1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <linux/static_call.h>
28 #include <trace/events/power.h>
29 #include <linux/hw_breakpoint.h>
30 #include <asm/cpu.h>
31 #include <asm/apic.h>
32 #include <linux/uaccess.h>
33 #include <asm/mwait.h>
34 #include <asm/fpu/api.h>
35 #include <asm/fpu/sched.h>
36 #include <asm/fpu/xstate.h>
37 #include <asm/debugreg.h>
38 #include <asm/nmi.h>
39 #include <asm/tlbflush.h>
40 #include <asm/mce.h>
41 #include <asm/vm86.h>
42 #include <asm/switch_to.h>
43 #include <asm/desc.h>
44 #include <asm/prctl.h>
45 #include <asm/spec-ctrl.h>
46 #include <asm/io_bitmap.h>
47 #include <asm/proto.h>
48 #include <asm/frame.h>
49 #include <asm/unwind.h>
50 #include <asm/tdx.h>
51
52 #include "process.h"
53
54 /*
55 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
56 * no more per-task TSS's. The TSS size is kept cacheline-aligned
57 * so they are allowed to end up in the .data..cacheline_aligned
58 * section. Since TSS's are completely CPU-local, we want them
59 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
60 */
61 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
62 .x86_tss = {
63 /*
64 * .sp0 is only used when entering ring 0 from a lower
65 * privilege level. Since the init task never runs anything
66 * but ring 0 code, there is no need for a valid value here.
67 * Poison it.
68 */
69 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
70
71 #ifdef CONFIG_X86_32
72 .sp1 = TOP_OF_INIT_STACK,
73
74 .ss0 = __KERNEL_DS,
75 .ss1 = __KERNEL_CS,
76 #endif
77 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
78 },
79 };
80 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
81
82 DEFINE_PER_CPU(bool, __tss_limit_invalid);
83 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
84
85 /*
86 * this gets called so that we can store lazy state into memory and copy the
87 * current task into the new thread.
88 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)89 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
90 {
91 memcpy(dst, src, arch_task_struct_size);
92 #ifdef CONFIG_VM86
93 dst->thread.vm86 = NULL;
94 #endif
95 /* Drop the copied pointer to current's fpstate */
96 dst->thread.fpu.fpstate = NULL;
97
98 return 0;
99 }
100
101 #ifdef CONFIG_X86_64
arch_release_task_struct(struct task_struct * tsk)102 void arch_release_task_struct(struct task_struct *tsk)
103 {
104 if (fpu_state_size_dynamic())
105 fpstate_free(&tsk->thread.fpu);
106 }
107 #endif
108
109 /*
110 * Free thread data structures etc..
111 */
exit_thread(struct task_struct * tsk)112 void exit_thread(struct task_struct *tsk)
113 {
114 struct thread_struct *t = &tsk->thread;
115 struct fpu *fpu = &t->fpu;
116
117 if (test_thread_flag(TIF_IO_BITMAP))
118 io_bitmap_exit(tsk);
119
120 free_vm86(t);
121
122 fpu__drop(fpu);
123 }
124
set_new_tls(struct task_struct * p,unsigned long tls)125 static int set_new_tls(struct task_struct *p, unsigned long tls)
126 {
127 struct user_desc __user *utls = (struct user_desc __user *)tls;
128
129 if (in_ia32_syscall())
130 return do_set_thread_area(p, -1, utls, 0);
131 else
132 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
133 }
134
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)135 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
136 {
137 unsigned long clone_flags = args->flags;
138 unsigned long sp = args->stack;
139 unsigned long tls = args->tls;
140 struct inactive_task_frame *frame;
141 struct fork_frame *fork_frame;
142 struct pt_regs *childregs;
143 int ret = 0;
144
145 childregs = task_pt_regs(p);
146 fork_frame = container_of(childregs, struct fork_frame, regs);
147 frame = &fork_frame->frame;
148
149 frame->bp = encode_frame_pointer(childregs);
150 frame->ret_addr = (unsigned long) ret_from_fork;
151 p->thread.sp = (unsigned long) fork_frame;
152 p->thread.io_bitmap = NULL;
153 p->thread.iopl_warn = 0;
154 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
155
156 #ifdef CONFIG_X86_64
157 current_save_fsgs();
158 p->thread.fsindex = current->thread.fsindex;
159 p->thread.fsbase = current->thread.fsbase;
160 p->thread.gsindex = current->thread.gsindex;
161 p->thread.gsbase = current->thread.gsbase;
162
163 savesegment(es, p->thread.es);
164 savesegment(ds, p->thread.ds);
165 #else
166 p->thread.sp0 = (unsigned long) (childregs + 1);
167 savesegment(gs, p->thread.gs);
168 /*
169 * Clear all status flags including IF and set fixed bit. 64bit
170 * does not have this initialization as the frame does not contain
171 * flags. The flags consistency (especially vs. AC) is there
172 * ensured via objtool, which lacks 32bit support.
173 */
174 frame->flags = X86_EFLAGS_FIXED;
175 #endif
176
177 fpu_clone(p, clone_flags, args->fn);
178
179 /* Kernel thread ? */
180 if (unlikely(p->flags & PF_KTHREAD)) {
181 p->thread.pkru = pkru_get_init_value();
182 memset(childregs, 0, sizeof(struct pt_regs));
183 kthread_frame_init(frame, args->fn, args->fn_arg);
184 return 0;
185 }
186
187 /*
188 * Clone current's PKRU value from hardware. tsk->thread.pkru
189 * is only valid when scheduled out.
190 */
191 p->thread.pkru = read_pkru();
192
193 frame->bx = 0;
194 *childregs = *current_pt_regs();
195 childregs->ax = 0;
196 if (sp)
197 childregs->sp = sp;
198
199 if (unlikely(args->fn)) {
200 /*
201 * A user space thread, but it doesn't return to
202 * ret_after_fork().
203 *
204 * In order to indicate that to tools like gdb,
205 * we reset the stack and instruction pointers.
206 *
207 * It does the same kernel frame setup to return to a kernel
208 * function that a kernel thread does.
209 */
210 childregs->sp = 0;
211 childregs->ip = 0;
212 kthread_frame_init(frame, args->fn, args->fn_arg);
213 return 0;
214 }
215
216 /* Set a new TLS for the child thread? */
217 if (clone_flags & CLONE_SETTLS)
218 ret = set_new_tls(p, tls);
219
220 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
221 io_bitmap_share(p);
222
223 return ret;
224 }
225
pkru_flush_thread(void)226 static void pkru_flush_thread(void)
227 {
228 /*
229 * If PKRU is enabled the default PKRU value has to be loaded into
230 * the hardware right here (similar to context switch).
231 */
232 pkru_write_default();
233 }
234
flush_thread(void)235 void flush_thread(void)
236 {
237 struct task_struct *tsk = current;
238
239 flush_ptrace_hw_breakpoint(tsk);
240 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
241
242 fpu_flush_thread();
243 pkru_flush_thread();
244 }
245
disable_TSC(void)246 void disable_TSC(void)
247 {
248 preempt_disable();
249 if (!test_and_set_thread_flag(TIF_NOTSC))
250 /*
251 * Must flip the CPU state synchronously with
252 * TIF_NOTSC in the current running context.
253 */
254 cr4_set_bits(X86_CR4_TSD);
255 preempt_enable();
256 }
257
enable_TSC(void)258 static void enable_TSC(void)
259 {
260 preempt_disable();
261 if (test_and_clear_thread_flag(TIF_NOTSC))
262 /*
263 * Must flip the CPU state synchronously with
264 * TIF_NOTSC in the current running context.
265 */
266 cr4_clear_bits(X86_CR4_TSD);
267 preempt_enable();
268 }
269
get_tsc_mode(unsigned long adr)270 int get_tsc_mode(unsigned long adr)
271 {
272 unsigned int val;
273
274 if (test_thread_flag(TIF_NOTSC))
275 val = PR_TSC_SIGSEGV;
276 else
277 val = PR_TSC_ENABLE;
278
279 return put_user(val, (unsigned int __user *)adr);
280 }
281
set_tsc_mode(unsigned int val)282 int set_tsc_mode(unsigned int val)
283 {
284 if (val == PR_TSC_SIGSEGV)
285 disable_TSC();
286 else if (val == PR_TSC_ENABLE)
287 enable_TSC();
288 else
289 return -EINVAL;
290
291 return 0;
292 }
293
294 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
295
set_cpuid_faulting(bool on)296 static void set_cpuid_faulting(bool on)
297 {
298 u64 msrval;
299
300 msrval = this_cpu_read(msr_misc_features_shadow);
301 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
302 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
303 this_cpu_write(msr_misc_features_shadow, msrval);
304 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
305 }
306
disable_cpuid(void)307 static void disable_cpuid(void)
308 {
309 preempt_disable();
310 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
311 /*
312 * Must flip the CPU state synchronously with
313 * TIF_NOCPUID in the current running context.
314 */
315 set_cpuid_faulting(true);
316 }
317 preempt_enable();
318 }
319
enable_cpuid(void)320 static void enable_cpuid(void)
321 {
322 preempt_disable();
323 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
324 /*
325 * Must flip the CPU state synchronously with
326 * TIF_NOCPUID in the current running context.
327 */
328 set_cpuid_faulting(false);
329 }
330 preempt_enable();
331 }
332
get_cpuid_mode(void)333 static int get_cpuid_mode(void)
334 {
335 return !test_thread_flag(TIF_NOCPUID);
336 }
337
set_cpuid_mode(unsigned long cpuid_enabled)338 static int set_cpuid_mode(unsigned long cpuid_enabled)
339 {
340 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
341 return -ENODEV;
342
343 if (cpuid_enabled)
344 enable_cpuid();
345 else
346 disable_cpuid();
347
348 return 0;
349 }
350
351 /*
352 * Called immediately after a successful exec.
353 */
arch_setup_new_exec(void)354 void arch_setup_new_exec(void)
355 {
356 /* If cpuid was previously disabled for this task, re-enable it. */
357 if (test_thread_flag(TIF_NOCPUID))
358 enable_cpuid();
359
360 /*
361 * Don't inherit TIF_SSBD across exec boundary when
362 * PR_SPEC_DISABLE_NOEXEC is used.
363 */
364 if (test_thread_flag(TIF_SSBD) &&
365 task_spec_ssb_noexec(current)) {
366 clear_thread_flag(TIF_SSBD);
367 task_clear_spec_ssb_disable(current);
368 task_clear_spec_ssb_noexec(current);
369 speculation_ctrl_update(read_thread_flags());
370 }
371 }
372
373 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)374 static inline void switch_to_bitmap(unsigned long tifp)
375 {
376 /*
377 * Invalidate I/O bitmap if the previous task used it. This prevents
378 * any possible leakage of an active I/O bitmap.
379 *
380 * If the next task has an I/O bitmap it will handle it on exit to
381 * user mode.
382 */
383 if (tifp & _TIF_IO_BITMAP)
384 tss_invalidate_io_bitmap();
385 }
386
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)387 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
388 {
389 /*
390 * Copy at least the byte range of the incoming tasks bitmap which
391 * covers the permitted I/O ports.
392 *
393 * If the previous task which used an I/O bitmap had more bits
394 * permitted, then the copy needs to cover those as well so they
395 * get turned off.
396 */
397 memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
398 max(tss->io_bitmap.prev_max, iobm->max));
399
400 /*
401 * Store the new max and the sequence number of this bitmap
402 * and a pointer to the bitmap itself.
403 */
404 tss->io_bitmap.prev_max = iobm->max;
405 tss->io_bitmap.prev_sequence = iobm->sequence;
406 }
407
408 /**
409 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
410 */
native_tss_update_io_bitmap(void)411 void native_tss_update_io_bitmap(void)
412 {
413 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
414 struct thread_struct *t = ¤t->thread;
415 u16 *base = &tss->x86_tss.io_bitmap_base;
416
417 if (!test_thread_flag(TIF_IO_BITMAP)) {
418 native_tss_invalidate_io_bitmap();
419 return;
420 }
421
422 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
423 *base = IO_BITMAP_OFFSET_VALID_ALL;
424 } else {
425 struct io_bitmap *iobm = t->io_bitmap;
426
427 /*
428 * Only copy bitmap data when the sequence number differs. The
429 * update time is accounted to the incoming task.
430 */
431 if (tss->io_bitmap.prev_sequence != iobm->sequence)
432 tss_copy_io_bitmap(tss, iobm);
433
434 /* Enable the bitmap */
435 *base = IO_BITMAP_OFFSET_VALID_MAP;
436 }
437
438 /*
439 * Make sure that the TSS limit is covering the IO bitmap. It might have
440 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
441 * access from user space to trigger a #GP because tbe bitmap is outside
442 * the TSS limit.
443 */
444 refresh_tss_limit();
445 }
446 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)447 static inline void switch_to_bitmap(unsigned long tifp) { }
448 #endif
449
450 #ifdef CONFIG_SMP
451
452 struct ssb_state {
453 struct ssb_state *shared_state;
454 raw_spinlock_t lock;
455 unsigned int disable_state;
456 unsigned long local_state;
457 };
458
459 #define LSTATE_SSB 0
460
461 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
462
speculative_store_bypass_ht_init(void)463 void speculative_store_bypass_ht_init(void)
464 {
465 struct ssb_state *st = this_cpu_ptr(&ssb_state);
466 unsigned int this_cpu = smp_processor_id();
467 unsigned int cpu;
468
469 st->local_state = 0;
470
471 /*
472 * Shared state setup happens once on the first bringup
473 * of the CPU. It's not destroyed on CPU hotunplug.
474 */
475 if (st->shared_state)
476 return;
477
478 raw_spin_lock_init(&st->lock);
479
480 /*
481 * Go over HT siblings and check whether one of them has set up the
482 * shared state pointer already.
483 */
484 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
485 if (cpu == this_cpu)
486 continue;
487
488 if (!per_cpu(ssb_state, cpu).shared_state)
489 continue;
490
491 /* Link it to the state of the sibling: */
492 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
493 return;
494 }
495
496 /*
497 * First HT sibling to come up on the core. Link shared state of
498 * the first HT sibling to itself. The siblings on the same core
499 * which come up later will see the shared state pointer and link
500 * themselves to the state of this CPU.
501 */
502 st->shared_state = st;
503 }
504
505 /*
506 * Logic is: First HT sibling enables SSBD for both siblings in the core
507 * and last sibling to disable it, disables it for the whole core. This how
508 * MSR_SPEC_CTRL works in "hardware":
509 *
510 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
511 */
amd_set_core_ssb_state(unsigned long tifn)512 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
513 {
514 struct ssb_state *st = this_cpu_ptr(&ssb_state);
515 u64 msr = x86_amd_ls_cfg_base;
516
517 if (!static_cpu_has(X86_FEATURE_ZEN)) {
518 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
519 wrmsrl(MSR_AMD64_LS_CFG, msr);
520 return;
521 }
522
523 if (tifn & _TIF_SSBD) {
524 /*
525 * Since this can race with prctl(), block reentry on the
526 * same CPU.
527 */
528 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
529 return;
530
531 msr |= x86_amd_ls_cfg_ssbd_mask;
532
533 raw_spin_lock(&st->shared_state->lock);
534 /* First sibling enables SSBD: */
535 if (!st->shared_state->disable_state)
536 wrmsrl(MSR_AMD64_LS_CFG, msr);
537 st->shared_state->disable_state++;
538 raw_spin_unlock(&st->shared_state->lock);
539 } else {
540 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
541 return;
542
543 raw_spin_lock(&st->shared_state->lock);
544 st->shared_state->disable_state--;
545 if (!st->shared_state->disable_state)
546 wrmsrl(MSR_AMD64_LS_CFG, msr);
547 raw_spin_unlock(&st->shared_state->lock);
548 }
549 }
550 #else
amd_set_core_ssb_state(unsigned long tifn)551 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
552 {
553 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
554
555 wrmsrl(MSR_AMD64_LS_CFG, msr);
556 }
557 #endif
558
amd_set_ssb_virt_state(unsigned long tifn)559 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
560 {
561 /*
562 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
563 * so ssbd_tif_to_spec_ctrl() just works.
564 */
565 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
566 }
567
568 /*
569 * Update the MSRs managing speculation control, during context switch.
570 *
571 * tifp: Previous task's thread flags
572 * tifn: Next task's thread flags
573 */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)574 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
575 unsigned long tifn)
576 {
577 unsigned long tif_diff = tifp ^ tifn;
578 u64 msr = x86_spec_ctrl_base;
579 bool updmsr = false;
580
581 lockdep_assert_irqs_disabled();
582
583 /* Handle change of TIF_SSBD depending on the mitigation method. */
584 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
585 if (tif_diff & _TIF_SSBD)
586 amd_set_ssb_virt_state(tifn);
587 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
588 if (tif_diff & _TIF_SSBD)
589 amd_set_core_ssb_state(tifn);
590 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
591 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
592 updmsr |= !!(tif_diff & _TIF_SSBD);
593 msr |= ssbd_tif_to_spec_ctrl(tifn);
594 }
595
596 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
597 if (IS_ENABLED(CONFIG_SMP) &&
598 static_branch_unlikely(&switch_to_cond_stibp)) {
599 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
600 msr |= stibp_tif_to_spec_ctrl(tifn);
601 }
602
603 if (updmsr)
604 update_spec_ctrl_cond(msr);
605 }
606
speculation_ctrl_update_tif(struct task_struct * tsk)607 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
608 {
609 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
610 if (task_spec_ssb_disable(tsk))
611 set_tsk_thread_flag(tsk, TIF_SSBD);
612 else
613 clear_tsk_thread_flag(tsk, TIF_SSBD);
614
615 if (task_spec_ib_disable(tsk))
616 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
617 else
618 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
619 }
620 /* Return the updated threadinfo flags*/
621 return read_task_thread_flags(tsk);
622 }
623
speculation_ctrl_update(unsigned long tif)624 void speculation_ctrl_update(unsigned long tif)
625 {
626 unsigned long flags;
627
628 /* Forced update. Make sure all relevant TIF flags are different */
629 local_irq_save(flags);
630 __speculation_ctrl_update(~tif, tif);
631 local_irq_restore(flags);
632 }
633
634 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)635 void speculation_ctrl_update_current(void)
636 {
637 preempt_disable();
638 speculation_ctrl_update(speculation_ctrl_update_tif(current));
639 preempt_enable();
640 }
641
cr4_toggle_bits_irqsoff(unsigned long mask)642 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
643 {
644 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
645
646 newval = cr4 ^ mask;
647 if (newval != cr4) {
648 this_cpu_write(cpu_tlbstate.cr4, newval);
649 __write_cr4(newval);
650 }
651 }
652
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)653 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
654 {
655 unsigned long tifp, tifn;
656
657 tifn = read_task_thread_flags(next_p);
658 tifp = read_task_thread_flags(prev_p);
659
660 switch_to_bitmap(tifp);
661
662 propagate_user_return_notify(prev_p, next_p);
663
664 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
665 arch_has_block_step()) {
666 unsigned long debugctl, msk;
667
668 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
669 debugctl &= ~DEBUGCTLMSR_BTF;
670 msk = tifn & _TIF_BLOCKSTEP;
671 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
672 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
673 }
674
675 if ((tifp ^ tifn) & _TIF_NOTSC)
676 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
677
678 if ((tifp ^ tifn) & _TIF_NOCPUID)
679 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
680
681 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
682 __speculation_ctrl_update(tifp, tifn);
683 } else {
684 speculation_ctrl_update_tif(prev_p);
685 tifn = speculation_ctrl_update_tif(next_p);
686
687 /* Enforce MSR update to ensure consistent state */
688 __speculation_ctrl_update(~tifn, tifn);
689 }
690 }
691
692 /*
693 * Idle related variables and functions
694 */
695 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
696 EXPORT_SYMBOL(boot_option_idle_override);
697
698 /*
699 * We use this if we don't have any better idle routine..
700 */
default_idle(void)701 void __cpuidle default_idle(void)
702 {
703 raw_safe_halt();
704 raw_local_irq_disable();
705 }
706 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
707 EXPORT_SYMBOL(default_idle);
708 #endif
709
710 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
711
x86_idle_set(void)712 static bool x86_idle_set(void)
713 {
714 return !!static_call_query(x86_idle);
715 }
716
717 #ifndef CONFIG_SMP
play_dead(void)718 static inline void play_dead(void)
719 {
720 BUG();
721 }
722 #endif
723
arch_cpu_idle_enter(void)724 void arch_cpu_idle_enter(void)
725 {
726 tsc_verify_tsc_adjust(false);
727 local_touch_nmi();
728 }
729
arch_cpu_idle_dead(void)730 void arch_cpu_idle_dead(void)
731 {
732 play_dead();
733 }
734
735 /*
736 * Called from the generic idle code.
737 */
arch_cpu_idle(void)738 void __cpuidle arch_cpu_idle(void)
739 {
740 static_call(x86_idle)();
741 }
742 EXPORT_SYMBOL_GPL(arch_cpu_idle);
743
744 #ifdef CONFIG_XEN
xen_set_default_idle(void)745 bool xen_set_default_idle(void)
746 {
747 bool ret = x86_idle_set();
748
749 static_call_update(x86_idle, default_idle);
750
751 return ret;
752 }
753 #endif
754
stop_this_cpu(void * dummy)755 void __noreturn stop_this_cpu(void *dummy)
756 {
757 local_irq_disable();
758 /*
759 * Remove this CPU:
760 */
761 set_cpu_online(smp_processor_id(), false);
762 disable_local_APIC();
763 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
764
765 /*
766 * Use wbinvd on processors that support SME. This provides support
767 * for performing a successful kexec when going from SME inactive
768 * to SME active (or vice-versa). The cache must be cleared so that
769 * if there are entries with the same physical address, both with and
770 * without the encryption bit, they don't race each other when flushed
771 * and potentially end up with the wrong entry being committed to
772 * memory.
773 *
774 * Test the CPUID bit directly because the machine might've cleared
775 * X86_FEATURE_SME due to cmdline options.
776 */
777 if (cpuid_eax(0x8000001f) & BIT(0))
778 native_wbinvd();
779 for (;;) {
780 /*
781 * Use native_halt() so that memory contents don't change
782 * (stack usage and variables) after possibly issuing the
783 * native_wbinvd() above.
784 */
785 native_halt();
786 }
787 }
788
789 /*
790 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
791 * states (local apic timer and TSC stop).
792 *
793 * XXX this function is completely buggered vs RCU and tracing.
794 */
amd_e400_idle(void)795 static void amd_e400_idle(void)
796 {
797 /*
798 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
799 * gets set after static_cpu_has() places have been converted via
800 * alternatives.
801 */
802 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
803 default_idle();
804 return;
805 }
806
807 tick_broadcast_enter();
808
809 default_idle();
810
811 tick_broadcast_exit();
812 }
813
814 /*
815 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
816 * exists and whenever MONITOR/MWAIT extensions are present there is at
817 * least one C1 substate.
818 *
819 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
820 * is passed to kernel commandline parameter.
821 */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)822 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
823 {
824 u32 eax, ebx, ecx, edx;
825
826 /* User has disallowed the use of MWAIT. Fallback to HALT */
827 if (boot_option_idle_override == IDLE_NOMWAIT)
828 return 0;
829
830 /* MWAIT is not supported on this platform. Fallback to HALT */
831 if (!cpu_has(c, X86_FEATURE_MWAIT))
832 return 0;
833
834 /* Monitor has a bug. Fallback to HALT */
835 if (boot_cpu_has_bug(X86_BUG_MONITOR))
836 return 0;
837
838 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
839
840 /*
841 * If MWAIT extensions are not available, it is safe to use MWAIT
842 * with EAX=0, ECX=0.
843 */
844 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
845 return 1;
846
847 /*
848 * If MWAIT extensions are available, there should be at least one
849 * MWAIT C1 substate present.
850 */
851 return (edx & MWAIT_C1_SUBSTATE_MASK);
852 }
853
854 /*
855 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
856 * with interrupts enabled and no flags, which is backwards compatible with the
857 * original MWAIT implementation.
858 */
mwait_idle(void)859 static __cpuidle void mwait_idle(void)
860 {
861 if (!current_set_polling_and_test()) {
862 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
863 mb(); /* quirk */
864 clflush((void *)¤t_thread_info()->flags);
865 mb(); /* quirk */
866 }
867
868 __monitor((void *)¤t_thread_info()->flags, 0, 0);
869 if (!need_resched()) {
870 __sti_mwait(0, 0);
871 raw_local_irq_disable();
872 }
873 }
874 __current_clr_polling();
875 }
876
select_idle_routine(const struct cpuinfo_x86 * c)877 void select_idle_routine(const struct cpuinfo_x86 *c)
878 {
879 #ifdef CONFIG_SMP
880 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
881 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
882 #endif
883 if (x86_idle_set() || boot_option_idle_override == IDLE_POLL)
884 return;
885
886 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
887 pr_info("using AMD E400 aware idle routine\n");
888 static_call_update(x86_idle, amd_e400_idle);
889 } else if (prefer_mwait_c1_over_halt(c)) {
890 pr_info("using mwait in idle threads\n");
891 static_call_update(x86_idle, mwait_idle);
892 } else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
893 pr_info("using TDX aware idle routine\n");
894 static_call_update(x86_idle, tdx_safe_halt);
895 } else
896 static_call_update(x86_idle, default_idle);
897 }
898
amd_e400_c1e_apic_setup(void)899 void amd_e400_c1e_apic_setup(void)
900 {
901 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
902 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
903 local_irq_disable();
904 tick_broadcast_force();
905 local_irq_enable();
906 }
907 }
908
arch_post_acpi_subsys_init(void)909 void __init arch_post_acpi_subsys_init(void)
910 {
911 u32 lo, hi;
912
913 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
914 return;
915
916 /*
917 * AMD E400 detection needs to happen after ACPI has been enabled. If
918 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
919 * MSR_K8_INT_PENDING_MSG.
920 */
921 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
922 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
923 return;
924
925 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
926
927 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
928 mark_tsc_unstable("TSC halt in AMD C1E");
929 pr_info("System has AMD C1E enabled\n");
930 }
931
idle_setup(char * str)932 static int __init idle_setup(char *str)
933 {
934 if (!str)
935 return -EINVAL;
936
937 if (!strcmp(str, "poll")) {
938 pr_info("using polling idle threads\n");
939 boot_option_idle_override = IDLE_POLL;
940 cpu_idle_poll_ctrl(true);
941 } else if (!strcmp(str, "halt")) {
942 /*
943 * When the boot option of idle=halt is added, halt is
944 * forced to be used for CPU idle. In such case CPU C2/C3
945 * won't be used again.
946 * To continue to load the CPU idle driver, don't touch
947 * the boot_option_idle_override.
948 */
949 static_call_update(x86_idle, default_idle);
950 boot_option_idle_override = IDLE_HALT;
951 } else if (!strcmp(str, "nomwait")) {
952 /*
953 * If the boot option of "idle=nomwait" is added,
954 * it means that mwait will be disabled for CPU C1/C2/C3
955 * states.
956 */
957 boot_option_idle_override = IDLE_NOMWAIT;
958 } else
959 return -1;
960
961 return 0;
962 }
963 early_param("idle", idle_setup);
964
arch_align_stack(unsigned long sp)965 unsigned long arch_align_stack(unsigned long sp)
966 {
967 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
968 sp -= get_random_u32_below(8192);
969 return sp & ~0xf;
970 }
971
arch_randomize_brk(struct mm_struct * mm)972 unsigned long arch_randomize_brk(struct mm_struct *mm)
973 {
974 return randomize_page(mm->brk, 0x02000000);
975 }
976
977 /*
978 * Called from fs/proc with a reference on @p to find the function
979 * which called into schedule(). This needs to be done carefully
980 * because the task might wake up and we might look at a stack
981 * changing under us.
982 */
__get_wchan(struct task_struct * p)983 unsigned long __get_wchan(struct task_struct *p)
984 {
985 struct unwind_state state;
986 unsigned long addr = 0;
987
988 if (!try_get_task_stack(p))
989 return 0;
990
991 for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
992 unwind_next_frame(&state)) {
993 addr = unwind_get_return_address(&state);
994 if (!addr)
995 break;
996 if (in_sched_functions(addr))
997 continue;
998 break;
999 }
1000
1001 put_task_stack(p);
1002
1003 return addr;
1004 }
1005
do_arch_prctl_common(int option,unsigned long arg2)1006 long do_arch_prctl_common(int option, unsigned long arg2)
1007 {
1008 switch (option) {
1009 case ARCH_GET_CPUID:
1010 return get_cpuid_mode();
1011 case ARCH_SET_CPUID:
1012 return set_cpuid_mode(arg2);
1013 case ARCH_GET_XCOMP_SUPP:
1014 case ARCH_GET_XCOMP_PERM:
1015 case ARCH_REQ_XCOMP_PERM:
1016 case ARCH_GET_XCOMP_GUEST_PERM:
1017 case ARCH_REQ_XCOMP_GUEST_PERM:
1018 return fpu_xstate_prctl(option, arg2);
1019 }
1020
1021 return -EINVAL;
1022 }
1023