1 /*
2 * Copyright (c) 2008-2009,2012-2015 Travis Geiselbrecht
3 * Copyright (c) 2009 Corey Tabaka
4 *
5 * Use of this source code is governed by a MIT-style
6 * license that can be found in the LICENSE file or at
7 * https://opensource.org/licenses/MIT
8 */
9 #include <lk/debug.h>
10 #include <lk/trace.h>
11 #include <assert.h>
12 #include <lk/err.h>
13 #include <lk/list.h>
14 #include <rand.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <string.h>
18 #include <kernel/mutex.h>
19 #include <lib/miniheap.h>
20 #include <lib/heap.h>
21 #include <lib/page_alloc.h>
22
23 #define LOCAL_TRACE 0
24
25 #define DEBUG_HEAP 0
26 #define ALLOC_FILL 0x99
27 #define FREE_FILL 0x77
28 #define PADDING_FILL 0x55
29 #define PADDING_SIZE 64
30
31 // whether or not the heap will try to trim itself every time a free happens
32 #ifndef MINIHEAP_AUTOTRIM
33 #define MINIHEAP_AUTOTRIM 0
34 #endif
35
36 #define HEAP_MAGIC (0x48454150) // 'HEAP'
37
38 struct free_heap_chunk {
39 struct list_node node;
40 size_t len;
41 };
42
43 struct heap {
44 void *base;
45 size_t len;
46 size_t remaining;
47 size_t low_watermark;
48 mutex_t lock;
49 struct list_node free_list;
50 };
51
52 // heap static vars
53 static struct heap theheap;
54
55 // structure placed at the beginning every allocation
56 struct alloc_struct_begin {
57 #if LK_DEBUGLEVEL > 1
58 unsigned int magic;
59 #endif
60 void *ptr;
61 size_t size;
62 #if DEBUG_HEAP
63 void *padding_start;
64 size_t padding_size;
65 #endif
66 };
67
68 static ssize_t heap_grow(size_t len);
69
dump_free_chunk(struct free_heap_chunk * chunk)70 static void dump_free_chunk(struct free_heap_chunk *chunk) {
71 dprintf(INFO, "\t\tbase %p, end 0x%lx, len 0x%zx\n", chunk, (vaddr_t)chunk + chunk->len, chunk->len);
72 }
73
miniheap_dump(void)74 void miniheap_dump(void) {
75 dprintf(INFO, "Heap dump (using miniheap):\n");
76 dprintf(INFO, "\tbase %p, len 0x%zx\n", theheap.base, theheap.len);
77 dprintf(INFO, "\tfree list:\n");
78
79 mutex_acquire(&theheap.lock);
80
81 struct free_heap_chunk *chunk;
82 list_for_every_entry(&theheap.free_list, chunk, struct free_heap_chunk, node) {
83 dump_free_chunk(chunk);
84 }
85 mutex_release(&theheap.lock);
86
87 }
88
89 // try to insert this free chunk into the free list, consuming the chunk by merging it with
90 // nearby ones if possible. Returns base of whatever chunk it became in the list.
heap_insert_free_chunk(struct free_heap_chunk * chunk)91 static struct free_heap_chunk *heap_insert_free_chunk(struct free_heap_chunk *chunk) {
92 vaddr_t chunk_end = (vaddr_t)chunk + chunk->len;
93
94 LTRACEF("chunk ptr %p, size 0x%zx\n", chunk, chunk->len);
95
96 struct free_heap_chunk *next_chunk;
97 struct free_heap_chunk *last_chunk;
98
99 mutex_acquire(&theheap.lock);
100
101 theheap.remaining += chunk->len;
102
103 // walk through the list, finding the node to insert before
104 list_for_every_entry(&theheap.free_list, next_chunk, struct free_heap_chunk, node) {
105 if (chunk < next_chunk) {
106 DEBUG_ASSERT(chunk_end <= (vaddr_t)next_chunk);
107
108 list_add_before(&next_chunk->node, &chunk->node);
109
110 goto try_merge;
111 }
112 }
113
114 // walked off the end of the list, add it at the tail
115 list_add_tail(&theheap.free_list, &chunk->node);
116
117 // try to merge with the previous chunk
118 try_merge:
119 last_chunk = list_prev_type(&theheap.free_list, &chunk->node, struct free_heap_chunk, node);
120 if (last_chunk) {
121 if ((vaddr_t)last_chunk + last_chunk->len == (vaddr_t)chunk) {
122 // easy, just extend the previous chunk
123 last_chunk->len += chunk->len;
124
125 // remove ourself from the list
126 list_delete(&chunk->node);
127
128 // set the chunk pointer to the newly extended chunk, in case
129 // it needs to merge with the next chunk below
130 chunk = last_chunk;
131 }
132 }
133
134 // try to merge with the next chunk
135 if (next_chunk) {
136 if ((vaddr_t)chunk + chunk->len == (vaddr_t)next_chunk) {
137 // extend our chunk
138 chunk->len += next_chunk->len;
139
140 // remove them from the list
141 list_delete(&next_chunk->node);
142 }
143 }
144
145 mutex_release(&theheap.lock);
146
147 return chunk;
148 }
149
heap_create_free_chunk(void * ptr,size_t len,bool allow_debug)150 static struct free_heap_chunk *heap_create_free_chunk(void *ptr, size_t len, bool allow_debug) {
151 DEBUG_ASSERT((len % sizeof(void *)) == 0); // size must be aligned on pointer boundary
152 DEBUG_ASSERT(len > sizeof(struct free_heap_chunk));
153
154 #if DEBUG_HEAP
155 if (allow_debug)
156 memset(ptr, FREE_FILL, len);
157 #endif
158
159 struct free_heap_chunk *chunk = (struct free_heap_chunk *)ptr;
160 chunk->len = len;
161
162 return chunk;
163 }
164
miniheap_alloc(size_t size,unsigned int alignment)165 void *miniheap_alloc(size_t size, unsigned int alignment) {
166 void *ptr;
167 #if DEBUG_HEAP
168 size_t original_size = size;
169 #endif
170
171 LTRACEF("size %zd, align %d\n", size, alignment);
172
173 // alignment must be power of 2
174 if (alignment & (alignment - 1))
175 return NULL;
176
177 // we always put a size field + base pointer + magic in front of the allocation
178 size += sizeof(struct alloc_struct_begin);
179 #if DEBUG_HEAP
180 size += PADDING_SIZE;
181 #endif
182
183 // make sure we allocate at least the size of a struct free_heap_chunk so that
184 // when we free it, we can create a struct free_heap_chunk struct and stick it
185 // in the spot
186 if (size < sizeof(struct free_heap_chunk))
187 size = sizeof(struct free_heap_chunk);
188
189 // round up size to a multiple of native pointer size
190 size = ROUNDUP(size, sizeof(void *));
191
192 // deal with nonzero alignments
193 if (alignment > 0) {
194 if (alignment < 16)
195 alignment = 16;
196
197 // add alignment for worst case fit
198 size += alignment;
199 }
200
201 int retry_count = 0;
202 retry:
203 mutex_acquire(&theheap.lock);
204
205 // walk through the list
206 ptr = NULL;
207 struct free_heap_chunk *chunk;
208 list_for_every_entry(&theheap.free_list, chunk, struct free_heap_chunk, node) {
209 DEBUG_ASSERT((chunk->len % sizeof(void *)) == 0); // len should always be a multiple of pointer size
210
211 // is it big enough to service our allocation?
212 if (chunk->len >= size) {
213 ptr = chunk;
214
215 // remove it from the list
216 struct list_node *next_node = list_next(&theheap.free_list, &chunk->node);
217 list_delete(&chunk->node);
218
219 if (chunk->len > size + sizeof(struct free_heap_chunk)) {
220 // there's enough space in this chunk to create a new one after the allocation
221 struct free_heap_chunk *newchunk = heap_create_free_chunk((uint8_t *)ptr + size, chunk->len - size, true);
222
223 // truncate this chunk
224 chunk->len -= chunk->len - size;
225
226 // add the new one where chunk used to be
227 if (next_node)
228 list_add_before(next_node, &newchunk->node);
229 else
230 list_add_tail(&theheap.free_list, &newchunk->node);
231 }
232
233 // the allocated size is actually the length of this chunk, not the size requested
234 DEBUG_ASSERT(chunk->len >= size);
235 size = chunk->len;
236
237 #if DEBUG_HEAP
238 memset(ptr, ALLOC_FILL, size);
239 #endif
240
241 ptr = (void *)((addr_t)ptr + sizeof(struct alloc_struct_begin));
242
243 // align the output if requested
244 if (alignment > 0) {
245 ptr = (void *)ROUNDUP((addr_t)ptr, (addr_t)alignment);
246 }
247
248 struct alloc_struct_begin *as = (struct alloc_struct_begin *)ptr;
249 as--;
250 #if LK_DEBUGLEVEL > 1
251 as->magic = HEAP_MAGIC;
252 #endif
253 as->ptr = (void *)chunk;
254 as->size = size;
255 theheap.remaining -= size;
256
257 if (theheap.remaining < theheap.low_watermark) {
258 theheap.low_watermark = theheap.remaining;
259 }
260 #if DEBUG_HEAP
261 as->padding_start = ((uint8_t *)ptr + original_size);
262 as->padding_size = (((addr_t)chunk + size) - ((addr_t)ptr + original_size));
263 // printf("padding start %p, size %u, chunk %p, size %u\n", as->padding_start, as->padding_size, chunk, size);
264
265 memset(as->padding_start, PADDING_FILL, as->padding_size);
266 #endif
267
268 break;
269 }
270 }
271
272 mutex_release(&theheap.lock);
273
274 /* try to grow the heap if we can */
275 if (ptr == NULL && retry_count == 0) {
276 ssize_t err = heap_grow(size);
277 if (err >= 0) {
278 retry_count++;
279 goto retry;
280 }
281 }
282
283 LTRACEF("returning ptr %p\n", ptr);
284
285 return ptr;
286 }
287
miniheap_realloc(void * ptr,size_t size)288 void *miniheap_realloc(void *ptr, size_t size) {
289 /* slow implementation */
290 if (!ptr)
291 return miniheap_alloc(size, 0);
292 if (size == 0) {
293 miniheap_free(ptr);
294 return NULL;
295 }
296
297 // XXX better implementation
298 void *p = miniheap_alloc(size, 0);
299 if (!p)
300 return NULL;
301
302 memcpy(p, ptr, size); // XXX wrong
303 miniheap_free(ptr);
304
305 return p;
306 }
307
miniheap_free(void * ptr)308 void miniheap_free(void *ptr) {
309 if (!ptr)
310 return;
311
312 LTRACEF("ptr %p\n", ptr);
313
314 // check for the old allocation structure
315 struct alloc_struct_begin *as = (struct alloc_struct_begin *)ptr;
316 as--;
317
318 DEBUG_ASSERT_COND(as->magic == HEAP_MAGIC);
319
320 #if DEBUG_HEAP
321 {
322 uint i;
323 uint8_t *pad = (uint8_t *)as->padding_start;
324
325 for (i = 0; i < as->padding_size; i++) {
326 if (pad[i] != PADDING_FILL) {
327 printf("free at %p scribbled outside the lines:\n", ptr);
328 hexdump(pad, as->padding_size);
329 panic("die\n");
330 }
331 }
332 }
333 #endif
334
335 LTRACEF("allocation was %zd bytes long at ptr %p\n", as->size, as->ptr);
336
337 // looks good, create a free chunk and add it to the pool
338 heap_insert_free_chunk(heap_create_free_chunk(as->ptr, as->size, true));
339
340 #if MINIHEAP_AUTOTRIM
341 miniheap_trim();
342 #endif
343 }
344
miniheap_trim(void)345 void miniheap_trim(void) {
346 LTRACE_ENTRY;
347
348 mutex_acquire(&theheap.lock);
349
350 // walk through the list, finding free chunks that can be returned to the page allocator
351 struct free_heap_chunk *chunk;
352 struct free_heap_chunk *next_chunk;
353 list_for_every_entry_safe(&theheap.free_list, chunk, next_chunk, struct free_heap_chunk, node) {
354 LTRACEF("looking at chunk %p, len 0x%zx\n", chunk, chunk->len);
355
356 uintptr_t start = (uintptr_t)chunk;
357 uintptr_t end = start + chunk->len;
358 DEBUG_ASSERT(end > start); // make sure it doesn't wrap the address space and has a positive len
359
360 // compute the page aligned region in this free block (if any)
361 uintptr_t start_page = ROUNDUP(start, PAGE_SIZE);
362 uintptr_t end_page = ROUNDDOWN(end, PAGE_SIZE);
363 DEBUG_ASSERT(end_page <= end);
364 DEBUG_ASSERT(start_page >= start);
365
366 LTRACEF("start page 0x%lx, end page 0x%lx\n", start_page, end_page);
367
368 retry:
369 // see if the free block encompasses at least one page
370 if (unlikely(end_page > start_page)) {
371 LTRACEF("could trim: start 0x%lx, end 0x%lx\n", start_page, end_page);
372
373 // cases where the start of the block is already page aligned
374 if (start_page == start) {
375 // look for special case, we're going to completely remove the chunk
376 if (end_page == end) {
377 LTRACEF("special case, free chunk completely covers page(s)\n");
378 list_delete(&chunk->node);
379 goto free_chunk;
380 }
381 } else {
382 // start of block is not page aligned,
383 // will there be enough space before the block if we trim?
384 if (start_page - start < sizeof(struct free_heap_chunk)) {
385 LTRACEF("not enough space for free chunk before\n");
386 start_page += PAGE_SIZE;
387 goto retry;
388 }
389 }
390
391 // do we need to split the free block and create a new block afterwards?
392 if (end_page < end) {
393 size_t new_chunk_size = end - end_page;
394 LTRACEF("will have to split, new chunk will be 0x%zx bytes long\n", new_chunk_size);
395
396 // if there's not enough space afterwards for a free chunk, we can't free the last page
397 if (new_chunk_size < sizeof(struct free_heap_chunk)) {
398 LTRACEF("not enough space for free chunk afterwards\n");
399 end_page -= PAGE_SIZE;
400 goto retry;
401 }
402
403 // trim the new space off the end of the current chunk
404 chunk->len -= new_chunk_size;
405 end = end_page;
406
407 // create a new chunk after the one we're trimming
408 struct free_heap_chunk *new_chunk = heap_create_free_chunk((void *)end_page, new_chunk_size, false);
409
410 // link it with the current block
411 list_add_after(&chunk->node, &new_chunk->node);
412 }
413
414 // check again to see if we are now completely covering a block
415 if (start_page == start && end_page == end) {
416 LTRACEF("special case, after splitting off new chunk, free chunk completely covers page(s)\n");
417 list_delete(&chunk->node);
418 goto free_chunk;
419 }
420
421 // trim the size of the block
422 chunk->len -= end_page - start_page;
423
424 free_chunk:
425 // return it to the allocator
426 LTRACEF("returning %p size 0x%lx to the page allocator\n", (void *)start_page, end_page - start_page);
427 page_free((void *)start_page, (end_page - start_page) / PAGE_SIZE);
428
429 // tweak accounting
430 theheap.remaining -= end_page - start_page;
431 }
432 }
433
434 mutex_release(&theheap.lock);
435 }
436
miniheap_get_stats(struct miniheap_stats * ptr)437 void miniheap_get_stats(struct miniheap_stats *ptr) {
438 struct free_heap_chunk *chunk;
439
440 ptr->heap_start = theheap.base;
441 ptr->heap_len = theheap.len;
442 ptr->heap_free=0;
443 ptr->heap_max_chunk = 0;
444
445 mutex_acquire(&theheap.lock);
446
447 list_for_every_entry(&theheap.free_list, chunk, struct free_heap_chunk, node) {
448 ptr->heap_free += chunk->len;
449
450 if (chunk->len > ptr->heap_max_chunk) {
451 ptr->heap_max_chunk = chunk->len;
452 }
453 }
454
455 ptr->heap_low_watermark = theheap.low_watermark;
456
457 mutex_release(&theheap.lock);
458 }
459
heap_grow(size_t size)460 static ssize_t heap_grow(size_t size) {
461 size = ROUNDUP(size, PAGE_SIZE);
462 void *ptr = page_alloc(size / PAGE_SIZE, PAGE_ALLOC_ANY_ARENA);
463 if (!ptr) {
464 TRACEF("failed to grow kernel heap by 0x%zx bytes\n", size);
465 return ERR_NO_MEMORY;
466 }
467
468 LTRACEF("growing heap by 0x%zx bytes, new ptr %p\n", size, ptr);
469
470 heap_insert_free_chunk(heap_create_free_chunk(ptr, size, true));
471
472 /* change the heap start and end variables */
473 if ((uintptr_t)ptr < (uintptr_t)theheap.base || theheap.base == 0)
474 theheap.base = ptr;
475
476 uintptr_t endptr = (uintptr_t)ptr + size;
477 if (endptr > (uintptr_t)theheap.base + theheap.len) {
478 theheap.len = (uintptr_t)endptr - (uintptr_t)theheap.base;
479 }
480
481 return size;
482 }
483
miniheap_init(void * ptr,size_t len)484 void miniheap_init(void *ptr, size_t len) {
485 LTRACEF("ptr %p, len %zu\n", ptr, len);
486
487 // create a mutex
488 mutex_init(&theheap.lock);
489
490 // initialize the free list
491 list_initialize(&theheap.free_list);
492
493 // align the buffer to a ptr
494 if (((uintptr_t)ptr % sizeof(uintptr_t)) > 0) {
495 uintptr_t aligned_ptr = ROUNDUP((uintptr_t)ptr, sizeof(uintptr_t));
496
497 DEBUG_ASSERT((aligned_ptr - (uintptr_t)ptr) < len);
498
499 len -= aligned_ptr - (uintptr_t)ptr;
500 ptr = (void *)aligned_ptr;
501
502 LTRACEF("(aligned) ptr %p, len %zu\n", ptr, len);
503 }
504
505 // set the heap range
506 theheap.base = ptr;
507 theheap.len = len;
508 theheap.remaining = 0; // will get set by heap_insert_free_chunk()
509 theheap.low_watermark = 0;
510
511 // if passed a default range, use it
512 if (len > 0)
513 heap_insert_free_chunk(heap_create_free_chunk(ptr, len, true));
514 }
515
516