1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
4 * Steven J. Hill <sjhill@realitydiluted.com>
5 * Thomas Gleixner <tglx@linutronix.de>
6 *
7 * Info:
8 * Contains standard defines and IDs for NAND flash devices
9 *
10 * Changelog:
11 * See git changelog.
12 */
13 #ifndef __LINUX_MTD_RAWNAND_H
14 #define __LINUX_MTD_RAWNAND_H
15
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/nand.h>
18 #include <linux/mtd/flashchip.h>
19 #include <linux/mtd/bbm.h>
20 #include <linux/mtd/jedec.h>
21 #include <linux/mtd/onfi.h>
22 #include <linux/mutex.h>
23 #include <linux/of.h>
24 #include <linux/types.h>
25
26 struct nand_chip;
27 struct gpio_desc;
28
29 /* The maximum number of NAND chips in an array */
30 #define NAND_MAX_CHIPS 8
31
32 /*
33 * Constants for hardware specific CLE/ALE/NCE function
34 *
35 * These are bits which can be or'ed to set/clear multiple
36 * bits in one go.
37 */
38 /* Select the chip by setting nCE to low */
39 #define NAND_NCE 0x01
40 /* Select the command latch by setting CLE to high */
41 #define NAND_CLE 0x02
42 /* Select the address latch by setting ALE to high */
43 #define NAND_ALE 0x04
44
45 #define NAND_CTRL_CLE (NAND_NCE | NAND_CLE)
46 #define NAND_CTRL_ALE (NAND_NCE | NAND_ALE)
47 #define NAND_CTRL_CHANGE 0x80
48
49 /*
50 * Standard NAND flash commands
51 */
52 #define NAND_CMD_READ0 0
53 #define NAND_CMD_READ1 1
54 #define NAND_CMD_RNDOUT 5
55 #define NAND_CMD_PAGEPROG 0x10
56 #define NAND_CMD_READOOB 0x50
57 #define NAND_CMD_ERASE1 0x60
58 #define NAND_CMD_STATUS 0x70
59 #define NAND_CMD_SEQIN 0x80
60 #define NAND_CMD_RNDIN 0x85
61 #define NAND_CMD_READID 0x90
62 #define NAND_CMD_ERASE2 0xd0
63 #define NAND_CMD_PARAM 0xec
64 #define NAND_CMD_GET_FEATURES 0xee
65 #define NAND_CMD_SET_FEATURES 0xef
66 #define NAND_CMD_RESET 0xff
67
68 /* Extended commands for large page devices */
69 #define NAND_CMD_READSTART 0x30
70 #define NAND_CMD_READCACHESEQ 0x31
71 #define NAND_CMD_READCACHEEND 0x3f
72 #define NAND_CMD_RNDOUTSTART 0xE0
73 #define NAND_CMD_CACHEDPROG 0x15
74
75 #define NAND_CMD_NONE -1
76
77 /* Status bits */
78 #define NAND_STATUS_FAIL 0x01
79 #define NAND_STATUS_FAIL_N1 0x02
80 #define NAND_STATUS_TRUE_READY 0x20
81 #define NAND_STATUS_READY 0x40
82 #define NAND_STATUS_WP 0x80
83
84 #define NAND_DATA_IFACE_CHECK_ONLY -1
85
86 /*
87 * Constants for Hardware ECC
88 */
89 /* Reset Hardware ECC for read */
90 #define NAND_ECC_READ 0
91 /* Reset Hardware ECC for write */
92 #define NAND_ECC_WRITE 1
93 /* Enable Hardware ECC before syndrome is read back from flash */
94 #define NAND_ECC_READSYN 2
95
96 /*
97 * Enable generic NAND 'page erased' check. This check is only done when
98 * ecc.correct() returns -EBADMSG.
99 * Set this flag if your implementation does not fix bitflips in erased
100 * pages and you want to rely on the default implementation.
101 */
102 #define NAND_ECC_GENERIC_ERASED_CHECK BIT(0)
103
104 /*
105 * Option constants for bizarre disfunctionality and real
106 * features.
107 */
108
109 /* Buswidth is 16 bit */
110 #define NAND_BUSWIDTH_16 BIT(1)
111
112 /*
113 * When using software implementation of Hamming, we can specify which byte
114 * ordering should be used.
115 */
116 #define NAND_ECC_SOFT_HAMMING_SM_ORDER BIT(2)
117
118 /* Chip has cache program function */
119 #define NAND_CACHEPRG BIT(3)
120 /* Options valid for Samsung large page devices */
121 #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
122
123 /*
124 * Chip requires ready check on read (for auto-incremented sequential read).
125 * True only for small page devices; large page devices do not support
126 * autoincrement.
127 */
128 #define NAND_NEED_READRDY BIT(8)
129
130 /* Chip does not allow subpage writes */
131 #define NAND_NO_SUBPAGE_WRITE BIT(9)
132
133 /* Device is one of 'new' xD cards that expose fake nand command set */
134 #define NAND_BROKEN_XD BIT(10)
135
136 /* Device behaves just like nand, but is readonly */
137 #define NAND_ROM BIT(11)
138
139 /* Device supports subpage reads */
140 #define NAND_SUBPAGE_READ BIT(12)
141 /* Macros to identify the above */
142 #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
143
144 /*
145 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
146 * patterns.
147 */
148 #define NAND_NEED_SCRAMBLING BIT(13)
149
150 /* Device needs 3rd row address cycle */
151 #define NAND_ROW_ADDR_3 BIT(14)
152
153 /* Non chip related options */
154 /* This option skips the bbt scan during initialization. */
155 #define NAND_SKIP_BBTSCAN BIT(16)
156 /* Chip may not exist, so silence any errors in scan */
157 #define NAND_SCAN_SILENT_NODEV BIT(18)
158
159 /*
160 * Autodetect nand buswidth with readid/onfi.
161 * This suppose the driver will configure the hardware in 8 bits mode
162 * when calling nand_scan_ident, and update its configuration
163 * before calling nand_scan_tail.
164 */
165 #define NAND_BUSWIDTH_AUTO BIT(19)
166
167 /*
168 * This option could be defined by controller drivers to protect against
169 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
170 */
171 #define NAND_USES_DMA BIT(20)
172
173 /*
174 * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
175 * on the default ->cmdfunc() implementation, you may want to let the core
176 * handle the tCCS delay which is required when a column change (RNDIN or
177 * RNDOUT) is requested.
178 * If your controller already takes care of this delay, you don't need to set
179 * this flag.
180 */
181 #define NAND_WAIT_TCCS BIT(21)
182
183 /*
184 * Whether the NAND chip is a boot medium. Drivers might use this information
185 * to select ECC algorithms supported by the boot ROM or similar restrictions.
186 */
187 #define NAND_IS_BOOT_MEDIUM BIT(22)
188
189 /*
190 * Do not try to tweak the timings at runtime. This is needed when the
191 * controller initializes the timings on itself or when it relies on
192 * configuration done by the bootloader.
193 */
194 #define NAND_KEEP_TIMINGS BIT(23)
195
196 /*
197 * There are different places where the manufacturer stores the factory bad
198 * block markers.
199 *
200 * Position within the block: Each of these pages needs to be checked for a
201 * bad block marking pattern.
202 */
203 #define NAND_BBM_FIRSTPAGE BIT(24)
204 #define NAND_BBM_SECONDPAGE BIT(25)
205 #define NAND_BBM_LASTPAGE BIT(26)
206
207 /*
208 * Some controllers with pipelined ECC engines override the BBM marker with
209 * data or ECC bytes, thus making bad block detection through bad block marker
210 * impossible. Let's flag those chips so the core knows it shouldn't check the
211 * BBM and consider all blocks good.
212 */
213 #define NAND_NO_BBM_QUIRK BIT(27)
214
215 /* Cell info constants */
216 #define NAND_CI_CHIPNR_MSK 0x03
217 #define NAND_CI_CELLTYPE_MSK 0x0C
218 #define NAND_CI_CELLTYPE_SHIFT 2
219
220 /* Position within the OOB data of the page */
221 #define NAND_BBM_POS_SMALL 5
222 #define NAND_BBM_POS_LARGE 0
223
224 /**
225 * struct nand_parameters - NAND generic parameters from the parameter page
226 * @model: Model name
227 * @supports_set_get_features: The NAND chip supports setting/getting features
228 * @set_feature_list: Bitmap of features that can be set
229 * @get_feature_list: Bitmap of features that can be get
230 * @onfi: ONFI specific parameters
231 */
232 struct nand_parameters {
233 /* Generic parameters */
234 const char *model;
235 bool supports_set_get_features;
236 DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
237 DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
238
239 /* ONFI parameters */
240 struct onfi_params *onfi;
241 };
242
243 /* The maximum expected count of bytes in the NAND ID sequence */
244 #define NAND_MAX_ID_LEN 8
245
246 /**
247 * struct nand_id - NAND id structure
248 * @data: buffer containing the id bytes.
249 * @len: ID length.
250 */
251 struct nand_id {
252 u8 data[NAND_MAX_ID_LEN];
253 int len;
254 };
255
256 /**
257 * struct nand_ecc_step_info - ECC step information of ECC engine
258 * @stepsize: data bytes per ECC step
259 * @strengths: array of supported strengths
260 * @nstrengths: number of supported strengths
261 */
262 struct nand_ecc_step_info {
263 int stepsize;
264 const int *strengths;
265 int nstrengths;
266 };
267
268 /**
269 * struct nand_ecc_caps - capability of ECC engine
270 * @stepinfos: array of ECC step information
271 * @nstepinfos: number of ECC step information
272 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
273 */
274 struct nand_ecc_caps {
275 const struct nand_ecc_step_info *stepinfos;
276 int nstepinfos;
277 int (*calc_ecc_bytes)(int step_size, int strength);
278 };
279
280 /* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
281 #define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...) \
282 static const int __name##_strengths[] = { __VA_ARGS__ }; \
283 static const struct nand_ecc_step_info __name##_stepinfo = { \
284 .stepsize = __step, \
285 .strengths = __name##_strengths, \
286 .nstrengths = ARRAY_SIZE(__name##_strengths), \
287 }; \
288 static const struct nand_ecc_caps __name = { \
289 .stepinfos = &__name##_stepinfo, \
290 .nstepinfos = 1, \
291 .calc_ecc_bytes = __calc, \
292 }
293
294 /**
295 * struct nand_ecc_ctrl - Control structure for ECC
296 * @engine_type: ECC engine type
297 * @placement: OOB bytes placement
298 * @algo: ECC algorithm
299 * @steps: number of ECC steps per page
300 * @size: data bytes per ECC step
301 * @bytes: ECC bytes per step
302 * @strength: max number of correctible bits per ECC step
303 * @total: total number of ECC bytes per page
304 * @prepad: padding information for syndrome based ECC generators
305 * @postpad: padding information for syndrome based ECC generators
306 * @options: ECC specific options (see NAND_ECC_XXX flags defined above)
307 * @calc_buf: buffer for calculated ECC, size is oobsize.
308 * @code_buf: buffer for ECC read from flash, size is oobsize.
309 * @hwctl: function to control hardware ECC generator. Must only
310 * be provided if an hardware ECC is available
311 * @calculate: function for ECC calculation or readback from ECC hardware
312 * @correct: function for ECC correction, matching to ECC generator (sw/hw).
313 * Should return a positive number representing the number of
314 * corrected bitflips, -EBADMSG if the number of bitflips exceed
315 * ECC strength, or any other error code if the error is not
316 * directly related to correction.
317 * If -EBADMSG is returned the input buffers should be left
318 * untouched.
319 * @read_page_raw: function to read a raw page without ECC. This function
320 * should hide the specific layout used by the ECC
321 * controller and always return contiguous in-band and
322 * out-of-band data even if they're not stored
323 * contiguously on the NAND chip (e.g.
324 * NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
325 * out-of-band data).
326 * @write_page_raw: function to write a raw page without ECC. This function
327 * should hide the specific layout used by the ECC
328 * controller and consider the passed data as contiguous
329 * in-band and out-of-band data. ECC controller is
330 * responsible for doing the appropriate transformations
331 * to adapt to its specific layout (e.g.
332 * NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
333 * out-of-band data).
334 * @read_page: function to read a page according to the ECC generator
335 * requirements; returns maximum number of bitflips corrected in
336 * any single ECC step, -EIO hw error
337 * @read_subpage: function to read parts of the page covered by ECC;
338 * returns same as read_page()
339 * @write_subpage: function to write parts of the page covered by ECC.
340 * @write_page: function to write a page according to the ECC generator
341 * requirements.
342 * @write_oob_raw: function to write chip OOB data without ECC
343 * @read_oob_raw: function to read chip OOB data without ECC
344 * @read_oob: function to read chip OOB data
345 * @write_oob: function to write chip OOB data
346 */
347 struct nand_ecc_ctrl {
348 enum nand_ecc_engine_type engine_type;
349 enum nand_ecc_placement placement;
350 enum nand_ecc_algo algo;
351 int steps;
352 int size;
353 int bytes;
354 int total;
355 int strength;
356 int prepad;
357 int postpad;
358 unsigned int options;
359 u8 *calc_buf;
360 u8 *code_buf;
361 void (*hwctl)(struct nand_chip *chip, int mode);
362 int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
363 uint8_t *ecc_code);
364 int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
365 uint8_t *calc_ecc);
366 int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
367 int oob_required, int page);
368 int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
369 int oob_required, int page);
370 int (*read_page)(struct nand_chip *chip, uint8_t *buf,
371 int oob_required, int page);
372 int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
373 uint32_t len, uint8_t *buf, int page);
374 int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
375 uint32_t data_len, const uint8_t *data_buf,
376 int oob_required, int page);
377 int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
378 int oob_required, int page);
379 int (*write_oob_raw)(struct nand_chip *chip, int page);
380 int (*read_oob_raw)(struct nand_chip *chip, int page);
381 int (*read_oob)(struct nand_chip *chip, int page);
382 int (*write_oob)(struct nand_chip *chip, int page);
383 };
384
385 /**
386 * struct nand_sdr_timings - SDR NAND chip timings
387 *
388 * This struct defines the timing requirements of a SDR NAND chip.
389 * These information can be found in every NAND datasheets and the timings
390 * meaning are described in the ONFI specifications:
391 * https://media-www.micron.com/-/media/client/onfi/specs/onfi_3_1_spec.pdf
392 * (chapter 4.15 Timing Parameters)
393 *
394 * All these timings are expressed in picoseconds.
395 *
396 * @tBERS_max: Block erase time
397 * @tCCS_min: Change column setup time
398 * @tPROG_max: Page program time
399 * @tR_max: Page read time
400 * @tALH_min: ALE hold time
401 * @tADL_min: ALE to data loading time
402 * @tALS_min: ALE setup time
403 * @tAR_min: ALE to RE# delay
404 * @tCEA_max: CE# access time
405 * @tCEH_min: CE# high hold time
406 * @tCH_min: CE# hold time
407 * @tCHZ_max: CE# high to output hi-Z
408 * @tCLH_min: CLE hold time
409 * @tCLR_min: CLE to RE# delay
410 * @tCLS_min: CLE setup time
411 * @tCOH_min: CE# high to output hold
412 * @tCS_min: CE# setup time
413 * @tDH_min: Data hold time
414 * @tDS_min: Data setup time
415 * @tFEAT_max: Busy time for Set Features and Get Features
416 * @tIR_min: Output hi-Z to RE# low
417 * @tITC_max: Interface and Timing Mode Change time
418 * @tRC_min: RE# cycle time
419 * @tREA_max: RE# access time
420 * @tREH_min: RE# high hold time
421 * @tRHOH_min: RE# high to output hold
422 * @tRHW_min: RE# high to WE# low
423 * @tRHZ_max: RE# high to output hi-Z
424 * @tRLOH_min: RE# low to output hold
425 * @tRP_min: RE# pulse width
426 * @tRR_min: Ready to RE# low (data only)
427 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
428 * rising edge of R/B#.
429 * @tWB_max: WE# high to SR[6] low
430 * @tWC_min: WE# cycle time
431 * @tWH_min: WE# high hold time
432 * @tWHR_min: WE# high to RE# low
433 * @tWP_min: WE# pulse width
434 * @tWW_min: WP# transition to WE# low
435 */
436 struct nand_sdr_timings {
437 u64 tBERS_max;
438 u32 tCCS_min;
439 u64 tPROG_max;
440 u64 tR_max;
441 u32 tALH_min;
442 u32 tADL_min;
443 u32 tALS_min;
444 u32 tAR_min;
445 u32 tCEA_max;
446 u32 tCEH_min;
447 u32 tCH_min;
448 u32 tCHZ_max;
449 u32 tCLH_min;
450 u32 tCLR_min;
451 u32 tCLS_min;
452 u32 tCOH_min;
453 u32 tCS_min;
454 u32 tDH_min;
455 u32 tDS_min;
456 u32 tFEAT_max;
457 u32 tIR_min;
458 u32 tITC_max;
459 u32 tRC_min;
460 u32 tREA_max;
461 u32 tREH_min;
462 u32 tRHOH_min;
463 u32 tRHW_min;
464 u32 tRHZ_max;
465 u32 tRLOH_min;
466 u32 tRP_min;
467 u32 tRR_min;
468 u64 tRST_max;
469 u32 tWB_max;
470 u32 tWC_min;
471 u32 tWH_min;
472 u32 tWHR_min;
473 u32 tWP_min;
474 u32 tWW_min;
475 };
476
477 /**
478 * struct nand_nvddr_timings - NV-DDR NAND chip timings
479 *
480 * This struct defines the timing requirements of a NV-DDR NAND data interface.
481 * These information can be found in every NAND datasheets and the timings
482 * meaning are described in the ONFI specifications:
483 * https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_1_gold.pdf
484 * (chapter 4.18.2 NV-DDR)
485 *
486 * All these timings are expressed in picoseconds.
487 *
488 * @tBERS_max: Block erase time
489 * @tCCS_min: Change column setup time
490 * @tPROG_max: Page program time
491 * @tR_max: Page read time
492 * @tAC_min: Access window of DQ[7:0] from CLK
493 * @tAC_max: Access window of DQ[7:0] from CLK
494 * @tADL_min: ALE to data loading time
495 * @tCAD_min: Command, Address, Data delay
496 * @tCAH_min: Command/Address DQ hold time
497 * @tCALH_min: W/R_n, CLE and ALE hold time
498 * @tCALS_min: W/R_n, CLE and ALE setup time
499 * @tCAS_min: Command/address DQ setup time
500 * @tCEH_min: CE# high hold time
501 * @tCH_min: CE# hold time
502 * @tCK_min: Average clock cycle time
503 * @tCS_min: CE# setup time
504 * @tDH_min: Data hold time
505 * @tDQSCK_min: Start of the access window of DQS from CLK
506 * @tDQSCK_max: End of the access window of DQS from CLK
507 * @tDQSD_min: Min W/R_n low to DQS/DQ driven by device
508 * @tDQSD_max: Max W/R_n low to DQS/DQ driven by device
509 * @tDQSHZ_max: W/R_n high to DQS/DQ tri-state by device
510 * @tDQSQ_max: DQS-DQ skew, DQS to last DQ valid, per access
511 * @tDS_min: Data setup time
512 * @tDSC_min: DQS cycle time
513 * @tFEAT_max: Busy time for Set Features and Get Features
514 * @tITC_max: Interface and Timing Mode Change time
515 * @tQHS_max: Data hold skew factor
516 * @tRHW_min: Data output cycle to command, address, or data input cycle
517 * @tRR_min: Ready to RE# low (data only)
518 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
519 * rising edge of R/B#.
520 * @tWB_max: WE# high to SR[6] low
521 * @tWHR_min: WE# high to RE# low
522 * @tWRCK_min: W/R_n low to data output cycle
523 * @tWW_min: WP# transition to WE# low
524 */
525 struct nand_nvddr_timings {
526 u64 tBERS_max;
527 u32 tCCS_min;
528 u64 tPROG_max;
529 u64 tR_max;
530 u32 tAC_min;
531 u32 tAC_max;
532 u32 tADL_min;
533 u32 tCAD_min;
534 u32 tCAH_min;
535 u32 tCALH_min;
536 u32 tCALS_min;
537 u32 tCAS_min;
538 u32 tCEH_min;
539 u32 tCH_min;
540 u32 tCK_min;
541 u32 tCS_min;
542 u32 tDH_min;
543 u32 tDQSCK_min;
544 u32 tDQSCK_max;
545 u32 tDQSD_min;
546 u32 tDQSD_max;
547 u32 tDQSHZ_max;
548 u32 tDQSQ_max;
549 u32 tDS_min;
550 u32 tDSC_min;
551 u32 tFEAT_max;
552 u32 tITC_max;
553 u32 tQHS_max;
554 u32 tRHW_min;
555 u32 tRR_min;
556 u32 tRST_max;
557 u32 tWB_max;
558 u32 tWHR_min;
559 u32 tWRCK_min;
560 u32 tWW_min;
561 };
562
563 /*
564 * While timings related to the data interface itself are mostly different
565 * between SDR and NV-DDR, timings related to the internal chip behavior are
566 * common. IOW, the following entries which describe the internal delays have
567 * the same definition and are shared in both SDR and NV-DDR timing structures:
568 * - tADL_min
569 * - tBERS_max
570 * - tCCS_min
571 * - tFEAT_max
572 * - tPROG_max
573 * - tR_max
574 * - tRR_min
575 * - tRST_max
576 * - tWB_max
577 *
578 * The below macros return the value of a given timing, no matter the interface.
579 */
580 #define NAND_COMMON_TIMING_PS(conf, timing_name) \
581 nand_interface_is_sdr(conf) ? \
582 nand_get_sdr_timings(conf)->timing_name : \
583 nand_get_nvddr_timings(conf)->timing_name
584
585 #define NAND_COMMON_TIMING_MS(conf, timing_name) \
586 PSEC_TO_MSEC(NAND_COMMON_TIMING_PS((conf), timing_name))
587
588 #define NAND_COMMON_TIMING_NS(conf, timing_name) \
589 PSEC_TO_NSEC(NAND_COMMON_TIMING_PS((conf), timing_name))
590
591 /**
592 * enum nand_interface_type - NAND interface type
593 * @NAND_SDR_IFACE: Single Data Rate interface
594 * @NAND_NVDDR_IFACE: Double Data Rate interface
595 */
596 enum nand_interface_type {
597 NAND_SDR_IFACE,
598 NAND_NVDDR_IFACE,
599 };
600
601 /**
602 * struct nand_interface_config - NAND interface timing
603 * @type: type of the timing
604 * @timings: The timing information
605 * @timings.mode: Timing mode as defined in the specification
606 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
607 * @timings.nvddr: Use it when @type is %NAND_NVDDR_IFACE.
608 */
609 struct nand_interface_config {
610 enum nand_interface_type type;
611 struct nand_timings {
612 unsigned int mode;
613 union {
614 struct nand_sdr_timings sdr;
615 struct nand_nvddr_timings nvddr;
616 };
617 } timings;
618 };
619
620 /**
621 * nand_interface_is_sdr - get the interface type
622 * @conf: The data interface
623 */
nand_interface_is_sdr(const struct nand_interface_config * conf)624 static bool nand_interface_is_sdr(const struct nand_interface_config *conf)
625 {
626 return conf->type == NAND_SDR_IFACE;
627 }
628
629 /**
630 * nand_interface_is_nvddr - get the interface type
631 * @conf: The data interface
632 */
nand_interface_is_nvddr(const struct nand_interface_config * conf)633 static bool nand_interface_is_nvddr(const struct nand_interface_config *conf)
634 {
635 return conf->type == NAND_NVDDR_IFACE;
636 }
637
638 /**
639 * nand_get_sdr_timings - get SDR timing from data interface
640 * @conf: The data interface
641 */
642 static inline const struct nand_sdr_timings *
nand_get_sdr_timings(const struct nand_interface_config * conf)643 nand_get_sdr_timings(const struct nand_interface_config *conf)
644 {
645 if (!nand_interface_is_sdr(conf))
646 return ERR_PTR(-EINVAL);
647
648 return &conf->timings.sdr;
649 }
650
651 /**
652 * nand_get_nvddr_timings - get NV-DDR timing from data interface
653 * @conf: The data interface
654 */
655 static inline const struct nand_nvddr_timings *
nand_get_nvddr_timings(const struct nand_interface_config * conf)656 nand_get_nvddr_timings(const struct nand_interface_config *conf)
657 {
658 if (!nand_interface_is_nvddr(conf))
659 return ERR_PTR(-EINVAL);
660
661 return &conf->timings.nvddr;
662 }
663
664 /**
665 * struct nand_op_cmd_instr - Definition of a command instruction
666 * @opcode: the command to issue in one cycle
667 */
668 struct nand_op_cmd_instr {
669 u8 opcode;
670 };
671
672 /**
673 * struct nand_op_addr_instr - Definition of an address instruction
674 * @naddrs: length of the @addrs array
675 * @addrs: array containing the address cycles to issue
676 */
677 struct nand_op_addr_instr {
678 unsigned int naddrs;
679 const u8 *addrs;
680 };
681
682 /**
683 * struct nand_op_data_instr - Definition of a data instruction
684 * @len: number of data bytes to move
685 * @buf: buffer to fill
686 * @buf.in: buffer to fill when reading from the NAND chip
687 * @buf.out: buffer to read from when writing to the NAND chip
688 * @force_8bit: force 8-bit access
689 *
690 * Please note that "in" and "out" are inverted from the ONFI specification
691 * and are from the controller perspective, so a "in" is a read from the NAND
692 * chip while a "out" is a write to the NAND chip.
693 */
694 struct nand_op_data_instr {
695 unsigned int len;
696 union {
697 void *in;
698 const void *out;
699 } buf;
700 bool force_8bit;
701 };
702
703 /**
704 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
705 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
706 */
707 struct nand_op_waitrdy_instr {
708 unsigned int timeout_ms;
709 };
710
711 /**
712 * enum nand_op_instr_type - Definition of all instruction types
713 * @NAND_OP_CMD_INSTR: command instruction
714 * @NAND_OP_ADDR_INSTR: address instruction
715 * @NAND_OP_DATA_IN_INSTR: data in instruction
716 * @NAND_OP_DATA_OUT_INSTR: data out instruction
717 * @NAND_OP_WAITRDY_INSTR: wait ready instruction
718 */
719 enum nand_op_instr_type {
720 NAND_OP_CMD_INSTR,
721 NAND_OP_ADDR_INSTR,
722 NAND_OP_DATA_IN_INSTR,
723 NAND_OP_DATA_OUT_INSTR,
724 NAND_OP_WAITRDY_INSTR,
725 };
726
727 /**
728 * struct nand_op_instr - Instruction object
729 * @type: the instruction type
730 * @ctx: extra data associated to the instruction. You'll have to use the
731 * appropriate element depending on @type
732 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
733 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
734 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
735 * or %NAND_OP_DATA_OUT_INSTR
736 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
737 * @delay_ns: delay the controller should apply after the instruction has been
738 * issued on the bus. Most modern controllers have internal timings
739 * control logic, and in this case, the controller driver can ignore
740 * this field.
741 */
742 struct nand_op_instr {
743 enum nand_op_instr_type type;
744 union {
745 struct nand_op_cmd_instr cmd;
746 struct nand_op_addr_instr addr;
747 struct nand_op_data_instr data;
748 struct nand_op_waitrdy_instr waitrdy;
749 } ctx;
750 unsigned int delay_ns;
751 };
752
753 /*
754 * Special handling must be done for the WAITRDY timeout parameter as it usually
755 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
756 * tBERS (during an erase) which all of them are u64 values that cannot be
757 * divided by usual kernel macros and must be handled with the special
758 * DIV_ROUND_UP_ULL() macro.
759 *
760 * Cast to type of dividend is needed here to guarantee that the result won't
761 * be an unsigned long long when the dividend is an unsigned long (or smaller),
762 * which is what the compiler does when it sees ternary operator with 2
763 * different return types (picks the largest type to make sure there's no
764 * loss).
765 */
766 #define __DIVIDE(dividend, divisor) ({ \
767 (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ? \
768 DIV_ROUND_UP(dividend, divisor) : \
769 DIV_ROUND_UP_ULL(dividend, divisor)); \
770 })
771 #define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
772 #define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
773
774 #define NAND_OP_CMD(id, ns) \
775 { \
776 .type = NAND_OP_CMD_INSTR, \
777 .ctx.cmd.opcode = id, \
778 .delay_ns = ns, \
779 }
780
781 #define NAND_OP_ADDR(ncycles, cycles, ns) \
782 { \
783 .type = NAND_OP_ADDR_INSTR, \
784 .ctx.addr = { \
785 .naddrs = ncycles, \
786 .addrs = cycles, \
787 }, \
788 .delay_ns = ns, \
789 }
790
791 #define NAND_OP_DATA_IN(l, b, ns) \
792 { \
793 .type = NAND_OP_DATA_IN_INSTR, \
794 .ctx.data = { \
795 .len = l, \
796 .buf.in = b, \
797 .force_8bit = false, \
798 }, \
799 .delay_ns = ns, \
800 }
801
802 #define NAND_OP_DATA_OUT(l, b, ns) \
803 { \
804 .type = NAND_OP_DATA_OUT_INSTR, \
805 .ctx.data = { \
806 .len = l, \
807 .buf.out = b, \
808 .force_8bit = false, \
809 }, \
810 .delay_ns = ns, \
811 }
812
813 #define NAND_OP_8BIT_DATA_IN(l, b, ns) \
814 { \
815 .type = NAND_OP_DATA_IN_INSTR, \
816 .ctx.data = { \
817 .len = l, \
818 .buf.in = b, \
819 .force_8bit = true, \
820 }, \
821 .delay_ns = ns, \
822 }
823
824 #define NAND_OP_8BIT_DATA_OUT(l, b, ns) \
825 { \
826 .type = NAND_OP_DATA_OUT_INSTR, \
827 .ctx.data = { \
828 .len = l, \
829 .buf.out = b, \
830 .force_8bit = true, \
831 }, \
832 .delay_ns = ns, \
833 }
834
835 #define NAND_OP_WAIT_RDY(tout_ms, ns) \
836 { \
837 .type = NAND_OP_WAITRDY_INSTR, \
838 .ctx.waitrdy.timeout_ms = tout_ms, \
839 .delay_ns = ns, \
840 }
841
842 /**
843 * struct nand_subop - a sub operation
844 * @cs: the CS line to select for this NAND sub-operation
845 * @instrs: array of instructions
846 * @ninstrs: length of the @instrs array
847 * @first_instr_start_off: offset to start from for the first instruction
848 * of the sub-operation
849 * @last_instr_end_off: offset to end at (excluded) for the last instruction
850 * of the sub-operation
851 *
852 * Both @first_instr_start_off and @last_instr_end_off only apply to data or
853 * address instructions.
854 *
855 * When an operation cannot be handled as is by the NAND controller, it will
856 * be split by the parser into sub-operations which will be passed to the
857 * controller driver.
858 */
859 struct nand_subop {
860 unsigned int cs;
861 const struct nand_op_instr *instrs;
862 unsigned int ninstrs;
863 unsigned int first_instr_start_off;
864 unsigned int last_instr_end_off;
865 };
866
867 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
868 unsigned int op_id);
869 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
870 unsigned int op_id);
871 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
872 unsigned int op_id);
873 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
874 unsigned int op_id);
875
876 /**
877 * struct nand_op_parser_addr_constraints - Constraints for address instructions
878 * @maxcycles: maximum number of address cycles the controller can issue in a
879 * single step
880 */
881 struct nand_op_parser_addr_constraints {
882 unsigned int maxcycles;
883 };
884
885 /**
886 * struct nand_op_parser_data_constraints - Constraints for data instructions
887 * @maxlen: maximum data length that the controller can handle in a single step
888 */
889 struct nand_op_parser_data_constraints {
890 unsigned int maxlen;
891 };
892
893 /**
894 * struct nand_op_parser_pattern_elem - One element of a pattern
895 * @type: the instructuction type
896 * @optional: whether this element of the pattern is optional or mandatory
897 * @ctx: address or data constraint
898 * @ctx.addr: address constraint (number of cycles)
899 * @ctx.data: data constraint (data length)
900 */
901 struct nand_op_parser_pattern_elem {
902 enum nand_op_instr_type type;
903 bool optional;
904 union {
905 struct nand_op_parser_addr_constraints addr;
906 struct nand_op_parser_data_constraints data;
907 } ctx;
908 };
909
910 #define NAND_OP_PARSER_PAT_CMD_ELEM(_opt) \
911 { \
912 .type = NAND_OP_CMD_INSTR, \
913 .optional = _opt, \
914 }
915
916 #define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles) \
917 { \
918 .type = NAND_OP_ADDR_INSTR, \
919 .optional = _opt, \
920 .ctx.addr.maxcycles = _maxcycles, \
921 }
922
923 #define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen) \
924 { \
925 .type = NAND_OP_DATA_IN_INSTR, \
926 .optional = _opt, \
927 .ctx.data.maxlen = _maxlen, \
928 }
929
930 #define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen) \
931 { \
932 .type = NAND_OP_DATA_OUT_INSTR, \
933 .optional = _opt, \
934 .ctx.data.maxlen = _maxlen, \
935 }
936
937 #define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt) \
938 { \
939 .type = NAND_OP_WAITRDY_INSTR, \
940 .optional = _opt, \
941 }
942
943 /**
944 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
945 * @elems: array of pattern elements
946 * @nelems: number of pattern elements in @elems array
947 * @exec: the function that will issue a sub-operation
948 *
949 * A pattern is a list of elements, each element reprensenting one instruction
950 * with its constraints. The pattern itself is used by the core to match NAND
951 * chip operation with NAND controller operations.
952 * Once a match between a NAND controller operation pattern and a NAND chip
953 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
954 * hook is called so that the controller driver can issue the operation on the
955 * bus.
956 *
957 * Controller drivers should declare as many patterns as they support and pass
958 * this list of patterns (created with the help of the following macro) to
959 * the nand_op_parser_exec_op() helper.
960 */
961 struct nand_op_parser_pattern {
962 const struct nand_op_parser_pattern_elem *elems;
963 unsigned int nelems;
964 int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
965 };
966
967 #define NAND_OP_PARSER_PATTERN(_exec, ...) \
968 { \
969 .exec = _exec, \
970 .elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }, \
971 .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) / \
972 sizeof(struct nand_op_parser_pattern_elem), \
973 }
974
975 /**
976 * struct nand_op_parser - NAND controller operation parser descriptor
977 * @patterns: array of supported patterns
978 * @npatterns: length of the @patterns array
979 *
980 * The parser descriptor is just an array of supported patterns which will be
981 * iterated by nand_op_parser_exec_op() everytime it tries to execute an
982 * NAND operation (or tries to determine if a specific operation is supported).
983 *
984 * It is worth mentioning that patterns will be tested in their declaration
985 * order, and the first match will be taken, so it's important to order patterns
986 * appropriately so that simple/inefficient patterns are placed at the end of
987 * the list. Usually, this is where you put single instruction patterns.
988 */
989 struct nand_op_parser {
990 const struct nand_op_parser_pattern *patterns;
991 unsigned int npatterns;
992 };
993
994 #define NAND_OP_PARSER(...) \
995 { \
996 .patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ }, \
997 .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) / \
998 sizeof(struct nand_op_parser_pattern), \
999 }
1000
1001 /**
1002 * struct nand_operation - NAND operation descriptor
1003 * @cs: the CS line to select for this NAND operation
1004 * @instrs: array of instructions to execute
1005 * @ninstrs: length of the @instrs array
1006 *
1007 * The actual operation structure that will be passed to chip->exec_op().
1008 */
1009 struct nand_operation {
1010 unsigned int cs;
1011 const struct nand_op_instr *instrs;
1012 unsigned int ninstrs;
1013 };
1014
1015 #define NAND_OPERATION(_cs, _instrs) \
1016 { \
1017 .cs = _cs, \
1018 .instrs = _instrs, \
1019 .ninstrs = ARRAY_SIZE(_instrs), \
1020 }
1021
1022 int nand_op_parser_exec_op(struct nand_chip *chip,
1023 const struct nand_op_parser *parser,
1024 const struct nand_operation *op, bool check_only);
1025
nand_op_trace(const char * prefix,const struct nand_op_instr * instr)1026 static inline void nand_op_trace(const char *prefix,
1027 const struct nand_op_instr *instr)
1028 {
1029 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
1030 switch (instr->type) {
1031 case NAND_OP_CMD_INSTR:
1032 pr_debug("%sCMD [0x%02x]\n", prefix,
1033 instr->ctx.cmd.opcode);
1034 break;
1035 case NAND_OP_ADDR_INSTR:
1036 pr_debug("%sADDR [%d cyc: %*ph]\n", prefix,
1037 instr->ctx.addr.naddrs,
1038 instr->ctx.addr.naddrs < 64 ?
1039 instr->ctx.addr.naddrs : 64,
1040 instr->ctx.addr.addrs);
1041 break;
1042 case NAND_OP_DATA_IN_INSTR:
1043 pr_debug("%sDATA_IN [%d B%s]\n", prefix,
1044 instr->ctx.data.len,
1045 instr->ctx.data.force_8bit ?
1046 ", force 8-bit" : "");
1047 break;
1048 case NAND_OP_DATA_OUT_INSTR:
1049 pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
1050 instr->ctx.data.len,
1051 instr->ctx.data.force_8bit ?
1052 ", force 8-bit" : "");
1053 break;
1054 case NAND_OP_WAITRDY_INSTR:
1055 pr_debug("%sWAITRDY [max %d ms]\n", prefix,
1056 instr->ctx.waitrdy.timeout_ms);
1057 break;
1058 }
1059 #endif
1060 }
1061
1062 /**
1063 * struct nand_controller_ops - Controller operations
1064 *
1065 * @attach_chip: this method is called after the NAND detection phase after
1066 * flash ID and MTD fields such as erase size, page size and OOB
1067 * size have been set up. ECC requirements are available if
1068 * provided by the NAND chip or device tree. Typically used to
1069 * choose the appropriate ECC configuration and allocate
1070 * associated resources.
1071 * This hook is optional.
1072 * @detach_chip: free all resources allocated/claimed in
1073 * nand_controller_ops->attach_chip().
1074 * This hook is optional.
1075 * @exec_op: controller specific method to execute NAND operations.
1076 * This method replaces chip->legacy.cmdfunc(),
1077 * chip->legacy.{read,write}_{buf,byte,word}(),
1078 * chip->legacy.dev_ready() and chip->legacy.waifunc().
1079 * @setup_interface: setup the data interface and timing. If chipnr is set to
1080 * %NAND_DATA_IFACE_CHECK_ONLY this means the configuration
1081 * should not be applied but only checked.
1082 * This hook is optional.
1083 */
1084 struct nand_controller_ops {
1085 int (*attach_chip)(struct nand_chip *chip);
1086 void (*detach_chip)(struct nand_chip *chip);
1087 int (*exec_op)(struct nand_chip *chip,
1088 const struct nand_operation *op,
1089 bool check_only);
1090 int (*setup_interface)(struct nand_chip *chip, int chipnr,
1091 const struct nand_interface_config *conf);
1092 };
1093
1094 /**
1095 * struct nand_controller - Structure used to describe a NAND controller
1096 *
1097 * @lock: lock used to serialize accesses to the NAND controller
1098 * @ops: NAND controller operations.
1099 * @supported_op: NAND controller known-to-be-supported operations,
1100 * only writable by the core after initial checking.
1101 * @supported_op.data_only_read: The controller supports reading more data from
1102 * the bus without restarting an entire read operation nor
1103 * changing the column.
1104 * @supported_op.cont_read: The controller supports sequential cache reads.
1105 */
1106 struct nand_controller {
1107 struct mutex lock;
1108 const struct nand_controller_ops *ops;
1109 struct {
1110 unsigned int data_only_read: 1;
1111 unsigned int cont_read: 1;
1112 } supported_op;
1113 };
1114
nand_controller_init(struct nand_controller * nfc)1115 static inline void nand_controller_init(struct nand_controller *nfc)
1116 {
1117 mutex_init(&nfc->lock);
1118 }
1119
1120 /**
1121 * struct nand_legacy - NAND chip legacy fields/hooks
1122 * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
1123 * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
1124 * @select_chip: select/deselect a specific target/die
1125 * @read_byte: read one byte from the chip
1126 * @write_byte: write a single byte to the chip on the low 8 I/O lines
1127 * @write_buf: write data from the buffer to the chip
1128 * @read_buf: read data from the chip into the buffer
1129 * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
1130 * to write command and address
1131 * @cmdfunc: hardware specific function for writing commands to the chip.
1132 * @dev_ready: hardware specific function for accessing device ready/busy line.
1133 * If set to NULL no access to ready/busy is available and the
1134 * ready/busy information is read from the chip status register.
1135 * @waitfunc: hardware specific function for wait on ready.
1136 * @block_bad: check if a block is bad, using OOB markers
1137 * @block_markbad: mark a block bad
1138 * @set_features: set the NAND chip features
1139 * @get_features: get the NAND chip features
1140 * @chip_delay: chip dependent delay for transferring data from array to read
1141 * regs (tR).
1142 * @dummy_controller: dummy controller implementation for drivers that can
1143 * only control a single chip
1144 *
1145 * If you look at this structure you're already wrong. These fields/hooks are
1146 * all deprecated.
1147 */
1148 struct nand_legacy {
1149 void __iomem *IO_ADDR_R;
1150 void __iomem *IO_ADDR_W;
1151 void (*select_chip)(struct nand_chip *chip, int cs);
1152 u8 (*read_byte)(struct nand_chip *chip);
1153 void (*write_byte)(struct nand_chip *chip, u8 byte);
1154 void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
1155 void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
1156 void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
1157 void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,
1158 int page_addr);
1159 int (*dev_ready)(struct nand_chip *chip);
1160 int (*waitfunc)(struct nand_chip *chip);
1161 int (*block_bad)(struct nand_chip *chip, loff_t ofs);
1162 int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
1163 int (*set_features)(struct nand_chip *chip, int feature_addr,
1164 u8 *subfeature_para);
1165 int (*get_features)(struct nand_chip *chip, int feature_addr,
1166 u8 *subfeature_para);
1167 int chip_delay;
1168 struct nand_controller dummy_controller;
1169 };
1170
1171 /**
1172 * struct nand_chip_ops - NAND chip operations
1173 * @suspend: Suspend operation
1174 * @resume: Resume operation
1175 * @lock_area: Lock operation
1176 * @unlock_area: Unlock operation
1177 * @setup_read_retry: Set the read-retry mode (mostly needed for MLC NANDs)
1178 * @choose_interface_config: Choose the best interface configuration
1179 */
1180 struct nand_chip_ops {
1181 int (*suspend)(struct nand_chip *chip);
1182 void (*resume)(struct nand_chip *chip);
1183 int (*lock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
1184 int (*unlock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
1185 int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
1186 int (*choose_interface_config)(struct nand_chip *chip,
1187 struct nand_interface_config *iface);
1188 };
1189
1190 /**
1191 * struct nand_manufacturer - NAND manufacturer structure
1192 * @desc: The manufacturer description
1193 * @priv: Private information for the manufacturer driver
1194 */
1195 struct nand_manufacturer {
1196 const struct nand_manufacturer_desc *desc;
1197 void *priv;
1198 };
1199
1200 /**
1201 * struct nand_secure_region - NAND secure region structure
1202 * @offset: Offset of the start of the secure region
1203 * @size: Size of the secure region
1204 */
1205 struct nand_secure_region {
1206 u64 offset;
1207 u64 size;
1208 };
1209
1210 /**
1211 * struct nand_chip - NAND Private Flash Chip Data
1212 * @base: Inherit from the generic NAND device
1213 * @id: Holds NAND ID
1214 * @parameters: Holds generic parameters under an easily readable form
1215 * @manufacturer: Manufacturer information
1216 * @ops: NAND chip operations
1217 * @legacy: All legacy fields/hooks. If you develop a new driver, don't even try
1218 * to use any of these fields/hooks, and if you're modifying an
1219 * existing driver that is using those fields/hooks, you should
1220 * consider reworking the driver and avoid using them.
1221 * @options: Various chip options. They can partly be set to inform nand_scan
1222 * about special functionality. See the defines for further
1223 * explanation.
1224 * @current_interface_config: The currently used NAND interface configuration
1225 * @best_interface_config: The best NAND interface configuration which fits both
1226 * the NAND chip and NAND controller constraints. If
1227 * unset, the default reset interface configuration must
1228 * be used.
1229 * @bbt_erase_shift: Number of address bits in a bbt entry
1230 * @bbt_options: Bad block table specific options. All options used here must
1231 * come from bbm.h. By default, these options will be copied to
1232 * the appropriate nand_bbt_descr's.
1233 * @badblockpos: Bad block marker position in the oob area
1234 * @badblockbits: Minimum number of set bits in a good block's bad block marker
1235 * position; i.e., BBM = 11110111b is good when badblockbits = 7
1236 * @bbt_td: Bad block table descriptor for flash lookup
1237 * @bbt_md: Bad block table mirror descriptor
1238 * @badblock_pattern: Bad block scan pattern used for initial bad block scan
1239 * @bbt: Bad block table pointer
1240 * @page_shift: Number of address bits in a page (column address bits)
1241 * @phys_erase_shift: Number of address bits in a physical eraseblock
1242 * @chip_shift: Number of address bits in one chip
1243 * @pagemask: Page number mask = number of (pages / chip) - 1
1244 * @subpagesize: Holds the subpagesize
1245 * @data_buf: Buffer for data, size is (page size + oobsize)
1246 * @oob_poi: pointer on the OOB area covered by data_buf
1247 * @pagecache: Structure containing page cache related fields
1248 * @pagecache.bitflips: Number of bitflips of the cached page
1249 * @pagecache.page: Page number currently in the cache. -1 means no page is
1250 * currently cached
1251 * @buf_align: Minimum buffer alignment required by a platform
1252 * @lock: Lock protecting the suspended field. Also used to serialize accesses
1253 * to the NAND device
1254 * @suspended: Set to 1 when the device is suspended, 0 when it's not
1255 * @resume_wq: wait queue to sleep if rawnand is in suspended state.
1256 * @cur_cs: Currently selected target. -1 means no target selected, otherwise we
1257 * should always have cur_cs >= 0 && cur_cs < nanddev_ntargets().
1258 * NAND Controller drivers should not modify this value, but they're
1259 * allowed to read it.
1260 * @read_retries: The number of read retry modes supported
1261 * @secure_regions: Structure containing the secure regions info
1262 * @nr_secure_regions: Number of secure regions
1263 * @cont_read: Sequential page read internals
1264 * @cont_read.ongoing: Whether a continuous read is ongoing or not
1265 * @cont_read.first_page: Start of the continuous read operation
1266 * @cont_read.last_page: End of the continuous read operation
1267 * @controller: The hardware controller structure which is shared among multiple
1268 * independent devices
1269 * @ecc: The ECC controller structure
1270 * @priv: Chip private data
1271 */
1272 struct nand_chip {
1273 struct nand_device base;
1274 struct nand_id id;
1275 struct nand_parameters parameters;
1276 struct nand_manufacturer manufacturer;
1277 struct nand_chip_ops ops;
1278 struct nand_legacy legacy;
1279 unsigned int options;
1280
1281 /* Data interface */
1282 const struct nand_interface_config *current_interface_config;
1283 struct nand_interface_config *best_interface_config;
1284
1285 /* Bad block information */
1286 unsigned int bbt_erase_shift;
1287 unsigned int bbt_options;
1288 unsigned int badblockpos;
1289 unsigned int badblockbits;
1290 struct nand_bbt_descr *bbt_td;
1291 struct nand_bbt_descr *bbt_md;
1292 struct nand_bbt_descr *badblock_pattern;
1293 u8 *bbt;
1294
1295 /* Device internal layout */
1296 unsigned int page_shift;
1297 unsigned int phys_erase_shift;
1298 unsigned int chip_shift;
1299 unsigned int pagemask;
1300 unsigned int subpagesize;
1301
1302 /* Buffers */
1303 u8 *data_buf;
1304 u8 *oob_poi;
1305 struct {
1306 unsigned int bitflips;
1307 int page;
1308 } pagecache;
1309 unsigned long buf_align;
1310
1311 /* Internals */
1312 struct mutex lock;
1313 unsigned int suspended : 1;
1314 wait_queue_head_t resume_wq;
1315 int cur_cs;
1316 int read_retries;
1317 struct nand_secure_region *secure_regions;
1318 u8 nr_secure_regions;
1319 struct {
1320 bool ongoing;
1321 unsigned int first_page;
1322 unsigned int last_page;
1323 } cont_read;
1324
1325 /* Externals */
1326 struct nand_controller *controller;
1327 struct nand_ecc_ctrl ecc;
1328 void *priv;
1329 };
1330
mtd_to_nand(struct mtd_info * mtd)1331 static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
1332 {
1333 return container_of(mtd, struct nand_chip, base.mtd);
1334 }
1335
nand_to_mtd(struct nand_chip * chip)1336 static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
1337 {
1338 return &chip->base.mtd;
1339 }
1340
nand_get_controller_data(struct nand_chip * chip)1341 static inline void *nand_get_controller_data(struct nand_chip *chip)
1342 {
1343 return chip->priv;
1344 }
1345
nand_set_controller_data(struct nand_chip * chip,void * priv)1346 static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
1347 {
1348 chip->priv = priv;
1349 }
1350
nand_set_manufacturer_data(struct nand_chip * chip,void * priv)1351 static inline void nand_set_manufacturer_data(struct nand_chip *chip,
1352 void *priv)
1353 {
1354 chip->manufacturer.priv = priv;
1355 }
1356
nand_get_manufacturer_data(struct nand_chip * chip)1357 static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
1358 {
1359 return chip->manufacturer.priv;
1360 }
1361
nand_set_flash_node(struct nand_chip * chip,struct device_node * np)1362 static inline void nand_set_flash_node(struct nand_chip *chip,
1363 struct device_node *np)
1364 {
1365 mtd_set_of_node(nand_to_mtd(chip), np);
1366 }
1367
nand_get_flash_node(struct nand_chip * chip)1368 static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
1369 {
1370 return mtd_get_of_node(nand_to_mtd(chip));
1371 }
1372
1373 /**
1374 * nand_get_interface_config - Retrieve the current interface configuration
1375 * of a NAND chip
1376 * @chip: The NAND chip
1377 */
1378 static inline const struct nand_interface_config *
nand_get_interface_config(struct nand_chip * chip)1379 nand_get_interface_config(struct nand_chip *chip)
1380 {
1381 return chip->current_interface_config;
1382 }
1383
1384 /*
1385 * A helper for defining older NAND chips where the second ID byte fully
1386 * defined the chip, including the geometry (chip size, eraseblock size, page
1387 * size). All these chips have 512 bytes NAND page size.
1388 */
1389 #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts) \
1390 { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
1391 .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1392
1393 /*
1394 * A helper for defining newer chips which report their page size and
1395 * eraseblock size via the extended ID bytes.
1396 *
1397 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
1398 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
1399 * device ID now only represented a particular total chip size (and voltage,
1400 * buswidth), and the page size, eraseblock size, and OOB size could vary while
1401 * using the same device ID.
1402 */
1403 #define EXTENDED_ID_NAND(nm, devid, chipsz, opts) \
1404 { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1405 .options = (opts) }
1406
1407 #define NAND_ECC_INFO(_strength, _step) \
1408 { .strength_ds = (_strength), .step_ds = (_step) }
1409 #define NAND_ECC_STRENGTH(type) ((type)->ecc.strength_ds)
1410 #define NAND_ECC_STEP(type) ((type)->ecc.step_ds)
1411
1412 /**
1413 * struct nand_flash_dev - NAND Flash Device ID Structure
1414 * @name: a human-readable name of the NAND chip
1415 * @dev_id: the device ID (the second byte of the full chip ID array)
1416 * @mfr_id: manufacturer ID part of the full chip ID array (refers the same
1417 * memory address as ``id[0]``)
1418 * @dev_id: device ID part of the full chip ID array (refers the same memory
1419 * address as ``id[1]``)
1420 * @id: full device ID array
1421 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
1422 * well as the eraseblock size) is determined from the extended NAND
1423 * chip ID array)
1424 * @chipsize: total chip size in MiB
1425 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1426 * @options: stores various chip bit options
1427 * @id_len: The valid length of the @id.
1428 * @oobsize: OOB size
1429 * @ecc: ECC correctability and step information from the datasheet.
1430 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
1431 * @ecc_strength_ds in nand_chip{}.
1432 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
1433 * @ecc_step_ds in nand_chip{}, also from the datasheet.
1434 * For example, the "4bit ECC for each 512Byte" can be set with
1435 * NAND_ECC_INFO(4, 512).
1436 */
1437 struct nand_flash_dev {
1438 char *name;
1439 union {
1440 struct {
1441 uint8_t mfr_id;
1442 uint8_t dev_id;
1443 };
1444 uint8_t id[NAND_MAX_ID_LEN];
1445 };
1446 unsigned int pagesize;
1447 unsigned int chipsize;
1448 unsigned int erasesize;
1449 unsigned int options;
1450 uint16_t id_len;
1451 uint16_t oobsize;
1452 struct {
1453 uint16_t strength_ds;
1454 uint16_t step_ds;
1455 } ecc;
1456 };
1457
1458 int nand_create_bbt(struct nand_chip *chip);
1459
1460 /*
1461 * Check if it is a SLC nand.
1462 * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
1463 * We do not distinguish the MLC and TLC now.
1464 */
nand_is_slc(struct nand_chip * chip)1465 static inline bool nand_is_slc(struct nand_chip *chip)
1466 {
1467 WARN(nanddev_bits_per_cell(&chip->base) == 0,
1468 "chip->bits_per_cell is used uninitialized\n");
1469 return nanddev_bits_per_cell(&chip->base) == 1;
1470 }
1471
1472 /**
1473 * nand_opcode_8bits - Check if the opcode's address should be sent only on the
1474 * lower 8 bits
1475 * @command: opcode to check
1476 */
nand_opcode_8bits(unsigned int command)1477 static inline int nand_opcode_8bits(unsigned int command)
1478 {
1479 switch (command) {
1480 case NAND_CMD_READID:
1481 case NAND_CMD_PARAM:
1482 case NAND_CMD_GET_FEATURES:
1483 case NAND_CMD_SET_FEATURES:
1484 return 1;
1485 default:
1486 break;
1487 }
1488 return 0;
1489 }
1490
1491 int rawnand_sw_hamming_init(struct nand_chip *chip);
1492 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
1493 const unsigned char *buf,
1494 unsigned char *code);
1495 int rawnand_sw_hamming_correct(struct nand_chip *chip,
1496 unsigned char *buf,
1497 unsigned char *read_ecc,
1498 unsigned char *calc_ecc);
1499 void rawnand_sw_hamming_cleanup(struct nand_chip *chip);
1500 int rawnand_sw_bch_init(struct nand_chip *chip);
1501 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
1502 unsigned char *read_ecc, unsigned char *calc_ecc);
1503 void rawnand_sw_bch_cleanup(struct nand_chip *chip);
1504
1505 int nand_check_erased_ecc_chunk(void *data, int datalen,
1506 void *ecc, int ecclen,
1507 void *extraoob, int extraooblen,
1508 int threshold);
1509
1510 int nand_ecc_choose_conf(struct nand_chip *chip,
1511 const struct nand_ecc_caps *caps, int oobavail);
1512
1513 /* Default write_oob implementation */
1514 int nand_write_oob_std(struct nand_chip *chip, int page);
1515
1516 /* Default read_oob implementation */
1517 int nand_read_oob_std(struct nand_chip *chip, int page);
1518
1519 /* Stub used by drivers that do not support GET/SET FEATURES operations */
1520 int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
1521 u8 *subfeature_param);
1522
1523 /* read_page_raw implementations */
1524 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
1525 int page);
1526 int nand_monolithic_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1527 int oob_required, int page);
1528
1529 /* write_page_raw implementations */
1530 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1531 int oob_required, int page);
1532 int nand_monolithic_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1533 int oob_required, int page);
1534
1535 /* Reset and initialize a NAND device */
1536 int nand_reset(struct nand_chip *chip, int chipnr);
1537
1538 /* NAND operation helpers */
1539 int nand_reset_op(struct nand_chip *chip);
1540 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1541 unsigned int len);
1542 int nand_status_op(struct nand_chip *chip, u8 *status);
1543 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
1544 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1545 unsigned int offset_in_page, void *buf, unsigned int len);
1546 int nand_change_read_column_op(struct nand_chip *chip,
1547 unsigned int offset_in_page, void *buf,
1548 unsigned int len, bool force_8bit);
1549 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1550 unsigned int offset_in_page, void *buf, unsigned int len);
1551 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1552 unsigned int offset_in_page, const void *buf,
1553 unsigned int len);
1554 int nand_prog_page_end_op(struct nand_chip *chip);
1555 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1556 unsigned int offset_in_page, const void *buf,
1557 unsigned int len);
1558 int nand_change_write_column_op(struct nand_chip *chip,
1559 unsigned int offset_in_page, const void *buf,
1560 unsigned int len, bool force_8bit);
1561 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1562 bool force_8bit, bool check_only);
1563 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1564 unsigned int len, bool force_8bit);
1565 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
1566 int oob_required, int page);
1567
1568 /* Scan and identify a NAND device */
1569 int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
1570 struct nand_flash_dev *ids);
1571
nand_scan(struct nand_chip * chip,unsigned int max_chips)1572 static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
1573 {
1574 return nand_scan_with_ids(chip, max_chips, NULL);
1575 }
1576
1577 /* Internal helper for board drivers which need to override command function */
1578 void nand_wait_ready(struct nand_chip *chip);
1579
1580 /*
1581 * Free resources held by the NAND device, must be called on error after a
1582 * sucessful nand_scan().
1583 */
1584 void nand_cleanup(struct nand_chip *chip);
1585
1586 /*
1587 * External helper for controller drivers that have to implement the WAITRDY
1588 * instruction and have no physical pin to check it.
1589 */
1590 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1591 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
1592 unsigned long timeout_ms);
1593
1594 /* Select/deselect a NAND target. */
1595 void nand_select_target(struct nand_chip *chip, unsigned int cs);
1596 void nand_deselect_target(struct nand_chip *chip);
1597
1598 /* Bitops */
1599 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
1600 unsigned int src_off, unsigned int nbits);
1601
1602 /**
1603 * nand_get_data_buf() - Get the internal page buffer
1604 * @chip: NAND chip object
1605 *
1606 * Returns the pre-allocated page buffer after invalidating the cache. This
1607 * function should be used by drivers that do not want to allocate their own
1608 * bounce buffer and still need such a buffer for specific operations (most
1609 * commonly when reading OOB data only).
1610 *
1611 * Be careful to never call this function in the write/write_oob path, because
1612 * the core may have placed the data to be written out in this buffer.
1613 *
1614 * Return: pointer to the page cache buffer
1615 */
nand_get_data_buf(struct nand_chip * chip)1616 static inline void *nand_get_data_buf(struct nand_chip *chip)
1617 {
1618 chip->pagecache.page = -1;
1619
1620 return chip->data_buf;
1621 }
1622
1623 /* Parse the gpio-cs property */
1624 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
1625 unsigned int *ncs_array);
1626
1627 #endif /* __LINUX_MTD_RAWNAND_H */
1628