
818     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
819 
820     /* Blinding value: Vi = Vf^(-e) mod N
821      * (Vi already contains Vf^-1 at this point) */
822     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN ) );
823 
824 
825 cleanup:
826     mbedtls_mpi_free( &R );
827 
828     return( ret );
829 }
830 
831 /*
832  * Exponent blinding supposed to prevent side-channel attacks using multiple
833  * traces of measurements to recover the RSA key. The more collisions are there,
834  * the more bits of the key can be recovered. See [3].
835  *
836  * Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
837  * observations on average.
838  *
839  * For example with 28 byte blinding to achieve 2 collisions the adversary has
840  * to make 2^112 observations on average.
841  *
842  * (With the currently (as of 2017 April) known best algorithms breaking 2048
843  * bit RSA requires approximately as much time as trying out 2^112 random keys.
844  * Thus in this sense with 28 byte blinding the security is not reduced by
845  * side-channel attacks like the one in [3])
846  *
847  * This countermeasure does not help if the key recovery is possible with a
848  * single trace.
849  */
850 #define RSA_EXPONENT_BLINDING 28
851 
852 /*
853  * Do an RSA private key operation
854  */
mbedtls_rsa_private(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,const unsigned char * input,unsigned char * output)855 int mbedtls_rsa_private( mbedtls_rsa_context *ctx,
856                  int (*f_rng)(void *, unsigned char *, size_t),
857                  void *p_rng,
858                  const unsigned char *input,
859                  unsigned char *output )
860 {
861     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
862     size_t olen;
863 
864     /* Temporary holding the result */
865     mbedtls_mpi T;
866 
867     /* Temporaries holding P-1, Q-1 and the
868      * exponent blinding factor, respectively. */
869     mbedtls_mpi P1, Q1, R;
870 
871 #if !defined(MBEDTLS_RSA_NO_CRT)
872     /* Temporaries holding the results mod p resp. mod q. */
873     mbedtls_mpi TP, TQ;
874 
875     /* Temporaries holding the blinded exponents for
876      * the mod p resp. mod q computation (if used). */
877     mbedtls_mpi DP_blind, DQ_blind;
878 
879     /* Pointers to actual exponents to be used - either the unblinded
880      * or the blinded ones, depending on the presence of a PRNG. */
881     mbedtls_mpi *DP = &ctx->DP;
882     mbedtls_mpi *DQ = &ctx->DQ;
883 #else
884     /* Temporary holding the blinded exponent (if used). */
885     mbedtls_mpi D_blind;
886 
887     /* Pointer to actual exponent to be used - either the unblinded
888      * or the blinded one, depending on the presence of a PRNG. */
889     mbedtls_mpi *D = &ctx->D;
890 #endif /* MBEDTLS_RSA_NO_CRT */
891 
892     /* Temporaries holding the initial input and the double
893      * checked result; should be the same in the end. */
894     mbedtls_mpi I, C;
895 
896     RSA_VALIDATE_RET( ctx != NULL );
897     RSA_VALIDATE_RET( input  != NULL );
898     RSA_VALIDATE_RET( output != NULL );
899 
900     if( rsa_check_context( ctx, 1             /* private key checks */,
901                                 f_rng != NULL /* blinding y/n       */ ) != 0 )
902     {
903         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
904     }
905 
906 #if defined(MBEDTLS_THREADING_C)
907     if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
908         return( ret );
909 #endif
910 
911     /* MPI Initialization */
912     mbedtls_mpi_init( &T );
913 
914     mbedtls_mpi_init( &P1 );
915     mbedtls_mpi_init( &Q1 );
916     mbedtls_mpi_init( &R );
917 
918     if( f_rng != NULL )
919     {
920 #if defined(MBEDTLS_RSA_NO_CRT)
921         mbedtls_mpi_init( &D_blind );
922 #else
923         mbedtls_mpi_init( &DP_blind );
924         mbedtls_mpi_init( &DQ_blind );
925 #endif
926     }
927 
928 #if !defined(MBEDTLS_RSA_NO_CRT)
929     mbedtls_mpi_init( &TP ); mbedtls_mpi_init( &TQ );
930 #endif
931 
932     mbedtls_mpi_init( &I );
933     mbedtls_mpi_init( &C );
934 
935     /* End of MPI initialization */
936 
937     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
938     if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
939     {
940         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
941         goto cleanup;
942     }
943 
944     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &I, &T ) );
945 
946     if( f_rng != NULL )
947     {
948         /*
949          * Blinding
950          * T = T * Vi mod N
951          */
952         MBEDTLS_MPI_CHK( rsa_prepare_blinding( ctx, f_rng, p_rng ) );
953         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vi ) );
954         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
955 
956         /*
957          * Exponent blinding
958          */
959         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &P1, &ctx->P, 1 ) );
960         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &Q1, &ctx->Q, 1 ) );
961 
962 #if defined(MBEDTLS_RSA_NO_CRT)
963         /*
964          * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D
965          */
966         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
967                          f_rng, p_rng ) );
968         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &P1, &Q1 ) );
969         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &D_blind, &R ) );
970         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &D_blind, &D_blind, &ctx->D ) );
971 
972         D = &D_blind;
973 #else
974         /*
975          * DP_blind = ( P - 1 ) * R + DP
976          */
977         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
978                          f_rng, p_rng ) );
979         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DP_blind, &P1, &R ) );
980         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DP_blind, &DP_blind,
981                     &ctx->DP ) );
982 
983         DP = &DP_blind;
984 
985         /*
986          * DQ_blind = ( Q - 1 ) * R + DQ
987          */
988         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
989                          f_rng, p_rng ) );
990         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DQ_blind, &Q1, &R ) );
991         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DQ_blind, &DQ_blind,
992                     &ctx->DQ ) );
993 
994         DQ = &DQ_blind;
995 #endif /* MBEDTLS_RSA_NO_CRT */
996     }
997 
998 #if defined(MBEDTLS_RSA_NO_CRT)
999     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, D, &ctx->N, &ctx->RN ) );
1000 #else
1001     /*
1002      * Faster decryption using the CRT
1003      *
1004      * TP = input ^ dP mod P
1005      * TQ = input ^ dQ mod Q
1006      */
1007 
1008     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TP, &T, DP, &ctx->P, &ctx->RP ) );
1009     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TQ, &T, DQ, &ctx->Q, &ctx->RQ ) );
1010 
1011     /*
1012      * T = (TP - TQ) * (Q^-1 mod P) mod P
1013      */
1014     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &TP, &TQ ) );
1015     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->QP ) );
1016     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &TP, &ctx->P ) );
1017 
1018     /*
1019      * T = TQ + T * Q
1020      */
1021     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->Q ) );
1022     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T, &TQ, &TP ) );
1023 #endif /* MBEDTLS_RSA_NO_CRT */
1024 
1025     if( f_rng != NULL )
1026     {
1027         /*
1028          * Unblind
1029          * T = T * Vf mod N
1030          */
1031         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vf ) );
1032         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
1033     }
1034 
1035     /* Verify the result to prevent glitching attacks. */
1036     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &C, &T, &ctx->E,
1037                                           &ctx->N, &ctx->RN ) );
1038     if( mbedtls_mpi_cmp_mpi( &C, &I ) != 0 )
1039     {
1040         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
1041         goto cleanup;
1042     }
1043 
1044     olen = ctx->len;
1045     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
1046 
1047 cleanup:
1048 #if defined(MBEDTLS_THREADING_C)
1049     if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
1050         return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
1051 #endif
1052 
1053     mbedtls_mpi_free( &P1 );
1054     mbedtls_mpi_free( &Q1 );
1055     mbedtls_mpi_free( &R );
1056 
1057     if( f_rng != NULL )
1058     {
1059 #if defined(MBEDTLS_RSA_NO_CRT)
1060         mbedtls_mpi_free( &D_blind );
1061 #else
1062         mbedtls_mpi_free( &DP_blind );
1063         mbedtls_mpi_free( &DQ_blind );
1064 #endif
1065     }
1066 
1067     mbedtls_mpi_free( &T );
1068 
1069 #if !defined(MBEDTLS_RSA_NO_CRT)
1070     mbedtls_mpi_free( &TP ); mbedtls_mpi_free( &TQ );
1071 #endif
1072 
1073     mbedtls_mpi_free( &C );
1074     mbedtls_mpi_free( &I );
1075 
1076     if( ret != 0 && ret >= -0x007f )
1077         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_PRIVATE_FAILED, ret ) );
1078 
1079     return( ret );
1080 }
1081 
1082 #if defined(MBEDTLS_PKCS1_V21)
1083 /**
1084  * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
1085  *
1086  * \param dst       buffer to mask
1087  * \param dlen      length of destination buffer
1088  * \param src       source of the mask generation
1089  * \param slen      length of the source buffer
1090  * \param md_ctx    message digest context to use
1091  */
mgf_mask(unsigned char * dst,size_t dlen,unsigned char * src,size_t slen,mbedtls_md_context_t * md_ctx)1092 static int mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src,
1093                       size_t slen, mbedtls_md_context_t *md_ctx )
1094 {
1095     unsigned char mask[MBEDTLS_MD_MAX_SIZE];
1096     unsigned char counter[4];
1097     unsigned char *p;
1098     unsigned int hlen;
1099     size_t i, use_len;
1100     int ret = 0;
1101 
1102     memset( mask, 0, MBEDTLS_MD_MAX_SIZE );
1103     memset( counter, 0, 4 );
1104 
1105     hlen = mbedtls_md_get_size( md_ctx->md_info );
1106 
1107     /* Generate and apply dbMask */
1108     p = dst;
1109 
1110     while( dlen > 0 )
1111     {
1112         use_len = hlen;
1113         if( dlen < hlen )
1114             use_len = dlen;
1115 
1116         if( ( ret = mbedtls_md_starts( md_ctx ) ) != 0 )
1117             goto exit;
1118         if( ( ret = mbedtls_md_update( md_ctx, src, slen ) ) != 0 )
1119             goto exit;
1120         if( ( ret = mbedtls_md_update( md_ctx, counter, 4 ) ) != 0 )
1121             goto exit;
1122         if( ( ret = mbedtls_md_finish( md_ctx, mask ) ) != 0 )
1123             goto exit;
1124 
1125         for( i = 0; i < use_len; ++i )
1126             *p++ ^= mask[i];
1127 
1128         counter[3]++;
1129 
1130         dlen -= use_len;
1131     }
1132 
1133 exit:
1134     mbedtls_platform_zeroize( mask, sizeof( mask ) );
1135 
1136     return( ret );
1137 }
1138 #endif /* MBEDTLS_PKCS1_V21 */
1139 
1140 #if defined(MBEDTLS_PKCS1_V21)
1141 /*
1142  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
1143  */
mbedtls_rsa_rsaes_oaep_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,const unsigned char * label,size_t label_len,size_t ilen,const unsigned char * input,unsigned char * output)1144 int mbedtls_rsa_rsaes_oaep_encrypt( mbedtls_rsa_context *ctx,
1145                             int (*f_rng)(void *, unsigned char *, size_t),
1146                             void *p_rng,
1147                             int mode,
1148                             const unsigned char *label, size_t label_len,
1149                             size_t ilen,
1150                             const unsigned char *input,
1151                             unsigned char *output )
1152 {
1153     size_t olen;
1154     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1155     unsigned char *p = output;
1156     unsigned int hlen;
1157     const mbedtls_md_info_t *md_info;
1158     mbedtls_md_context_t md_ctx;
1159 
1160     RSA_VALIDATE_RET( ctx != NULL );
1161     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1162                       mode == MBEDTLS_RSA_PUBLIC );
1163     RSA_VALIDATE_RET( output != NULL );
1164     RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1165     RSA_VALIDATE_RET( label_len == 0 || label != NULL );
1166 
1167     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1168         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1169 
1170     if( f_rng == NULL )
1171         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1172 
1173     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1174     if( md_info == NULL )
1175         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1176 
1177     olen = ctx->len;
1178     hlen = mbedtls_md_get_size( md_info );
1179 
1180     /* first comparison checks for overflow */
1181     if( ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2 )
1182         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1183 
1184     memset( output, 0, olen );
1185 
1186     *p++ = 0;
1187 
1188     /* Generate a random octet string seed */
1189     if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 )
1190         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) );
1191 
1192     p += hlen;
1193 
1194     /* Construct DB */
1195     if( ( ret = mbedtls_md( md_info, label, label_len, p ) ) != 0 )
1196         return( ret );
1197     p += hlen;
1198     p += olen - 2 * hlen - 2 - ilen;
1199     *p++ = 1;
1200     if( ilen != 0 )
1201         memcpy( p, input, ilen );
1202 
1203     mbedtls_md_init( &md_ctx );
1204     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1205         goto exit;
1206 
1207     /* maskedDB: Apply dbMask to DB */
1208     if( ( ret = mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
1209                           &md_ctx ) ) != 0 )
1210         goto exit;
1211 
1212     /* maskedSeed: Apply seedMask to seed */
1213     if( ( ret = mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
1214                           &md_ctx ) ) != 0 )
1215         goto exit;
1216 
1217 exit:
1218     mbedtls_md_free( &md_ctx );
1219 
1220     if( ret != 0 )
1221         return( ret );
1222 
1223     return( ( mode == MBEDTLS_RSA_PUBLIC )
1224             ? mbedtls_rsa_public(  ctx, output, output )
1225             : mbedtls_rsa_private( ctx, f_rng, p_rng, output, output ) );
1226 }
1227 #endif /* MBEDTLS_PKCS1_V21 */
1228 
1229 #if defined(MBEDTLS_PKCS1_V15)
1230 /*
1231  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
1232  */
mbedtls_rsa_rsaes_pkcs1_v15_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t ilen,const unsigned char * input,unsigned char * output)1233 int mbedtls_rsa_rsaes_pkcs1_v15_encrypt( mbedtls_rsa_context *ctx,
1234                                  int (*f_rng)(void *, unsigned char *, size_t),
1235                                  void *p_rng,
1236                                  int mode, size_t ilen,
1237                                  const unsigned char *input,
1238                                  unsigned char *output )
1239 {
1240     size_t nb_pad, olen;
1241     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1242     unsigned char *p = output;
1243 
1244     RSA_VALIDATE_RET( ctx != NULL );
1245     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1246                       mode == MBEDTLS_RSA_PUBLIC );
1247     RSA_VALIDATE_RET( output != NULL );
1248     RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1249 
1250     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1251         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1252 
1253     olen = ctx->len;
1254 
1255     /* first comparison checks for overflow */
1256     if( ilen + 11 < ilen || olen < ilen + 11 )
1257         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1258 
1259     nb_pad = olen - 3 - ilen;
1260 
1261     *p++ = 0;
1262     if( mode == MBEDTLS_RSA_PUBLIC )
1263     {
1264         if( f_rng == NULL )
1265             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1266 
1267         *p++ = MBEDTLS_RSA_CRYPT;
1268 
1269         while( nb_pad-- > 0 )
1270         {
1271             int rng_dl = 100;
1272 
1273             do {
1274                 ret = f_rng( p_rng, p, 1 );
1275             } while( *p == 0 && --rng_dl && ret == 0 );
1276 
1277             /* Check if RNG failed to generate data */
1278             if( rng_dl == 0 || ret != 0 )
1279                 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) );
1280 
1281             p++;
1282         }
1283     }
1284     else
1285     {
1286         *p++ = MBEDTLS_RSA_SIGN;
1287 
1288         while( nb_pad-- > 0 )
1289             *p++ = 0xFF;
1290     }
1291 
1292     *p++ = 0;
1293     if( ilen != 0 )
1294         memcpy( p, input, ilen );
1295 
1296     return( ( mode == MBEDTLS_RSA_PUBLIC )
1297             ? mbedtls_rsa_public(  ctx, output, output )
1298             : mbedtls_rsa_private( ctx, f_rng, p_rng, output, output ) );
1299 }
1300 #endif /* MBEDTLS_PKCS1_V15 */
1301 
1302 /*
1303  * Add the message padding, then do an RSA operation
1304  */
mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t ilen,const unsigned char * input,unsigned char * output)1305 int mbedtls_rsa_pkcs1_encrypt( mbedtls_rsa_context *ctx,
1306                        int (*f_rng)(void *, unsigned char *, size_t),
1307                        void *p_rng,
1308                        int mode, size_t ilen,
1309                        const unsigned char *input,
1310                        unsigned char *output )
1311 {
1312     RSA_VALIDATE_RET( ctx != NULL );
1313     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1314                       mode == MBEDTLS_RSA_PUBLIC );
1315     RSA_VALIDATE_RET( output != NULL );
1316     RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1317 
1318     switch( ctx->padding )
1319     {
1320 #if defined(MBEDTLS_PKCS1_V15)
1321         case MBEDTLS_RSA_PKCS_V15:
1322             return mbedtls_rsa_rsaes_pkcs1_v15_encrypt( ctx, f_rng, p_rng, mode, ilen,
1323                                                 input, output );
1324 #endif
1325 
1326 #if defined(MBEDTLS_PKCS1_V21)
1327         case MBEDTLS_RSA_PKCS_V21:
1328             return mbedtls_rsa_rsaes_oaep_encrypt( ctx, f_rng, p_rng, mode, NULL, 0,
1329                                            ilen, input, output );
1330 #endif
1331 
1332         default:
1333             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1334     }
1335 }
1336 
1337 #if defined(MBEDTLS_PKCS1_V21)
1338 /*
1339  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
1340  */
mbedtls_rsa_rsaes_oaep_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,const unsigned char * label,size_t label_len,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1341 int mbedtls_rsa_rsaes_oaep_decrypt( mbedtls_rsa_context *ctx,
1342                             int (*f_rng)(void *, unsigned char *, size_t),
1343                             void *p_rng,
1344                             int mode,
1345                             const unsigned char *label, size_t label_len,
1346                             size_t *olen,
1347                             const unsigned char *input,
1348                             unsigned char *output,
1349                             size_t output_max_len )
1350 {
1351     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1352     size_t ilen, i, pad_len;
1353     unsigned char *p, bad, pad_done;
1354     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1355     unsigned char lhash[MBEDTLS_MD_MAX_SIZE];
1356     unsigned int hlen;
1357     const mbedtls_md_info_t *md_info;
1358     mbedtls_md_context_t md_ctx;
1359 
1360     RSA_VALIDATE_RET( ctx != NULL );
1361     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1362                       mode == MBEDTLS_RSA_PUBLIC );
1363     RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1364     RSA_VALIDATE_RET( label_len == 0 || label != NULL );
1365     RSA_VALIDATE_RET( input != NULL );
1366     RSA_VALIDATE_RET( olen != NULL );
1367 
1368     /*
1369      * Parameters sanity checks
1370      */
1371     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1372         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1373 
1374     ilen = ctx->len;
1375 
1376     if( ilen < 16 || ilen > sizeof( buf ) )
1377         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1378 
1379     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1380     if( md_info == NULL )
1381         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1382 
1383     hlen = mbedtls_md_get_size( md_info );
1384 
1385     // checking for integer underflow
1386     if( 2 * hlen + 2 > ilen )
1387         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1388 
1389     /*
1390      * RSA operation
1391      */
1392     if( ctx->P.n == 0 )
1393         ret = ( mode == MBEDTLS_RSA_PUBLIC )
1394               ? mbedtls_rsa_public(  ctx, input, buf )
1395               : mbedtls_rsa_private( ctx, NULL, NULL, input, buf );
1396     else
1397         ret = ( mode == MBEDTLS_RSA_PUBLIC )
1398               ? mbedtls_rsa_public(  ctx, input, buf )
1399               : mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1400 
1401     if( ret != 0 )
1402         goto cleanup;
1403 
1404     /*
1405      * Unmask data and generate lHash
1406      */
1407     mbedtls_md_init( &md_ctx );
1408     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1409     {
1410         mbedtls_md_free( &md_ctx );
1411         goto cleanup;
1412     }
1413 
1414     /* seed: Apply seedMask to maskedSeed */
1415     if( ( ret = mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
1416                           &md_ctx ) ) != 0 ||
1417     /* DB: Apply dbMask to maskedDB */
1418         ( ret = mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
1419                           &md_ctx ) ) != 0 )
1420     {
1421         mbedtls_md_free( &md_ctx );
1422         goto cleanup;
1423     }
1424 
1425     mbedtls_md_free( &md_ctx );
1426 
1427     /* Generate lHash */
1428     if( ( ret = mbedtls_md( md_info, label, label_len, lhash ) ) != 0 )
1429         goto cleanup;
1430 
1431     /*
1432      * Check contents, in "constant-time"
1433      */
1434     p = buf;
1435     bad = 0;
1436 
1437     bad |= *p++; /* First byte must be 0 */
1438 
1439     p += hlen; /* Skip seed */
1440 
1441     /* Check lHash */
1442     for( i = 0; i < hlen; i++ )
1443         bad |= lhash[i] ^ *p++;
1444 
1445     /* Get zero-padding len, but always read till end of buffer
1446      * (minus one, for the 01 byte) */
1447     pad_len = 0;
1448     pad_done = 0;
1449     for( i = 0; i < ilen - 2 * hlen - 2; i++ )
1450     {
1451         pad_done |= p[i];
1452         pad_len += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
1453     }
1454 
1455     p += pad_len;
1456     bad |= *p++ ^ 0x01;
1457 
1458     /*
1459      * The only information "leaked" is whether the padding was correct or not
1460      * (eg, no data is copied if it was not correct). This meets the
1461      * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
1462      * the different error conditions.
1463      */
1464     if( bad != 0 )
1465     {
1466         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
1467         goto cleanup;
1468     }
1469 
1470     if( ilen - ( p - buf ) > output_max_len )
1471     {
1472         ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
1473         goto cleanup;
1474     }
1475 
1476     *olen = ilen - (p - buf);
1477     if( *olen != 0 )
1478         memcpy( output, p, *olen );
1479     ret = 0;
1480 
1481 cleanup:
1482     mbedtls_platform_zeroize( buf, sizeof( buf ) );
1483     mbedtls_platform_zeroize( lhash, sizeof( lhash ) );
1484 
1485     return( ret );
1486 }
1487 #endif /* MBEDTLS_PKCS1_V21 */
1488 
1489 #if defined(MBEDTLS_PKCS1_V15)
1490 /*
1491  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
1492  */
mbedtls_rsa_rsaes_pkcs1_v15_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1493 int mbedtls_rsa_rsaes_pkcs1_v15_decrypt( mbedtls_rsa_context *ctx,
1494                                  int (*f_rng)(void *, unsigned char *, size_t),
1495                                  void *p_rng,
1496                                  int mode,
1497                                  size_t *olen,
1498                                  const unsigned char *input,
1499                                  unsigned char *output,
1500                                  size_t output_max_len )
1501 {
1502     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1503     size_t ilen;
1504     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1505 
1506     RSA_VALIDATE_RET( ctx != NULL );
1507     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1508                       mode == MBEDTLS_RSA_PUBLIC );
1509     RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1510     RSA_VALIDATE_RET( input != NULL );
1511     RSA_VALIDATE_RET( olen != NULL );
1512 
1513     ilen = ctx->len;
1514 
1515     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1516         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1517 
1518     if( ilen < 16 || ilen > sizeof( buf ) )
1519         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1520 
1521     ret = ( mode == MBEDTLS_RSA_PUBLIC )
1522           ? mbedtls_rsa_public(  ctx, input, buf )
1523           : mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1524 
1525     if( ret != 0 )
1526         goto cleanup;
1527 
1528     ret = mbedtls_ct_rsaes_pkcs1_v15_unpadding( mode, buf, ilen,
1529                                                 output, output_max_len, olen );
1530 
1531 cleanup:
1532     mbedtls_platform_zeroize( buf, sizeof( buf ) );
1533 
1534     return( ret );
1535 }
1536 #endif /* MBEDTLS_PKCS1_V15 */
1537 
1538 /*
1539  * Do an RSA operation, then remove the message padding
1540  */
mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1541 int mbedtls_rsa_pkcs1_decrypt( mbedtls_rsa_context *ctx,
1542                        int (*f_rng)(void *, unsigned char *, size_t),
1543                        void *p_rng,
1544                        int mode, size_t *olen,
1545                        const unsigned char *input,
1546                        unsigned char *output,
1547                        size_t output_max_len)
1548 {
1549     RSA_VALIDATE_RET( ctx != NULL );
1550     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1551                       mode == MBEDTLS_RSA_PUBLIC );
1552     RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1553     RSA_VALIDATE_RET( input != NULL );
1554     RSA_VALIDATE_RET( olen != NULL );
1555 
1556     switch( ctx->padding )
1557     {
1558 #if defined(MBEDTLS_PKCS1_V15)
1559         case MBEDTLS_RSA_PKCS_V15:
1560             return mbedtls_rsa_rsaes_pkcs1_v15_decrypt( ctx, f_rng, p_rng, mode, olen,
1561                                                 input, output, output_max_len );
1562 #endif
1563 
1564 #if defined(MBEDTLS_PKCS1_V21)
1565         case MBEDTLS_RSA_PKCS_V21:
1566             return mbedtls_rsa_rsaes_oaep_decrypt( ctx, f_rng, p_rng, mode, NULL, 0,
1567                                            olen, input, output,
1568                                            output_max_len );
1569 #endif
1570 
1571         default:
1572             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1573     }
1574 }
1575 
1576 #if defined(MBEDTLS_PKCS1_V21)
rsa_rsassa_pss_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,int saltlen,unsigned char * sig)1577 static int rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx,
1578                          int (*f_rng)(void *, unsigned char *, size_t),
1579                          void *p_rng,
1580                          int mode,
1581                          mbedtls_md_type_t md_alg,
1582                          unsigned int hashlen,
1583                          const unsigned char *hash,
1584                          int saltlen,
1585                          unsigned char *sig )
1586 {
1587     size_t olen;
1588     unsigned char *p = sig;
1589     unsigned char *salt = NULL;
1590     size_t slen, min_slen, hlen, offset = 0;
1591     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1592     size_t msb;
1593     const mbedtls_md_info_t *md_info;
1594     mbedtls_md_context_t md_ctx;
1595     RSA_VALIDATE_RET( ctx != NULL );
1596     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1597                       mode == MBEDTLS_RSA_PUBLIC );
1598     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
1599                         hashlen == 0 ) ||
1600                       hash != NULL );
1601     RSA_VALIDATE_RET( sig != NULL );
1602 
1603     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1604         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1605 
1606     if( f_rng == NULL )
1607         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1608 
1609     olen = ctx->len;
1610 
1611     if( md_alg != MBEDTLS_MD_NONE )
1612     {
1613         /* Gather length of hash to sign */
1614         md_info = mbedtls_md_info_from_type( md_alg );
1615         if( md_info == NULL )
1616             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1617 
1618         hashlen = mbedtls_md_get_size( md_info );
1619     }
1620 
1621     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1622     if( md_info == NULL )
1623         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1624 
1625     hlen = mbedtls_md_get_size( md_info );
1626 
1627     if (saltlen == MBEDTLS_RSA_SALT_LEN_ANY)
1628     {
1629        /* Calculate the largest possible salt length, up to the hash size.
1630         * Normally this is the hash length, which is the maximum salt length
1631         * according to FIPS 185-4 §5.5 (e) and common practice. If there is not
1632         * enough room, use the maximum salt length that fits. The constraint is
1633         * that the hash length plus the salt length plus 2 bytes must be at most
1634         * the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017
1635         * (PKCS#1 v2.2) §9.1.1 step 3. */
1636         min_slen = hlen - 2;
1637         if( olen < hlen + min_slen + 2 )
1638             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1639         else if( olen >= hlen + hlen + 2 )
1640             slen = hlen;
1641         else
1642             slen = olen - hlen - 2;
1643     }
1644     else if ( (saltlen < 0) || (saltlen + hlen + 2 > olen) )
1645     {
1646         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1647     }
1648     else
1649     {
1650         slen = (size_t) saltlen;
1651     }
1652 
1653     memset( sig, 0, olen );
1654 
1655     /* Note: EMSA-PSS encoding is over the length of N - 1 bits */
1656     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
1657     p += olen - hlen - slen - 2;
1658     *p++ = 0x01;
1659 
1660     /* Generate salt of length slen in place in the encoded message */
1661     salt = p;
1662     if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
1663         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) );
1664 
1665     p += slen;
1666 
1667     mbedtls_md_init( &md_ctx );
1668     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1669         goto exit;
1670 
1671     /* Generate H = Hash( M' ) */
1672     if( ( ret = mbedtls_md_starts( &md_ctx ) ) != 0 )
1673         goto exit;
1674     if( ( ret = mbedtls_md_update( &md_ctx, p, 8 ) ) != 0 )
1675         goto exit;
1676     if( ( ret = mbedtls_md_update( &md_ctx, hash, hashlen ) ) != 0 )
1677         goto exit;
1678     if( ( ret = mbedtls_md_update( &md_ctx, salt, slen ) ) != 0 )
1679         goto exit;
1680     if( ( ret = mbedtls_md_finish( &md_ctx, p ) ) != 0 )
1681         goto exit;
1682 
1683     /* Compensate for boundary condition when applying mask */
1684     if( msb % 8 == 0 )
1685         offset = 1;
1686 
1687     /* maskedDB: Apply dbMask to DB */
1688     if( ( ret = mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen,
1689                           &md_ctx ) ) != 0 )
1690         goto exit;
1691 
1692     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
1693     sig[0] &= 0xFF >> ( olen * 8 - msb );
1694 
1695     p += hlen;
1696     *p++ = 0xBC;
1697 
1698 exit:
1699     mbedtls_md_free( &md_ctx );
1700 
1701     if( ret != 0 )
1702         return( ret );
1703 
1704     if( ctx->P.n == 0)
1705         return( ( mode == MBEDTLS_RSA_PUBLIC )
1706                 ? mbedtls_rsa_public(  ctx, sig, sig )
1707                 : mbedtls_rsa_private( ctx, NULL, NULL, sig, sig ) );
1708     else
1709         return( ( mode == MBEDTLS_RSA_PUBLIC )
1710                 ? mbedtls_rsa_public(  ctx, sig, sig )
1711                 : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig ) );
1712 }
1713 
1714 /*
1715  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function with
1716  * the option to pass in the salt length.
1717  */
mbedtls_rsa_rsassa_pss_sign_ext(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,int saltlen,unsigned char * sig)1718 int mbedtls_rsa_rsassa_pss_sign_ext( mbedtls_rsa_context *ctx,
1719                          int (*f_rng)(void *, unsigned char *, size_t),
1720                          void *p_rng,
1721                          mbedtls_md_type_t md_alg,
1722                          unsigned int hashlen,
1723                          const unsigned char *hash,
1724                          int saltlen,
1725                          unsigned char *sig )
1726 {
1727     return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, MBEDTLS_RSA_PRIVATE, md_alg,
1728                                 hashlen, hash, saltlen, sig );
1729 }
1730 
1731 
1732 /*
1733  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
1734  */
mbedtls_rsa_rsassa_pss_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)1735 int mbedtls_rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx,
1736                          int (*f_rng)(void *, unsigned char *, size_t),
1737                          void *p_rng,
1738                          int mode,
1739                          mbedtls_md_type_t md_alg,
1740                          unsigned int hashlen,
1741                          const unsigned char *hash,
1742                          unsigned char *sig )
1743 {
1744     return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, mode, md_alg,
1745                                 hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig );
1746 }
1747 #endif /* MBEDTLS_PKCS1_V21 */
1748 
1749 #if defined(MBEDTLS_PKCS1_V15)
1750 /*
1751  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
1752  */
1753 
1754 /* Construct a PKCS v1.5 encoding of a hashed message
1755  *
1756  * This is used both for signature generation and verification.
1757  *
1758  * Parameters:
1759  * - md_alg:  Identifies the hash algorithm used to generate the given hash;
1760  *            MBEDTLS_MD_NONE if raw data is signed.
1761  * - hashlen: Length of hash in case hashlen is MBEDTLS_MD_NONE.
1762  * - hash:    Buffer containing the hashed message or the raw data.
1763  * - dst_len: Length of the encoded message.
1764  * - dst:     Buffer to hold the encoded message.
1765  *
1766  * Assumptions:
1767  * - hash has size hashlen if md_alg == MBEDTLS_MD_NONE.
1768  * - hash has size corresponding to md_alg if md_alg != MBEDTLS_MD_NONE.
1769  * - dst points to a buffer of size at least dst_len.
1770  *
1771  */
rsa_rsassa_pkcs1_v15_encode(mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,size_t dst_len,unsigned char * dst)1772 static int rsa_rsassa_pkcs1_v15_encode( mbedtls_md_type_t md_alg,
1773                                         unsigned int hashlen,
1774                                         const unsigned char *hash,
1775                                         size_t dst_len,
1776                                         unsigned char *dst )
1777 {
1778     size_t oid_size  = 0;
1779     size_t nb_pad    = dst_len;
1780     unsigned char *p = dst;
1781     const char *oid  = NULL;
1782 
1783     /* Are we signing hashed or raw data? */
1784     if( md_alg != MBEDTLS_MD_NONE )
1785     {
1786         const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type( md_alg );
1787         if( md_info == NULL )
1788             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1789 
1790         if( mbedtls_oid_get_oid_by_md( md_alg, &oid, &oid_size ) != 0 )
1791             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1792 
1793         hashlen = mbedtls_md_get_size( md_info );
1794 
1795         /* Double-check that 8 + hashlen + oid_size can be used as a
1796          * 1-byte ASN.1 length encoding and that there's no overflow. */
1797         if( 8 + hashlen + oid_size  >= 0x80         ||
1798             10 + hashlen            <  hashlen      ||
1799             10 + hashlen + oid_size <  10 + hashlen )
1800             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1801 
1802         /*
1803          * Static bounds check:
1804          * - Need 10 bytes for five tag-length pairs.
1805          *   (Insist on 1-byte length encodings to protect against variants of
1806          *    Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification)
1807          * - Need hashlen bytes for hash
1808          * - Need oid_size bytes for hash alg OID.
1809          */
1810         if( nb_pad < 10 + hashlen + oid_size )
1811             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1812         nb_pad -= 10 + hashlen + oid_size;
1813     }
1814     else
1815     {
1816         if( nb_pad < hashlen )
1817             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1818 
1819         nb_pad -= hashlen;
1820     }
1821 
1822     /* Need space for signature header and padding delimiter (3 bytes),
1823      * and 8 bytes for the minimal padding */
1824     if( nb_pad < 3 + 8 )
1825         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1826     nb_pad -= 3;
1827 
1828     /* Now nb_pad is the amount of memory to be filled
1829      * with padding, and at least 8 bytes long. */
1830 
1831     /* Write signature header and padding */
1832     *p++ = 0;
1833     *p++ = MBEDTLS_RSA_SIGN;
1834     memset( p, 0xFF, nb_pad );
1835     p += nb_pad;
1836     *p++ = 0;
1837 
1838     /* Are we signing raw data? */
1839     if( md_alg == MBEDTLS_MD_NONE )
1840     {
1841         memcpy( p, hash, hashlen );
1842         return( 0 );
1843     }
1844 
1845     /* Signing hashed data, add corresponding ASN.1 structure
1846      *
1847      * DigestInfo ::= SEQUENCE {
1848      *   digestAlgorithm DigestAlgorithmIdentifier,
1849      *   digest Digest }
1850      * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
1851      * Digest ::= OCTET STRING
1852      *
1853      * Schematic:
1854      * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID  + LEN [ OID  ]
1855      *                                 TAG-NULL + LEN [ NULL ] ]
1856      *                 TAG-OCTET + LEN [ HASH ] ]
1857      */
1858     *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
1859     *p++ = (unsigned char)( 0x08 + oid_size + hashlen );
1860     *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
1861     *p++ = (unsigned char)( 0x04 + oid_size );
1862     *p++ = MBEDTLS_ASN1_OID;
1863     *p++ = (unsigned char) oid_size;
1864     memcpy( p, oid, oid_size );
1865     p += oid_size;
1866     *p++ = MBEDTLS_ASN1_NULL;
1867     *p++ = 0x00;
1868     *p++ = MBEDTLS_ASN1_OCTET_STRING;
1869     *p++ = (unsigned char) hashlen;
1870     memcpy( p, hash, hashlen );
1871     p += hashlen;
1872 
1873     /* Just a sanity-check, should be automatic
1874      * after the initial bounds check. */
1875     if( p != dst + dst_len )
1876     {
1877         mbedtls_platform_zeroize( dst, dst_len );
1878         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1879     }
1880 
1881     return( 0 );
1882 }
1883 
1884 /*
1885  * Do an RSA operation to sign the message digest
1886  */
mbedtls_rsa_rsassa_pkcs1_v15_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)1887 int mbedtls_rsa_rsassa_pkcs1_v15_sign( mbedtls_rsa_context *ctx,
1888                                int (*f_rng)(void *, unsigned char *, size_t),
1889                                void *p_rng,
1890                                int mode,
1891                                mbedtls_md_type_t md_alg,
1892                                unsigned int hashlen,
1893                                const unsigned char *hash,
1894                                unsigned char *sig )
1895 {
1896     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1897     unsigned char *sig_try = NULL, *verif = NULL;
1898 
1899     RSA_VALIDATE_RET( ctx != NULL );
1900     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1901                       mode == MBEDTLS_RSA_PUBLIC );
1902     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
1903                         hashlen == 0 ) ||
1904                       hash != NULL );
1905     RSA_VALIDATE_RET( sig != NULL );
1906 
1907     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1908         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1909 
1910     /*
1911      * Prepare PKCS1-v1.5 encoding (padding and hash identifier)
1912      */
1913 
1914     if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash,
1915                                              ctx->len, sig ) ) != 0 )
1916         return( ret );
1917 
1918     /*
1919      * Call respective RSA primitive
1920      */
1921 
1922     if( mode == MBEDTLS_RSA_PUBLIC )
1923     {
1924         /* Skip verification on a public key operation */
1925         return( mbedtls_rsa_public( ctx, sig, sig ) );
1926     }
1927 
1928     /* Private key operation
1929      *
1930      * In order to prevent Lenstra's attack, make the signature in a
1931      * temporary buffer and check it before returning it.
1932      */
1933 
1934     sig_try = mbedtls_calloc( 1, ctx->len );
1935     if( sig_try == NULL )
1936         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
1937 
1938     verif = mbedtls_calloc( 1, ctx->len );
1939     if( verif == NULL )
1940     {
1941         mbedtls_free( sig_try );
1942         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
1943     }
1944 
1945     MBEDTLS_MPI_CHK( mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig_try ) );
1946     MBEDTLS_MPI_CHK( mbedtls_rsa_public( ctx, sig_try, verif ) );
1947 
1948     if( mbedtls_ct_memcmp( verif, sig, ctx->len ) != 0 )
1949     {
1950         ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
1951         goto cleanup;
1952     }
1953 
1954     memcpy( sig, sig_try, ctx->len );
1955 
1956 cleanup:
1957     mbedtls_platform_zeroize( sig_try, ctx->len );
1958     mbedtls_platform_zeroize( verif, ctx->len );
1959     mbedtls_free( sig_try );
1960     mbedtls_free( verif );
1961 
1962     if( ret != 0 )
1963         memset( sig, '!', ctx->len );
1964     return( ret );
1965 }
1966 #endif /* MBEDTLS_PKCS1_V15 */
1967 
1968 /*
1969  * Do an RSA operation to sign the message digest
1970  */
mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)1971 int mbedtls_rsa_pkcs1_sign( mbedtls_rsa_context *ctx,
1972                     int (*f_rng)(void *, unsigned char *, size_t),
1973                     void *p_rng,
1974                     int mode,
1975                     mbedtls_md_type_t md_alg,
1976                     unsigned int hashlen,
1977                     const unsigned char *hash,
1978                     unsigned char *sig )
1979 {
1980     RSA_VALIDATE_RET( ctx != NULL );
1981     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1982                       mode == MBEDTLS_RSA_PUBLIC );
1983     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
1984                         hashlen == 0 ) ||
1985                       hash != NULL );
1986     RSA_VALIDATE_RET( sig != NULL );
1987 
1988     switch( ctx->padding )
1989     {
1990 #if defined(MBEDTLS_PKCS1_V15)
1991         case MBEDTLS_RSA_PKCS_V15:
1992             return mbedtls_rsa_rsassa_pkcs1_v15_sign( ctx, f_rng, p_rng, mode, md_alg,
1993                                               hashlen, hash, sig );
1994 #endif
1995 
1996 #if defined(MBEDTLS_PKCS1_V21)
1997         case MBEDTLS_RSA_PKCS_V21:
1998             return mbedtls_rsa_rsassa_pss_sign( ctx, f_rng, p_rng, mode, md_alg,
1999                                         hashlen, hash, sig );
2000 #endif
2001 
2002         default:
2003             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2004     }
2005 }
2006 
2007 #if defined(MBEDTLS_PKCS1_V21)
2008 /*
2009  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2010  */
mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,mbedtls_md_type_t mgf1_hash_id,int expected_salt_len,const unsigned char * sig)2011 int mbedtls_rsa_rsassa_pss_verify_ext( mbedtls_rsa_context *ctx,
2012                                int (*f_rng)(void *, unsigned char *, size_t),
2013                                void *p_rng,
2014                                int mode,
2015                                mbedtls_md_type_t md_alg,
2016                                unsigned int hashlen,
2017                                const unsigned char *hash,
2018                                mbedtls_md_type_t mgf1_hash_id,
2019                                int expected_salt_len,
2020                                const unsigned char *sig )
2021 {
2022     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2023     size_t siglen;
2024     unsigned char *p;
2025     unsigned char *hash_start;
2026     unsigned char result[MBEDTLS_MD_MAX_SIZE];
2027     unsigned char zeros[8];
2028     unsigned int hlen;
2029     size_t observed_salt_len, msb;
2030     const mbedtls_md_info_t *md_info;
2031     mbedtls_md_context_t md_ctx;
2032     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
2033 
2034     RSA_VALIDATE_RET( ctx != NULL );
2035     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2036                       mode == MBEDTLS_RSA_PUBLIC );
2037     RSA_VALIDATE_RET( sig != NULL );
2038     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2039                         hashlen == 0 ) ||
2040                       hash != NULL );
2041 
2042     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
2043         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2044 
2045     siglen = ctx->len;
2046 
2047     if( siglen < 16 || siglen > sizeof( buf ) )
2048         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2049 
2050     ret = ( mode == MBEDTLS_RSA_PUBLIC )
2051           ? mbedtls_rsa_public(  ctx, sig, buf )
2052           : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, buf );
2053 
2054     if( ret != 0 )
2055         return( ret );
2056 
2057     p = buf;
2058 
2059     if( buf[siglen - 1] != 0xBC )
2060         return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2061 
2062     if( md_alg != MBEDTLS_MD_NONE )
2063     {
2064         /* Gather length of hash to sign */
2065         md_info = mbedtls_md_info_from_type( md_alg );
2066         if( md_info == NULL )
2067             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2068 
2069         hashlen = mbedtls_md_get_size( md_info );
2070     }
2071 
2072     md_info = mbedtls_md_info_from_type( mgf1_hash_id );
2073     if( md_info == NULL )
2074         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2075 
2076     hlen = mbedtls_md_get_size( md_info );
2077 
2078     memset( zeros, 0, 8 );
2079 
2080     /*
2081      * Note: EMSA-PSS verification is over the length of N - 1 bits
2082      */
2083     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
2084 
2085     if( buf[0] >> ( 8 - siglen * 8 + msb ) )
2086         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2087 
2088     /* Compensate for boundary condition when applying mask */
2089     if( msb % 8 == 0 )
2090     {
2091         p++;
2092         siglen -= 1;
2093     }
2094 
2095     if( siglen < hlen + 2 )
2096         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2097     hash_start = p + siglen - hlen - 1;
2098 
2099     mbedtls_md_init( &md_ctx );
2100     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
2101         goto exit;
2102 
2103     ret = mgf_mask( p, siglen - hlen - 1, hash_start, hlen, &md_ctx );
2104     if( ret != 0 )
2105         goto exit;
2106 
2107     buf[0] &= 0xFF >> ( siglen * 8 - msb );
2108 
2109     while( p < hash_start - 1 && *p == 0 )
2110         p++;
2111 
2112     if( *p++ != 0x01 )
2113     {
2114         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2115         goto exit;
2116     }
2117 
2118     observed_salt_len = hash_start - p;
2119 
2120     if( expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY &&
2121         observed_salt_len != (size_t) expected_salt_len )
2122     {
2123         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2124         goto exit;
2125     }
2126 
2127     /*
2128      * Generate H = Hash( M' )
2129      */
2130     ret = mbedtls_md_starts( &md_ctx );
2131     if ( ret != 0 )
2132         goto exit;
2133     ret = mbedtls_md_update( &md_ctx, zeros, 8 );
2134     if ( ret != 0 )
2135         goto exit;
2136     ret = mbedtls_md_update( &md_ctx, hash, hashlen );
2137     if ( ret != 0 )
2138         goto exit;
2139     ret = mbedtls_md_update( &md_ctx, p, observed_salt_len );
2140     if ( ret != 0 )
2141         goto exit;
2142     ret = mbedtls_md_finish( &md_ctx, result );
2143     if ( ret != 0 )
2144         goto exit;
2145 
2146     if( FTMN_CALLEE_DONE_MEMCMP( memcmp, hash_start, result, hlen ) != 0 )
2147     {
2148         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2149         goto exit;
2150     }
2151 
2152 exit:
2153     mbedtls_md_free( &md_ctx );
2154 
2155     return( ret );
2156 }
2157 
2158 /*
2159  * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2160  */
mbedtls_rsa_rsassa_pss_verify(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2161 int mbedtls_rsa_rsassa_pss_verify( mbedtls_rsa_context *ctx,
2162                            int (*f_rng)(void *, unsigned char *, size_t),
2163                            void *p_rng,
2164                            int mode,
2165                            mbedtls_md_type_t md_alg,
2166                            unsigned int hashlen,
2167                            const unsigned char *hash,
2168                            const unsigned char *sig )
2169 {
2170     mbedtls_md_type_t mgf1_hash_id;
2171     RSA_VALIDATE_RET( ctx != NULL );
2172     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2173                       mode == MBEDTLS_RSA_PUBLIC );
2174     RSA_VALIDATE_RET( sig != NULL );
2175     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2176                         hashlen == 0 ) ||
2177                       hash != NULL );
2178 
2179     mgf1_hash_id = ( ctx->hash_id != MBEDTLS_MD_NONE )
2180                              ? (mbedtls_md_type_t) ctx->hash_id
2181                              : md_alg;
2182 
2183     return( mbedtls_rsa_rsassa_pss_verify_ext( ctx, f_rng, p_rng, mode,
2184                                        md_alg, hashlen, hash,
2185                                        mgf1_hash_id, MBEDTLS_RSA_SALT_LEN_ANY,
2186                                        sig ) );
2187 
2188 }
2189 #endif /* MBEDTLS_PKCS1_V21 */
2190 
2191 #if defined(MBEDTLS_PKCS1_V15)
2192 /*
2193  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
2194  */
mbedtls_rsa_rsassa_pkcs1_v15_verify(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2195 int mbedtls_rsa_rsassa_pkcs1_v15_verify( mbedtls_rsa_context *ctx,
2196                                  int (*f_rng)(void *, unsigned char *, size_t),
2197                                  void *p_rng,
2198                                  int mode,
2199                                  mbedtls_md_type_t md_alg,
2200                                  unsigned int hashlen,
2201                                  const unsigned char *hash,
2202                                  const unsigned char *sig )
2203 {
2204     int ret = 0;
2205     size_t sig_len;
2206     unsigned char *encoded = NULL, *encoded_expected = NULL;
2207 
2208     RSA_VALIDATE_RET( ctx != NULL );
2209     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2210                       mode == MBEDTLS_RSA_PUBLIC );
2211     RSA_VALIDATE_RET( sig != NULL );
2212     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2213                         hashlen == 0 ) ||
2214                       hash != NULL );
2215 
2216     sig_len = ctx->len;
2217 
2218     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
2219         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2220 
2221     /*
2222      * Prepare expected PKCS1 v1.5 encoding of hash.
2223      */
2224 
2225     if( ( encoded          = mbedtls_calloc( 1, sig_len ) ) == NULL ||
2226         ( encoded_expected = mbedtls_calloc( 1, sig_len ) ) == NULL )
2227     {
2228         ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
2229         goto cleanup;
2230     }
2231 
2232     if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash, sig_len,
2233                                              encoded_expected ) ) != 0 )
2234         goto cleanup;
2235 
2236     /*
2237      * Apply RSA primitive to get what should be PKCS1 encoded hash.
2238      */
2239 
2240     ret = ( mode == MBEDTLS_RSA_PUBLIC )
2241           ? mbedtls_rsa_public(  ctx, sig, encoded )
2242           : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, encoded );
2243     if( ret != 0 )
2244         goto cleanup;
2245 
2246     /*
2247      * Compare
2248      */
2249 
2250     if( ( ret = FTMN_CALLEE_DONE_MEMCMP(mbedtls_ct_memcmp, encoded,
2251                                         encoded_expected, sig_len ) ) != 0 )
2252     {
2253         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2254         goto cleanup;
2255     }
2256 
2257 cleanup:
2258 
2259     if( encoded != NULL )
2260     {
2261         mbedtls_platform_zeroize( encoded, sig_len );
2262         mbedtls_free( encoded );
2263     }
2264 
2265     if( encoded_expected != NULL )
2266     {
2267         mbedtls_platform_zeroize( encoded_expected, sig_len );
2268         mbedtls_free( encoded_expected );
2269     }
2270 
2271     return( ret );
2272 }
2273 #endif /* MBEDTLS_PKCS1_V15 */
2274 
2275 /*
2276  * Do an RSA operation and check the message digest
2277  */
mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2278 int mbedtls_rsa_pkcs1_verify( mbedtls_rsa_context *ctx,
2279                       int (*f_rng)(void *, unsigned char *, size_t),
2280                       void *p_rng,
2281                       int mode,
2282                       mbedtls_md_type_t md_alg,
2283                       unsigned int hashlen,
2284                       const unsigned char *hash,
2285                       const unsigned char *sig )
2286 {
2287     RSA_VALIDATE_RET( ctx != NULL );
2288     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2289                       mode == MBEDTLS_RSA_PUBLIC );
2290     RSA_VALIDATE_RET( sig != NULL );
2291     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2292                         hashlen == 0 ) ||
2293                       hash != NULL );
2294 
2295     switch( ctx->padding )
2296     {
2297 #if defined(MBEDTLS_PKCS1_V15)
2298         case MBEDTLS_RSA_PKCS_V15:
2299             return mbedtls_rsa_rsassa_pkcs1_v15_verify( ctx, f_rng, p_rng, mode, md_alg,
2300                                                 hashlen, hash, sig );
2301 #endif
2302 
2303 #if defined(MBEDTLS_PKCS1_V21)
2304         case MBEDTLS_RSA_PKCS_V21:
2305             return mbedtls_rsa_rsassa_pss_verify( ctx, f_rng, p_rng, mode, md_alg,
2306                                           hashlen, hash, sig );
2307 #endif
2308 
2309         default:
2310             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2311     }
2312 }
2313 
2314 /*
2315  * Copy the components of an RSA key
2316  */
mbedtls_rsa_copy(mbedtls_rsa_context * dst,const mbedtls_rsa_context * src)2317 int mbedtls_rsa_copy( mbedtls_rsa_context *dst, const mbedtls_rsa_context *src )
2318 {
2319     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2320     RSA_VALIDATE_RET( dst != NULL );
2321     RSA_VALIDATE_RET( src != NULL );
2322 
2323     dst->len = src->len;
2324 
2325     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->N, &src->N ) );
2326     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->E, &src->E ) );
2327 
2328     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->D, &src->D ) );
2329     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->P, &src->P ) );
2330     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Q, &src->Q ) );
2331 
2332 #if !defined(MBEDTLS_RSA_NO_CRT)
2333     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DP, &src->DP ) );
2334     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DQ, &src->DQ ) );
2335     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->QP, &src->QP ) );
2336     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RP, &src->RP ) );
2337     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RQ, &src->RQ ) );
2338 #endif
2339 
2340     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RN, &src->RN ) );
2341 
2342     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vi, &src->Vi ) );
2343     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vf, &src->Vf ) );
2344 
2345     dst->padding = src->padding;
2346     dst->hash_id = src->hash_id;
2347 
2348 cleanup:
2349     if( ret != 0 )
2350         mbedtls_rsa_free( dst );
2351 
2352     return( ret );
2353 }
2354 
2355 /*
2356  * Free the components of an RSA key
2357  */
mbedtls_rsa_free(mbedtls_rsa_context * ctx)2358 void mbedtls_rsa_free( mbedtls_rsa_context *ctx )
2359 {
2360     if( ctx == NULL )
2361         return;
2362 
2363     mbedtls_mpi_free( &ctx->Vi );
2364     mbedtls_mpi_free( &ctx->Vf );
2365     mbedtls_mpi_free( &ctx->RN );
2366     mbedtls_mpi_free( &ctx->D  );
2367     mbedtls_mpi_free( &ctx->Q  );
2368     mbedtls_mpi_free( &ctx->P  );
2369     mbedtls_mpi_free( &ctx->E  );
2370     mbedtls_mpi_free( &ctx->N  );
2371 
2372 #if !defined(MBEDTLS_RSA_NO_CRT)
2373     mbedtls_mpi_free( &ctx->RQ );
2374     mbedtls_mpi_free( &ctx->RP );
2375     mbedtls_mpi_free( &ctx->QP );
2376     mbedtls_mpi_free( &ctx->DQ );
2377     mbedtls_mpi_free( &ctx->DP );
2378 #endif /* MBEDTLS_RSA_NO_CRT */
2379 
2380 #if defined(MBEDTLS_THREADING_C)
2381     /* Free the mutex, but only if it hasn't been freed already. */
2382     if( ctx->ver != 0 )
2383     {
2384         mbedtls_mutex_free( &ctx->mutex );
2385         ctx->ver = 0;
2386     }
2387 #endif
2388 }
2389 
2390 #endif /* !MBEDTLS_RSA_ALT */
2391 
2392 #if defined(MBEDTLS_SELF_TEST)
2393 
2394 #include "mbedtls/sha1.h"
2395 
2396 /*
2397  * Example RSA-1024 keypair, for test purposes
2398  */
2399 #define KEY_LEN 128
2400 
2401 #define RSA_N   "9292758453063D803DD603D5E777D788" \
2402                 "8ED1D5BF35786190FA2F23EBC0848AEA" \
2403                 "DDA92CA6C3D80B32C4D109BE0F36D6AE" \
2404                 "7130B9CED7ACDF54CFC7555AC14EEBAB" \
2405                 "93A89813FBF3C4F8066D2D800F7C38A8" \
2406                 "1AE31942917403FF4946B0A83D3D3E05" \
2407                 "EE57C6F5F5606FB5D4BC6CD34EE0801A" \
2408                 "5E94BB77B07507233A0BC7BAC8F90F79"
2409 
2410 #define RSA_E   "10001"
2411 
2412 #define RSA_D   "24BF6185468786FDD303083D25E64EFC" \
2413                 "66CA472BC44D253102F8B4A9D3BFA750" \
2414                 "91386C0077937FE33FA3252D28855837" \
2415                 "AE1B484A8A9A45F7EE8C0C634F99E8CD" \
2416                 "DF79C5CE07EE72C7F123142198164234" \
2417                 "CABB724CF78B8173B9F880FC86322407" \
2418                 "AF1FEDFDDE2BEB674CA15F3E81A1521E" \
2419                 "071513A1E85B5DFA031F21ECAE91A34D"
2420 
2421 #define RSA_P   "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
2422                 "2C01CAD19EA484A87EA4377637E75500" \
2423                 "FCB2005C5C7DD6EC4AC023CDA285D796" \
2424                 "C3D9E75E1EFC42488BB4F1D13AC30A57"
2425 
2426 #define RSA_Q   "C000DF51A7C77AE8D7C7370C1FF55B69" \
2427                 "E211C2B9E5DB1ED0BF61D0D9899620F4" \
2428                 "910E4168387E3C30AA1E00C339A79508" \
2429                 "8452DD96A9A5EA5D9DCA68DA636032AF"
2430 
2431 #define PT_LEN  24
2432 #define RSA_PT  "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
2433                 "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
2434 
2435 #if defined(MBEDTLS_PKCS1_V15)
myrand(void * rng_state,unsigned char * output,size_t len)2436 static int myrand( void *rng_state, unsigned char *output, size_t len )
2437 {
2438 #if !defined(__OpenBSD__) && !defined(__NetBSD__)
2439     size_t i;
2440 
2441     if( rng_state != NULL )
2442         rng_state  = NULL;
2443 
2444     for( i = 0; i < len; ++i )
2445         output[i] = rand();
2446 #else
2447     if( rng_state != NULL )
2448         rng_state = NULL;
2449 
2450     arc4random_buf( output, len );
2451 #endif /* !OpenBSD && !NetBSD */
2452 
2453     return( 0 );
2454 }
2455 #endif /* MBEDTLS_PKCS1_V15 */
2456 
2457 /*
2458  * Checkup routine
2459  */
mbedtls_rsa_self_test(int verbose)2460 int mbedtls_rsa_self_test( int verbose )
2461 {
2462     int ret = 0;
2463 #if defined(MBEDTLS_PKCS1_V15)
2464     size_t len;
2465     mbedtls_rsa_context rsa;
2466     unsigned char rsa_plaintext[PT_LEN];
2467     unsigned char rsa_decrypted[PT_LEN];
2468     unsigned char rsa_ciphertext[KEY_LEN];
2469 #if defined(MBEDTLS_SHA1_C)
2470     unsigned char sha1sum[20];
2471 #endif
2472 
2473     mbedtls_mpi K;
2474 
2475     mbedtls_mpi_init( &K );
2476     mbedtls_rsa_init( &rsa, MBEDTLS_RSA_PKCS_V15, 0 );
2477 
2478     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_N  ) );
2479     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, &K, NULL, NULL, NULL, NULL ) );
2480     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_P  ) );
2481     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, &K, NULL, NULL, NULL ) );
2482     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_Q  ) );
2483     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, &K, NULL, NULL ) );
2484     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_D  ) );
2485     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, &K, NULL ) );
2486     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_E  ) );
2487     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, NULL, &K ) );
2488 
2489     MBEDTLS_MPI_CHK( mbedtls_rsa_complete( &rsa ) );
2490 
2491     if( verbose != 0 )
2492         mbedtls_printf( "  RSA key validation: " );
2493 
2494     if( mbedtls_rsa_check_pubkey(  &rsa ) != 0 ||
2495         mbedtls_rsa_check_privkey( &rsa ) != 0 )
2496     {
2497         if( verbose != 0 )
2498             mbedtls_printf( "failed\n" );
2499 
2500         ret = 1;
2501         goto cleanup;
2502     }
2503 
2504     if( verbose != 0 )
2505         mbedtls_printf( "passed\n  PKCS#1 encryption : " );
2506 
2507     memcpy( rsa_plaintext, RSA_PT, PT_LEN );
2508 
2509     if( mbedtls_rsa_pkcs1_encrypt( &rsa, myrand, NULL, MBEDTLS_RSA_PUBLIC,
2510                                    PT_LEN, rsa_plaintext,
2511                                    rsa_ciphertext ) != 0 )
2512     {
2513         if( verbose != 0 )
2514             mbedtls_printf( "failed\n" );
2515 
2516         ret = 1;
2517         goto cleanup;
2518     }
2519 
2520     if( verbose != 0 )
2521         mbedtls_printf( "passed\n  PKCS#1 decryption : " );
2522 
2523     if( mbedtls_rsa_pkcs1_decrypt( &rsa, myrand, NULL, MBEDTLS_RSA_PRIVATE,
2524                                    &len, rsa_ciphertext, rsa_decrypted,
2525                                    sizeof(rsa_decrypted) ) != 0 )
2526     {
2527         if( verbose != 0 )
2528             mbedtls_printf( "failed\n" );
2529 
2530         ret = 1;
2531         goto cleanup;
2532     }
2533 
2534     if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 )
2535     {
2536         if( verbose != 0 )
2537             mbedtls_printf( "failed\n" );
2538 
2539         ret = 1;
2540         goto cleanup;
2541     }
2542 
2543     if( verbose != 0 )
2544         mbedtls_printf( "passed\n" );
2545 
2546 #if defined(MBEDTLS_SHA1_C)
2547     if( verbose != 0 )
2548         mbedtls_printf( "  PKCS#1 data sign  : " );
2549 
2550     if( mbedtls_sha1_ret( rsa_plaintext, PT_LEN, sha1sum ) != 0 )
2551     {
2552         if( verbose != 0 )
2553             mbedtls_printf( "failed\n" );
2554 
2555         return( 1 );
2556     }
2557 
2558     if( mbedtls_rsa_pkcs1_sign( &rsa, myrand, NULL,
2559                                 MBEDTLS_RSA_PRIVATE, MBEDTLS_MD_SHA1, 0,
2560                                 sha1sum, rsa_ciphertext ) != 0 )
2561     {
2562         if( verbose != 0 )
2563             mbedtls_printf( "failed\n" );
2564 
2565         ret = 1;
2566         goto cleanup;
2567     }
2568 
2569     if( verbose != 0 )
2570         mbedtls_printf( "passed\n  PKCS#1 sig. verify: " );
2571 
2572     if( mbedtls_rsa_pkcs1_verify( &rsa, NULL, NULL,
2573                                   MBEDTLS_RSA_PUBLIC, MBEDTLS_MD_SHA1, 0,
2574                                   sha1sum, rsa_ciphertext ) != 0 )
2575     {
2576         if( verbose != 0 )
2577             mbedtls_printf( "failed\n" );
2578 
2579         ret = 1;
2580         goto cleanup;
2581     }
2582 
2583     if( verbose != 0 )
2584         mbedtls_printf( "passed\n" );
2585 #endif /* MBEDTLS_SHA1_C */
2586 
2587     if( verbose != 0 )
2588         mbedtls_printf( "\n" );
2589 
2590 cleanup:
2591     mbedtls_mpi_free( &K );
2592     mbedtls_rsa_free( &rsa );
2593 #else /* MBEDTLS_PKCS1_V15 */
2594     ((void) verbose);
2595 #endif /* MBEDTLS_PKCS1_V15 */
2596     return( ret );
2597 }
2598 
2599 #endif /* MBEDTLS_SELF_TEST */
2600 
2601 #endif /* MBEDTLS_RSA_C */
2602