1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Machine check handler.
4 *
5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6 * Rest from unknown author(s).
7 * 2004 Andi Kleen. Rewrote most of it.
8 * Copyright 2008 Intel Corporation
9 * Author: Andi Kleen
10 */
11
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55
56 #include "internal.h"
57
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63
64 #define SPINUNIT 100 /* 100ns */
65
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69
70 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
71
72 #define ATTR_LEN 16
73 /* One object for each MCE bank, shared by all CPUs */
74 struct mce_bank_dev {
75 struct device_attribute attr; /* device attribute */
76 char attrname[ATTR_LEN]; /* attribute name */
77 u8 bank; /* bank number */
78 };
79 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
80
81 struct mce_vendor_flags mce_flags __read_mostly;
82
83 struct mca_config mca_cfg __read_mostly = {
84 .bootlog = -1,
85 .monarch_timeout = -1
86 };
87
88 static DEFINE_PER_CPU(struct mce, mces_seen);
89 static unsigned long mce_need_notify;
90
91 /*
92 * MCA banks polled by the period polling timer for corrected events.
93 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
94 */
95 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
96 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
97 };
98
99 /*
100 * MCA banks controlled through firmware first for corrected errors.
101 * This is a global list of banks for which we won't enable CMCI and we
102 * won't poll. Firmware controls these banks and is responsible for
103 * reporting corrected errors through GHES. Uncorrected/recoverable
104 * errors are still notified through a machine check.
105 */
106 mce_banks_t mce_banks_ce_disabled;
107
108 static struct work_struct mce_work;
109 static struct irq_work mce_irq_work;
110
111 /*
112 * CPU/chipset specific EDAC code can register a notifier call here to print
113 * MCE errors in a human-readable form.
114 */
115 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
116
117 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)118 void mce_setup(struct mce *m)
119 {
120 memset(m, 0, sizeof(struct mce));
121 m->cpu = m->extcpu = smp_processor_id();
122 /* need the internal __ version to avoid deadlocks */
123 m->time = __ktime_get_real_seconds();
124 m->cpuvendor = boot_cpu_data.x86_vendor;
125 m->cpuid = cpuid_eax(1);
126 m->socketid = cpu_data(m->extcpu).phys_proc_id;
127 m->apicid = cpu_data(m->extcpu).initial_apicid;
128 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
129 m->ppin = cpu_data(m->extcpu).ppin;
130 m->microcode = boot_cpu_data.microcode;
131 }
132
133 DEFINE_PER_CPU(struct mce, injectm);
134 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
135
mce_log(struct mce * m)136 void mce_log(struct mce *m)
137 {
138 if (!mce_gen_pool_add(m))
139 irq_work_queue(&mce_irq_work);
140 }
141 EXPORT_SYMBOL_GPL(mce_log);
142
mce_register_decode_chain(struct notifier_block * nb)143 void mce_register_decode_chain(struct notifier_block *nb)
144 {
145 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
146 nb->priority > MCE_PRIO_HIGHEST))
147 return;
148
149 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
150 }
151 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
152
mce_unregister_decode_chain(struct notifier_block * nb)153 void mce_unregister_decode_chain(struct notifier_block *nb)
154 {
155 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
156 }
157 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
158
__print_mce(struct mce * m)159 static void __print_mce(struct mce *m)
160 {
161 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
162 m->extcpu,
163 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
164 m->mcgstatus, m->bank, m->status);
165
166 if (m->ip) {
167 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
168 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
169 m->cs, m->ip);
170
171 if (m->cs == __KERNEL_CS)
172 pr_cont("{%pS}", (void *)(unsigned long)m->ip);
173 pr_cont("\n");
174 }
175
176 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
177 if (m->addr)
178 pr_cont("ADDR %llx ", m->addr);
179 if (m->misc)
180 pr_cont("MISC %llx ", m->misc);
181 if (m->ppin)
182 pr_cont("PPIN %llx ", m->ppin);
183
184 if (mce_flags.smca) {
185 if (m->synd)
186 pr_cont("SYND %llx ", m->synd);
187 if (m->ipid)
188 pr_cont("IPID %llx ", m->ipid);
189 }
190
191 pr_cont("\n");
192
193 /*
194 * Note this output is parsed by external tools and old fields
195 * should not be changed.
196 */
197 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
198 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
199 m->microcode);
200 }
201
print_mce(struct mce * m)202 static void print_mce(struct mce *m)
203 {
204 __print_mce(m);
205
206 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
207 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
208 }
209
210 #define PANIC_TIMEOUT 5 /* 5 seconds */
211
212 static atomic_t mce_panicked;
213
214 static int fake_panic;
215 static atomic_t mce_fake_panicked;
216
217 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)218 static void wait_for_panic(void)
219 {
220 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
221
222 preempt_disable();
223 local_irq_enable();
224 while (timeout-- > 0)
225 udelay(1);
226 if (panic_timeout == 0)
227 panic_timeout = mca_cfg.panic_timeout;
228 panic("Panicing machine check CPU died");
229 }
230
mce_panic(const char * msg,struct mce * final,char * exp)231 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
232 {
233 struct llist_node *pending;
234 struct mce_evt_llist *l;
235 int apei_err = 0;
236
237 /*
238 * Allow instrumentation around external facilities usage. Not that it
239 * matters a whole lot since the machine is going to panic anyway.
240 */
241 instrumentation_begin();
242
243 if (!fake_panic) {
244 /*
245 * Make sure only one CPU runs in machine check panic
246 */
247 if (atomic_inc_return(&mce_panicked) > 1)
248 wait_for_panic();
249 barrier();
250
251 bust_spinlocks(1);
252 console_verbose();
253 } else {
254 /* Don't log too much for fake panic */
255 if (atomic_inc_return(&mce_fake_panicked) > 1)
256 goto out;
257 }
258 pending = mce_gen_pool_prepare_records();
259 /* First print corrected ones that are still unlogged */
260 llist_for_each_entry(l, pending, llnode) {
261 struct mce *m = &l->mce;
262 if (!(m->status & MCI_STATUS_UC)) {
263 print_mce(m);
264 if (!apei_err)
265 apei_err = apei_write_mce(m);
266 }
267 }
268 /* Now print uncorrected but with the final one last */
269 llist_for_each_entry(l, pending, llnode) {
270 struct mce *m = &l->mce;
271 if (!(m->status & MCI_STATUS_UC))
272 continue;
273 if (!final || mce_cmp(m, final)) {
274 print_mce(m);
275 if (!apei_err)
276 apei_err = apei_write_mce(m);
277 }
278 }
279 if (final) {
280 print_mce(final);
281 if (!apei_err)
282 apei_err = apei_write_mce(final);
283 }
284 if (exp)
285 pr_emerg(HW_ERR "Machine check: %s\n", exp);
286 if (!fake_panic) {
287 if (panic_timeout == 0)
288 panic_timeout = mca_cfg.panic_timeout;
289 panic(msg);
290 } else
291 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
292
293 out:
294 instrumentation_end();
295 }
296
297 /* Support code for software error injection */
298
msr_to_offset(u32 msr)299 static int msr_to_offset(u32 msr)
300 {
301 unsigned bank = __this_cpu_read(injectm.bank);
302
303 if (msr == mca_cfg.rip_msr)
304 return offsetof(struct mce, ip);
305 if (msr == mca_msr_reg(bank, MCA_STATUS))
306 return offsetof(struct mce, status);
307 if (msr == mca_msr_reg(bank, MCA_ADDR))
308 return offsetof(struct mce, addr);
309 if (msr == mca_msr_reg(bank, MCA_MISC))
310 return offsetof(struct mce, misc);
311 if (msr == MSR_IA32_MCG_STATUS)
312 return offsetof(struct mce, mcgstatus);
313 return -1;
314 }
315
ex_handler_msr_mce(struct pt_regs * regs,bool wrmsr)316 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
317 {
318 if (wrmsr) {
319 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
320 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
321 regs->ip, (void *)regs->ip);
322 } else {
323 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
324 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
325 }
326
327 show_stack_regs(regs);
328
329 panic("MCA architectural violation!\n");
330
331 while (true)
332 cpu_relax();
333 }
334
335 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)336 noinstr u64 mce_rdmsrl(u32 msr)
337 {
338 DECLARE_ARGS(val, low, high);
339
340 if (__this_cpu_read(injectm.finished)) {
341 int offset;
342 u64 ret;
343
344 instrumentation_begin();
345
346 offset = msr_to_offset(msr);
347 if (offset < 0)
348 ret = 0;
349 else
350 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
351
352 instrumentation_end();
353
354 return ret;
355 }
356
357 /*
358 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
359 * architectural violation and needs to be reported to hw vendor. Panic
360 * the box to not allow any further progress.
361 */
362 asm volatile("1: rdmsr\n"
363 "2:\n"
364 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
365 : EAX_EDX_RET(val, low, high) : "c" (msr));
366
367
368 return EAX_EDX_VAL(val, low, high);
369 }
370
mce_wrmsrl(u32 msr,u64 v)371 static noinstr void mce_wrmsrl(u32 msr, u64 v)
372 {
373 u32 low, high;
374
375 if (__this_cpu_read(injectm.finished)) {
376 int offset;
377
378 instrumentation_begin();
379
380 offset = msr_to_offset(msr);
381 if (offset >= 0)
382 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
383
384 instrumentation_end();
385
386 return;
387 }
388
389 low = (u32)v;
390 high = (u32)(v >> 32);
391
392 /* See comment in mce_rdmsrl() */
393 asm volatile("1: wrmsr\n"
394 "2:\n"
395 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
396 : : "c" (msr), "a"(low), "d" (high) : "memory");
397 }
398
399 /*
400 * Collect all global (w.r.t. this processor) status about this machine
401 * check into our "mce" struct so that we can use it later to assess
402 * the severity of the problem as we read per-bank specific details.
403 */
mce_gather_info(struct mce * m,struct pt_regs * regs)404 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs)
405 {
406 /*
407 * Enable instrumentation around mce_setup() which calls external
408 * facilities.
409 */
410 instrumentation_begin();
411 mce_setup(m);
412 instrumentation_end();
413
414 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
415 if (regs) {
416 /*
417 * Get the address of the instruction at the time of
418 * the machine check error.
419 */
420 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
421 m->ip = regs->ip;
422 m->cs = regs->cs;
423
424 /*
425 * When in VM86 mode make the cs look like ring 3
426 * always. This is a lie, but it's better than passing
427 * the additional vm86 bit around everywhere.
428 */
429 if (v8086_mode(regs))
430 m->cs |= 3;
431 }
432 /* Use accurate RIP reporting if available. */
433 if (mca_cfg.rip_msr)
434 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
435 }
436 }
437
mce_available(struct cpuinfo_x86 * c)438 int mce_available(struct cpuinfo_x86 *c)
439 {
440 if (mca_cfg.disabled)
441 return 0;
442 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
443 }
444
mce_schedule_work(void)445 static void mce_schedule_work(void)
446 {
447 if (!mce_gen_pool_empty())
448 schedule_work(&mce_work);
449 }
450
mce_irq_work_cb(struct irq_work * entry)451 static void mce_irq_work_cb(struct irq_work *entry)
452 {
453 mce_schedule_work();
454 }
455
456 /*
457 * Check if the address reported by the CPU is in a format we can parse.
458 * It would be possible to add code for most other cases, but all would
459 * be somewhat complicated (e.g. segment offset would require an instruction
460 * parser). So only support physical addresses up to page granularity for now.
461 */
mce_usable_address(struct mce * m)462 int mce_usable_address(struct mce *m)
463 {
464 if (!(m->status & MCI_STATUS_ADDRV))
465 return 0;
466
467 /* Checks after this one are Intel/Zhaoxin-specific: */
468 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
469 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
470 return 1;
471
472 if (!(m->status & MCI_STATUS_MISCV))
473 return 0;
474
475 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
476 return 0;
477
478 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
479 return 0;
480
481 return 1;
482 }
483 EXPORT_SYMBOL_GPL(mce_usable_address);
484
mce_is_memory_error(struct mce * m)485 bool mce_is_memory_error(struct mce *m)
486 {
487 switch (m->cpuvendor) {
488 case X86_VENDOR_AMD:
489 case X86_VENDOR_HYGON:
490 return amd_mce_is_memory_error(m);
491
492 case X86_VENDOR_INTEL:
493 case X86_VENDOR_ZHAOXIN:
494 /*
495 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
496 *
497 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
498 * indicating a memory error. Bit 8 is used for indicating a
499 * cache hierarchy error. The combination of bit 2 and bit 3
500 * is used for indicating a `generic' cache hierarchy error
501 * But we can't just blindly check the above bits, because if
502 * bit 11 is set, then it is a bus/interconnect error - and
503 * either way the above bits just gives more detail on what
504 * bus/interconnect error happened. Note that bit 12 can be
505 * ignored, as it's the "filter" bit.
506 */
507 return (m->status & 0xef80) == BIT(7) ||
508 (m->status & 0xef00) == BIT(8) ||
509 (m->status & 0xeffc) == 0xc;
510
511 default:
512 return false;
513 }
514 }
515 EXPORT_SYMBOL_GPL(mce_is_memory_error);
516
whole_page(struct mce * m)517 static bool whole_page(struct mce *m)
518 {
519 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
520 return true;
521
522 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
523 }
524
mce_is_correctable(struct mce * m)525 bool mce_is_correctable(struct mce *m)
526 {
527 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
528 return false;
529
530 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
531 return false;
532
533 if (m->status & MCI_STATUS_UC)
534 return false;
535
536 return true;
537 }
538 EXPORT_SYMBOL_GPL(mce_is_correctable);
539
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)540 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
541 void *data)
542 {
543 struct mce *m = (struct mce *)data;
544
545 if (!m)
546 return NOTIFY_DONE;
547
548 /* Emit the trace record: */
549 trace_mce_record(m);
550
551 set_bit(0, &mce_need_notify);
552
553 mce_notify_irq();
554
555 return NOTIFY_DONE;
556 }
557
558 static struct notifier_block early_nb = {
559 .notifier_call = mce_early_notifier,
560 .priority = MCE_PRIO_EARLY,
561 };
562
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)563 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
564 void *data)
565 {
566 struct mce *mce = (struct mce *)data;
567 unsigned long pfn;
568
569 if (!mce || !mce_usable_address(mce))
570 return NOTIFY_DONE;
571
572 if (mce->severity != MCE_AO_SEVERITY &&
573 mce->severity != MCE_DEFERRED_SEVERITY)
574 return NOTIFY_DONE;
575
576 pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
577 if (!memory_failure(pfn, 0)) {
578 set_mce_nospec(pfn);
579 mce->kflags |= MCE_HANDLED_UC;
580 }
581
582 return NOTIFY_OK;
583 }
584
585 static struct notifier_block mce_uc_nb = {
586 .notifier_call = uc_decode_notifier,
587 .priority = MCE_PRIO_UC,
588 };
589
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)590 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
591 void *data)
592 {
593 struct mce *m = (struct mce *)data;
594
595 if (!m)
596 return NOTIFY_DONE;
597
598 if (mca_cfg.print_all || !m->kflags)
599 __print_mce(m);
600
601 return NOTIFY_DONE;
602 }
603
604 static struct notifier_block mce_default_nb = {
605 .notifier_call = mce_default_notifier,
606 /* lowest prio, we want it to run last. */
607 .priority = MCE_PRIO_LOWEST,
608 };
609
610 /*
611 * Read ADDR and MISC registers.
612 */
mce_read_aux(struct mce * m,int i)613 static noinstr void mce_read_aux(struct mce *m, int i)
614 {
615 if (m->status & MCI_STATUS_MISCV)
616 m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
617
618 if (m->status & MCI_STATUS_ADDRV) {
619 m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
620
621 /*
622 * Mask the reported address by the reported granularity.
623 */
624 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
625 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
626 m->addr >>= shift;
627 m->addr <<= shift;
628 }
629
630 smca_extract_err_addr(m);
631 }
632
633 if (mce_flags.smca) {
634 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
635
636 if (m->status & MCI_STATUS_SYNDV)
637 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
638 }
639 }
640
641 DEFINE_PER_CPU(unsigned, mce_poll_count);
642
643 /*
644 * Poll for corrected events or events that happened before reset.
645 * Those are just logged through /dev/mcelog.
646 *
647 * This is executed in standard interrupt context.
648 *
649 * Note: spec recommends to panic for fatal unsignalled
650 * errors here. However this would be quite problematic --
651 * we would need to reimplement the Monarch handling and
652 * it would mess up the exclusion between exception handler
653 * and poll handler -- * so we skip this for now.
654 * These cases should not happen anyways, or only when the CPU
655 * is already totally * confused. In this case it's likely it will
656 * not fully execute the machine check handler either.
657 */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)658 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
659 {
660 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
661 bool error_seen = false;
662 struct mce m;
663 int i;
664
665 this_cpu_inc(mce_poll_count);
666
667 mce_gather_info(&m, NULL);
668
669 if (flags & MCP_TIMESTAMP)
670 m.tsc = rdtsc();
671
672 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
673 if (!mce_banks[i].ctl || !test_bit(i, *b))
674 continue;
675
676 m.misc = 0;
677 m.addr = 0;
678 m.bank = i;
679
680 barrier();
681 m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
682
683 /* If this entry is not valid, ignore it */
684 if (!(m.status & MCI_STATUS_VAL))
685 continue;
686
687 /*
688 * If we are logging everything (at CPU online) or this
689 * is a corrected error, then we must log it.
690 */
691 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
692 goto log_it;
693
694 /*
695 * Newer Intel systems that support software error
696 * recovery need to make additional checks. Other
697 * CPUs should skip over uncorrected errors, but log
698 * everything else.
699 */
700 if (!mca_cfg.ser) {
701 if (m.status & MCI_STATUS_UC)
702 continue;
703 goto log_it;
704 }
705
706 /* Log "not enabled" (speculative) errors */
707 if (!(m.status & MCI_STATUS_EN))
708 goto log_it;
709
710 /*
711 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
712 * UC == 1 && PCC == 0 && S == 0
713 */
714 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
715 goto log_it;
716
717 /*
718 * Skip anything else. Presumption is that our read of this
719 * bank is racing with a machine check. Leave the log alone
720 * for do_machine_check() to deal with it.
721 */
722 continue;
723
724 log_it:
725 error_seen = true;
726
727 if (flags & MCP_DONTLOG)
728 goto clear_it;
729
730 mce_read_aux(&m, i);
731 m.severity = mce_severity(&m, NULL, NULL, false);
732 /*
733 * Don't get the IP here because it's unlikely to
734 * have anything to do with the actual error location.
735 */
736
737 if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
738 goto clear_it;
739
740 if (flags & MCP_QUEUE_LOG)
741 mce_gen_pool_add(&m);
742 else
743 mce_log(&m);
744
745 clear_it:
746 /*
747 * Clear state for this bank.
748 */
749 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
750 }
751
752 /*
753 * Don't clear MCG_STATUS here because it's only defined for
754 * exceptions.
755 */
756
757 sync_core();
758
759 return error_seen;
760 }
761 EXPORT_SYMBOL_GPL(machine_check_poll);
762
763 /*
764 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
765 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
766 * Vol 3B Table 15-20). But this confuses both the code that determines
767 * whether the machine check occurred in kernel or user mode, and also
768 * the severity assessment code. Pretend that EIPV was set, and take the
769 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
770 */
771 static __always_inline void
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)772 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
773 {
774 if (bank != 0)
775 return;
776 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
777 return;
778 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
779 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
780 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
781 MCACOD)) !=
782 (MCI_STATUS_UC|MCI_STATUS_EN|
783 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
784 MCI_STATUS_AR|MCACOD_INSTR))
785 return;
786
787 m->mcgstatus |= MCG_STATUS_EIPV;
788 m->ip = regs->ip;
789 m->cs = regs->cs;
790 }
791
792 /*
793 * Disable fast string copy and return from the MCE handler upon the first SRAR
794 * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
795 * CPUs.
796 * The fast string copy instructions ("REP; MOVS*") could consume an
797 * uncorrectable memory error in the cache line _right after_ the desired region
798 * to copy and raise an MCE with RIP pointing to the instruction _after_ the
799 * "REP; MOVS*".
800 * This mitigation addresses the issue completely with the caveat of performance
801 * degradation on the CPU affected. This is still better than the OS crashing on
802 * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
803 * kernel context (e.g., copy_page).
804 *
805 * Returns true when fast string copy on CPU has been disabled.
806 */
quirk_skylake_repmov(void)807 static noinstr bool quirk_skylake_repmov(void)
808 {
809 u64 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
810 u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE);
811 u64 mc1_status;
812
813 /*
814 * Apply the quirk only to local machine checks, i.e., no broadcast
815 * sync is needed.
816 */
817 if (!(mcgstatus & MCG_STATUS_LMCES) ||
818 !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
819 return false;
820
821 mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1));
822
823 /* Check for a software-recoverable data fetch error. */
824 if ((mc1_status &
825 (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
826 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
827 MCI_STATUS_AR | MCI_STATUS_S)) ==
828 (MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
829 MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
830 MCI_STATUS_AR | MCI_STATUS_S)) {
831 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
832 mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
833 mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0);
834
835 instrumentation_begin();
836 pr_err_once("Erratum detected, disable fast string copy instructions.\n");
837 instrumentation_end();
838
839 return true;
840 }
841
842 return false;
843 }
844
845 /*
846 * Do a quick check if any of the events requires a panic.
847 * This decides if we keep the events around or clear them.
848 */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)849 static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
850 struct pt_regs *regs)
851 {
852 char *tmp = *msg;
853 int i;
854
855 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
856 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
857 if (!(m->status & MCI_STATUS_VAL))
858 continue;
859
860 arch___set_bit(i, validp);
861 if (mce_flags.snb_ifu_quirk)
862 quirk_sandybridge_ifu(i, m, regs);
863
864 m->bank = i;
865 if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
866 mce_read_aux(m, i);
867 *msg = tmp;
868 return 1;
869 }
870 }
871 return 0;
872 }
873
874 /*
875 * Variable to establish order between CPUs while scanning.
876 * Each CPU spins initially until executing is equal its number.
877 */
878 static atomic_t mce_executing;
879
880 /*
881 * Defines order of CPUs on entry. First CPU becomes Monarch.
882 */
883 static atomic_t mce_callin;
884
885 /*
886 * Track which CPUs entered the MCA broadcast synchronization and which not in
887 * order to print holdouts.
888 */
889 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
890
891 /*
892 * Check if a timeout waiting for other CPUs happened.
893 */
mce_timed_out(u64 * t,const char * msg)894 static noinstr int mce_timed_out(u64 *t, const char *msg)
895 {
896 int ret = 0;
897
898 /* Enable instrumentation around calls to external facilities */
899 instrumentation_begin();
900
901 /*
902 * The others already did panic for some reason.
903 * Bail out like in a timeout.
904 * rmb() to tell the compiler that system_state
905 * might have been modified by someone else.
906 */
907 rmb();
908 if (atomic_read(&mce_panicked))
909 wait_for_panic();
910 if (!mca_cfg.monarch_timeout)
911 goto out;
912 if ((s64)*t < SPINUNIT) {
913 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
914 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
915 cpumask_pr_args(&mce_missing_cpus));
916 mce_panic(msg, NULL, NULL);
917
918 ret = 1;
919 goto out;
920 }
921 *t -= SPINUNIT;
922
923 out:
924 touch_nmi_watchdog();
925
926 instrumentation_end();
927
928 return ret;
929 }
930
931 /*
932 * The Monarch's reign. The Monarch is the CPU who entered
933 * the machine check handler first. It waits for the others to
934 * raise the exception too and then grades them. When any
935 * error is fatal panic. Only then let the others continue.
936 *
937 * The other CPUs entering the MCE handler will be controlled by the
938 * Monarch. They are called Subjects.
939 *
940 * This way we prevent any potential data corruption in a unrecoverable case
941 * and also makes sure always all CPU's errors are examined.
942 *
943 * Also this detects the case of a machine check event coming from outer
944 * space (not detected by any CPUs) In this case some external agent wants
945 * us to shut down, so panic too.
946 *
947 * The other CPUs might still decide to panic if the handler happens
948 * in a unrecoverable place, but in this case the system is in a semi-stable
949 * state and won't corrupt anything by itself. It's ok to let the others
950 * continue for a bit first.
951 *
952 * All the spin loops have timeouts; when a timeout happens a CPU
953 * typically elects itself to be Monarch.
954 */
mce_reign(void)955 static void mce_reign(void)
956 {
957 int cpu;
958 struct mce *m = NULL;
959 int global_worst = 0;
960 char *msg = NULL;
961
962 /*
963 * This CPU is the Monarch and the other CPUs have run
964 * through their handlers.
965 * Grade the severity of the errors of all the CPUs.
966 */
967 for_each_possible_cpu(cpu) {
968 struct mce *mtmp = &per_cpu(mces_seen, cpu);
969
970 if (mtmp->severity > global_worst) {
971 global_worst = mtmp->severity;
972 m = &per_cpu(mces_seen, cpu);
973 }
974 }
975
976 /*
977 * Cannot recover? Panic here then.
978 * This dumps all the mces in the log buffer and stops the
979 * other CPUs.
980 */
981 if (m && global_worst >= MCE_PANIC_SEVERITY) {
982 /* call mce_severity() to get "msg" for panic */
983 mce_severity(m, NULL, &msg, true);
984 mce_panic("Fatal machine check", m, msg);
985 }
986
987 /*
988 * For UC somewhere we let the CPU who detects it handle it.
989 * Also must let continue the others, otherwise the handling
990 * CPU could deadlock on a lock.
991 */
992
993 /*
994 * No machine check event found. Must be some external
995 * source or one CPU is hung. Panic.
996 */
997 if (global_worst <= MCE_KEEP_SEVERITY)
998 mce_panic("Fatal machine check from unknown source", NULL, NULL);
999
1000 /*
1001 * Now clear all the mces_seen so that they don't reappear on
1002 * the next mce.
1003 */
1004 for_each_possible_cpu(cpu)
1005 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
1006 }
1007
1008 static atomic_t global_nwo;
1009
1010 /*
1011 * Start of Monarch synchronization. This waits until all CPUs have
1012 * entered the exception handler and then determines if any of them
1013 * saw a fatal event that requires panic. Then it executes them
1014 * in the entry order.
1015 * TBD double check parallel CPU hotunplug
1016 */
mce_start(int * no_way_out)1017 static noinstr int mce_start(int *no_way_out)
1018 {
1019 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1020 int order, ret = -1;
1021
1022 if (!timeout)
1023 return ret;
1024
1025 arch_atomic_add(*no_way_out, &global_nwo);
1026 /*
1027 * Rely on the implied barrier below, such that global_nwo
1028 * is updated before mce_callin.
1029 */
1030 order = arch_atomic_inc_return(&mce_callin);
1031 arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1032
1033 /* Enable instrumentation around calls to external facilities */
1034 instrumentation_begin();
1035
1036 /*
1037 * Wait for everyone.
1038 */
1039 while (arch_atomic_read(&mce_callin) != num_online_cpus()) {
1040 if (mce_timed_out(&timeout,
1041 "Timeout: Not all CPUs entered broadcast exception handler")) {
1042 arch_atomic_set(&global_nwo, 0);
1043 goto out;
1044 }
1045 ndelay(SPINUNIT);
1046 }
1047
1048 /*
1049 * mce_callin should be read before global_nwo
1050 */
1051 smp_rmb();
1052
1053 if (order == 1) {
1054 /*
1055 * Monarch: Starts executing now, the others wait.
1056 */
1057 arch_atomic_set(&mce_executing, 1);
1058 } else {
1059 /*
1060 * Subject: Now start the scanning loop one by one in
1061 * the original callin order.
1062 * This way when there are any shared banks it will be
1063 * only seen by one CPU before cleared, avoiding duplicates.
1064 */
1065 while (arch_atomic_read(&mce_executing) < order) {
1066 if (mce_timed_out(&timeout,
1067 "Timeout: Subject CPUs unable to finish machine check processing")) {
1068 arch_atomic_set(&global_nwo, 0);
1069 goto out;
1070 }
1071 ndelay(SPINUNIT);
1072 }
1073 }
1074
1075 /*
1076 * Cache the global no_way_out state.
1077 */
1078 *no_way_out = arch_atomic_read(&global_nwo);
1079
1080 ret = order;
1081
1082 out:
1083 instrumentation_end();
1084
1085 return ret;
1086 }
1087
1088 /*
1089 * Synchronize between CPUs after main scanning loop.
1090 * This invokes the bulk of the Monarch processing.
1091 */
mce_end(int order)1092 static noinstr int mce_end(int order)
1093 {
1094 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1095 int ret = -1;
1096
1097 /* Allow instrumentation around external facilities. */
1098 instrumentation_begin();
1099
1100 if (!timeout)
1101 goto reset;
1102 if (order < 0)
1103 goto reset;
1104
1105 /*
1106 * Allow others to run.
1107 */
1108 atomic_inc(&mce_executing);
1109
1110 if (order == 1) {
1111 /*
1112 * Monarch: Wait for everyone to go through their scanning
1113 * loops.
1114 */
1115 while (atomic_read(&mce_executing) <= num_online_cpus()) {
1116 if (mce_timed_out(&timeout,
1117 "Timeout: Monarch CPU unable to finish machine check processing"))
1118 goto reset;
1119 ndelay(SPINUNIT);
1120 }
1121
1122 mce_reign();
1123 barrier();
1124 ret = 0;
1125 } else {
1126 /*
1127 * Subject: Wait for Monarch to finish.
1128 */
1129 while (atomic_read(&mce_executing) != 0) {
1130 if (mce_timed_out(&timeout,
1131 "Timeout: Monarch CPU did not finish machine check processing"))
1132 goto reset;
1133 ndelay(SPINUNIT);
1134 }
1135
1136 /*
1137 * Don't reset anything. That's done by the Monarch.
1138 */
1139 ret = 0;
1140 goto out;
1141 }
1142
1143 /*
1144 * Reset all global state.
1145 */
1146 reset:
1147 atomic_set(&global_nwo, 0);
1148 atomic_set(&mce_callin, 0);
1149 cpumask_setall(&mce_missing_cpus);
1150 barrier();
1151
1152 /*
1153 * Let others run again.
1154 */
1155 atomic_set(&mce_executing, 0);
1156
1157 out:
1158 instrumentation_end();
1159
1160 return ret;
1161 }
1162
mce_clear_state(unsigned long * toclear)1163 static __always_inline void mce_clear_state(unsigned long *toclear)
1164 {
1165 int i;
1166
1167 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1168 if (arch_test_bit(i, toclear))
1169 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1170 }
1171 }
1172
1173 /*
1174 * Cases where we avoid rendezvous handler timeout:
1175 * 1) If this CPU is offline.
1176 *
1177 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1178 * skip those CPUs which remain looping in the 1st kernel - see
1179 * crash_nmi_callback().
1180 *
1181 * Note: there still is a small window between kexec-ing and the new,
1182 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1183 * might not get handled properly.
1184 */
mce_check_crashing_cpu(void)1185 static noinstr bool mce_check_crashing_cpu(void)
1186 {
1187 unsigned int cpu = smp_processor_id();
1188
1189 if (arch_cpu_is_offline(cpu) ||
1190 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1191 u64 mcgstatus;
1192
1193 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1194
1195 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1196 if (mcgstatus & MCG_STATUS_LMCES)
1197 return false;
1198 }
1199
1200 if (mcgstatus & MCG_STATUS_RIPV) {
1201 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1202 return true;
1203 }
1204 }
1205 return false;
1206 }
1207
1208 static __always_inline int
__mc_scan_banks(struct mce * m,struct pt_regs * regs,struct mce * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1209 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1210 unsigned long *toclear, unsigned long *valid_banks, int no_way_out,
1211 int *worst)
1212 {
1213 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1214 struct mca_config *cfg = &mca_cfg;
1215 int severity, i, taint = 0;
1216
1217 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1218 arch___clear_bit(i, toclear);
1219 if (!arch_test_bit(i, valid_banks))
1220 continue;
1221
1222 if (!mce_banks[i].ctl)
1223 continue;
1224
1225 m->misc = 0;
1226 m->addr = 0;
1227 m->bank = i;
1228
1229 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1230 if (!(m->status & MCI_STATUS_VAL))
1231 continue;
1232
1233 /*
1234 * Corrected or non-signaled errors are handled by
1235 * machine_check_poll(). Leave them alone, unless this panics.
1236 */
1237 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1238 !no_way_out)
1239 continue;
1240
1241 /* Set taint even when machine check was not enabled. */
1242 taint++;
1243
1244 severity = mce_severity(m, regs, NULL, true);
1245
1246 /*
1247 * When machine check was for corrected/deferred handler don't
1248 * touch, unless we're panicking.
1249 */
1250 if ((severity == MCE_KEEP_SEVERITY ||
1251 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1252 continue;
1253
1254 arch___set_bit(i, toclear);
1255
1256 /* Machine check event was not enabled. Clear, but ignore. */
1257 if (severity == MCE_NO_SEVERITY)
1258 continue;
1259
1260 mce_read_aux(m, i);
1261
1262 /* assuming valid severity level != 0 */
1263 m->severity = severity;
1264
1265 /*
1266 * Enable instrumentation around the mce_log() call which is
1267 * done in #MC context, where instrumentation is disabled.
1268 */
1269 instrumentation_begin();
1270 mce_log(m);
1271 instrumentation_end();
1272
1273 if (severity > *worst) {
1274 *final = *m;
1275 *worst = severity;
1276 }
1277 }
1278
1279 /* mce_clear_state will clear *final, save locally for use later */
1280 *m = *final;
1281
1282 return taint;
1283 }
1284
kill_me_now(struct callback_head * ch)1285 static void kill_me_now(struct callback_head *ch)
1286 {
1287 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1288
1289 p->mce_count = 0;
1290 force_sig(SIGBUS);
1291 }
1292
kill_me_maybe(struct callback_head * cb)1293 static void kill_me_maybe(struct callback_head *cb)
1294 {
1295 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1296 int flags = MF_ACTION_REQUIRED;
1297 unsigned long pfn;
1298 int ret;
1299
1300 p->mce_count = 0;
1301 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1302
1303 if (!p->mce_ripv)
1304 flags |= MF_MUST_KILL;
1305
1306 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1307 ret = memory_failure(pfn, flags);
1308 if (!ret) {
1309 set_mce_nospec(pfn);
1310 sync_core();
1311 return;
1312 }
1313
1314 /*
1315 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1316 * to the current process with the proper error info,
1317 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1318 *
1319 * In both cases, no further processing is required.
1320 */
1321 if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1322 return;
1323
1324 pr_err("Memory error not recovered");
1325 kill_me_now(cb);
1326 }
1327
kill_me_never(struct callback_head * cb)1328 static void kill_me_never(struct callback_head *cb)
1329 {
1330 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1331 unsigned long pfn;
1332
1333 p->mce_count = 0;
1334 pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1335 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1336 if (!memory_failure(pfn, 0))
1337 set_mce_nospec(pfn);
1338 }
1339
queue_task_work(struct mce * m,char * msg,void (* func)(struct callback_head *))1340 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
1341 {
1342 int count = ++current->mce_count;
1343
1344 /* First call, save all the details */
1345 if (count == 1) {
1346 current->mce_addr = m->addr;
1347 current->mce_kflags = m->kflags;
1348 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1349 current->mce_whole_page = whole_page(m);
1350 current->mce_kill_me.func = func;
1351 }
1352
1353 /* Ten is likely overkill. Don't expect more than two faults before task_work() */
1354 if (count > 10)
1355 mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1356
1357 /* Second or later call, make sure page address matches the one from first call */
1358 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1359 mce_panic("Consecutive machine checks to different user pages", m, msg);
1360
1361 /* Do not call task_work_add() more than once */
1362 if (count > 1)
1363 return;
1364
1365 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME);
1366 }
1367
1368 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)1369 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1370 {
1371 instrumentation_begin();
1372 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1373 smp_processor_id());
1374 instrumentation_end();
1375 }
1376
1377 /*
1378 * The actual machine check handler. This only handles real exceptions when
1379 * something got corrupted coming in through int 18.
1380 *
1381 * This is executed in #MC context not subject to normal locking rules.
1382 * This implies that most kernel services cannot be safely used. Don't even
1383 * think about putting a printk in there!
1384 *
1385 * On Intel systems this is entered on all CPUs in parallel through
1386 * MCE broadcast. However some CPUs might be broken beyond repair,
1387 * so be always careful when synchronizing with others.
1388 *
1389 * Tracing and kprobes are disabled: if we interrupted a kernel context
1390 * with IF=1, we need to minimize stack usage. There are also recursion
1391 * issues: if the machine check was due to a failure of the memory
1392 * backing the user stack, tracing that reads the user stack will cause
1393 * potentially infinite recursion.
1394 *
1395 * Currently, the #MC handler calls out to a number of external facilities
1396 * and, therefore, allows instrumentation around them. The optimal thing to
1397 * have would be to do the absolutely minimal work required in #MC context
1398 * and have instrumentation disabled only around that. Further processing can
1399 * then happen in process context where instrumentation is allowed. Achieving
1400 * that requires careful auditing and modifications. Until then, the code
1401 * allows instrumentation temporarily, where required. *
1402 */
do_machine_check(struct pt_regs * regs)1403 noinstr void do_machine_check(struct pt_regs *regs)
1404 {
1405 int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1406 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1407 DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1408 struct mce m, *final;
1409 char *msg = NULL;
1410
1411 if (unlikely(mce_flags.p5))
1412 return pentium_machine_check(regs);
1413 else if (unlikely(mce_flags.winchip))
1414 return winchip_machine_check(regs);
1415 else if (unlikely(!mca_cfg.initialized))
1416 return unexpected_machine_check(regs);
1417
1418 if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
1419 goto clear;
1420
1421 /*
1422 * Establish sequential order between the CPUs entering the machine
1423 * check handler.
1424 */
1425 order = -1;
1426
1427 /*
1428 * If no_way_out gets set, there is no safe way to recover from this
1429 * MCE.
1430 */
1431 no_way_out = 0;
1432
1433 /*
1434 * If kill_current_task is not set, there might be a way to recover from this
1435 * error.
1436 */
1437 kill_current_task = 0;
1438
1439 /*
1440 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1441 * on Intel.
1442 */
1443 lmce = 1;
1444
1445 this_cpu_inc(mce_exception_count);
1446
1447 mce_gather_info(&m, regs);
1448 m.tsc = rdtsc();
1449
1450 final = this_cpu_ptr(&mces_seen);
1451 *final = m;
1452
1453 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1454
1455 barrier();
1456
1457 /*
1458 * When no restart IP might need to kill or panic.
1459 * Assume the worst for now, but if we find the
1460 * severity is MCE_AR_SEVERITY we have other options.
1461 */
1462 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1463 kill_current_task = 1;
1464 /*
1465 * Check if this MCE is signaled to only this logical processor,
1466 * on Intel, Zhaoxin only.
1467 */
1468 if (m.cpuvendor == X86_VENDOR_INTEL ||
1469 m.cpuvendor == X86_VENDOR_ZHAOXIN)
1470 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1471
1472 /*
1473 * Local machine check may already know that we have to panic.
1474 * Broadcast machine check begins rendezvous in mce_start()
1475 * Go through all banks in exclusion of the other CPUs. This way we
1476 * don't report duplicated events on shared banks because the first one
1477 * to see it will clear it.
1478 */
1479 if (lmce) {
1480 if (no_way_out)
1481 mce_panic("Fatal local machine check", &m, msg);
1482 } else {
1483 order = mce_start(&no_way_out);
1484 }
1485
1486 taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1487
1488 if (!no_way_out)
1489 mce_clear_state(toclear);
1490
1491 /*
1492 * Do most of the synchronization with other CPUs.
1493 * When there's any problem use only local no_way_out state.
1494 */
1495 if (!lmce) {
1496 if (mce_end(order) < 0) {
1497 if (!no_way_out)
1498 no_way_out = worst >= MCE_PANIC_SEVERITY;
1499
1500 if (no_way_out)
1501 mce_panic("Fatal machine check on current CPU", &m, msg);
1502 }
1503 } else {
1504 /*
1505 * If there was a fatal machine check we should have
1506 * already called mce_panic earlier in this function.
1507 * Since we re-read the banks, we might have found
1508 * something new. Check again to see if we found a
1509 * fatal error. We call "mce_severity()" again to
1510 * make sure we have the right "msg".
1511 */
1512 if (worst >= MCE_PANIC_SEVERITY) {
1513 mce_severity(&m, regs, &msg, true);
1514 mce_panic("Local fatal machine check!", &m, msg);
1515 }
1516 }
1517
1518 /*
1519 * Enable instrumentation around the external facilities like task_work_add()
1520 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1521 * properly would need a lot more involved reorganization.
1522 */
1523 instrumentation_begin();
1524
1525 if (taint)
1526 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1527
1528 if (worst != MCE_AR_SEVERITY && !kill_current_task)
1529 goto out;
1530
1531 /* Fault was in user mode and we need to take some action */
1532 if ((m.cs & 3) == 3) {
1533 /* If this triggers there is no way to recover. Die hard. */
1534 BUG_ON(!on_thread_stack() || !user_mode(regs));
1535
1536 if (kill_current_task)
1537 queue_task_work(&m, msg, kill_me_now);
1538 else
1539 queue_task_work(&m, msg, kill_me_maybe);
1540
1541 } else {
1542 /*
1543 * Handle an MCE which has happened in kernel space but from
1544 * which the kernel can recover: ex_has_fault_handler() has
1545 * already verified that the rIP at which the error happened is
1546 * a rIP from which the kernel can recover (by jumping to
1547 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1548 * corresponding exception handler which would do that is the
1549 * proper one.
1550 */
1551 if (m.kflags & MCE_IN_KERNEL_RECOV) {
1552 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1553 mce_panic("Failed kernel mode recovery", &m, msg);
1554 }
1555
1556 if (m.kflags & MCE_IN_KERNEL_COPYIN)
1557 queue_task_work(&m, msg, kill_me_never);
1558 }
1559
1560 out:
1561 instrumentation_end();
1562
1563 clear:
1564 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1565 }
1566 EXPORT_SYMBOL_GPL(do_machine_check);
1567
1568 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1569 int memory_failure(unsigned long pfn, int flags)
1570 {
1571 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1572 BUG_ON(flags & MF_ACTION_REQUIRED);
1573 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1574 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1575 pfn);
1576
1577 return 0;
1578 }
1579 #endif
1580
1581 /*
1582 * Periodic polling timer for "silent" machine check errors. If the
1583 * poller finds an MCE, poll 2x faster. When the poller finds no more
1584 * errors, poll 2x slower (up to check_interval seconds).
1585 */
1586 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1587
1588 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1589 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1590
mce_adjust_timer_default(unsigned long interval)1591 static unsigned long mce_adjust_timer_default(unsigned long interval)
1592 {
1593 return interval;
1594 }
1595
1596 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1597
__start_timer(struct timer_list * t,unsigned long interval)1598 static void __start_timer(struct timer_list *t, unsigned long interval)
1599 {
1600 unsigned long when = jiffies + interval;
1601 unsigned long flags;
1602
1603 local_irq_save(flags);
1604
1605 if (!timer_pending(t) || time_before(when, t->expires))
1606 mod_timer(t, round_jiffies(when));
1607
1608 local_irq_restore(flags);
1609 }
1610
mce_timer_fn(struct timer_list * t)1611 static void mce_timer_fn(struct timer_list *t)
1612 {
1613 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1614 unsigned long iv;
1615
1616 WARN_ON(cpu_t != t);
1617
1618 iv = __this_cpu_read(mce_next_interval);
1619
1620 if (mce_available(this_cpu_ptr(&cpu_info))) {
1621 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1622
1623 if (mce_intel_cmci_poll()) {
1624 iv = mce_adjust_timer(iv);
1625 goto done;
1626 }
1627 }
1628
1629 /*
1630 * Alert userspace if needed. If we logged an MCE, reduce the polling
1631 * interval, otherwise increase the polling interval.
1632 */
1633 if (mce_notify_irq())
1634 iv = max(iv / 2, (unsigned long) HZ/100);
1635 else
1636 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1637
1638 done:
1639 __this_cpu_write(mce_next_interval, iv);
1640 __start_timer(t, iv);
1641 }
1642
1643 /*
1644 * Ensure that the timer is firing in @interval from now.
1645 */
mce_timer_kick(unsigned long interval)1646 void mce_timer_kick(unsigned long interval)
1647 {
1648 struct timer_list *t = this_cpu_ptr(&mce_timer);
1649 unsigned long iv = __this_cpu_read(mce_next_interval);
1650
1651 __start_timer(t, interval);
1652
1653 if (interval < iv)
1654 __this_cpu_write(mce_next_interval, interval);
1655 }
1656
1657 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1658 static void mce_timer_delete_all(void)
1659 {
1660 int cpu;
1661
1662 for_each_online_cpu(cpu)
1663 del_timer_sync(&per_cpu(mce_timer, cpu));
1664 }
1665
1666 /*
1667 * Notify the user(s) about new machine check events.
1668 * Can be called from interrupt context, but not from machine check/NMI
1669 * context.
1670 */
mce_notify_irq(void)1671 int mce_notify_irq(void)
1672 {
1673 /* Not more than two messages every minute */
1674 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1675
1676 if (test_and_clear_bit(0, &mce_need_notify)) {
1677 mce_work_trigger();
1678
1679 if (__ratelimit(&ratelimit))
1680 pr_info(HW_ERR "Machine check events logged\n");
1681
1682 return 1;
1683 }
1684 return 0;
1685 }
1686 EXPORT_SYMBOL_GPL(mce_notify_irq);
1687
__mcheck_cpu_mce_banks_init(void)1688 static void __mcheck_cpu_mce_banks_init(void)
1689 {
1690 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1691 u8 n_banks = this_cpu_read(mce_num_banks);
1692 int i;
1693
1694 for (i = 0; i < n_banks; i++) {
1695 struct mce_bank *b = &mce_banks[i];
1696
1697 /*
1698 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1699 * the required vendor quirks before
1700 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1701 */
1702 b->ctl = -1ULL;
1703 b->init = true;
1704 }
1705 }
1706
1707 /*
1708 * Initialize Machine Checks for a CPU.
1709 */
__mcheck_cpu_cap_init(void)1710 static void __mcheck_cpu_cap_init(void)
1711 {
1712 u64 cap;
1713 u8 b;
1714
1715 rdmsrl(MSR_IA32_MCG_CAP, cap);
1716
1717 b = cap & MCG_BANKCNT_MASK;
1718
1719 if (b > MAX_NR_BANKS) {
1720 pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1721 smp_processor_id(), MAX_NR_BANKS, b);
1722 b = MAX_NR_BANKS;
1723 }
1724
1725 this_cpu_write(mce_num_banks, b);
1726
1727 __mcheck_cpu_mce_banks_init();
1728
1729 /* Use accurate RIP reporting if available. */
1730 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1731 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1732
1733 if (cap & MCG_SER_P)
1734 mca_cfg.ser = 1;
1735 }
1736
__mcheck_cpu_init_generic(void)1737 static void __mcheck_cpu_init_generic(void)
1738 {
1739 enum mcp_flags m_fl = 0;
1740 mce_banks_t all_banks;
1741 u64 cap;
1742
1743 if (!mca_cfg.bootlog)
1744 m_fl = MCP_DONTLOG;
1745
1746 /*
1747 * Log the machine checks left over from the previous reset. Log them
1748 * only, do not start processing them. That will happen in mcheck_late_init()
1749 * when all consumers have been registered on the notifier chain.
1750 */
1751 bitmap_fill(all_banks, MAX_NR_BANKS);
1752 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1753
1754 cr4_set_bits(X86_CR4_MCE);
1755
1756 rdmsrl(MSR_IA32_MCG_CAP, cap);
1757 if (cap & MCG_CTL_P)
1758 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1759 }
1760
__mcheck_cpu_init_clear_banks(void)1761 static void __mcheck_cpu_init_clear_banks(void)
1762 {
1763 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1764 int i;
1765
1766 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1767 struct mce_bank *b = &mce_banks[i];
1768
1769 if (!b->init)
1770 continue;
1771 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1772 wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1773 }
1774 }
1775
1776 /*
1777 * Do a final check to see if there are any unused/RAZ banks.
1778 *
1779 * This must be done after the banks have been initialized and any quirks have
1780 * been applied.
1781 *
1782 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1783 * Otherwise, a user who disables a bank will not be able to re-enable it
1784 * without a system reboot.
1785 */
__mcheck_cpu_check_banks(void)1786 static void __mcheck_cpu_check_banks(void)
1787 {
1788 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1789 u64 msrval;
1790 int i;
1791
1792 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1793 struct mce_bank *b = &mce_banks[i];
1794
1795 if (!b->init)
1796 continue;
1797
1798 rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1799 b->init = !!msrval;
1800 }
1801 }
1802
1803 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1804 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1805 {
1806 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1807 struct mca_config *cfg = &mca_cfg;
1808
1809 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1810 pr_info("unknown CPU type - not enabling MCE support\n");
1811 return -EOPNOTSUPP;
1812 }
1813
1814 /* This should be disabled by the BIOS, but isn't always */
1815 if (c->x86_vendor == X86_VENDOR_AMD) {
1816 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1817 /*
1818 * disable GART TBL walk error reporting, which
1819 * trips off incorrectly with the IOMMU & 3ware
1820 * & Cerberus:
1821 */
1822 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1823 }
1824 if (c->x86 < 0x11 && cfg->bootlog < 0) {
1825 /*
1826 * Lots of broken BIOS around that don't clear them
1827 * by default and leave crap in there. Don't log:
1828 */
1829 cfg->bootlog = 0;
1830 }
1831 /*
1832 * Various K7s with broken bank 0 around. Always disable
1833 * by default.
1834 */
1835 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1836 mce_banks[0].ctl = 0;
1837
1838 /*
1839 * overflow_recov is supported for F15h Models 00h-0fh
1840 * even though we don't have a CPUID bit for it.
1841 */
1842 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1843 mce_flags.overflow_recov = 1;
1844
1845 }
1846
1847 if (c->x86_vendor == X86_VENDOR_INTEL) {
1848 /*
1849 * SDM documents that on family 6 bank 0 should not be written
1850 * because it aliases to another special BIOS controlled
1851 * register.
1852 * But it's not aliased anymore on model 0x1a+
1853 * Don't ignore bank 0 completely because there could be a
1854 * valid event later, merely don't write CTL0.
1855 */
1856
1857 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1858 mce_banks[0].init = false;
1859
1860 /*
1861 * All newer Intel systems support MCE broadcasting. Enable
1862 * synchronization with a one second timeout.
1863 */
1864 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1865 cfg->monarch_timeout < 0)
1866 cfg->monarch_timeout = USEC_PER_SEC;
1867
1868 /*
1869 * There are also broken BIOSes on some Pentium M and
1870 * earlier systems:
1871 */
1872 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1873 cfg->bootlog = 0;
1874
1875 if (c->x86 == 6 && c->x86_model == 45)
1876 mce_flags.snb_ifu_quirk = 1;
1877
1878 /*
1879 * Skylake, Cascacde Lake and Cooper Lake require a quirk on
1880 * rep movs.
1881 */
1882 if (c->x86 == 6 && c->x86_model == INTEL_FAM6_SKYLAKE_X)
1883 mce_flags.skx_repmov_quirk = 1;
1884 }
1885
1886 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1887 /*
1888 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1889 * synchronization with a one second timeout.
1890 */
1891 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1892 if (cfg->monarch_timeout < 0)
1893 cfg->monarch_timeout = USEC_PER_SEC;
1894 }
1895 }
1896
1897 if (cfg->monarch_timeout < 0)
1898 cfg->monarch_timeout = 0;
1899 if (cfg->bootlog != 0)
1900 cfg->panic_timeout = 30;
1901
1902 return 0;
1903 }
1904
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1905 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1906 {
1907 if (c->x86 != 5)
1908 return 0;
1909
1910 switch (c->x86_vendor) {
1911 case X86_VENDOR_INTEL:
1912 intel_p5_mcheck_init(c);
1913 mce_flags.p5 = 1;
1914 return 1;
1915 case X86_VENDOR_CENTAUR:
1916 winchip_mcheck_init(c);
1917 mce_flags.winchip = 1;
1918 return 1;
1919 default:
1920 return 0;
1921 }
1922
1923 return 0;
1924 }
1925
1926 /*
1927 * Init basic CPU features needed for early decoding of MCEs.
1928 */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)1929 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1930 {
1931 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1932 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1933 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1934 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1935 mce_flags.amd_threshold = 1;
1936 }
1937 }
1938
mce_centaur_feature_init(struct cpuinfo_x86 * c)1939 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1940 {
1941 struct mca_config *cfg = &mca_cfg;
1942
1943 /*
1944 * All newer Centaur CPUs support MCE broadcasting. Enable
1945 * synchronization with a one second timeout.
1946 */
1947 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1948 c->x86 > 6) {
1949 if (cfg->monarch_timeout < 0)
1950 cfg->monarch_timeout = USEC_PER_SEC;
1951 }
1952 }
1953
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)1954 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1955 {
1956 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1957
1958 /*
1959 * These CPUs have MCA bank 8 which reports only one error type called
1960 * SVAD (System View Address Decoder). The reporting of that error is
1961 * controlled by IA32_MC8.CTL.0.
1962 *
1963 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1964 * virtual machines start and result in a system panic. Always disable
1965 * bank 8 SVAD error by default.
1966 */
1967 if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1968 (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1969 if (this_cpu_read(mce_num_banks) > 8)
1970 mce_banks[8].ctl = 0;
1971 }
1972
1973 intel_init_cmci();
1974 intel_init_lmce();
1975 mce_adjust_timer = cmci_intel_adjust_timer;
1976 }
1977
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)1978 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1979 {
1980 intel_clear_lmce();
1981 }
1982
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1983 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1984 {
1985 switch (c->x86_vendor) {
1986 case X86_VENDOR_INTEL:
1987 mce_intel_feature_init(c);
1988 mce_adjust_timer = cmci_intel_adjust_timer;
1989 break;
1990
1991 case X86_VENDOR_AMD: {
1992 mce_amd_feature_init(c);
1993 break;
1994 }
1995
1996 case X86_VENDOR_HYGON:
1997 mce_hygon_feature_init(c);
1998 break;
1999
2000 case X86_VENDOR_CENTAUR:
2001 mce_centaur_feature_init(c);
2002 break;
2003
2004 case X86_VENDOR_ZHAOXIN:
2005 mce_zhaoxin_feature_init(c);
2006 break;
2007
2008 default:
2009 break;
2010 }
2011 }
2012
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)2013 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
2014 {
2015 switch (c->x86_vendor) {
2016 case X86_VENDOR_INTEL:
2017 mce_intel_feature_clear(c);
2018 break;
2019
2020 case X86_VENDOR_ZHAOXIN:
2021 mce_zhaoxin_feature_clear(c);
2022 break;
2023
2024 default:
2025 break;
2026 }
2027 }
2028
mce_start_timer(struct timer_list * t)2029 static void mce_start_timer(struct timer_list *t)
2030 {
2031 unsigned long iv = check_interval * HZ;
2032
2033 if (mca_cfg.ignore_ce || !iv)
2034 return;
2035
2036 this_cpu_write(mce_next_interval, iv);
2037 __start_timer(t, iv);
2038 }
2039
__mcheck_cpu_setup_timer(void)2040 static void __mcheck_cpu_setup_timer(void)
2041 {
2042 struct timer_list *t = this_cpu_ptr(&mce_timer);
2043
2044 timer_setup(t, mce_timer_fn, TIMER_PINNED);
2045 }
2046
__mcheck_cpu_init_timer(void)2047 static void __mcheck_cpu_init_timer(void)
2048 {
2049 struct timer_list *t = this_cpu_ptr(&mce_timer);
2050
2051 timer_setup(t, mce_timer_fn, TIMER_PINNED);
2052 mce_start_timer(t);
2053 }
2054
filter_mce(struct mce * m)2055 bool filter_mce(struct mce *m)
2056 {
2057 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2058 return amd_filter_mce(m);
2059 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2060 return intel_filter_mce(m);
2061
2062 return false;
2063 }
2064
exc_machine_check_kernel(struct pt_regs * regs)2065 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2066 {
2067 irqentry_state_t irq_state;
2068
2069 WARN_ON_ONCE(user_mode(regs));
2070
2071 /*
2072 * Only required when from kernel mode. See
2073 * mce_check_crashing_cpu() for details.
2074 */
2075 if (mca_cfg.initialized && mce_check_crashing_cpu())
2076 return;
2077
2078 irq_state = irqentry_nmi_enter(regs);
2079
2080 do_machine_check(regs);
2081
2082 irqentry_nmi_exit(regs, irq_state);
2083 }
2084
exc_machine_check_user(struct pt_regs * regs)2085 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2086 {
2087 irqentry_enter_from_user_mode(regs);
2088
2089 do_machine_check(regs);
2090
2091 irqentry_exit_to_user_mode(regs);
2092 }
2093
2094 #ifdef CONFIG_X86_64
2095 /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2096 DEFINE_IDTENTRY_MCE(exc_machine_check)
2097 {
2098 unsigned long dr7;
2099
2100 dr7 = local_db_save();
2101 exc_machine_check_kernel(regs);
2102 local_db_restore(dr7);
2103 }
2104
2105 /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2106 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2107 {
2108 unsigned long dr7;
2109
2110 dr7 = local_db_save();
2111 exc_machine_check_user(regs);
2112 local_db_restore(dr7);
2113 }
2114 #else
2115 /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2116 DEFINE_IDTENTRY_RAW(exc_machine_check)
2117 {
2118 unsigned long dr7;
2119
2120 dr7 = local_db_save();
2121 if (user_mode(regs))
2122 exc_machine_check_user(regs);
2123 else
2124 exc_machine_check_kernel(regs);
2125 local_db_restore(dr7);
2126 }
2127 #endif
2128
2129 /*
2130 * Called for each booted CPU to set up machine checks.
2131 * Must be called with preempt off:
2132 */
mcheck_cpu_init(struct cpuinfo_x86 * c)2133 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2134 {
2135 if (mca_cfg.disabled)
2136 return;
2137
2138 if (__mcheck_cpu_ancient_init(c))
2139 return;
2140
2141 if (!mce_available(c))
2142 return;
2143
2144 __mcheck_cpu_cap_init();
2145
2146 if (__mcheck_cpu_apply_quirks(c) < 0) {
2147 mca_cfg.disabled = 1;
2148 return;
2149 }
2150
2151 if (mce_gen_pool_init()) {
2152 mca_cfg.disabled = 1;
2153 pr_emerg("Couldn't allocate MCE records pool!\n");
2154 return;
2155 }
2156
2157 mca_cfg.initialized = 1;
2158
2159 __mcheck_cpu_init_early(c);
2160 __mcheck_cpu_init_generic();
2161 __mcheck_cpu_init_vendor(c);
2162 __mcheck_cpu_init_clear_banks();
2163 __mcheck_cpu_check_banks();
2164 __mcheck_cpu_setup_timer();
2165 }
2166
2167 /*
2168 * Called for each booted CPU to clear some machine checks opt-ins
2169 */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2170 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2171 {
2172 if (mca_cfg.disabled)
2173 return;
2174
2175 if (!mce_available(c))
2176 return;
2177
2178 /*
2179 * Possibly to clear general settings generic to x86
2180 * __mcheck_cpu_clear_generic(c);
2181 */
2182 __mcheck_cpu_clear_vendor(c);
2183
2184 }
2185
__mce_disable_bank(void * arg)2186 static void __mce_disable_bank(void *arg)
2187 {
2188 int bank = *((int *)arg);
2189 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2190 cmci_disable_bank(bank);
2191 }
2192
mce_disable_bank(int bank)2193 void mce_disable_bank(int bank)
2194 {
2195 if (bank >= this_cpu_read(mce_num_banks)) {
2196 pr_warn(FW_BUG
2197 "Ignoring request to disable invalid MCA bank %d.\n",
2198 bank);
2199 return;
2200 }
2201 set_bit(bank, mce_banks_ce_disabled);
2202 on_each_cpu(__mce_disable_bank, &bank, 1);
2203 }
2204
2205 /*
2206 * mce=off Disables machine check
2207 * mce=no_cmci Disables CMCI
2208 * mce=no_lmce Disables LMCE
2209 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2210 * mce=print_all Print all machine check logs to console
2211 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2212 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2213 * monarchtimeout is how long to wait for other CPUs on machine
2214 * check, or 0 to not wait
2215 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2216 and older.
2217 * mce=nobootlog Don't log MCEs from before booting.
2218 * mce=bios_cmci_threshold Don't program the CMCI threshold
2219 * mce=recovery force enable copy_mc_fragile()
2220 */
mcheck_enable(char * str)2221 static int __init mcheck_enable(char *str)
2222 {
2223 struct mca_config *cfg = &mca_cfg;
2224
2225 if (*str == 0) {
2226 enable_p5_mce();
2227 return 1;
2228 }
2229 if (*str == '=')
2230 str++;
2231 if (!strcmp(str, "off"))
2232 cfg->disabled = 1;
2233 else if (!strcmp(str, "no_cmci"))
2234 cfg->cmci_disabled = true;
2235 else if (!strcmp(str, "no_lmce"))
2236 cfg->lmce_disabled = 1;
2237 else if (!strcmp(str, "dont_log_ce"))
2238 cfg->dont_log_ce = true;
2239 else if (!strcmp(str, "print_all"))
2240 cfg->print_all = true;
2241 else if (!strcmp(str, "ignore_ce"))
2242 cfg->ignore_ce = true;
2243 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2244 cfg->bootlog = (str[0] == 'b');
2245 else if (!strcmp(str, "bios_cmci_threshold"))
2246 cfg->bios_cmci_threshold = 1;
2247 else if (!strcmp(str, "recovery"))
2248 cfg->recovery = 1;
2249 else if (isdigit(str[0]))
2250 get_option(&str, &(cfg->monarch_timeout));
2251 else {
2252 pr_info("mce argument %s ignored. Please use /sys\n", str);
2253 return 0;
2254 }
2255 return 1;
2256 }
2257 __setup("mce", mcheck_enable);
2258
mcheck_init(void)2259 int __init mcheck_init(void)
2260 {
2261 mce_register_decode_chain(&early_nb);
2262 mce_register_decode_chain(&mce_uc_nb);
2263 mce_register_decode_chain(&mce_default_nb);
2264
2265 INIT_WORK(&mce_work, mce_gen_pool_process);
2266 init_irq_work(&mce_irq_work, mce_irq_work_cb);
2267
2268 return 0;
2269 }
2270
2271 /*
2272 * mce_syscore: PM support
2273 */
2274
2275 /*
2276 * Disable machine checks on suspend and shutdown. We can't really handle
2277 * them later.
2278 */
mce_disable_error_reporting(void)2279 static void mce_disable_error_reporting(void)
2280 {
2281 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2282 int i;
2283
2284 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2285 struct mce_bank *b = &mce_banks[i];
2286
2287 if (b->init)
2288 wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2289 }
2290 return;
2291 }
2292
vendor_disable_error_reporting(void)2293 static void vendor_disable_error_reporting(void)
2294 {
2295 /*
2296 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2297 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2298 * is bad, since it will inhibit reporting for all shared resources on
2299 * the socket like the last level cache (LLC), the integrated memory
2300 * controller (iMC), etc.
2301 */
2302 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2303 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2304 boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2305 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2306 return;
2307
2308 mce_disable_error_reporting();
2309 }
2310
mce_syscore_suspend(void)2311 static int mce_syscore_suspend(void)
2312 {
2313 vendor_disable_error_reporting();
2314 return 0;
2315 }
2316
mce_syscore_shutdown(void)2317 static void mce_syscore_shutdown(void)
2318 {
2319 vendor_disable_error_reporting();
2320 }
2321
2322 /*
2323 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2324 * Only one CPU is active at this time, the others get re-added later using
2325 * CPU hotplug:
2326 */
mce_syscore_resume(void)2327 static void mce_syscore_resume(void)
2328 {
2329 __mcheck_cpu_init_generic();
2330 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2331 __mcheck_cpu_init_clear_banks();
2332 }
2333
2334 static struct syscore_ops mce_syscore_ops = {
2335 .suspend = mce_syscore_suspend,
2336 .shutdown = mce_syscore_shutdown,
2337 .resume = mce_syscore_resume,
2338 };
2339
2340 /*
2341 * mce_device: Sysfs support
2342 */
2343
mce_cpu_restart(void * data)2344 static void mce_cpu_restart(void *data)
2345 {
2346 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2347 return;
2348 __mcheck_cpu_init_generic();
2349 __mcheck_cpu_init_clear_banks();
2350 __mcheck_cpu_init_timer();
2351 }
2352
2353 /* Reinit MCEs after user configuration changes */
mce_restart(void)2354 static void mce_restart(void)
2355 {
2356 mce_timer_delete_all();
2357 on_each_cpu(mce_cpu_restart, NULL, 1);
2358 }
2359
2360 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2361 static void mce_disable_cmci(void *data)
2362 {
2363 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2364 return;
2365 cmci_clear();
2366 }
2367
mce_enable_ce(void * all)2368 static void mce_enable_ce(void *all)
2369 {
2370 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2371 return;
2372 cmci_reenable();
2373 cmci_recheck();
2374 if (all)
2375 __mcheck_cpu_init_timer();
2376 }
2377
2378 static struct bus_type mce_subsys = {
2379 .name = "machinecheck",
2380 .dev_name = "machinecheck",
2381 };
2382
2383 DEFINE_PER_CPU(struct device *, mce_device);
2384
attr_to_bank(struct device_attribute * attr)2385 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2386 {
2387 return container_of(attr, struct mce_bank_dev, attr);
2388 }
2389
show_bank(struct device * s,struct device_attribute * attr,char * buf)2390 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2391 char *buf)
2392 {
2393 u8 bank = attr_to_bank(attr)->bank;
2394 struct mce_bank *b;
2395
2396 if (bank >= per_cpu(mce_num_banks, s->id))
2397 return -EINVAL;
2398
2399 b = &per_cpu(mce_banks_array, s->id)[bank];
2400
2401 if (!b->init)
2402 return -ENODEV;
2403
2404 return sprintf(buf, "%llx\n", b->ctl);
2405 }
2406
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2407 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2408 const char *buf, size_t size)
2409 {
2410 u8 bank = attr_to_bank(attr)->bank;
2411 struct mce_bank *b;
2412 u64 new;
2413
2414 if (kstrtou64(buf, 0, &new) < 0)
2415 return -EINVAL;
2416
2417 if (bank >= per_cpu(mce_num_banks, s->id))
2418 return -EINVAL;
2419
2420 b = &per_cpu(mce_banks_array, s->id)[bank];
2421
2422 if (!b->init)
2423 return -ENODEV;
2424
2425 b->ctl = new;
2426 mce_restart();
2427
2428 return size;
2429 }
2430
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2431 static ssize_t set_ignore_ce(struct device *s,
2432 struct device_attribute *attr,
2433 const char *buf, size_t size)
2434 {
2435 u64 new;
2436
2437 if (kstrtou64(buf, 0, &new) < 0)
2438 return -EINVAL;
2439
2440 mutex_lock(&mce_sysfs_mutex);
2441 if (mca_cfg.ignore_ce ^ !!new) {
2442 if (new) {
2443 /* disable ce features */
2444 mce_timer_delete_all();
2445 on_each_cpu(mce_disable_cmci, NULL, 1);
2446 mca_cfg.ignore_ce = true;
2447 } else {
2448 /* enable ce features */
2449 mca_cfg.ignore_ce = false;
2450 on_each_cpu(mce_enable_ce, (void *)1, 1);
2451 }
2452 }
2453 mutex_unlock(&mce_sysfs_mutex);
2454
2455 return size;
2456 }
2457
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2458 static ssize_t set_cmci_disabled(struct device *s,
2459 struct device_attribute *attr,
2460 const char *buf, size_t size)
2461 {
2462 u64 new;
2463
2464 if (kstrtou64(buf, 0, &new) < 0)
2465 return -EINVAL;
2466
2467 mutex_lock(&mce_sysfs_mutex);
2468 if (mca_cfg.cmci_disabled ^ !!new) {
2469 if (new) {
2470 /* disable cmci */
2471 on_each_cpu(mce_disable_cmci, NULL, 1);
2472 mca_cfg.cmci_disabled = true;
2473 } else {
2474 /* enable cmci */
2475 mca_cfg.cmci_disabled = false;
2476 on_each_cpu(mce_enable_ce, NULL, 1);
2477 }
2478 }
2479 mutex_unlock(&mce_sysfs_mutex);
2480
2481 return size;
2482 }
2483
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2484 static ssize_t store_int_with_restart(struct device *s,
2485 struct device_attribute *attr,
2486 const char *buf, size_t size)
2487 {
2488 unsigned long old_check_interval = check_interval;
2489 ssize_t ret = device_store_ulong(s, attr, buf, size);
2490
2491 if (check_interval == old_check_interval)
2492 return ret;
2493
2494 mutex_lock(&mce_sysfs_mutex);
2495 mce_restart();
2496 mutex_unlock(&mce_sysfs_mutex);
2497
2498 return ret;
2499 }
2500
2501 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2502 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2503 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2504
2505 static struct dev_ext_attribute dev_attr_check_interval = {
2506 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2507 &check_interval
2508 };
2509
2510 static struct dev_ext_attribute dev_attr_ignore_ce = {
2511 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2512 &mca_cfg.ignore_ce
2513 };
2514
2515 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2516 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2517 &mca_cfg.cmci_disabled
2518 };
2519
2520 static struct device_attribute *mce_device_attrs[] = {
2521 &dev_attr_check_interval.attr,
2522 #ifdef CONFIG_X86_MCELOG_LEGACY
2523 &dev_attr_trigger,
2524 #endif
2525 &dev_attr_monarch_timeout.attr,
2526 &dev_attr_dont_log_ce.attr,
2527 &dev_attr_print_all.attr,
2528 &dev_attr_ignore_ce.attr,
2529 &dev_attr_cmci_disabled.attr,
2530 NULL
2531 };
2532
2533 static cpumask_var_t mce_device_initialized;
2534
mce_device_release(struct device * dev)2535 static void mce_device_release(struct device *dev)
2536 {
2537 kfree(dev);
2538 }
2539
2540 /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2541 static int mce_device_create(unsigned int cpu)
2542 {
2543 struct device *dev;
2544 int err;
2545 int i, j;
2546
2547 if (!mce_available(&boot_cpu_data))
2548 return -EIO;
2549
2550 dev = per_cpu(mce_device, cpu);
2551 if (dev)
2552 return 0;
2553
2554 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2555 if (!dev)
2556 return -ENOMEM;
2557 dev->id = cpu;
2558 dev->bus = &mce_subsys;
2559 dev->release = &mce_device_release;
2560
2561 err = device_register(dev);
2562 if (err) {
2563 put_device(dev);
2564 return err;
2565 }
2566
2567 for (i = 0; mce_device_attrs[i]; i++) {
2568 err = device_create_file(dev, mce_device_attrs[i]);
2569 if (err)
2570 goto error;
2571 }
2572 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2573 err = device_create_file(dev, &mce_bank_devs[j].attr);
2574 if (err)
2575 goto error2;
2576 }
2577 cpumask_set_cpu(cpu, mce_device_initialized);
2578 per_cpu(mce_device, cpu) = dev;
2579
2580 return 0;
2581 error2:
2582 while (--j >= 0)
2583 device_remove_file(dev, &mce_bank_devs[j].attr);
2584 error:
2585 while (--i >= 0)
2586 device_remove_file(dev, mce_device_attrs[i]);
2587
2588 device_unregister(dev);
2589
2590 return err;
2591 }
2592
mce_device_remove(unsigned int cpu)2593 static void mce_device_remove(unsigned int cpu)
2594 {
2595 struct device *dev = per_cpu(mce_device, cpu);
2596 int i;
2597
2598 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2599 return;
2600
2601 for (i = 0; mce_device_attrs[i]; i++)
2602 device_remove_file(dev, mce_device_attrs[i]);
2603
2604 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2605 device_remove_file(dev, &mce_bank_devs[i].attr);
2606
2607 device_unregister(dev);
2608 cpumask_clear_cpu(cpu, mce_device_initialized);
2609 per_cpu(mce_device, cpu) = NULL;
2610 }
2611
2612 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2613 static void mce_disable_cpu(void)
2614 {
2615 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2616 return;
2617
2618 if (!cpuhp_tasks_frozen)
2619 cmci_clear();
2620
2621 vendor_disable_error_reporting();
2622 }
2623
mce_reenable_cpu(void)2624 static void mce_reenable_cpu(void)
2625 {
2626 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2627 int i;
2628
2629 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2630 return;
2631
2632 if (!cpuhp_tasks_frozen)
2633 cmci_reenable();
2634 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2635 struct mce_bank *b = &mce_banks[i];
2636
2637 if (b->init)
2638 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2639 }
2640 }
2641
mce_cpu_dead(unsigned int cpu)2642 static int mce_cpu_dead(unsigned int cpu)
2643 {
2644 mce_intel_hcpu_update(cpu);
2645
2646 /* intentionally ignoring frozen here */
2647 if (!cpuhp_tasks_frozen)
2648 cmci_rediscover();
2649 return 0;
2650 }
2651
mce_cpu_online(unsigned int cpu)2652 static int mce_cpu_online(unsigned int cpu)
2653 {
2654 struct timer_list *t = this_cpu_ptr(&mce_timer);
2655 int ret;
2656
2657 mce_device_create(cpu);
2658
2659 ret = mce_threshold_create_device(cpu);
2660 if (ret) {
2661 mce_device_remove(cpu);
2662 return ret;
2663 }
2664 mce_reenable_cpu();
2665 mce_start_timer(t);
2666 return 0;
2667 }
2668
mce_cpu_pre_down(unsigned int cpu)2669 static int mce_cpu_pre_down(unsigned int cpu)
2670 {
2671 struct timer_list *t = this_cpu_ptr(&mce_timer);
2672
2673 mce_disable_cpu();
2674 del_timer_sync(t);
2675 mce_threshold_remove_device(cpu);
2676 mce_device_remove(cpu);
2677 return 0;
2678 }
2679
mce_init_banks(void)2680 static __init void mce_init_banks(void)
2681 {
2682 int i;
2683
2684 for (i = 0; i < MAX_NR_BANKS; i++) {
2685 struct mce_bank_dev *b = &mce_bank_devs[i];
2686 struct device_attribute *a = &b->attr;
2687
2688 b->bank = i;
2689
2690 sysfs_attr_init(&a->attr);
2691 a->attr.name = b->attrname;
2692 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2693
2694 a->attr.mode = 0644;
2695 a->show = show_bank;
2696 a->store = set_bank;
2697 }
2698 }
2699
2700 /*
2701 * When running on XEN, this initcall is ordered against the XEN mcelog
2702 * initcall:
2703 *
2704 * device_initcall(xen_late_init_mcelog);
2705 * device_initcall_sync(mcheck_init_device);
2706 */
mcheck_init_device(void)2707 static __init int mcheck_init_device(void)
2708 {
2709 int err;
2710
2711 /*
2712 * Check if we have a spare virtual bit. This will only become
2713 * a problem if/when we move beyond 5-level page tables.
2714 */
2715 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2716
2717 if (!mce_available(&boot_cpu_data)) {
2718 err = -EIO;
2719 goto err_out;
2720 }
2721
2722 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2723 err = -ENOMEM;
2724 goto err_out;
2725 }
2726
2727 mce_init_banks();
2728
2729 err = subsys_system_register(&mce_subsys, NULL);
2730 if (err)
2731 goto err_out_mem;
2732
2733 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2734 mce_cpu_dead);
2735 if (err)
2736 goto err_out_mem;
2737
2738 /*
2739 * Invokes mce_cpu_online() on all CPUs which are online when
2740 * the state is installed.
2741 */
2742 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2743 mce_cpu_online, mce_cpu_pre_down);
2744 if (err < 0)
2745 goto err_out_online;
2746
2747 register_syscore_ops(&mce_syscore_ops);
2748
2749 return 0;
2750
2751 err_out_online:
2752 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2753
2754 err_out_mem:
2755 free_cpumask_var(mce_device_initialized);
2756
2757 err_out:
2758 pr_err("Unable to init MCE device (rc: %d)\n", err);
2759
2760 return err;
2761 }
2762 device_initcall_sync(mcheck_init_device);
2763
2764 /*
2765 * Old style boot options parsing. Only for compatibility.
2766 */
mcheck_disable(char * str)2767 static int __init mcheck_disable(char *str)
2768 {
2769 mca_cfg.disabled = 1;
2770 return 1;
2771 }
2772 __setup("nomce", mcheck_disable);
2773
2774 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2775 struct dentry *mce_get_debugfs_dir(void)
2776 {
2777 static struct dentry *dmce;
2778
2779 if (!dmce)
2780 dmce = debugfs_create_dir("mce", NULL);
2781
2782 return dmce;
2783 }
2784
mce_reset(void)2785 static void mce_reset(void)
2786 {
2787 atomic_set(&mce_fake_panicked, 0);
2788 atomic_set(&mce_executing, 0);
2789 atomic_set(&mce_callin, 0);
2790 atomic_set(&global_nwo, 0);
2791 cpumask_setall(&mce_missing_cpus);
2792 }
2793
fake_panic_get(void * data,u64 * val)2794 static int fake_panic_get(void *data, u64 *val)
2795 {
2796 *val = fake_panic;
2797 return 0;
2798 }
2799
fake_panic_set(void * data,u64 val)2800 static int fake_panic_set(void *data, u64 val)
2801 {
2802 mce_reset();
2803 fake_panic = val;
2804 return 0;
2805 }
2806
2807 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2808 "%llu\n");
2809
mcheck_debugfs_init(void)2810 static void __init mcheck_debugfs_init(void)
2811 {
2812 struct dentry *dmce;
2813
2814 dmce = mce_get_debugfs_dir();
2815 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2816 &fake_panic_fops);
2817 }
2818 #else
mcheck_debugfs_init(void)2819 static void __init mcheck_debugfs_init(void) { }
2820 #endif
2821
mcheck_late_init(void)2822 static int __init mcheck_late_init(void)
2823 {
2824 if (mca_cfg.recovery)
2825 enable_copy_mc_fragile();
2826
2827 mcheck_debugfs_init();
2828
2829 /*
2830 * Flush out everything that has been logged during early boot, now that
2831 * everything has been initialized (workqueues, decoders, ...).
2832 */
2833 mce_schedule_work();
2834
2835 return 0;
2836 }
2837 late_initcall(mcheck_late_init);
2838