1 /*
2 * Copyright (c) 2016 Hisilicon Limited.
3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/vmalloc.h>
35 #include <rdma/ib_umem.h>
36 #include "hns_roce_device.h"
37 #include "hns_roce_cmd.h"
38 #include "hns_roce_hem.h"
39
hw_index_to_key(int ind)40 static u32 hw_index_to_key(int ind)
41 {
42 return ((u32)ind >> 24) | ((u32)ind << 8);
43 }
44
key_to_hw_index(u32 key)45 unsigned long key_to_hw_index(u32 key)
46 {
47 return (key << 24) | (key >> 8);
48 }
49
alloc_mr_key(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)50 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
51 {
52 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
53 struct ib_device *ibdev = &hr_dev->ib_dev;
54 int err;
55 int id;
56
57 /* Allocate a key for mr from mr_table */
58 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
59 GFP_KERNEL);
60 if (id < 0) {
61 ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id);
62 return -ENOMEM;
63 }
64
65 mr->key = hw_index_to_key(id); /* MR key */
66
67 err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table,
68 (unsigned long)id);
69 if (err) {
70 ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err);
71 goto err_free_bitmap;
72 }
73
74 return 0;
75 err_free_bitmap:
76 ida_free(&mtpt_ida->ida, id);
77 return err;
78 }
79
free_mr_key(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)80 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
81 {
82 unsigned long obj = key_to_hw_index(mr->key);
83
84 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj);
85 ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj);
86 }
87
alloc_mr_pbl(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr,struct ib_udata * udata,u64 start)88 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr,
89 struct ib_udata *udata, u64 start)
90 {
91 struct ib_device *ibdev = &hr_dev->ib_dev;
92 bool is_fast = mr->type == MR_TYPE_FRMR;
93 struct hns_roce_buf_attr buf_attr = {};
94 int err;
95
96 mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num;
97 buf_attr.page_shift = is_fast ? PAGE_SHIFT :
98 hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT;
99 buf_attr.region[0].size = mr->size;
100 buf_attr.region[0].hopnum = mr->pbl_hop_num;
101 buf_attr.region_count = 1;
102 buf_attr.user_access = mr->access;
103 /* fast MR's buffer is alloced before mapping, not at creation */
104 buf_attr.mtt_only = is_fast;
105
106 err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr,
107 hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT,
108 udata, start);
109 if (err)
110 ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err);
111 else
112 mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count;
113
114 return err;
115 }
116
free_mr_pbl(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)117 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
118 {
119 hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr);
120 }
121
hns_roce_mr_free(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)122 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
123 {
124 struct ib_device *ibdev = &hr_dev->ib_dev;
125 int ret;
126
127 if (mr->enabled) {
128 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
129 key_to_hw_index(mr->key) &
130 (hr_dev->caps.num_mtpts - 1));
131 if (ret)
132 ibdev_warn(ibdev, "failed to destroy mpt, ret = %d.\n",
133 ret);
134 }
135
136 free_mr_pbl(hr_dev, mr);
137 free_mr_key(hr_dev, mr);
138 }
139
hns_roce_mr_enable(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)140 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev,
141 struct hns_roce_mr *mr)
142 {
143 unsigned long mtpt_idx = key_to_hw_index(mr->key);
144 struct hns_roce_cmd_mailbox *mailbox;
145 struct device *dev = hr_dev->dev;
146 int ret;
147
148 /* Allocate mailbox memory */
149 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
150 if (IS_ERR(mailbox))
151 return PTR_ERR(mailbox);
152
153 if (mr->type != MR_TYPE_FRMR)
154 ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr);
155 else
156 ret = hr_dev->hw->frmr_write_mtpt(hr_dev, mailbox->buf, mr);
157 if (ret) {
158 dev_err(dev, "failed to write mtpt, ret = %d.\n", ret);
159 goto err_page;
160 }
161
162 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
163 mtpt_idx & (hr_dev->caps.num_mtpts - 1));
164 if (ret) {
165 dev_err(dev, "failed to create mpt, ret = %d.\n", ret);
166 goto err_page;
167 }
168
169 mr->enabled = 1;
170
171 err_page:
172 hns_roce_free_cmd_mailbox(hr_dev, mailbox);
173
174 return ret;
175 }
176
hns_roce_init_mr_table(struct hns_roce_dev * hr_dev)177 void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev)
178 {
179 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
180
181 ida_init(&mtpt_ida->ida);
182 mtpt_ida->max = hr_dev->caps.num_mtpts - 1;
183 mtpt_ida->min = hr_dev->caps.reserved_mrws;
184 }
185
hns_roce_get_dma_mr(struct ib_pd * pd,int acc)186 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc)
187 {
188 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
189 struct hns_roce_mr *mr;
190 int ret;
191
192 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
193 if (!mr)
194 return ERR_PTR(-ENOMEM);
195
196 mr->type = MR_TYPE_DMA;
197 mr->pd = to_hr_pd(pd)->pdn;
198 mr->access = acc;
199
200 /* Allocate memory region key */
201 hns_roce_hem_list_init(&mr->pbl_mtr.hem_list);
202 ret = alloc_mr_key(hr_dev, mr);
203 if (ret)
204 goto err_free;
205
206 ret = hns_roce_mr_enable(hr_dev, mr);
207 if (ret)
208 goto err_mr;
209
210 mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
211
212 return &mr->ibmr;
213 err_mr:
214 free_mr_key(hr_dev, mr);
215
216 err_free:
217 kfree(mr);
218 return ERR_PTR(ret);
219 }
220
hns_roce_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags,struct ib_udata * udata)221 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
222 u64 virt_addr, int access_flags,
223 struct ib_udata *udata)
224 {
225 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
226 struct hns_roce_mr *mr;
227 int ret;
228
229 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
230 if (!mr)
231 return ERR_PTR(-ENOMEM);
232
233 mr->iova = virt_addr;
234 mr->size = length;
235 mr->pd = to_hr_pd(pd)->pdn;
236 mr->access = access_flags;
237 mr->type = MR_TYPE_MR;
238
239 ret = alloc_mr_key(hr_dev, mr);
240 if (ret)
241 goto err_alloc_mr;
242
243 ret = alloc_mr_pbl(hr_dev, mr, udata, start);
244 if (ret)
245 goto err_alloc_key;
246
247 ret = hns_roce_mr_enable(hr_dev, mr);
248 if (ret)
249 goto err_alloc_pbl;
250
251 mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
252
253 return &mr->ibmr;
254
255 err_alloc_pbl:
256 free_mr_pbl(hr_dev, mr);
257 err_alloc_key:
258 free_mr_key(hr_dev, mr);
259 err_alloc_mr:
260 kfree(mr);
261 return ERR_PTR(ret);
262 }
263
hns_roce_rereg_user_mr(struct ib_mr * ibmr,int flags,u64 start,u64 length,u64 virt_addr,int mr_access_flags,struct ib_pd * pd,struct ib_udata * udata)264 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start,
265 u64 length, u64 virt_addr,
266 int mr_access_flags, struct ib_pd *pd,
267 struct ib_udata *udata)
268 {
269 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
270 struct ib_device *ib_dev = &hr_dev->ib_dev;
271 struct hns_roce_mr *mr = to_hr_mr(ibmr);
272 struct hns_roce_cmd_mailbox *mailbox;
273 unsigned long mtpt_idx;
274 int ret;
275
276 if (!mr->enabled)
277 return ERR_PTR(-EINVAL);
278
279 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
280 if (IS_ERR(mailbox))
281 return ERR_CAST(mailbox);
282
283 mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1);
284
285 ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT,
286 mtpt_idx);
287 if (ret)
288 goto free_cmd_mbox;
289
290 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
291 mtpt_idx);
292 if (ret)
293 ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret);
294
295 mr->enabled = 0;
296 mr->iova = virt_addr;
297 mr->size = length;
298
299 if (flags & IB_MR_REREG_PD)
300 mr->pd = to_hr_pd(pd)->pdn;
301
302 if (flags & IB_MR_REREG_ACCESS)
303 mr->access = mr_access_flags;
304
305 if (flags & IB_MR_REREG_TRANS) {
306 free_mr_pbl(hr_dev, mr);
307 ret = alloc_mr_pbl(hr_dev, mr, udata, start);
308 if (ret) {
309 ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n",
310 ret);
311 goto free_cmd_mbox;
312 }
313 }
314
315 ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf);
316 if (ret) {
317 ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret);
318 goto free_cmd_mbox;
319 }
320
321 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
322 mtpt_idx);
323 if (ret) {
324 ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret);
325 goto free_cmd_mbox;
326 }
327
328 mr->enabled = 1;
329
330 free_cmd_mbox:
331 hns_roce_free_cmd_mailbox(hr_dev, mailbox);
332
333 if (ret)
334 return ERR_PTR(ret);
335 return NULL;
336 }
337
hns_roce_dereg_mr(struct ib_mr * ibmr,struct ib_udata * udata)338 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
339 {
340 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
341 struct hns_roce_mr *mr = to_hr_mr(ibmr);
342
343 if (hr_dev->hw->dereg_mr)
344 hr_dev->hw->dereg_mr(hr_dev);
345
346 hns_roce_mr_free(hr_dev, mr);
347 kfree(mr);
348
349 return 0;
350 }
351
hns_roce_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)352 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
353 u32 max_num_sg)
354 {
355 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
356 struct device *dev = hr_dev->dev;
357 struct hns_roce_mr *mr;
358 int ret;
359
360 if (mr_type != IB_MR_TYPE_MEM_REG)
361 return ERR_PTR(-EINVAL);
362
363 if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) {
364 dev_err(dev, "max_num_sg larger than %d\n",
365 HNS_ROCE_FRMR_MAX_PA);
366 return ERR_PTR(-EINVAL);
367 }
368
369 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
370 if (!mr)
371 return ERR_PTR(-ENOMEM);
372
373 mr->type = MR_TYPE_FRMR;
374 mr->pd = to_hr_pd(pd)->pdn;
375 mr->size = max_num_sg * (1 << PAGE_SHIFT);
376
377 /* Allocate memory region key */
378 ret = alloc_mr_key(hr_dev, mr);
379 if (ret)
380 goto err_free;
381
382 ret = alloc_mr_pbl(hr_dev, mr, NULL, 0);
383 if (ret)
384 goto err_key;
385
386 ret = hns_roce_mr_enable(hr_dev, mr);
387 if (ret)
388 goto err_pbl;
389
390 mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
391 mr->ibmr.length = mr->size;
392
393 return &mr->ibmr;
394
395 err_pbl:
396 free_mr_pbl(hr_dev, mr);
397 err_key:
398 free_mr_key(hr_dev, mr);
399 err_free:
400 kfree(mr);
401 return ERR_PTR(ret);
402 }
403
hns_roce_set_page(struct ib_mr * ibmr,u64 addr)404 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr)
405 {
406 struct hns_roce_mr *mr = to_hr_mr(ibmr);
407
408 if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) {
409 mr->page_list[mr->npages++] = addr;
410 return 0;
411 }
412
413 return -ENOBUFS;
414 }
415
hns_roce_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset)416 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
417 unsigned int *sg_offset)
418 {
419 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
420 struct ib_device *ibdev = &hr_dev->ib_dev;
421 struct hns_roce_mr *mr = to_hr_mr(ibmr);
422 struct hns_roce_mtr *mtr = &mr->pbl_mtr;
423 int ret = 0;
424
425 mr->npages = 0;
426 mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count,
427 sizeof(dma_addr_t), GFP_KERNEL);
428 if (!mr->page_list)
429 return ret;
430
431 ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, hns_roce_set_page);
432 if (ret < 1) {
433 ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n",
434 mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, ret);
435 goto err_page_list;
436 }
437
438 mtr->hem_cfg.region[0].offset = 0;
439 mtr->hem_cfg.region[0].count = mr->npages;
440 mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num;
441 mtr->hem_cfg.region_count = 1;
442 ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages);
443 if (ret) {
444 ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret);
445 ret = 0;
446 } else {
447 mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size);
448 ret = mr->npages;
449 }
450
451 err_page_list:
452 kvfree(mr->page_list);
453 mr->page_list = NULL;
454
455 return ret;
456 }
457
hns_roce_mw_free(struct hns_roce_dev * hr_dev,struct hns_roce_mw * mw)458 static void hns_roce_mw_free(struct hns_roce_dev *hr_dev,
459 struct hns_roce_mw *mw)
460 {
461 struct device *dev = hr_dev->dev;
462 int ret;
463
464 if (mw->enabled) {
465 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
466 key_to_hw_index(mw->rkey) &
467 (hr_dev->caps.num_mtpts - 1));
468 if (ret)
469 dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret);
470
471 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table,
472 key_to_hw_index(mw->rkey));
473 }
474
475 ida_free(&hr_dev->mr_table.mtpt_ida.ida,
476 (int)key_to_hw_index(mw->rkey));
477 }
478
hns_roce_mw_enable(struct hns_roce_dev * hr_dev,struct hns_roce_mw * mw)479 static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev,
480 struct hns_roce_mw *mw)
481 {
482 struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
483 struct hns_roce_cmd_mailbox *mailbox;
484 struct device *dev = hr_dev->dev;
485 unsigned long mtpt_idx = key_to_hw_index(mw->rkey);
486 int ret;
487
488 /* prepare HEM entry memory */
489 ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx);
490 if (ret)
491 return ret;
492
493 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
494 if (IS_ERR(mailbox)) {
495 ret = PTR_ERR(mailbox);
496 goto err_table;
497 }
498
499 ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw);
500 if (ret) {
501 dev_err(dev, "MW write mtpt fail!\n");
502 goto err_page;
503 }
504
505 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
506 mtpt_idx & (hr_dev->caps.num_mtpts - 1));
507 if (ret) {
508 dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret);
509 goto err_page;
510 }
511
512 mw->enabled = 1;
513
514 hns_roce_free_cmd_mailbox(hr_dev, mailbox);
515
516 return 0;
517
518 err_page:
519 hns_roce_free_cmd_mailbox(hr_dev, mailbox);
520
521 err_table:
522 hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx);
523
524 return ret;
525 }
526
hns_roce_alloc_mw(struct ib_mw * ibmw,struct ib_udata * udata)527 int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
528 {
529 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
530 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
531 struct ib_device *ibdev = &hr_dev->ib_dev;
532 struct hns_roce_mw *mw = to_hr_mw(ibmw);
533 int ret;
534 int id;
535
536 /* Allocate a key for mw from mr_table */
537 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
538 GFP_KERNEL);
539 if (id < 0) {
540 ibdev_err(ibdev, "failed to alloc id for MW key, id(%d)\n", id);
541 return -ENOMEM;
542 }
543
544 mw->rkey = hw_index_to_key(id);
545
546 ibmw->rkey = mw->rkey;
547 mw->pdn = to_hr_pd(ibmw->pd)->pdn;
548 mw->pbl_hop_num = hr_dev->caps.pbl_hop_num;
549 mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz;
550 mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz;
551
552 ret = hns_roce_mw_enable(hr_dev, mw);
553 if (ret)
554 goto err_mw;
555
556 return 0;
557
558 err_mw:
559 hns_roce_mw_free(hr_dev, mw);
560 return ret;
561 }
562
hns_roce_dealloc_mw(struct ib_mw * ibmw)563 int hns_roce_dealloc_mw(struct ib_mw *ibmw)
564 {
565 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
566 struct hns_roce_mw *mw = to_hr_mw(ibmw);
567
568 hns_roce_mw_free(hr_dev, mw);
569 return 0;
570 }
571
mtr_map_region(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_region * region,dma_addr_t * pages,int max_count)572 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
573 struct hns_roce_buf_region *region, dma_addr_t *pages,
574 int max_count)
575 {
576 int count, npage;
577 int offset, end;
578 __le64 *mtts;
579 u64 addr;
580 int i;
581
582 offset = region->offset;
583 end = offset + region->count;
584 npage = 0;
585 while (offset < end && npage < max_count) {
586 count = 0;
587 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
588 offset, &count);
589 if (!mtts)
590 return -ENOBUFS;
591
592 for (i = 0; i < count && npage < max_count; i++) {
593 addr = pages[npage];
594
595 mtts[i] = cpu_to_le64(addr);
596 npage++;
597 }
598 offset += count;
599 }
600
601 return npage;
602 }
603
mtr_has_mtt(struct hns_roce_buf_attr * attr)604 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr)
605 {
606 int i;
607
608 for (i = 0; i < attr->region_count; i++)
609 if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 &&
610 attr->region[i].hopnum > 0)
611 return true;
612
613 /* because the mtr only one root base address, when hopnum is 0 means
614 * root base address equals the first buffer address, thus all alloced
615 * memory must in a continuous space accessed by direct mode.
616 */
617 return false;
618 }
619
mtr_bufs_size(struct hns_roce_buf_attr * attr)620 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr)
621 {
622 size_t size = 0;
623 int i;
624
625 for (i = 0; i < attr->region_count; i++)
626 size += attr->region[i].size;
627
628 return size;
629 }
630
631 /*
632 * check the given pages in continuous address space
633 * Returns 0 on success, or the error page num.
634 */
mtr_check_direct_pages(dma_addr_t * pages,int page_count,unsigned int page_shift)635 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count,
636 unsigned int page_shift)
637 {
638 size_t page_size = 1 << page_shift;
639 int i;
640
641 for (i = 1; i < page_count; i++)
642 if (pages[i] - pages[i - 1] != page_size)
643 return i;
644
645 return 0;
646 }
647
mtr_free_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)648 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
649 {
650 /* release user buffers */
651 if (mtr->umem) {
652 ib_umem_release(mtr->umem);
653 mtr->umem = NULL;
654 }
655
656 /* release kernel buffers */
657 if (mtr->kmem) {
658 hns_roce_buf_free(hr_dev, mtr->kmem);
659 mtr->kmem = NULL;
660 }
661 }
662
mtr_alloc_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,struct ib_udata * udata,unsigned long user_addr)663 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
664 struct hns_roce_buf_attr *buf_attr,
665 struct ib_udata *udata, unsigned long user_addr)
666 {
667 struct ib_device *ibdev = &hr_dev->ib_dev;
668 size_t total_size;
669
670 total_size = mtr_bufs_size(buf_attr);
671
672 if (udata) {
673 mtr->kmem = NULL;
674 mtr->umem = ib_umem_get(ibdev, user_addr, total_size,
675 buf_attr->user_access);
676 if (IS_ERR_OR_NULL(mtr->umem)) {
677 ibdev_err(ibdev, "failed to get umem, ret = %ld.\n",
678 PTR_ERR(mtr->umem));
679 return -ENOMEM;
680 }
681 } else {
682 mtr->umem = NULL;
683 mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size,
684 buf_attr->page_shift,
685 mtr->hem_cfg.is_direct ?
686 HNS_ROCE_BUF_DIRECT : 0);
687 if (IS_ERR(mtr->kmem)) {
688 ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n",
689 PTR_ERR(mtr->kmem));
690 return PTR_ERR(mtr->kmem);
691 }
692 }
693
694 return 0;
695 }
696
mtr_map_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,int page_count,unsigned int page_shift)697 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
698 int page_count, unsigned int page_shift)
699 {
700 struct ib_device *ibdev = &hr_dev->ib_dev;
701 dma_addr_t *pages;
702 int npage;
703 int ret;
704
705 /* alloc a tmp array to store buffer's dma address */
706 pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL);
707 if (!pages)
708 return -ENOMEM;
709
710 if (mtr->umem)
711 npage = hns_roce_get_umem_bufs(hr_dev, pages, page_count,
712 mtr->umem, page_shift);
713 else
714 npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count,
715 mtr->kmem, page_shift);
716
717 if (npage != page_count) {
718 ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage,
719 page_count);
720 ret = -ENOBUFS;
721 goto err_alloc_list;
722 }
723
724 if (mtr->hem_cfg.is_direct && npage > 1) {
725 ret = mtr_check_direct_pages(pages, npage, page_shift);
726 if (ret) {
727 ibdev_err(ibdev, "failed to check %s page: %d / %d.\n",
728 mtr->umem ? "umtr" : "kmtr", ret, npage);
729 ret = -ENOBUFS;
730 goto err_alloc_list;
731 }
732 }
733
734 ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count);
735 if (ret)
736 ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret);
737
738 err_alloc_list:
739 kvfree(pages);
740
741 return ret;
742 }
743
hns_roce_mtr_map(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,dma_addr_t * pages,unsigned int page_cnt)744 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
745 dma_addr_t *pages, unsigned int page_cnt)
746 {
747 struct ib_device *ibdev = &hr_dev->ib_dev;
748 struct hns_roce_buf_region *r;
749 unsigned int i, mapped_cnt;
750 int ret = 0;
751
752 /*
753 * Only use the first page address as root ba when hopnum is 0, this
754 * is because the addresses of all pages are consecutive in this case.
755 */
756 if (mtr->hem_cfg.is_direct) {
757 mtr->hem_cfg.root_ba = pages[0];
758 return 0;
759 }
760
761 for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count &&
762 mapped_cnt < page_cnt; i++) {
763 r = &mtr->hem_cfg.region[i];
764 /* if hopnum is 0, no need to map pages in this region */
765 if (!r->hopnum) {
766 mapped_cnt += r->count;
767 continue;
768 }
769
770 if (r->offset + r->count > page_cnt) {
771 ret = -EINVAL;
772 ibdev_err(ibdev,
773 "failed to check mtr%u count %u + %u > %u.\n",
774 i, r->offset, r->count, page_cnt);
775 return ret;
776 }
777
778 ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset],
779 page_cnt - mapped_cnt);
780 if (ret < 0) {
781 ibdev_err(ibdev,
782 "failed to map mtr%u offset %u, ret = %d.\n",
783 i, r->offset, ret);
784 return ret;
785 }
786 mapped_cnt += ret;
787 ret = 0;
788 }
789
790 if (mapped_cnt < page_cnt) {
791 ret = -ENOBUFS;
792 ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n",
793 mapped_cnt, page_cnt);
794 }
795
796 return ret;
797 }
798
hns_roce_mtr_find(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,u32 offset,u64 * mtt_buf,int mtt_max,u64 * base_addr)799 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
800 u32 offset, u64 *mtt_buf, int mtt_max, u64 *base_addr)
801 {
802 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
803 int mtt_count, left;
804 u32 start_index;
805 int total = 0;
806 __le64 *mtts;
807 u32 npage;
808 u64 addr;
809
810 if (!mtt_buf || mtt_max < 1)
811 goto done;
812
813 /* no mtt memory in direct mode, so just return the buffer address */
814 if (cfg->is_direct) {
815 start_index = offset >> HNS_HW_PAGE_SHIFT;
816 for (mtt_count = 0; mtt_count < cfg->region_count &&
817 total < mtt_max; mtt_count++) {
818 npage = cfg->region[mtt_count].offset;
819 if (npage < start_index)
820 continue;
821
822 addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT);
823 mtt_buf[total] = addr;
824
825 total++;
826 }
827
828 goto done;
829 }
830
831 start_index = offset >> cfg->buf_pg_shift;
832 left = mtt_max;
833 while (left > 0) {
834 mtt_count = 0;
835 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
836 start_index + total,
837 &mtt_count);
838 if (!mtts || !mtt_count)
839 goto done;
840
841 npage = min(mtt_count, left);
842 left -= npage;
843 for (mtt_count = 0; mtt_count < npage; mtt_count++)
844 mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]);
845 }
846
847 done:
848 if (base_addr)
849 *base_addr = cfg->root_ba;
850
851 return total;
852 }
853
mtr_init_buf_cfg(struct hns_roce_dev * hr_dev,struct hns_roce_buf_attr * attr,struct hns_roce_hem_cfg * cfg,unsigned int * buf_page_shift,u64 unalinged_size)854 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev,
855 struct hns_roce_buf_attr *attr,
856 struct hns_roce_hem_cfg *cfg,
857 unsigned int *buf_page_shift, u64 unalinged_size)
858 {
859 struct hns_roce_buf_region *r;
860 u64 first_region_padding;
861 int page_cnt, region_cnt;
862 unsigned int page_shift;
863 size_t buf_size;
864
865 /* If mtt is disabled, all pages must be within a continuous range */
866 cfg->is_direct = !mtr_has_mtt(attr);
867 buf_size = mtr_bufs_size(attr);
868 if (cfg->is_direct) {
869 /* When HEM buffer uses 0-level addressing, the page size is
870 * equal to the whole buffer size, and we split the buffer into
871 * small pages which is used to check whether the adjacent
872 * units are in the continuous space and its size is fixed to
873 * 4K based on hns ROCEE's requirement.
874 */
875 page_shift = HNS_HW_PAGE_SHIFT;
876
877 /* The ROCEE requires the page size to be 4K * 2 ^ N. */
878 cfg->buf_pg_count = 1;
879 cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT +
880 order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE));
881 first_region_padding = 0;
882 } else {
883 page_shift = attr->page_shift;
884 cfg->buf_pg_count = DIV_ROUND_UP(buf_size + unalinged_size,
885 1 << page_shift);
886 cfg->buf_pg_shift = page_shift;
887 first_region_padding = unalinged_size;
888 }
889
890 /* Convert buffer size to page index and page count for each region and
891 * the buffer's offset needs to be appended to the first region.
892 */
893 for (page_cnt = 0, region_cnt = 0; region_cnt < attr->region_count &&
894 region_cnt < ARRAY_SIZE(cfg->region); region_cnt++) {
895 r = &cfg->region[region_cnt];
896 r->offset = page_cnt;
897 buf_size = hr_hw_page_align(attr->region[region_cnt].size +
898 first_region_padding);
899 r->count = DIV_ROUND_UP(buf_size, 1 << page_shift);
900 first_region_padding = 0;
901 page_cnt += r->count;
902 r->hopnum = to_hr_hem_hopnum(attr->region[region_cnt].hopnum,
903 r->count);
904 }
905
906 cfg->region_count = region_cnt;
907 *buf_page_shift = page_shift;
908
909 return page_cnt;
910 }
911
mtr_alloc_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,unsigned int ba_page_shift)912 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
913 unsigned int ba_page_shift)
914 {
915 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
916 int ret;
917
918 hns_roce_hem_list_init(&mtr->hem_list);
919 if (!cfg->is_direct) {
920 ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list,
921 cfg->region, cfg->region_count,
922 ba_page_shift);
923 if (ret)
924 return ret;
925 cfg->root_ba = mtr->hem_list.root_ba;
926 cfg->ba_pg_shift = ba_page_shift;
927 } else {
928 cfg->ba_pg_shift = cfg->buf_pg_shift;
929 }
930
931 return 0;
932 }
933
mtr_free_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)934 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
935 {
936 hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
937 }
938
939 /**
940 * hns_roce_mtr_create - Create hns memory translate region.
941 *
942 * @hr_dev: RoCE device struct pointer
943 * @mtr: memory translate region
944 * @buf_attr: buffer attribute for creating mtr
945 * @ba_page_shift: page shift for multi-hop base address table
946 * @udata: user space context, if it's NULL, means kernel space
947 * @user_addr: userspace virtual address to start at
948 */
hns_roce_mtr_create(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,unsigned int ba_page_shift,struct ib_udata * udata,unsigned long user_addr)949 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
950 struct hns_roce_buf_attr *buf_attr,
951 unsigned int ba_page_shift, struct ib_udata *udata,
952 unsigned long user_addr)
953 {
954 struct ib_device *ibdev = &hr_dev->ib_dev;
955 unsigned int buf_page_shift = 0;
956 int buf_page_cnt;
957 int ret;
958
959 buf_page_cnt = mtr_init_buf_cfg(hr_dev, buf_attr, &mtr->hem_cfg,
960 &buf_page_shift,
961 udata ? user_addr & ~PAGE_MASK : 0);
962 if (buf_page_cnt < 1 || buf_page_shift < HNS_HW_PAGE_SHIFT) {
963 ibdev_err(ibdev, "failed to init mtr cfg, count %d shift %u.\n",
964 buf_page_cnt, buf_page_shift);
965 return -EINVAL;
966 }
967
968 ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift);
969 if (ret) {
970 ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret);
971 return ret;
972 }
973
974 /* The caller has its own buffer list and invokes the hns_roce_mtr_map()
975 * to finish the MTT configuration.
976 */
977 if (buf_attr->mtt_only) {
978 mtr->umem = NULL;
979 mtr->kmem = NULL;
980 return 0;
981 }
982
983 ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr);
984 if (ret) {
985 ibdev_err(ibdev, "failed to alloc mtr bufs, ret = %d.\n", ret);
986 goto err_alloc_mtt;
987 }
988
989 /* Write buffer's dma address to MTT */
990 ret = mtr_map_bufs(hr_dev, mtr, buf_page_cnt, buf_page_shift);
991 if (ret)
992 ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret);
993 else
994 return 0;
995
996 mtr_free_bufs(hr_dev, mtr);
997 err_alloc_mtt:
998 mtr_free_mtt(hr_dev, mtr);
999 return ret;
1000 }
1001
hns_roce_mtr_destroy(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)1002 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
1003 {
1004 /* release multi-hop addressing resource */
1005 hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
1006
1007 /* free buffers */
1008 mtr_free_bufs(hr_dev, mtr);
1009 }
1010