1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/dir.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * nfs directory handling functions
8 *
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
19 */
20
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
43
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48
49 #include "nfstrace.h"
50
51 /* #define NFS_DEBUG_VERBOSE 1 */
52
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_free_folio(struct folio *);
59
60 const struct file_operations nfs_dir_operations = {
61 .llseek = nfs_llseek_dir,
62 .read = generic_read_dir,
63 .iterate_shared = nfs_readdir,
64 .open = nfs_opendir,
65 .release = nfs_closedir,
66 .fsync = nfs_fsync_dir,
67 };
68
69 const struct address_space_operations nfs_dir_aops = {
70 .free_folio = nfs_readdir_free_folio,
71 };
72
73 #define NFS_INIT_DTSIZE PAGE_SIZE
74
75 static struct nfs_open_dir_context *
alloc_nfs_open_dir_context(struct inode * dir)76 alloc_nfs_open_dir_context(struct inode *dir)
77 {
78 struct nfs_inode *nfsi = NFS_I(dir);
79 struct nfs_open_dir_context *ctx;
80
81 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
82 if (ctx != NULL) {
83 ctx->attr_gencount = nfsi->attr_gencount;
84 ctx->dtsize = NFS_INIT_DTSIZE;
85 spin_lock(&dir->i_lock);
86 if (list_empty(&nfsi->open_files) &&
87 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
88 nfs_set_cache_invalid(dir,
89 NFS_INO_INVALID_DATA |
90 NFS_INO_REVAL_FORCED);
91 list_add_tail_rcu(&ctx->list, &nfsi->open_files);
92 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
93 spin_unlock(&dir->i_lock);
94 return ctx;
95 }
96 return ERR_PTR(-ENOMEM);
97 }
98
put_nfs_open_dir_context(struct inode * dir,struct nfs_open_dir_context * ctx)99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
100 {
101 spin_lock(&dir->i_lock);
102 list_del_rcu(&ctx->list);
103 spin_unlock(&dir->i_lock);
104 kfree_rcu(ctx, rcu_head);
105 }
106
107 /*
108 * Open file
109 */
110 static int
nfs_opendir(struct inode * inode,struct file * filp)111 nfs_opendir(struct inode *inode, struct file *filp)
112 {
113 int res = 0;
114 struct nfs_open_dir_context *ctx;
115
116 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
117
118 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
119
120 ctx = alloc_nfs_open_dir_context(inode);
121 if (IS_ERR(ctx)) {
122 res = PTR_ERR(ctx);
123 goto out;
124 }
125 filp->private_data = ctx;
126 out:
127 return res;
128 }
129
130 static int
nfs_closedir(struct inode * inode,struct file * filp)131 nfs_closedir(struct inode *inode, struct file *filp)
132 {
133 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
134 return 0;
135 }
136
137 struct nfs_cache_array_entry {
138 u64 cookie;
139 u64 ino;
140 const char *name;
141 unsigned int name_len;
142 unsigned char d_type;
143 };
144
145 struct nfs_cache_array {
146 u64 change_attr;
147 u64 last_cookie;
148 unsigned int size;
149 unsigned char page_full : 1,
150 page_is_eof : 1,
151 cookies_are_ordered : 1;
152 struct nfs_cache_array_entry array[];
153 };
154
155 struct nfs_readdir_descriptor {
156 struct file *file;
157 struct page *page;
158 struct dir_context *ctx;
159 pgoff_t page_index;
160 pgoff_t page_index_max;
161 u64 dir_cookie;
162 u64 last_cookie;
163 loff_t current_index;
164
165 __be32 verf[NFS_DIR_VERIFIER_SIZE];
166 unsigned long dir_verifier;
167 unsigned long timestamp;
168 unsigned long gencount;
169 unsigned long attr_gencount;
170 unsigned int cache_entry_index;
171 unsigned int buffer_fills;
172 unsigned int dtsize;
173 bool clear_cache;
174 bool plus;
175 bool eob;
176 bool eof;
177 };
178
nfs_set_dtsize(struct nfs_readdir_descriptor * desc,unsigned int sz)179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
180 {
181 struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
182 unsigned int maxsize = server->dtsize;
183
184 if (sz > maxsize)
185 sz = maxsize;
186 if (sz < NFS_MIN_FILE_IO_SIZE)
187 sz = NFS_MIN_FILE_IO_SIZE;
188 desc->dtsize = sz;
189 }
190
nfs_shrink_dtsize(struct nfs_readdir_descriptor * desc)191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
192 {
193 nfs_set_dtsize(desc, desc->dtsize >> 1);
194 }
195
nfs_grow_dtsize(struct nfs_readdir_descriptor * desc)196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
197 {
198 nfs_set_dtsize(desc, desc->dtsize << 1);
199 }
200
nfs_readdir_page_init_array(struct page * page,u64 last_cookie,u64 change_attr)201 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie,
202 u64 change_attr)
203 {
204 struct nfs_cache_array *array;
205
206 array = kmap_local_page(page);
207 array->change_attr = change_attr;
208 array->last_cookie = last_cookie;
209 array->size = 0;
210 array->page_full = 0;
211 array->page_is_eof = 0;
212 array->cookies_are_ordered = 1;
213 kunmap_local(array);
214 }
215
216 /*
217 * we are freeing strings created by nfs_add_to_readdir_array()
218 */
nfs_readdir_clear_array(struct page * page)219 static void nfs_readdir_clear_array(struct page *page)
220 {
221 struct nfs_cache_array *array;
222 unsigned int i;
223
224 array = kmap_local_page(page);
225 for (i = 0; i < array->size; i++)
226 kfree(array->array[i].name);
227 array->size = 0;
228 kunmap_local(array);
229 }
230
nfs_readdir_free_folio(struct folio * folio)231 static void nfs_readdir_free_folio(struct folio *folio)
232 {
233 nfs_readdir_clear_array(&folio->page);
234 }
235
nfs_readdir_page_reinit_array(struct page * page,u64 last_cookie,u64 change_attr)236 static void nfs_readdir_page_reinit_array(struct page *page, u64 last_cookie,
237 u64 change_attr)
238 {
239 nfs_readdir_clear_array(page);
240 nfs_readdir_page_init_array(page, last_cookie, change_attr);
241 }
242
243 static struct page *
nfs_readdir_page_array_alloc(u64 last_cookie,gfp_t gfp_flags)244 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
245 {
246 struct page *page = alloc_page(gfp_flags);
247 if (page)
248 nfs_readdir_page_init_array(page, last_cookie, 0);
249 return page;
250 }
251
nfs_readdir_page_array_free(struct page * page)252 static void nfs_readdir_page_array_free(struct page *page)
253 {
254 if (page) {
255 nfs_readdir_clear_array(page);
256 put_page(page);
257 }
258 }
259
nfs_readdir_array_index_cookie(struct nfs_cache_array * array)260 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
261 {
262 return array->size == 0 ? array->last_cookie : array->array[0].cookie;
263 }
264
nfs_readdir_array_set_eof(struct nfs_cache_array * array)265 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
266 {
267 array->page_is_eof = 1;
268 array->page_full = 1;
269 }
270
nfs_readdir_array_is_full(struct nfs_cache_array * array)271 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
272 {
273 return array->page_full;
274 }
275
276 /*
277 * the caller is responsible for freeing qstr.name
278 * when called by nfs_readdir_add_to_array, the strings will be freed in
279 * nfs_clear_readdir_array()
280 */
nfs_readdir_copy_name(const char * name,unsigned int len)281 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
282 {
283 const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
284
285 /*
286 * Avoid a kmemleak false positive. The pointer to the name is stored
287 * in a page cache page which kmemleak does not scan.
288 */
289 if (ret != NULL)
290 kmemleak_not_leak(ret);
291 return ret;
292 }
293
nfs_readdir_array_maxentries(void)294 static size_t nfs_readdir_array_maxentries(void)
295 {
296 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
297 sizeof(struct nfs_cache_array_entry);
298 }
299
300 /*
301 * Check that the next array entry lies entirely within the page bounds
302 */
nfs_readdir_array_can_expand(struct nfs_cache_array * array)303 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
304 {
305 if (array->page_full)
306 return -ENOSPC;
307 if (array->size == nfs_readdir_array_maxentries()) {
308 array->page_full = 1;
309 return -ENOSPC;
310 }
311 return 0;
312 }
313
nfs_readdir_page_array_append(struct page * page,const struct nfs_entry * entry,u64 * cookie)314 static int nfs_readdir_page_array_append(struct page *page,
315 const struct nfs_entry *entry,
316 u64 *cookie)
317 {
318 struct nfs_cache_array *array;
319 struct nfs_cache_array_entry *cache_entry;
320 const char *name;
321 int ret = -ENOMEM;
322
323 name = nfs_readdir_copy_name(entry->name, entry->len);
324
325 array = kmap_atomic(page);
326 if (!name)
327 goto out;
328 ret = nfs_readdir_array_can_expand(array);
329 if (ret) {
330 kfree(name);
331 goto out;
332 }
333
334 cache_entry = &array->array[array->size];
335 cache_entry->cookie = array->last_cookie;
336 cache_entry->ino = entry->ino;
337 cache_entry->d_type = entry->d_type;
338 cache_entry->name_len = entry->len;
339 cache_entry->name = name;
340 array->last_cookie = entry->cookie;
341 if (array->last_cookie <= cache_entry->cookie)
342 array->cookies_are_ordered = 0;
343 array->size++;
344 if (entry->eof != 0)
345 nfs_readdir_array_set_eof(array);
346 out:
347 *cookie = array->last_cookie;
348 kunmap_atomic(array);
349 return ret;
350 }
351
352 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
353 /*
354 * Hash algorithm allowing content addressible access to sequences
355 * of directory cookies. Content is addressed by the value of the
356 * cookie index of the first readdir entry in a page.
357 *
358 * We select only the first 18 bits to avoid issues with excessive
359 * memory use for the page cache XArray. 18 bits should allow the caching
360 * of 262144 pages of sequences of readdir entries. Since each page holds
361 * 127 readdir entries for a typical 64-bit system, that works out to a
362 * cache of ~ 33 million entries per directory.
363 */
nfs_readdir_page_cookie_hash(u64 cookie)364 static pgoff_t nfs_readdir_page_cookie_hash(u64 cookie)
365 {
366 if (cookie == 0)
367 return 0;
368 return hash_64(cookie, 18);
369 }
370
nfs_readdir_page_validate(struct page * page,u64 last_cookie,u64 change_attr)371 static bool nfs_readdir_page_validate(struct page *page, u64 last_cookie,
372 u64 change_attr)
373 {
374 struct nfs_cache_array *array = kmap_local_page(page);
375 int ret = true;
376
377 if (array->change_attr != change_attr)
378 ret = false;
379 if (nfs_readdir_array_index_cookie(array) != last_cookie)
380 ret = false;
381 kunmap_local(array);
382 return ret;
383 }
384
nfs_readdir_page_unlock_and_put(struct page * page)385 static void nfs_readdir_page_unlock_and_put(struct page *page)
386 {
387 unlock_page(page);
388 put_page(page);
389 }
390
nfs_readdir_page_init_and_validate(struct page * page,u64 cookie,u64 change_attr)391 static void nfs_readdir_page_init_and_validate(struct page *page, u64 cookie,
392 u64 change_attr)
393 {
394 if (PageUptodate(page)) {
395 if (nfs_readdir_page_validate(page, cookie, change_attr))
396 return;
397 nfs_readdir_clear_array(page);
398 }
399 nfs_readdir_page_init_array(page, cookie, change_attr);
400 SetPageUptodate(page);
401 }
402
nfs_readdir_page_get_locked(struct address_space * mapping,u64 cookie,u64 change_attr)403 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
404 u64 cookie, u64 change_attr)
405 {
406 pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
407 struct page *page;
408
409 page = grab_cache_page(mapping, index);
410 if (!page)
411 return NULL;
412 nfs_readdir_page_init_and_validate(page, cookie, change_attr);
413 return page;
414 }
415
nfs_readdir_page_last_cookie(struct page * page)416 static u64 nfs_readdir_page_last_cookie(struct page *page)
417 {
418 struct nfs_cache_array *array;
419 u64 ret;
420
421 array = kmap_local_page(page);
422 ret = array->last_cookie;
423 kunmap_local(array);
424 return ret;
425 }
426
nfs_readdir_page_needs_filling(struct page * page)427 static bool nfs_readdir_page_needs_filling(struct page *page)
428 {
429 struct nfs_cache_array *array;
430 bool ret;
431
432 array = kmap_local_page(page);
433 ret = !nfs_readdir_array_is_full(array);
434 kunmap_local(array);
435 return ret;
436 }
437
nfs_readdir_page_set_eof(struct page * page)438 static void nfs_readdir_page_set_eof(struct page *page)
439 {
440 struct nfs_cache_array *array;
441
442 array = kmap_local_page(page);
443 nfs_readdir_array_set_eof(array);
444 kunmap_local(array);
445 }
446
nfs_readdir_page_get_next(struct address_space * mapping,u64 cookie,u64 change_attr)447 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
448 u64 cookie, u64 change_attr)
449 {
450 pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
451 struct page *page;
452
453 page = grab_cache_page_nowait(mapping, index);
454 if (!page)
455 return NULL;
456 nfs_readdir_page_init_and_validate(page, cookie, change_attr);
457 if (nfs_readdir_page_last_cookie(page) != cookie)
458 nfs_readdir_page_reinit_array(page, cookie, change_attr);
459 return page;
460 }
461
462 static inline
is_32bit_api(void)463 int is_32bit_api(void)
464 {
465 #ifdef CONFIG_COMPAT
466 return in_compat_syscall();
467 #else
468 return (BITS_PER_LONG == 32);
469 #endif
470 }
471
472 static
nfs_readdir_use_cookie(const struct file * filp)473 bool nfs_readdir_use_cookie(const struct file *filp)
474 {
475 if ((filp->f_mode & FMODE_32BITHASH) ||
476 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
477 return false;
478 return true;
479 }
480
nfs_readdir_seek_next_array(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)481 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
482 struct nfs_readdir_descriptor *desc)
483 {
484 if (array->page_full) {
485 desc->last_cookie = array->last_cookie;
486 desc->current_index += array->size;
487 desc->cache_entry_index = 0;
488 desc->page_index++;
489 } else
490 desc->last_cookie = nfs_readdir_array_index_cookie(array);
491 }
492
nfs_readdir_rewind_search(struct nfs_readdir_descriptor * desc)493 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
494 {
495 desc->current_index = 0;
496 desc->last_cookie = 0;
497 desc->page_index = 0;
498 }
499
nfs_readdir_search_for_pos(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)500 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
501 struct nfs_readdir_descriptor *desc)
502 {
503 loff_t diff = desc->ctx->pos - desc->current_index;
504 unsigned int index;
505
506 if (diff < 0)
507 goto out_eof;
508 if (diff >= array->size) {
509 if (array->page_is_eof)
510 goto out_eof;
511 nfs_readdir_seek_next_array(array, desc);
512 return -EAGAIN;
513 }
514
515 index = (unsigned int)diff;
516 desc->dir_cookie = array->array[index].cookie;
517 desc->cache_entry_index = index;
518 return 0;
519 out_eof:
520 desc->eof = true;
521 return -EBADCOOKIE;
522 }
523
nfs_readdir_array_cookie_in_range(struct nfs_cache_array * array,u64 cookie)524 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
525 u64 cookie)
526 {
527 if (!array->cookies_are_ordered)
528 return true;
529 /* Optimisation for monotonically increasing cookies */
530 if (cookie >= array->last_cookie)
531 return false;
532 if (array->size && cookie < array->array[0].cookie)
533 return false;
534 return true;
535 }
536
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)537 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
538 struct nfs_readdir_descriptor *desc)
539 {
540 unsigned int i;
541 int status = -EAGAIN;
542
543 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
544 goto check_eof;
545
546 for (i = 0; i < array->size; i++) {
547 if (array->array[i].cookie == desc->dir_cookie) {
548 if (nfs_readdir_use_cookie(desc->file))
549 desc->ctx->pos = desc->dir_cookie;
550 else
551 desc->ctx->pos = desc->current_index + i;
552 desc->cache_entry_index = i;
553 return 0;
554 }
555 }
556 check_eof:
557 if (array->page_is_eof) {
558 status = -EBADCOOKIE;
559 if (desc->dir_cookie == array->last_cookie)
560 desc->eof = true;
561 } else
562 nfs_readdir_seek_next_array(array, desc);
563 return status;
564 }
565
nfs_readdir_search_array(struct nfs_readdir_descriptor * desc)566 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
567 {
568 struct nfs_cache_array *array;
569 int status;
570
571 array = kmap_local_page(desc->page);
572
573 if (desc->dir_cookie == 0)
574 status = nfs_readdir_search_for_pos(array, desc);
575 else
576 status = nfs_readdir_search_for_cookie(array, desc);
577
578 kunmap_local(array);
579 return status;
580 }
581
582 /* Fill a page with xdr information before transferring to the cache page */
nfs_readdir_xdr_filler(struct nfs_readdir_descriptor * desc,__be32 * verf,u64 cookie,struct page ** pages,size_t bufsize,__be32 * verf_res)583 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
584 __be32 *verf, u64 cookie,
585 struct page **pages, size_t bufsize,
586 __be32 *verf_res)
587 {
588 struct inode *inode = file_inode(desc->file);
589 struct nfs_readdir_arg arg = {
590 .dentry = file_dentry(desc->file),
591 .cred = desc->file->f_cred,
592 .verf = verf,
593 .cookie = cookie,
594 .pages = pages,
595 .page_len = bufsize,
596 .plus = desc->plus,
597 };
598 struct nfs_readdir_res res = {
599 .verf = verf_res,
600 };
601 unsigned long timestamp, gencount;
602 int error;
603
604 again:
605 timestamp = jiffies;
606 gencount = nfs_inc_attr_generation_counter();
607 desc->dir_verifier = nfs_save_change_attribute(inode);
608 error = NFS_PROTO(inode)->readdir(&arg, &res);
609 if (error < 0) {
610 /* We requested READDIRPLUS, but the server doesn't grok it */
611 if (error == -ENOTSUPP && desc->plus) {
612 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
613 desc->plus = arg.plus = false;
614 goto again;
615 }
616 goto error;
617 }
618 desc->timestamp = timestamp;
619 desc->gencount = gencount;
620 error:
621 return error;
622 }
623
xdr_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * xdr)624 static int xdr_decode(struct nfs_readdir_descriptor *desc,
625 struct nfs_entry *entry, struct xdr_stream *xdr)
626 {
627 struct inode *inode = file_inode(desc->file);
628 int error;
629
630 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
631 if (error)
632 return error;
633 entry->fattr->time_start = desc->timestamp;
634 entry->fattr->gencount = desc->gencount;
635 return 0;
636 }
637
638 /* Match file and dirent using either filehandle or fileid
639 * Note: caller is responsible for checking the fsid
640 */
641 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)642 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
643 {
644 struct inode *inode;
645 struct nfs_inode *nfsi;
646
647 if (d_really_is_negative(dentry))
648 return 0;
649
650 inode = d_inode(dentry);
651 if (is_bad_inode(inode) || NFS_STALE(inode))
652 return 0;
653
654 nfsi = NFS_I(inode);
655 if (entry->fattr->fileid != nfsi->fileid)
656 return 0;
657 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
658 return 0;
659 return 1;
660 }
661
662 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
663
nfs_use_readdirplus(struct inode * dir,struct dir_context * ctx,unsigned int cache_hits,unsigned int cache_misses)664 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
665 unsigned int cache_hits,
666 unsigned int cache_misses)
667 {
668 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
669 return false;
670 if (ctx->pos == 0 ||
671 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
672 return true;
673 return false;
674 }
675
676 /*
677 * This function is called by the getattr code to request the
678 * use of readdirplus to accelerate any future lookups in the same
679 * directory.
680 */
nfs_readdir_record_entry_cache_hit(struct inode * dir)681 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
682 {
683 struct nfs_inode *nfsi = NFS_I(dir);
684 struct nfs_open_dir_context *ctx;
685
686 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
687 S_ISDIR(dir->i_mode)) {
688 rcu_read_lock();
689 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
690 atomic_inc(&ctx->cache_hits);
691 rcu_read_unlock();
692 }
693 }
694
695 /*
696 * This function is mainly for use by nfs_getattr().
697 *
698 * If this is an 'ls -l', we want to force use of readdirplus.
699 */
nfs_readdir_record_entry_cache_miss(struct inode * dir)700 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
701 {
702 struct nfs_inode *nfsi = NFS_I(dir);
703 struct nfs_open_dir_context *ctx;
704
705 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
706 S_ISDIR(dir->i_mode)) {
707 rcu_read_lock();
708 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
709 atomic_inc(&ctx->cache_misses);
710 rcu_read_unlock();
711 }
712 }
713
nfs_lookup_advise_force_readdirplus(struct inode * dir,unsigned int flags)714 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
715 unsigned int flags)
716 {
717 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
718 return;
719 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
720 return;
721 nfs_readdir_record_entry_cache_miss(dir);
722 }
723
724 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry,unsigned long dir_verifier)725 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
726 unsigned long dir_verifier)
727 {
728 struct qstr filename = QSTR_INIT(entry->name, entry->len);
729 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
730 struct dentry *dentry;
731 struct dentry *alias;
732 struct inode *inode;
733 int status;
734
735 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
736 return;
737 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
738 return;
739 if (filename.len == 0)
740 return;
741 /* Validate that the name doesn't contain any illegal '\0' */
742 if (strnlen(filename.name, filename.len) != filename.len)
743 return;
744 /* ...or '/' */
745 if (strnchr(filename.name, filename.len, '/'))
746 return;
747 if (filename.name[0] == '.') {
748 if (filename.len == 1)
749 return;
750 if (filename.len == 2 && filename.name[1] == '.')
751 return;
752 }
753 filename.hash = full_name_hash(parent, filename.name, filename.len);
754
755 dentry = d_lookup(parent, &filename);
756 again:
757 if (!dentry) {
758 dentry = d_alloc_parallel(parent, &filename, &wq);
759 if (IS_ERR(dentry))
760 return;
761 }
762 if (!d_in_lookup(dentry)) {
763 /* Is there a mountpoint here? If so, just exit */
764 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
765 &entry->fattr->fsid))
766 goto out;
767 if (nfs_same_file(dentry, entry)) {
768 if (!entry->fh->size)
769 goto out;
770 nfs_set_verifier(dentry, dir_verifier);
771 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
772 if (!status)
773 nfs_setsecurity(d_inode(dentry), entry->fattr);
774 trace_nfs_readdir_lookup_revalidate(d_inode(parent),
775 dentry, 0, status);
776 goto out;
777 } else {
778 trace_nfs_readdir_lookup_revalidate_failed(
779 d_inode(parent), dentry, 0);
780 d_invalidate(dentry);
781 dput(dentry);
782 dentry = NULL;
783 goto again;
784 }
785 }
786 if (!entry->fh->size) {
787 d_lookup_done(dentry);
788 goto out;
789 }
790
791 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
792 alias = d_splice_alias(inode, dentry);
793 d_lookup_done(dentry);
794 if (alias) {
795 if (IS_ERR(alias))
796 goto out;
797 dput(dentry);
798 dentry = alias;
799 }
800 nfs_set_verifier(dentry, dir_verifier);
801 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
802 out:
803 dput(dentry);
804 }
805
nfs_readdir_entry_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * stream)806 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
807 struct nfs_entry *entry,
808 struct xdr_stream *stream)
809 {
810 int ret;
811
812 if (entry->fattr->label)
813 entry->fattr->label->len = NFS4_MAXLABELLEN;
814 ret = xdr_decode(desc, entry, stream);
815 if (ret || !desc->plus)
816 return ret;
817 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
818 return 0;
819 }
820
821 /* Perform conversion from xdr to cache array */
nfs_readdir_page_filler(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct page ** xdr_pages,unsigned int buflen,struct page ** arrays,size_t narrays,u64 change_attr)822 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
823 struct nfs_entry *entry,
824 struct page **xdr_pages, unsigned int buflen,
825 struct page **arrays, size_t narrays,
826 u64 change_attr)
827 {
828 struct address_space *mapping = desc->file->f_mapping;
829 struct xdr_stream stream;
830 struct xdr_buf buf;
831 struct page *scratch, *new, *page = *arrays;
832 u64 cookie;
833 int status;
834
835 scratch = alloc_page(GFP_KERNEL);
836 if (scratch == NULL)
837 return -ENOMEM;
838
839 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
840 xdr_set_scratch_page(&stream, scratch);
841
842 do {
843 status = nfs_readdir_entry_decode(desc, entry, &stream);
844 if (status != 0)
845 break;
846
847 status = nfs_readdir_page_array_append(page, entry, &cookie);
848 if (status != -ENOSPC)
849 continue;
850
851 if (page->mapping != mapping) {
852 if (!--narrays)
853 break;
854 new = nfs_readdir_page_array_alloc(cookie, GFP_KERNEL);
855 if (!new)
856 break;
857 arrays++;
858 *arrays = page = new;
859 } else {
860 new = nfs_readdir_page_get_next(mapping, cookie,
861 change_attr);
862 if (!new)
863 break;
864 if (page != *arrays)
865 nfs_readdir_page_unlock_and_put(page);
866 page = new;
867 }
868 desc->page_index_max++;
869 status = nfs_readdir_page_array_append(page, entry, &cookie);
870 } while (!status && !entry->eof);
871
872 switch (status) {
873 case -EBADCOOKIE:
874 if (!entry->eof)
875 break;
876 nfs_readdir_page_set_eof(page);
877 fallthrough;
878 case -EAGAIN:
879 status = 0;
880 break;
881 case -ENOSPC:
882 status = 0;
883 if (!desc->plus)
884 break;
885 while (!nfs_readdir_entry_decode(desc, entry, &stream))
886 ;
887 }
888
889 if (page != *arrays)
890 nfs_readdir_page_unlock_and_put(page);
891
892 put_page(scratch);
893 return status;
894 }
895
nfs_readdir_free_pages(struct page ** pages,size_t npages)896 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
897 {
898 while (npages--)
899 put_page(pages[npages]);
900 kfree(pages);
901 }
902
903 /*
904 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
905 * to nfs_readdir_free_pages()
906 */
nfs_readdir_alloc_pages(size_t npages)907 static struct page **nfs_readdir_alloc_pages(size_t npages)
908 {
909 struct page **pages;
910 size_t i;
911
912 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
913 if (!pages)
914 return NULL;
915 for (i = 0; i < npages; i++) {
916 struct page *page = alloc_page(GFP_KERNEL);
917 if (page == NULL)
918 goto out_freepages;
919 pages[i] = page;
920 }
921 return pages;
922
923 out_freepages:
924 nfs_readdir_free_pages(pages, i);
925 return NULL;
926 }
927
nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor * desc,__be32 * verf_arg,__be32 * verf_res,struct page ** arrays,size_t narrays)928 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
929 __be32 *verf_arg, __be32 *verf_res,
930 struct page **arrays, size_t narrays)
931 {
932 u64 change_attr;
933 struct page **pages;
934 struct page *page = *arrays;
935 struct nfs_entry *entry;
936 size_t array_size;
937 struct inode *inode = file_inode(desc->file);
938 unsigned int dtsize = desc->dtsize;
939 unsigned int pglen;
940 int status = -ENOMEM;
941
942 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
943 if (!entry)
944 return -ENOMEM;
945 entry->cookie = nfs_readdir_page_last_cookie(page);
946 entry->fh = nfs_alloc_fhandle();
947 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
948 entry->server = NFS_SERVER(inode);
949 if (entry->fh == NULL || entry->fattr == NULL)
950 goto out;
951
952 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
953 pages = nfs_readdir_alloc_pages(array_size);
954 if (!pages)
955 goto out;
956
957 change_attr = inode_peek_iversion_raw(inode);
958 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
959 dtsize, verf_res);
960 if (status < 0)
961 goto free_pages;
962
963 pglen = status;
964 if (pglen != 0)
965 status = nfs_readdir_page_filler(desc, entry, pages, pglen,
966 arrays, narrays, change_attr);
967 else
968 nfs_readdir_page_set_eof(page);
969 desc->buffer_fills++;
970
971 free_pages:
972 nfs_readdir_free_pages(pages, array_size);
973 out:
974 nfs_free_fattr(entry->fattr);
975 nfs_free_fhandle(entry->fh);
976 kfree(entry);
977 return status;
978 }
979
nfs_readdir_page_put(struct nfs_readdir_descriptor * desc)980 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
981 {
982 put_page(desc->page);
983 desc->page = NULL;
984 }
985
986 static void
nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor * desc)987 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
988 {
989 unlock_page(desc->page);
990 nfs_readdir_page_put(desc);
991 }
992
993 static struct page *
nfs_readdir_page_get_cached(struct nfs_readdir_descriptor * desc)994 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
995 {
996 struct address_space *mapping = desc->file->f_mapping;
997 u64 change_attr = inode_peek_iversion_raw(mapping->host);
998 u64 cookie = desc->last_cookie;
999 struct page *page;
1000
1001 page = nfs_readdir_page_get_locked(mapping, cookie, change_attr);
1002 if (!page)
1003 return NULL;
1004 if (desc->clear_cache && !nfs_readdir_page_needs_filling(page))
1005 nfs_readdir_page_reinit_array(page, cookie, change_attr);
1006 return page;
1007 }
1008
1009 /*
1010 * Returns 0 if desc->dir_cookie was found on page desc->page_index
1011 * and locks the page to prevent removal from the page cache.
1012 */
find_and_lock_cache_page(struct nfs_readdir_descriptor * desc)1013 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1014 {
1015 struct inode *inode = file_inode(desc->file);
1016 struct nfs_inode *nfsi = NFS_I(inode);
1017 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1018 int res;
1019
1020 desc->page = nfs_readdir_page_get_cached(desc);
1021 if (!desc->page)
1022 return -ENOMEM;
1023 if (nfs_readdir_page_needs_filling(desc->page)) {
1024 /* Grow the dtsize if we had to go back for more pages */
1025 if (desc->page_index == desc->page_index_max)
1026 nfs_grow_dtsize(desc);
1027 desc->page_index_max = desc->page_index;
1028 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1029 desc->last_cookie,
1030 desc->page->index, desc->dtsize);
1031 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1032 &desc->page, 1);
1033 if (res < 0) {
1034 nfs_readdir_page_unlock_and_put_cached(desc);
1035 trace_nfs_readdir_cache_fill_done(inode, res);
1036 if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1037 invalidate_inode_pages2(desc->file->f_mapping);
1038 nfs_readdir_rewind_search(desc);
1039 trace_nfs_readdir_invalidate_cache_range(
1040 inode, 0, MAX_LFS_FILESIZE);
1041 return -EAGAIN;
1042 }
1043 return res;
1044 }
1045 /*
1046 * Set the cookie verifier if the page cache was empty
1047 */
1048 if (desc->last_cookie == 0 &&
1049 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1050 memcpy(nfsi->cookieverf, verf,
1051 sizeof(nfsi->cookieverf));
1052 invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1053 -1);
1054 trace_nfs_readdir_invalidate_cache_range(
1055 inode, 1, MAX_LFS_FILESIZE);
1056 }
1057 desc->clear_cache = false;
1058 }
1059 res = nfs_readdir_search_array(desc);
1060 if (res == 0)
1061 return 0;
1062 nfs_readdir_page_unlock_and_put_cached(desc);
1063 return res;
1064 }
1065
1066 /* Search for desc->dir_cookie from the beginning of the page cache */
readdir_search_pagecache(struct nfs_readdir_descriptor * desc)1067 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1068 {
1069 int res;
1070
1071 do {
1072 res = find_and_lock_cache_page(desc);
1073 } while (res == -EAGAIN);
1074 return res;
1075 }
1076
1077 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1078
1079 /*
1080 * Once we've found the start of the dirent within a page: fill 'er up...
1081 */
nfs_do_filldir(struct nfs_readdir_descriptor * desc,const __be32 * verf)1082 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1083 const __be32 *verf)
1084 {
1085 struct file *file = desc->file;
1086 struct nfs_cache_array *array;
1087 unsigned int i;
1088 bool first_emit = !desc->dir_cookie;
1089
1090 array = kmap_local_page(desc->page);
1091 for (i = desc->cache_entry_index; i < array->size; i++) {
1092 struct nfs_cache_array_entry *ent;
1093
1094 ent = &array->array[i];
1095 if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1096 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1097 desc->eob = true;
1098 break;
1099 }
1100 memcpy(desc->verf, verf, sizeof(desc->verf));
1101 if (i == array->size - 1) {
1102 desc->dir_cookie = array->last_cookie;
1103 nfs_readdir_seek_next_array(array, desc);
1104 } else {
1105 desc->dir_cookie = array->array[i + 1].cookie;
1106 desc->last_cookie = array->array[0].cookie;
1107 }
1108 if (nfs_readdir_use_cookie(file))
1109 desc->ctx->pos = desc->dir_cookie;
1110 else
1111 desc->ctx->pos++;
1112 if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 1) {
1113 desc->eob = true;
1114 break;
1115 }
1116 }
1117 if (array->page_is_eof)
1118 desc->eof = !desc->eob;
1119
1120 kunmap_local(array);
1121 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1122 (unsigned long long)desc->dir_cookie);
1123 }
1124
1125 /*
1126 * If we cannot find a cookie in our cache, we suspect that this is
1127 * because it points to a deleted file, so we ask the server to return
1128 * whatever it thinks is the next entry. We then feed this to filldir.
1129 * If all goes well, we should then be able to find our way round the
1130 * cache on the next call to readdir_search_pagecache();
1131 *
1132 * NOTE: we cannot add the anonymous page to the pagecache because
1133 * the data it contains might not be page aligned. Besides,
1134 * we should already have a complete representation of the
1135 * directory in the page cache by the time we get here.
1136 */
uncached_readdir(struct nfs_readdir_descriptor * desc)1137 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1138 {
1139 struct page **arrays;
1140 size_t i, sz = 512;
1141 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1142 int status = -ENOMEM;
1143
1144 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1145 (unsigned long long)desc->dir_cookie);
1146
1147 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1148 if (!arrays)
1149 goto out;
1150 arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1151 if (!arrays[0])
1152 goto out;
1153
1154 desc->page_index = 0;
1155 desc->cache_entry_index = 0;
1156 desc->last_cookie = desc->dir_cookie;
1157 desc->page_index_max = 0;
1158
1159 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1160 -1, desc->dtsize);
1161
1162 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1163 if (status < 0) {
1164 trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1165 goto out_free;
1166 }
1167
1168 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1169 desc->page = arrays[i];
1170 nfs_do_filldir(desc, verf);
1171 }
1172 desc->page = NULL;
1173
1174 /*
1175 * Grow the dtsize if we have to go back for more pages,
1176 * or shrink it if we're reading too many.
1177 */
1178 if (!desc->eof) {
1179 if (!desc->eob)
1180 nfs_grow_dtsize(desc);
1181 else if (desc->buffer_fills == 1 &&
1182 i < (desc->page_index_max >> 1))
1183 nfs_shrink_dtsize(desc);
1184 }
1185 out_free:
1186 for (i = 0; i < sz && arrays[i]; i++)
1187 nfs_readdir_page_array_free(arrays[i]);
1188 out:
1189 if (!nfs_readdir_use_cookie(desc->file))
1190 nfs_readdir_rewind_search(desc);
1191 desc->page_index_max = -1;
1192 kfree(arrays);
1193 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1194 return status;
1195 }
1196
nfs_readdir_handle_cache_misses(struct inode * inode,struct nfs_readdir_descriptor * desc,unsigned int cache_misses,bool force_clear)1197 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1198 struct nfs_readdir_descriptor *desc,
1199 unsigned int cache_misses,
1200 bool force_clear)
1201 {
1202 if (desc->ctx->pos == 0 || !desc->plus)
1203 return false;
1204 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1205 return false;
1206 trace_nfs_readdir_force_readdirplus(inode);
1207 return true;
1208 }
1209
1210 /* The file offset position represents the dirent entry number. A
1211 last cookie cache takes care of the common case of reading the
1212 whole directory.
1213 */
nfs_readdir(struct file * file,struct dir_context * ctx)1214 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1215 {
1216 struct dentry *dentry = file_dentry(file);
1217 struct inode *inode = d_inode(dentry);
1218 struct nfs_inode *nfsi = NFS_I(inode);
1219 struct nfs_open_dir_context *dir_ctx = file->private_data;
1220 struct nfs_readdir_descriptor *desc;
1221 unsigned int cache_hits, cache_misses;
1222 bool force_clear;
1223 int res;
1224
1225 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1226 file, (long long)ctx->pos);
1227 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1228
1229 /*
1230 * ctx->pos points to the dirent entry number.
1231 * *desc->dir_cookie has the cookie for the next entry. We have
1232 * to either find the entry with the appropriate number or
1233 * revalidate the cookie.
1234 */
1235 nfs_revalidate_mapping(inode, file->f_mapping);
1236
1237 res = -ENOMEM;
1238 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1239 if (!desc)
1240 goto out;
1241 desc->file = file;
1242 desc->ctx = ctx;
1243 desc->page_index_max = -1;
1244
1245 spin_lock(&file->f_lock);
1246 desc->dir_cookie = dir_ctx->dir_cookie;
1247 desc->page_index = dir_ctx->page_index;
1248 desc->last_cookie = dir_ctx->last_cookie;
1249 desc->attr_gencount = dir_ctx->attr_gencount;
1250 desc->eof = dir_ctx->eof;
1251 nfs_set_dtsize(desc, dir_ctx->dtsize);
1252 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1253 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1254 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1255 force_clear = dir_ctx->force_clear;
1256 spin_unlock(&file->f_lock);
1257
1258 if (desc->eof) {
1259 res = 0;
1260 goto out_free;
1261 }
1262
1263 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1264 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1265 force_clear);
1266 desc->clear_cache = force_clear;
1267
1268 do {
1269 res = readdir_search_pagecache(desc);
1270
1271 if (res == -EBADCOOKIE) {
1272 res = 0;
1273 /* This means either end of directory */
1274 if (desc->dir_cookie && !desc->eof) {
1275 /* Or that the server has 'lost' a cookie */
1276 res = uncached_readdir(desc);
1277 if (res == 0)
1278 continue;
1279 if (res == -EBADCOOKIE || res == -ENOTSYNC)
1280 res = 0;
1281 }
1282 break;
1283 }
1284 if (res == -ETOOSMALL && desc->plus) {
1285 nfs_zap_caches(inode);
1286 desc->plus = false;
1287 desc->eof = false;
1288 continue;
1289 }
1290 if (res < 0)
1291 break;
1292
1293 nfs_do_filldir(desc, nfsi->cookieverf);
1294 nfs_readdir_page_unlock_and_put_cached(desc);
1295 if (desc->page_index == desc->page_index_max)
1296 desc->clear_cache = force_clear;
1297 } while (!desc->eob && !desc->eof);
1298
1299 spin_lock(&file->f_lock);
1300 dir_ctx->dir_cookie = desc->dir_cookie;
1301 dir_ctx->last_cookie = desc->last_cookie;
1302 dir_ctx->attr_gencount = desc->attr_gencount;
1303 dir_ctx->page_index = desc->page_index;
1304 dir_ctx->force_clear = force_clear;
1305 dir_ctx->eof = desc->eof;
1306 dir_ctx->dtsize = desc->dtsize;
1307 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1308 spin_unlock(&file->f_lock);
1309 out_free:
1310 kfree(desc);
1311
1312 out:
1313 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1314 return res;
1315 }
1316
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)1317 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1318 {
1319 struct nfs_open_dir_context *dir_ctx = filp->private_data;
1320
1321 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1322 filp, offset, whence);
1323
1324 switch (whence) {
1325 default:
1326 return -EINVAL;
1327 case SEEK_SET:
1328 if (offset < 0)
1329 return -EINVAL;
1330 spin_lock(&filp->f_lock);
1331 break;
1332 case SEEK_CUR:
1333 if (offset == 0)
1334 return filp->f_pos;
1335 spin_lock(&filp->f_lock);
1336 offset += filp->f_pos;
1337 if (offset < 0) {
1338 spin_unlock(&filp->f_lock);
1339 return -EINVAL;
1340 }
1341 }
1342 if (offset != filp->f_pos) {
1343 filp->f_pos = offset;
1344 dir_ctx->page_index = 0;
1345 if (!nfs_readdir_use_cookie(filp)) {
1346 dir_ctx->dir_cookie = 0;
1347 dir_ctx->last_cookie = 0;
1348 } else {
1349 dir_ctx->dir_cookie = offset;
1350 dir_ctx->last_cookie = offset;
1351 }
1352 dir_ctx->eof = false;
1353 }
1354 spin_unlock(&filp->f_lock);
1355 return offset;
1356 }
1357
1358 /*
1359 * All directory operations under NFS are synchronous, so fsync()
1360 * is a dummy operation.
1361 */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)1362 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1363 int datasync)
1364 {
1365 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1366
1367 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1368 return 0;
1369 }
1370
1371 /**
1372 * nfs_force_lookup_revalidate - Mark the directory as having changed
1373 * @dir: pointer to directory inode
1374 *
1375 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1376 * full lookup on all child dentries of 'dir' whenever a change occurs
1377 * on the server that might have invalidated our dcache.
1378 *
1379 * Note that we reserve bit '0' as a tag to let us know when a dentry
1380 * was revalidated while holding a delegation on its inode.
1381 *
1382 * The caller should be holding dir->i_lock
1383 */
nfs_force_lookup_revalidate(struct inode * dir)1384 void nfs_force_lookup_revalidate(struct inode *dir)
1385 {
1386 NFS_I(dir)->cache_change_attribute += 2;
1387 }
1388 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1389
1390 /**
1391 * nfs_verify_change_attribute - Detects NFS remote directory changes
1392 * @dir: pointer to parent directory inode
1393 * @verf: previously saved change attribute
1394 *
1395 * Return "false" if the verifiers doesn't match the change attribute.
1396 * This would usually indicate that the directory contents have changed on
1397 * the server, and that any dentries need revalidating.
1398 */
nfs_verify_change_attribute(struct inode * dir,unsigned long verf)1399 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1400 {
1401 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1402 }
1403
nfs_set_verifier_delegated(unsigned long * verf)1404 static void nfs_set_verifier_delegated(unsigned long *verf)
1405 {
1406 *verf |= 1UL;
1407 }
1408
1409 #if IS_ENABLED(CONFIG_NFS_V4)
nfs_unset_verifier_delegated(unsigned long * verf)1410 static void nfs_unset_verifier_delegated(unsigned long *verf)
1411 {
1412 *verf &= ~1UL;
1413 }
1414 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1415
nfs_test_verifier_delegated(unsigned long verf)1416 static bool nfs_test_verifier_delegated(unsigned long verf)
1417 {
1418 return verf & 1;
1419 }
1420
nfs_verifier_is_delegated(struct dentry * dentry)1421 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1422 {
1423 return nfs_test_verifier_delegated(dentry->d_time);
1424 }
1425
nfs_set_verifier_locked(struct dentry * dentry,unsigned long verf)1426 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1427 {
1428 struct inode *inode = d_inode(dentry);
1429 struct inode *dir = d_inode(dentry->d_parent);
1430
1431 if (!nfs_verify_change_attribute(dir, verf))
1432 return;
1433 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1434 nfs_set_verifier_delegated(&verf);
1435 dentry->d_time = verf;
1436 }
1437
1438 /**
1439 * nfs_set_verifier - save a parent directory verifier in the dentry
1440 * @dentry: pointer to dentry
1441 * @verf: verifier to save
1442 *
1443 * Saves the parent directory verifier in @dentry. If the inode has
1444 * a delegation, we also tag the dentry as having been revalidated
1445 * while holding a delegation so that we know we don't have to
1446 * look it up again after a directory change.
1447 */
nfs_set_verifier(struct dentry * dentry,unsigned long verf)1448 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1449 {
1450
1451 spin_lock(&dentry->d_lock);
1452 nfs_set_verifier_locked(dentry, verf);
1453 spin_unlock(&dentry->d_lock);
1454 }
1455 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1456
1457 #if IS_ENABLED(CONFIG_NFS_V4)
1458 /**
1459 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1460 * @inode: pointer to inode
1461 *
1462 * Iterates through the dentries in the inode alias list and clears
1463 * the tag used to indicate that the dentry has been revalidated
1464 * while holding a delegation.
1465 * This function is intended for use when the delegation is being
1466 * returned or revoked.
1467 */
nfs_clear_verifier_delegated(struct inode * inode)1468 void nfs_clear_verifier_delegated(struct inode *inode)
1469 {
1470 struct dentry *alias;
1471
1472 if (!inode)
1473 return;
1474 spin_lock(&inode->i_lock);
1475 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1476 spin_lock(&alias->d_lock);
1477 nfs_unset_verifier_delegated(&alias->d_time);
1478 spin_unlock(&alias->d_lock);
1479 }
1480 spin_unlock(&inode->i_lock);
1481 }
1482 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1483 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1484
nfs_dentry_verify_change(struct inode * dir,struct dentry * dentry)1485 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1486 {
1487 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1488 d_really_is_negative(dentry))
1489 return dentry->d_time == inode_peek_iversion_raw(dir);
1490 return nfs_verify_change_attribute(dir, dentry->d_time);
1491 }
1492
1493 /*
1494 * A check for whether or not the parent directory has changed.
1495 * In the case it has, we assume that the dentries are untrustworthy
1496 * and may need to be looked up again.
1497 * If rcu_walk prevents us from performing a full check, return 0.
1498 */
nfs_check_verifier(struct inode * dir,struct dentry * dentry,int rcu_walk)1499 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1500 int rcu_walk)
1501 {
1502 if (IS_ROOT(dentry))
1503 return 1;
1504 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1505 return 0;
1506 if (!nfs_dentry_verify_change(dir, dentry))
1507 return 0;
1508 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1509 if (nfs_mapping_need_revalidate_inode(dir)) {
1510 if (rcu_walk)
1511 return 0;
1512 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1513 return 0;
1514 }
1515 if (!nfs_dentry_verify_change(dir, dentry))
1516 return 0;
1517 return 1;
1518 }
1519
1520 /*
1521 * Use intent information to check whether or not we're going to do
1522 * an O_EXCL create using this path component.
1523 */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)1524 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1525 {
1526 if (NFS_PROTO(dir)->version == 2)
1527 return 0;
1528 return flags & LOOKUP_EXCL;
1529 }
1530
1531 /*
1532 * Inode and filehandle revalidation for lookups.
1533 *
1534 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1535 * or if the intent information indicates that we're about to open this
1536 * particular file and the "nocto" mount flag is not set.
1537 *
1538 */
1539 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)1540 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1541 {
1542 struct nfs_server *server = NFS_SERVER(inode);
1543 int ret;
1544
1545 if (IS_AUTOMOUNT(inode))
1546 return 0;
1547
1548 if (flags & LOOKUP_OPEN) {
1549 switch (inode->i_mode & S_IFMT) {
1550 case S_IFREG:
1551 /* A NFSv4 OPEN will revalidate later */
1552 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1553 goto out;
1554 fallthrough;
1555 case S_IFDIR:
1556 if (server->flags & NFS_MOUNT_NOCTO)
1557 break;
1558 /* NFS close-to-open cache consistency validation */
1559 goto out_force;
1560 }
1561 }
1562
1563 /* VFS wants an on-the-wire revalidation */
1564 if (flags & LOOKUP_REVAL)
1565 goto out_force;
1566 out:
1567 if (inode->i_nlink > 0 ||
1568 (inode->i_nlink == 0 &&
1569 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1570 return 0;
1571 else
1572 return -ESTALE;
1573 out_force:
1574 if (flags & LOOKUP_RCU)
1575 return -ECHILD;
1576 ret = __nfs_revalidate_inode(server, inode);
1577 if (ret != 0)
1578 return ret;
1579 goto out;
1580 }
1581
nfs_mark_dir_for_revalidate(struct inode * inode)1582 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1583 {
1584 spin_lock(&inode->i_lock);
1585 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1586 spin_unlock(&inode->i_lock);
1587 }
1588
1589 /*
1590 * We judge how long we want to trust negative
1591 * dentries by looking at the parent inode mtime.
1592 *
1593 * If parent mtime has changed, we revalidate, else we wait for a
1594 * period corresponding to the parent's attribute cache timeout value.
1595 *
1596 * If LOOKUP_RCU prevents us from performing a full check, return 1
1597 * suggesting a reval is needed.
1598 *
1599 * Note that when creating a new file, or looking up a rename target,
1600 * then it shouldn't be necessary to revalidate a negative dentry.
1601 */
1602 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1603 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1604 unsigned int flags)
1605 {
1606 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1607 return 0;
1608 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1609 return 1;
1610 /* Case insensitive server? Revalidate negative dentries */
1611 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1612 return 1;
1613 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1614 }
1615
1616 static int
nfs_lookup_revalidate_done(struct inode * dir,struct dentry * dentry,struct inode * inode,int error)1617 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1618 struct inode *inode, int error)
1619 {
1620 switch (error) {
1621 case 1:
1622 break;
1623 case 0:
1624 /*
1625 * We can't d_drop the root of a disconnected tree:
1626 * its d_hash is on the s_anon list and d_drop() would hide
1627 * it from shrink_dcache_for_unmount(), leading to busy
1628 * inodes on unmount and further oopses.
1629 */
1630 if (inode && IS_ROOT(dentry))
1631 error = 1;
1632 break;
1633 }
1634 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1635 return error;
1636 }
1637
1638 static int
nfs_lookup_revalidate_negative(struct inode * dir,struct dentry * dentry,unsigned int flags)1639 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1640 unsigned int flags)
1641 {
1642 int ret = 1;
1643 if (nfs_neg_need_reval(dir, dentry, flags)) {
1644 if (flags & LOOKUP_RCU)
1645 return -ECHILD;
1646 ret = 0;
1647 }
1648 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1649 }
1650
1651 static int
nfs_lookup_revalidate_delegated(struct inode * dir,struct dentry * dentry,struct inode * inode)1652 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1653 struct inode *inode)
1654 {
1655 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1656 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1657 }
1658
nfs_lookup_revalidate_dentry(struct inode * dir,struct dentry * dentry,struct inode * inode,unsigned int flags)1659 static int nfs_lookup_revalidate_dentry(struct inode *dir,
1660 struct dentry *dentry,
1661 struct inode *inode, unsigned int flags)
1662 {
1663 struct nfs_fh *fhandle;
1664 struct nfs_fattr *fattr;
1665 unsigned long dir_verifier;
1666 int ret;
1667
1668 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1669
1670 ret = -ENOMEM;
1671 fhandle = nfs_alloc_fhandle();
1672 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1673 if (fhandle == NULL || fattr == NULL)
1674 goto out;
1675
1676 dir_verifier = nfs_save_change_attribute(dir);
1677 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1678 if (ret < 0) {
1679 switch (ret) {
1680 case -ESTALE:
1681 case -ENOENT:
1682 ret = 0;
1683 break;
1684 case -ETIMEDOUT:
1685 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1686 ret = 1;
1687 }
1688 goto out;
1689 }
1690
1691 /* Request help from readdirplus */
1692 nfs_lookup_advise_force_readdirplus(dir, flags);
1693
1694 ret = 0;
1695 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1696 goto out;
1697 if (nfs_refresh_inode(inode, fattr) < 0)
1698 goto out;
1699
1700 nfs_setsecurity(inode, fattr);
1701 nfs_set_verifier(dentry, dir_verifier);
1702
1703 ret = 1;
1704 out:
1705 nfs_free_fattr(fattr);
1706 nfs_free_fhandle(fhandle);
1707
1708 /*
1709 * If the lookup failed despite the dentry change attribute being
1710 * a match, then we should revalidate the directory cache.
1711 */
1712 if (!ret && nfs_dentry_verify_change(dir, dentry))
1713 nfs_mark_dir_for_revalidate(dir);
1714 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1715 }
1716
1717 /*
1718 * This is called every time the dcache has a lookup hit,
1719 * and we should check whether we can really trust that
1720 * lookup.
1721 *
1722 * NOTE! The hit can be a negative hit too, don't assume
1723 * we have an inode!
1724 *
1725 * If the parent directory is seen to have changed, we throw out the
1726 * cached dentry and do a new lookup.
1727 */
1728 static int
nfs_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)1729 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1730 unsigned int flags)
1731 {
1732 struct inode *inode;
1733 int error;
1734
1735 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1736 inode = d_inode(dentry);
1737
1738 if (!inode)
1739 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1740
1741 if (is_bad_inode(inode)) {
1742 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1743 __func__, dentry);
1744 goto out_bad;
1745 }
1746
1747 if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1748 nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1749 goto out_bad;
1750
1751 if (nfs_verifier_is_delegated(dentry))
1752 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1753
1754 /* Force a full look up iff the parent directory has changed */
1755 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1756 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1757 error = nfs_lookup_verify_inode(inode, flags);
1758 if (error) {
1759 if (error == -ESTALE)
1760 nfs_mark_dir_for_revalidate(dir);
1761 goto out_bad;
1762 }
1763 goto out_valid;
1764 }
1765
1766 if (flags & LOOKUP_RCU)
1767 return -ECHILD;
1768
1769 if (NFS_STALE(inode))
1770 goto out_bad;
1771
1772 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1773 out_valid:
1774 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1775 out_bad:
1776 if (flags & LOOKUP_RCU)
1777 return -ECHILD;
1778 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1779 }
1780
1781 static int
__nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags,int (* reval)(struct inode *,struct dentry *,unsigned int))1782 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1783 int (*reval)(struct inode *, struct dentry *, unsigned int))
1784 {
1785 struct dentry *parent;
1786 struct inode *dir;
1787 int ret;
1788
1789 if (flags & LOOKUP_RCU) {
1790 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1791 return -ECHILD;
1792 parent = READ_ONCE(dentry->d_parent);
1793 dir = d_inode_rcu(parent);
1794 if (!dir)
1795 return -ECHILD;
1796 ret = reval(dir, dentry, flags);
1797 if (parent != READ_ONCE(dentry->d_parent))
1798 return -ECHILD;
1799 } else {
1800 /* Wait for unlink to complete */
1801 wait_var_event(&dentry->d_fsdata,
1802 dentry->d_fsdata != NFS_FSDATA_BLOCKED);
1803 parent = dget_parent(dentry);
1804 ret = reval(d_inode(parent), dentry, flags);
1805 dput(parent);
1806 }
1807 return ret;
1808 }
1809
nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1810 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1811 {
1812 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1813 }
1814
1815 /*
1816 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1817 * when we don't really care about the dentry name. This is called when a
1818 * pathwalk ends on a dentry that was not found via a normal lookup in the
1819 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1820 *
1821 * In this situation, we just want to verify that the inode itself is OK
1822 * since the dentry might have changed on the server.
1823 */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1824 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1825 {
1826 struct inode *inode = d_inode(dentry);
1827 int error = 0;
1828
1829 /*
1830 * I believe we can only get a negative dentry here in the case of a
1831 * procfs-style symlink. Just assume it's correct for now, but we may
1832 * eventually need to do something more here.
1833 */
1834 if (!inode) {
1835 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1836 __func__, dentry);
1837 return 1;
1838 }
1839
1840 if (is_bad_inode(inode)) {
1841 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1842 __func__, dentry);
1843 return 0;
1844 }
1845
1846 error = nfs_lookup_verify_inode(inode, flags);
1847 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1848 __func__, inode->i_ino, error ? "invalid" : "valid");
1849 return !error;
1850 }
1851
1852 /*
1853 * This is called from dput() when d_count is going to 0.
1854 */
nfs_dentry_delete(const struct dentry * dentry)1855 static int nfs_dentry_delete(const struct dentry *dentry)
1856 {
1857 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1858 dentry, dentry->d_flags);
1859
1860 /* Unhash any dentry with a stale inode */
1861 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1862 return 1;
1863
1864 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1865 /* Unhash it, so that ->d_iput() would be called */
1866 return 1;
1867 }
1868 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1869 /* Unhash it, so that ancestors of killed async unlink
1870 * files will be cleaned up during umount */
1871 return 1;
1872 }
1873 return 0;
1874
1875 }
1876
1877 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode)1878 static void nfs_drop_nlink(struct inode *inode)
1879 {
1880 spin_lock(&inode->i_lock);
1881 /* drop the inode if we're reasonably sure this is the last link */
1882 if (inode->i_nlink > 0)
1883 drop_nlink(inode);
1884 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1885 nfs_set_cache_invalid(
1886 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1887 NFS_INO_INVALID_NLINK);
1888 spin_unlock(&inode->i_lock);
1889 }
1890
1891 /*
1892 * Called when the dentry loses inode.
1893 * We use it to clean up silly-renamed files.
1894 */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1895 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1896 {
1897 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1898 nfs_complete_unlink(dentry, inode);
1899 nfs_drop_nlink(inode);
1900 }
1901 iput(inode);
1902 }
1903
nfs_d_release(struct dentry * dentry)1904 static void nfs_d_release(struct dentry *dentry)
1905 {
1906 /* free cached devname value, if it survived that far */
1907 if (unlikely(dentry->d_fsdata)) {
1908 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1909 WARN_ON(1);
1910 else
1911 kfree(dentry->d_fsdata);
1912 }
1913 }
1914
1915 const struct dentry_operations nfs_dentry_operations = {
1916 .d_revalidate = nfs_lookup_revalidate,
1917 .d_weak_revalidate = nfs_weak_revalidate,
1918 .d_delete = nfs_dentry_delete,
1919 .d_iput = nfs_dentry_iput,
1920 .d_automount = nfs_d_automount,
1921 .d_release = nfs_d_release,
1922 };
1923 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1924
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1925 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1926 {
1927 struct dentry *res;
1928 struct inode *inode = NULL;
1929 struct nfs_fh *fhandle = NULL;
1930 struct nfs_fattr *fattr = NULL;
1931 unsigned long dir_verifier;
1932 int error;
1933
1934 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1935 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1936
1937 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1938 return ERR_PTR(-ENAMETOOLONG);
1939
1940 /*
1941 * If we're doing an exclusive create, optimize away the lookup
1942 * but don't hash the dentry.
1943 */
1944 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1945 return NULL;
1946
1947 res = ERR_PTR(-ENOMEM);
1948 fhandle = nfs_alloc_fhandle();
1949 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1950 if (fhandle == NULL || fattr == NULL)
1951 goto out;
1952
1953 dir_verifier = nfs_save_change_attribute(dir);
1954 trace_nfs_lookup_enter(dir, dentry, flags);
1955 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1956 if (error == -ENOENT) {
1957 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1958 dir_verifier = inode_peek_iversion_raw(dir);
1959 goto no_entry;
1960 }
1961 if (error < 0) {
1962 res = ERR_PTR(error);
1963 goto out;
1964 }
1965 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1966 res = ERR_CAST(inode);
1967 if (IS_ERR(res))
1968 goto out;
1969
1970 /* Notify readdir to use READDIRPLUS */
1971 nfs_lookup_advise_force_readdirplus(dir, flags);
1972
1973 no_entry:
1974 res = d_splice_alias(inode, dentry);
1975 if (res != NULL) {
1976 if (IS_ERR(res))
1977 goto out;
1978 dentry = res;
1979 }
1980 nfs_set_verifier(dentry, dir_verifier);
1981 out:
1982 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1983 nfs_free_fattr(fattr);
1984 nfs_free_fhandle(fhandle);
1985 return res;
1986 }
1987 EXPORT_SYMBOL_GPL(nfs_lookup);
1988
nfs_d_prune_case_insensitive_aliases(struct inode * inode)1989 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1990 {
1991 /* Case insensitive server? Revalidate dentries */
1992 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1993 d_prune_aliases(inode);
1994 }
1995 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
1996
1997 #if IS_ENABLED(CONFIG_NFS_V4)
1998 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1999
2000 const struct dentry_operations nfs4_dentry_operations = {
2001 .d_revalidate = nfs4_lookup_revalidate,
2002 .d_weak_revalidate = nfs_weak_revalidate,
2003 .d_delete = nfs_dentry_delete,
2004 .d_iput = nfs_dentry_iput,
2005 .d_automount = nfs_d_automount,
2006 .d_release = nfs_d_release,
2007 };
2008 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2009
create_nfs_open_context(struct dentry * dentry,int open_flags,struct file * filp)2010 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2011 {
2012 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2013 }
2014
do_open(struct inode * inode,struct file * filp)2015 static int do_open(struct inode *inode, struct file *filp)
2016 {
2017 nfs_fscache_open_file(inode, filp);
2018 return 0;
2019 }
2020
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags)2021 static int nfs_finish_open(struct nfs_open_context *ctx,
2022 struct dentry *dentry,
2023 struct file *file, unsigned open_flags)
2024 {
2025 int err;
2026
2027 err = finish_open(file, dentry, do_open);
2028 if (err)
2029 goto out;
2030 if (S_ISREG(file_inode(file)->i_mode))
2031 nfs_file_set_open_context(file, ctx);
2032 else
2033 err = -EOPENSTALE;
2034 out:
2035 return err;
2036 }
2037
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode)2038 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2039 struct file *file, unsigned open_flags,
2040 umode_t mode)
2041 {
2042 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2043 struct nfs_open_context *ctx;
2044 struct dentry *res;
2045 struct iattr attr = { .ia_valid = ATTR_OPEN };
2046 struct inode *inode;
2047 unsigned int lookup_flags = 0;
2048 unsigned long dir_verifier;
2049 bool switched = false;
2050 int created = 0;
2051 int err;
2052
2053 /* Expect a negative dentry */
2054 BUG_ON(d_inode(dentry));
2055
2056 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2057 dir->i_sb->s_id, dir->i_ino, dentry);
2058
2059 err = nfs_check_flags(open_flags);
2060 if (err)
2061 return err;
2062
2063 /* NFS only supports OPEN on regular files */
2064 if ((open_flags & O_DIRECTORY)) {
2065 if (!d_in_lookup(dentry)) {
2066 /*
2067 * Hashed negative dentry with O_DIRECTORY: dentry was
2068 * revalidated and is fine, no need to perform lookup
2069 * again
2070 */
2071 return -ENOENT;
2072 }
2073 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2074 goto no_open;
2075 }
2076
2077 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2078 return -ENAMETOOLONG;
2079
2080 if (open_flags & O_CREAT) {
2081 struct nfs_server *server = NFS_SERVER(dir);
2082
2083 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2084 mode &= ~current_umask();
2085
2086 attr.ia_valid |= ATTR_MODE;
2087 attr.ia_mode = mode;
2088 }
2089 if (open_flags & O_TRUNC) {
2090 attr.ia_valid |= ATTR_SIZE;
2091 attr.ia_size = 0;
2092 }
2093
2094 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2095 d_drop(dentry);
2096 switched = true;
2097 dentry = d_alloc_parallel(dentry->d_parent,
2098 &dentry->d_name, &wq);
2099 if (IS_ERR(dentry))
2100 return PTR_ERR(dentry);
2101 if (unlikely(!d_in_lookup(dentry)))
2102 return finish_no_open(file, dentry);
2103 }
2104
2105 ctx = create_nfs_open_context(dentry, open_flags, file);
2106 err = PTR_ERR(ctx);
2107 if (IS_ERR(ctx))
2108 goto out;
2109
2110 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2111 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2112 if (created)
2113 file->f_mode |= FMODE_CREATED;
2114 if (IS_ERR(inode)) {
2115 err = PTR_ERR(inode);
2116 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2117 put_nfs_open_context(ctx);
2118 d_drop(dentry);
2119 switch (err) {
2120 case -ENOENT:
2121 d_splice_alias(NULL, dentry);
2122 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2123 dir_verifier = inode_peek_iversion_raw(dir);
2124 else
2125 dir_verifier = nfs_save_change_attribute(dir);
2126 nfs_set_verifier(dentry, dir_verifier);
2127 break;
2128 case -EISDIR:
2129 case -ENOTDIR:
2130 goto no_open;
2131 case -ELOOP:
2132 if (!(open_flags & O_NOFOLLOW))
2133 goto no_open;
2134 break;
2135 /* case -EINVAL: */
2136 default:
2137 break;
2138 }
2139 goto out;
2140 }
2141 file->f_mode |= FMODE_CAN_ODIRECT;
2142
2143 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2144 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2145 put_nfs_open_context(ctx);
2146 out:
2147 if (unlikely(switched)) {
2148 d_lookup_done(dentry);
2149 dput(dentry);
2150 }
2151 return err;
2152
2153 no_open:
2154 res = nfs_lookup(dir, dentry, lookup_flags);
2155 if (!res) {
2156 inode = d_inode(dentry);
2157 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2158 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2159 res = ERR_PTR(-ENOTDIR);
2160 else if (inode && S_ISREG(inode->i_mode))
2161 res = ERR_PTR(-EOPENSTALE);
2162 } else if (!IS_ERR(res)) {
2163 inode = d_inode(res);
2164 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2165 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2166 dput(res);
2167 res = ERR_PTR(-ENOTDIR);
2168 } else if (inode && S_ISREG(inode->i_mode)) {
2169 dput(res);
2170 res = ERR_PTR(-EOPENSTALE);
2171 }
2172 }
2173 if (switched) {
2174 d_lookup_done(dentry);
2175 if (!res)
2176 res = dentry;
2177 else
2178 dput(dentry);
2179 }
2180 if (IS_ERR(res))
2181 return PTR_ERR(res);
2182 return finish_no_open(file, res);
2183 }
2184 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2185
2186 static int
nfs4_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)2187 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2188 unsigned int flags)
2189 {
2190 struct inode *inode;
2191
2192 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2193 goto full_reval;
2194 if (d_mountpoint(dentry))
2195 goto full_reval;
2196
2197 inode = d_inode(dentry);
2198
2199 /* We can't create new files in nfs_open_revalidate(), so we
2200 * optimize away revalidation of negative dentries.
2201 */
2202 if (inode == NULL)
2203 goto full_reval;
2204
2205 if (nfs_verifier_is_delegated(dentry))
2206 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2207
2208 /* NFS only supports OPEN on regular files */
2209 if (!S_ISREG(inode->i_mode))
2210 goto full_reval;
2211
2212 /* We cannot do exclusive creation on a positive dentry */
2213 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2214 goto reval_dentry;
2215
2216 /* Check if the directory changed */
2217 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2218 goto reval_dentry;
2219
2220 /* Let f_op->open() actually open (and revalidate) the file */
2221 return 1;
2222 reval_dentry:
2223 if (flags & LOOKUP_RCU)
2224 return -ECHILD;
2225 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2226
2227 full_reval:
2228 return nfs_do_lookup_revalidate(dir, dentry, flags);
2229 }
2230
nfs4_lookup_revalidate(struct dentry * dentry,unsigned int flags)2231 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2232 {
2233 return __nfs_lookup_revalidate(dentry, flags,
2234 nfs4_do_lookup_revalidate);
2235 }
2236
2237 #endif /* CONFIG_NFSV4 */
2238
2239 struct dentry *
nfs_add_or_obtain(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)2240 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2241 struct nfs_fattr *fattr)
2242 {
2243 struct dentry *parent = dget_parent(dentry);
2244 struct inode *dir = d_inode(parent);
2245 struct inode *inode;
2246 struct dentry *d;
2247 int error;
2248
2249 d_drop(dentry);
2250
2251 if (fhandle->size == 0) {
2252 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2253 if (error)
2254 goto out_error;
2255 }
2256 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2257 if (!(fattr->valid & NFS_ATTR_FATTR)) {
2258 struct nfs_server *server = NFS_SB(dentry->d_sb);
2259 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2260 fattr, NULL);
2261 if (error < 0)
2262 goto out_error;
2263 }
2264 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2265 d = d_splice_alias(inode, dentry);
2266 out:
2267 dput(parent);
2268 return d;
2269 out_error:
2270 d = ERR_PTR(error);
2271 goto out;
2272 }
2273 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2274
2275 /*
2276 * Code common to create, mkdir, and mknod.
2277 */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)2278 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2279 struct nfs_fattr *fattr)
2280 {
2281 struct dentry *d;
2282
2283 d = nfs_add_or_obtain(dentry, fhandle, fattr);
2284 if (IS_ERR(d))
2285 return PTR_ERR(d);
2286
2287 /* Callers don't care */
2288 dput(d);
2289 return 0;
2290 }
2291 EXPORT_SYMBOL_GPL(nfs_instantiate);
2292
2293 /*
2294 * Following a failed create operation, we drop the dentry rather
2295 * than retain a negative dentry. This avoids a problem in the event
2296 * that the operation succeeded on the server, but an error in the
2297 * reply path made it appear to have failed.
2298 */
nfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2299 int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2300 struct dentry *dentry, umode_t mode, bool excl)
2301 {
2302 struct iattr attr;
2303 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2304 int error;
2305
2306 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2307 dir->i_sb->s_id, dir->i_ino, dentry);
2308
2309 attr.ia_mode = mode;
2310 attr.ia_valid = ATTR_MODE;
2311
2312 trace_nfs_create_enter(dir, dentry, open_flags);
2313 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2314 trace_nfs_create_exit(dir, dentry, open_flags, error);
2315 if (error != 0)
2316 goto out_err;
2317 return 0;
2318 out_err:
2319 d_drop(dentry);
2320 return error;
2321 }
2322 EXPORT_SYMBOL_GPL(nfs_create);
2323
2324 /*
2325 * See comments for nfs_proc_create regarding failed operations.
2326 */
2327 int
nfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)2328 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2329 struct dentry *dentry, umode_t mode, dev_t rdev)
2330 {
2331 struct iattr attr;
2332 int status;
2333
2334 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2335 dir->i_sb->s_id, dir->i_ino, dentry);
2336
2337 attr.ia_mode = mode;
2338 attr.ia_valid = ATTR_MODE;
2339
2340 trace_nfs_mknod_enter(dir, dentry);
2341 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2342 trace_nfs_mknod_exit(dir, dentry, status);
2343 if (status != 0)
2344 goto out_err;
2345 return 0;
2346 out_err:
2347 d_drop(dentry);
2348 return status;
2349 }
2350 EXPORT_SYMBOL_GPL(nfs_mknod);
2351
2352 /*
2353 * See comments for nfs_proc_create regarding failed operations.
2354 */
nfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)2355 int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2356 struct dentry *dentry, umode_t mode)
2357 {
2358 struct iattr attr;
2359 int error;
2360
2361 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2362 dir->i_sb->s_id, dir->i_ino, dentry);
2363
2364 attr.ia_valid = ATTR_MODE;
2365 attr.ia_mode = mode | S_IFDIR;
2366
2367 trace_nfs_mkdir_enter(dir, dentry);
2368 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2369 trace_nfs_mkdir_exit(dir, dentry, error);
2370 if (error != 0)
2371 goto out_err;
2372 return 0;
2373 out_err:
2374 d_drop(dentry);
2375 return error;
2376 }
2377 EXPORT_SYMBOL_GPL(nfs_mkdir);
2378
nfs_dentry_handle_enoent(struct dentry * dentry)2379 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2380 {
2381 if (simple_positive(dentry))
2382 d_delete(dentry);
2383 }
2384
nfs_dentry_remove_handle_error(struct inode * dir,struct dentry * dentry,int error)2385 static void nfs_dentry_remove_handle_error(struct inode *dir,
2386 struct dentry *dentry, int error)
2387 {
2388 switch (error) {
2389 case -ENOENT:
2390 if (d_really_is_positive(dentry))
2391 d_delete(dentry);
2392 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2393 break;
2394 case 0:
2395 nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2396 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2397 }
2398 }
2399
nfs_rmdir(struct inode * dir,struct dentry * dentry)2400 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2401 {
2402 int error;
2403
2404 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2405 dir->i_sb->s_id, dir->i_ino, dentry);
2406
2407 trace_nfs_rmdir_enter(dir, dentry);
2408 if (d_really_is_positive(dentry)) {
2409 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2410 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2411 /* Ensure the VFS deletes this inode */
2412 switch (error) {
2413 case 0:
2414 clear_nlink(d_inode(dentry));
2415 break;
2416 case -ENOENT:
2417 nfs_dentry_handle_enoent(dentry);
2418 }
2419 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2420 } else
2421 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2422 nfs_dentry_remove_handle_error(dir, dentry, error);
2423 trace_nfs_rmdir_exit(dir, dentry, error);
2424
2425 return error;
2426 }
2427 EXPORT_SYMBOL_GPL(nfs_rmdir);
2428
2429 /*
2430 * Remove a file after making sure there are no pending writes,
2431 * and after checking that the file has only one user.
2432 *
2433 * We invalidate the attribute cache and free the inode prior to the operation
2434 * to avoid possible races if the server reuses the inode.
2435 */
nfs_safe_remove(struct dentry * dentry)2436 static int nfs_safe_remove(struct dentry *dentry)
2437 {
2438 struct inode *dir = d_inode(dentry->d_parent);
2439 struct inode *inode = d_inode(dentry);
2440 int error = -EBUSY;
2441
2442 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2443
2444 /* If the dentry was sillyrenamed, we simply call d_delete() */
2445 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2446 error = 0;
2447 goto out;
2448 }
2449
2450 trace_nfs_remove_enter(dir, dentry);
2451 if (inode != NULL) {
2452 error = NFS_PROTO(dir)->remove(dir, dentry);
2453 if (error == 0)
2454 nfs_drop_nlink(inode);
2455 } else
2456 error = NFS_PROTO(dir)->remove(dir, dentry);
2457 if (error == -ENOENT)
2458 nfs_dentry_handle_enoent(dentry);
2459 trace_nfs_remove_exit(dir, dentry, error);
2460 out:
2461 return error;
2462 }
2463
2464 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2465 * belongs to an active ".nfs..." file and we return -EBUSY.
2466 *
2467 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2468 */
nfs_unlink(struct inode * dir,struct dentry * dentry)2469 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2470 {
2471 int error;
2472
2473 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2474 dir->i_ino, dentry);
2475
2476 trace_nfs_unlink_enter(dir, dentry);
2477 spin_lock(&dentry->d_lock);
2478 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2479 &NFS_I(d_inode(dentry))->flags)) {
2480 spin_unlock(&dentry->d_lock);
2481 /* Start asynchronous writeout of the inode */
2482 write_inode_now(d_inode(dentry), 0);
2483 error = nfs_sillyrename(dir, dentry);
2484 goto out;
2485 }
2486 /* We must prevent any concurrent open until the unlink
2487 * completes. ->d_revalidate will wait for ->d_fsdata
2488 * to clear. We set it here to ensure no lookup succeeds until
2489 * the unlink is complete on the server.
2490 */
2491 error = -ETXTBSY;
2492 if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2493 WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2494 spin_unlock(&dentry->d_lock);
2495 goto out;
2496 }
2497 /* old devname */
2498 kfree(dentry->d_fsdata);
2499 dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2500
2501 spin_unlock(&dentry->d_lock);
2502 error = nfs_safe_remove(dentry);
2503 nfs_dentry_remove_handle_error(dir, dentry, error);
2504 dentry->d_fsdata = NULL;
2505 wake_up_var(&dentry->d_fsdata);
2506 out:
2507 trace_nfs_unlink_exit(dir, dentry, error);
2508 return error;
2509 }
2510 EXPORT_SYMBOL_GPL(nfs_unlink);
2511
2512 /*
2513 * To create a symbolic link, most file systems instantiate a new inode,
2514 * add a page to it containing the path, then write it out to the disk
2515 * using prepare_write/commit_write.
2516 *
2517 * Unfortunately the NFS client can't create the in-core inode first
2518 * because it needs a file handle to create an in-core inode (see
2519 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2520 * symlink request has completed on the server.
2521 *
2522 * So instead we allocate a raw page, copy the symname into it, then do
2523 * the SYMLINK request with the page as the buffer. If it succeeds, we
2524 * now have a new file handle and can instantiate an in-core NFS inode
2525 * and move the raw page into its mapping.
2526 */
nfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)2527 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2528 struct dentry *dentry, const char *symname)
2529 {
2530 struct page *page;
2531 char *kaddr;
2532 struct iattr attr;
2533 unsigned int pathlen = strlen(symname);
2534 int error;
2535
2536 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2537 dir->i_ino, dentry, symname);
2538
2539 if (pathlen > PAGE_SIZE)
2540 return -ENAMETOOLONG;
2541
2542 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2543 attr.ia_valid = ATTR_MODE;
2544
2545 page = alloc_page(GFP_USER);
2546 if (!page)
2547 return -ENOMEM;
2548
2549 kaddr = page_address(page);
2550 memcpy(kaddr, symname, pathlen);
2551 if (pathlen < PAGE_SIZE)
2552 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2553
2554 trace_nfs_symlink_enter(dir, dentry);
2555 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2556 trace_nfs_symlink_exit(dir, dentry, error);
2557 if (error != 0) {
2558 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2559 dir->i_sb->s_id, dir->i_ino,
2560 dentry, symname, error);
2561 d_drop(dentry);
2562 __free_page(page);
2563 return error;
2564 }
2565
2566 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2567
2568 /*
2569 * No big deal if we can't add this page to the page cache here.
2570 * READLINK will get the missing page from the server if needed.
2571 */
2572 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2573 GFP_KERNEL)) {
2574 SetPageUptodate(page);
2575 unlock_page(page);
2576 /*
2577 * add_to_page_cache_lru() grabs an extra page refcount.
2578 * Drop it here to avoid leaking this page later.
2579 */
2580 put_page(page);
2581 } else
2582 __free_page(page);
2583
2584 return 0;
2585 }
2586 EXPORT_SYMBOL_GPL(nfs_symlink);
2587
2588 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2589 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2590 {
2591 struct inode *inode = d_inode(old_dentry);
2592 int error;
2593
2594 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2595 old_dentry, dentry);
2596
2597 trace_nfs_link_enter(inode, dir, dentry);
2598 d_drop(dentry);
2599 if (S_ISREG(inode->i_mode))
2600 nfs_sync_inode(inode);
2601 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2602 if (error == 0) {
2603 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2604 ihold(inode);
2605 d_add(dentry, inode);
2606 }
2607 trace_nfs_link_exit(inode, dir, dentry, error);
2608 return error;
2609 }
2610 EXPORT_SYMBOL_GPL(nfs_link);
2611
2612 static void
nfs_unblock_rename(struct rpc_task * task,struct nfs_renamedata * data)2613 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2614 {
2615 struct dentry *new_dentry = data->new_dentry;
2616
2617 new_dentry->d_fsdata = NULL;
2618 wake_up_var(&new_dentry->d_fsdata);
2619 }
2620
2621 /*
2622 * RENAME
2623 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2624 * different file handle for the same inode after a rename (e.g. when
2625 * moving to a different directory). A fail-safe method to do so would
2626 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2627 * rename the old file using the sillyrename stuff. This way, the original
2628 * file in old_dir will go away when the last process iput()s the inode.
2629 *
2630 * FIXED.
2631 *
2632 * It actually works quite well. One needs to have the possibility for
2633 * at least one ".nfs..." file in each directory the file ever gets
2634 * moved or linked to which happens automagically with the new
2635 * implementation that only depends on the dcache stuff instead of
2636 * using the inode layer
2637 *
2638 * Unfortunately, things are a little more complicated than indicated
2639 * above. For a cross-directory move, we want to make sure we can get
2640 * rid of the old inode after the operation. This means there must be
2641 * no pending writes (if it's a file), and the use count must be 1.
2642 * If these conditions are met, we can drop the dentries before doing
2643 * the rename.
2644 */
nfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2645 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2646 struct dentry *old_dentry, struct inode *new_dir,
2647 struct dentry *new_dentry, unsigned int flags)
2648 {
2649 struct inode *old_inode = d_inode(old_dentry);
2650 struct inode *new_inode = d_inode(new_dentry);
2651 struct dentry *dentry = NULL;
2652 struct rpc_task *task;
2653 bool must_unblock = false;
2654 int error = -EBUSY;
2655
2656 if (flags)
2657 return -EINVAL;
2658
2659 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2660 old_dentry, new_dentry,
2661 d_count(new_dentry));
2662
2663 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2664 /*
2665 * For non-directories, check whether the target is busy and if so,
2666 * make a copy of the dentry and then do a silly-rename. If the
2667 * silly-rename succeeds, the copied dentry is hashed and becomes
2668 * the new target.
2669 */
2670 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2671 /* We must prevent any concurrent open until the unlink
2672 * completes. ->d_revalidate will wait for ->d_fsdata
2673 * to clear. We set it here to ensure no lookup succeeds until
2674 * the unlink is complete on the server.
2675 */
2676 error = -ETXTBSY;
2677 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2678 WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2679 goto out;
2680 if (new_dentry->d_fsdata) {
2681 /* old devname */
2682 kfree(new_dentry->d_fsdata);
2683 new_dentry->d_fsdata = NULL;
2684 }
2685
2686 spin_lock(&new_dentry->d_lock);
2687 if (d_count(new_dentry) > 2) {
2688 int err;
2689
2690 spin_unlock(&new_dentry->d_lock);
2691
2692 /* copy the target dentry's name */
2693 dentry = d_alloc(new_dentry->d_parent,
2694 &new_dentry->d_name);
2695 if (!dentry)
2696 goto out;
2697
2698 /* silly-rename the existing target ... */
2699 err = nfs_sillyrename(new_dir, new_dentry);
2700 if (err)
2701 goto out;
2702
2703 new_dentry = dentry;
2704 new_inode = NULL;
2705 } else {
2706 new_dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2707 must_unblock = true;
2708 spin_unlock(&new_dentry->d_lock);
2709 }
2710
2711 }
2712
2713 if (S_ISREG(old_inode->i_mode))
2714 nfs_sync_inode(old_inode);
2715 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2716 must_unblock ? nfs_unblock_rename : NULL);
2717 if (IS_ERR(task)) {
2718 error = PTR_ERR(task);
2719 goto out;
2720 }
2721
2722 error = rpc_wait_for_completion_task(task);
2723 if (error != 0) {
2724 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2725 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2726 smp_wmb();
2727 } else
2728 error = task->tk_status;
2729 rpc_put_task(task);
2730 /* Ensure the inode attributes are revalidated */
2731 if (error == 0) {
2732 spin_lock(&old_inode->i_lock);
2733 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2734 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2735 NFS_INO_INVALID_CTIME |
2736 NFS_INO_REVAL_FORCED);
2737 spin_unlock(&old_inode->i_lock);
2738 }
2739 out:
2740 trace_nfs_rename_exit(old_dir, old_dentry,
2741 new_dir, new_dentry, error);
2742 if (!error) {
2743 if (new_inode != NULL)
2744 nfs_drop_nlink(new_inode);
2745 /*
2746 * The d_move() should be here instead of in an async RPC completion
2747 * handler because we need the proper locks to move the dentry. If
2748 * we're interrupted by a signal, the async RPC completion handler
2749 * should mark the directories for revalidation.
2750 */
2751 d_move(old_dentry, new_dentry);
2752 nfs_set_verifier(old_dentry,
2753 nfs_save_change_attribute(new_dir));
2754 } else if (error == -ENOENT)
2755 nfs_dentry_handle_enoent(old_dentry);
2756
2757 /* new dentry created? */
2758 if (dentry)
2759 dput(dentry);
2760 return error;
2761 }
2762 EXPORT_SYMBOL_GPL(nfs_rename);
2763
2764 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2765 static LIST_HEAD(nfs_access_lru_list);
2766 static atomic_long_t nfs_access_nr_entries;
2767
2768 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2769 module_param(nfs_access_max_cachesize, ulong, 0644);
2770 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2771
nfs_access_free_entry(struct nfs_access_entry * entry)2772 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2773 {
2774 put_group_info(entry->group_info);
2775 kfree_rcu(entry, rcu_head);
2776 smp_mb__before_atomic();
2777 atomic_long_dec(&nfs_access_nr_entries);
2778 smp_mb__after_atomic();
2779 }
2780
nfs_access_free_list(struct list_head * head)2781 static void nfs_access_free_list(struct list_head *head)
2782 {
2783 struct nfs_access_entry *cache;
2784
2785 while (!list_empty(head)) {
2786 cache = list_entry(head->next, struct nfs_access_entry, lru);
2787 list_del(&cache->lru);
2788 nfs_access_free_entry(cache);
2789 }
2790 }
2791
2792 static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)2793 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2794 {
2795 LIST_HEAD(head);
2796 struct nfs_inode *nfsi, *next;
2797 struct nfs_access_entry *cache;
2798 long freed = 0;
2799
2800 spin_lock(&nfs_access_lru_lock);
2801 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2802 struct inode *inode;
2803
2804 if (nr_to_scan-- == 0)
2805 break;
2806 inode = &nfsi->vfs_inode;
2807 spin_lock(&inode->i_lock);
2808 if (list_empty(&nfsi->access_cache_entry_lru))
2809 goto remove_lru_entry;
2810 cache = list_entry(nfsi->access_cache_entry_lru.next,
2811 struct nfs_access_entry, lru);
2812 list_move(&cache->lru, &head);
2813 rb_erase(&cache->rb_node, &nfsi->access_cache);
2814 freed++;
2815 if (!list_empty(&nfsi->access_cache_entry_lru))
2816 list_move_tail(&nfsi->access_cache_inode_lru,
2817 &nfs_access_lru_list);
2818 else {
2819 remove_lru_entry:
2820 list_del_init(&nfsi->access_cache_inode_lru);
2821 smp_mb__before_atomic();
2822 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2823 smp_mb__after_atomic();
2824 }
2825 spin_unlock(&inode->i_lock);
2826 }
2827 spin_unlock(&nfs_access_lru_lock);
2828 nfs_access_free_list(&head);
2829 return freed;
2830 }
2831
2832 unsigned long
nfs_access_cache_scan(struct shrinker * shrink,struct shrink_control * sc)2833 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2834 {
2835 int nr_to_scan = sc->nr_to_scan;
2836 gfp_t gfp_mask = sc->gfp_mask;
2837
2838 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2839 return SHRINK_STOP;
2840 return nfs_do_access_cache_scan(nr_to_scan);
2841 }
2842
2843
2844 unsigned long
nfs_access_cache_count(struct shrinker * shrink,struct shrink_control * sc)2845 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2846 {
2847 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2848 }
2849
2850 static void
nfs_access_cache_enforce_limit(void)2851 nfs_access_cache_enforce_limit(void)
2852 {
2853 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2854 unsigned long diff;
2855 unsigned int nr_to_scan;
2856
2857 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2858 return;
2859 nr_to_scan = 100;
2860 diff = nr_entries - nfs_access_max_cachesize;
2861 if (diff < nr_to_scan)
2862 nr_to_scan = diff;
2863 nfs_do_access_cache_scan(nr_to_scan);
2864 }
2865
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2866 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2867 {
2868 struct rb_root *root_node = &nfsi->access_cache;
2869 struct rb_node *n;
2870 struct nfs_access_entry *entry;
2871
2872 /* Unhook entries from the cache */
2873 while ((n = rb_first(root_node)) != NULL) {
2874 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2875 rb_erase(n, root_node);
2876 list_move(&entry->lru, head);
2877 }
2878 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2879 }
2880
nfs_access_zap_cache(struct inode * inode)2881 void nfs_access_zap_cache(struct inode *inode)
2882 {
2883 LIST_HEAD(head);
2884
2885 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2886 return;
2887 /* Remove from global LRU init */
2888 spin_lock(&nfs_access_lru_lock);
2889 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2890 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2891
2892 spin_lock(&inode->i_lock);
2893 __nfs_access_zap_cache(NFS_I(inode), &head);
2894 spin_unlock(&inode->i_lock);
2895 spin_unlock(&nfs_access_lru_lock);
2896 nfs_access_free_list(&head);
2897 }
2898 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2899
access_cmp(const struct cred * a,const struct nfs_access_entry * b)2900 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2901 {
2902 struct group_info *ga, *gb;
2903 int g;
2904
2905 if (uid_lt(a->fsuid, b->fsuid))
2906 return -1;
2907 if (uid_gt(a->fsuid, b->fsuid))
2908 return 1;
2909
2910 if (gid_lt(a->fsgid, b->fsgid))
2911 return -1;
2912 if (gid_gt(a->fsgid, b->fsgid))
2913 return 1;
2914
2915 ga = a->group_info;
2916 gb = b->group_info;
2917 if (ga == gb)
2918 return 0;
2919 if (ga == NULL)
2920 return -1;
2921 if (gb == NULL)
2922 return 1;
2923 if (ga->ngroups < gb->ngroups)
2924 return -1;
2925 if (ga->ngroups > gb->ngroups)
2926 return 1;
2927
2928 for (g = 0; g < ga->ngroups; g++) {
2929 if (gid_lt(ga->gid[g], gb->gid[g]))
2930 return -1;
2931 if (gid_gt(ga->gid[g], gb->gid[g]))
2932 return 1;
2933 }
2934 return 0;
2935 }
2936
nfs_access_search_rbtree(struct inode * inode,const struct cred * cred)2937 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2938 {
2939 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2940
2941 while (n != NULL) {
2942 struct nfs_access_entry *entry =
2943 rb_entry(n, struct nfs_access_entry, rb_node);
2944 int cmp = access_cmp(cred, entry);
2945
2946 if (cmp < 0)
2947 n = n->rb_left;
2948 else if (cmp > 0)
2949 n = n->rb_right;
2950 else
2951 return entry;
2952 }
2953 return NULL;
2954 }
2955
nfs_access_login_time(const struct task_struct * task,const struct cred * cred)2956 static u64 nfs_access_login_time(const struct task_struct *task,
2957 const struct cred *cred)
2958 {
2959 const struct task_struct *parent;
2960 const struct cred *pcred;
2961 u64 ret;
2962
2963 rcu_read_lock();
2964 for (;;) {
2965 parent = rcu_dereference(task->real_parent);
2966 pcred = rcu_dereference(parent->cred);
2967 if (parent == task || cred_fscmp(pcred, cred) != 0)
2968 break;
2969 task = parent;
2970 }
2971 ret = task->start_time;
2972 rcu_read_unlock();
2973 return ret;
2974 }
2975
nfs_access_get_cached_locked(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)2976 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2977 {
2978 struct nfs_inode *nfsi = NFS_I(inode);
2979 u64 login_time = nfs_access_login_time(current, cred);
2980 struct nfs_access_entry *cache;
2981 bool retry = true;
2982 int err;
2983
2984 spin_lock(&inode->i_lock);
2985 for(;;) {
2986 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2987 goto out_zap;
2988 cache = nfs_access_search_rbtree(inode, cred);
2989 err = -ENOENT;
2990 if (cache == NULL)
2991 goto out;
2992 /* Found an entry, is our attribute cache valid? */
2993 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2994 break;
2995 if (!retry)
2996 break;
2997 err = -ECHILD;
2998 if (!may_block)
2999 goto out;
3000 spin_unlock(&inode->i_lock);
3001 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3002 if (err)
3003 return err;
3004 spin_lock(&inode->i_lock);
3005 retry = false;
3006 }
3007 err = -ENOENT;
3008 if ((s64)(login_time - cache->timestamp) > 0)
3009 goto out;
3010 *mask = cache->mask;
3011 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3012 err = 0;
3013 out:
3014 spin_unlock(&inode->i_lock);
3015 return err;
3016 out_zap:
3017 spin_unlock(&inode->i_lock);
3018 nfs_access_zap_cache(inode);
3019 return -ENOENT;
3020 }
3021
nfs_access_get_cached_rcu(struct inode * inode,const struct cred * cred,u32 * mask)3022 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3023 {
3024 /* Only check the most recently returned cache entry,
3025 * but do it without locking.
3026 */
3027 struct nfs_inode *nfsi = NFS_I(inode);
3028 u64 login_time = nfs_access_login_time(current, cred);
3029 struct nfs_access_entry *cache;
3030 int err = -ECHILD;
3031 struct list_head *lh;
3032
3033 rcu_read_lock();
3034 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3035 goto out;
3036 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3037 cache = list_entry(lh, struct nfs_access_entry, lru);
3038 if (lh == &nfsi->access_cache_entry_lru ||
3039 access_cmp(cred, cache) != 0)
3040 cache = NULL;
3041 if (cache == NULL)
3042 goto out;
3043 if ((s64)(login_time - cache->timestamp) > 0)
3044 goto out;
3045 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3046 goto out;
3047 *mask = cache->mask;
3048 err = 0;
3049 out:
3050 rcu_read_unlock();
3051 return err;
3052 }
3053
nfs_access_get_cached(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)3054 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3055 u32 *mask, bool may_block)
3056 {
3057 int status;
3058
3059 status = nfs_access_get_cached_rcu(inode, cred, mask);
3060 if (status != 0)
3061 status = nfs_access_get_cached_locked(inode, cred, mask,
3062 may_block);
3063
3064 return status;
3065 }
3066 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3067
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set,const struct cred * cred)3068 static void nfs_access_add_rbtree(struct inode *inode,
3069 struct nfs_access_entry *set,
3070 const struct cred *cred)
3071 {
3072 struct nfs_inode *nfsi = NFS_I(inode);
3073 struct rb_root *root_node = &nfsi->access_cache;
3074 struct rb_node **p = &root_node->rb_node;
3075 struct rb_node *parent = NULL;
3076 struct nfs_access_entry *entry;
3077 int cmp;
3078
3079 spin_lock(&inode->i_lock);
3080 while (*p != NULL) {
3081 parent = *p;
3082 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3083 cmp = access_cmp(cred, entry);
3084
3085 if (cmp < 0)
3086 p = &parent->rb_left;
3087 else if (cmp > 0)
3088 p = &parent->rb_right;
3089 else
3090 goto found;
3091 }
3092 set->timestamp = ktime_get_ns();
3093 rb_link_node(&set->rb_node, parent, p);
3094 rb_insert_color(&set->rb_node, root_node);
3095 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3096 spin_unlock(&inode->i_lock);
3097 return;
3098 found:
3099 rb_replace_node(parent, &set->rb_node, root_node);
3100 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3101 list_del(&entry->lru);
3102 spin_unlock(&inode->i_lock);
3103 nfs_access_free_entry(entry);
3104 }
3105
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set,const struct cred * cred)3106 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3107 const struct cred *cred)
3108 {
3109 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3110 if (cache == NULL)
3111 return;
3112 RB_CLEAR_NODE(&cache->rb_node);
3113 cache->fsuid = cred->fsuid;
3114 cache->fsgid = cred->fsgid;
3115 cache->group_info = get_group_info(cred->group_info);
3116 cache->mask = set->mask;
3117
3118 /* The above field assignments must be visible
3119 * before this item appears on the lru. We cannot easily
3120 * use rcu_assign_pointer, so just force the memory barrier.
3121 */
3122 smp_wmb();
3123 nfs_access_add_rbtree(inode, cache, cred);
3124
3125 /* Update accounting */
3126 smp_mb__before_atomic();
3127 atomic_long_inc(&nfs_access_nr_entries);
3128 smp_mb__after_atomic();
3129
3130 /* Add inode to global LRU list */
3131 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3132 spin_lock(&nfs_access_lru_lock);
3133 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3134 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3135 &nfs_access_lru_list);
3136 spin_unlock(&nfs_access_lru_lock);
3137 }
3138 nfs_access_cache_enforce_limit();
3139 }
3140 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3141
3142 #define NFS_MAY_READ (NFS_ACCESS_READ)
3143 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3144 NFS_ACCESS_EXTEND | \
3145 NFS_ACCESS_DELETE)
3146 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3147 NFS_ACCESS_EXTEND)
3148 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3149 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3150 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3151 static int
nfs_access_calc_mask(u32 access_result,umode_t umode)3152 nfs_access_calc_mask(u32 access_result, umode_t umode)
3153 {
3154 int mask = 0;
3155
3156 if (access_result & NFS_MAY_READ)
3157 mask |= MAY_READ;
3158 if (S_ISDIR(umode)) {
3159 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3160 mask |= MAY_WRITE;
3161 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3162 mask |= MAY_EXEC;
3163 } else if (S_ISREG(umode)) {
3164 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3165 mask |= MAY_WRITE;
3166 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3167 mask |= MAY_EXEC;
3168 } else if (access_result & NFS_MAY_WRITE)
3169 mask |= MAY_WRITE;
3170 return mask;
3171 }
3172
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)3173 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3174 {
3175 entry->mask = access_result;
3176 }
3177 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3178
nfs_do_access(struct inode * inode,const struct cred * cred,int mask)3179 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3180 {
3181 struct nfs_access_entry cache;
3182 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3183 int cache_mask = -1;
3184 int status;
3185
3186 trace_nfs_access_enter(inode);
3187
3188 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3189 if (status == 0)
3190 goto out_cached;
3191
3192 status = -ECHILD;
3193 if (!may_block)
3194 goto out;
3195
3196 /*
3197 * Determine which access bits we want to ask for...
3198 */
3199 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3200 nfs_access_xattr_mask(NFS_SERVER(inode));
3201 if (S_ISDIR(inode->i_mode))
3202 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3203 else
3204 cache.mask |= NFS_ACCESS_EXECUTE;
3205 status = NFS_PROTO(inode)->access(inode, &cache, cred);
3206 if (status != 0) {
3207 if (status == -ESTALE) {
3208 if (!S_ISDIR(inode->i_mode))
3209 nfs_set_inode_stale(inode);
3210 else
3211 nfs_zap_caches(inode);
3212 }
3213 goto out;
3214 }
3215 nfs_access_add_cache(inode, &cache, cred);
3216 out_cached:
3217 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3218 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3219 status = -EACCES;
3220 out:
3221 trace_nfs_access_exit(inode, mask, cache_mask, status);
3222 return status;
3223 }
3224
nfs_open_permission_mask(int openflags)3225 static int nfs_open_permission_mask(int openflags)
3226 {
3227 int mask = 0;
3228
3229 if (openflags & __FMODE_EXEC) {
3230 /* ONLY check exec rights */
3231 mask = MAY_EXEC;
3232 } else {
3233 if ((openflags & O_ACCMODE) != O_WRONLY)
3234 mask |= MAY_READ;
3235 if ((openflags & O_ACCMODE) != O_RDONLY)
3236 mask |= MAY_WRITE;
3237 }
3238
3239 return mask;
3240 }
3241
nfs_may_open(struct inode * inode,const struct cred * cred,int openflags)3242 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3243 {
3244 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3245 }
3246 EXPORT_SYMBOL_GPL(nfs_may_open);
3247
nfs_execute_ok(struct inode * inode,int mask)3248 static int nfs_execute_ok(struct inode *inode, int mask)
3249 {
3250 struct nfs_server *server = NFS_SERVER(inode);
3251 int ret = 0;
3252
3253 if (S_ISDIR(inode->i_mode))
3254 return 0;
3255 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3256 if (mask & MAY_NOT_BLOCK)
3257 return -ECHILD;
3258 ret = __nfs_revalidate_inode(server, inode);
3259 }
3260 if (ret == 0 && !execute_ok(inode))
3261 ret = -EACCES;
3262 return ret;
3263 }
3264
nfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)3265 int nfs_permission(struct mnt_idmap *idmap,
3266 struct inode *inode,
3267 int mask)
3268 {
3269 const struct cred *cred = current_cred();
3270 int res = 0;
3271
3272 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3273
3274 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3275 goto out;
3276 /* Is this sys_access() ? */
3277 if (mask & (MAY_ACCESS | MAY_CHDIR))
3278 goto force_lookup;
3279
3280 switch (inode->i_mode & S_IFMT) {
3281 case S_IFLNK:
3282 goto out;
3283 case S_IFREG:
3284 if ((mask & MAY_OPEN) &&
3285 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3286 return 0;
3287 break;
3288 case S_IFDIR:
3289 /*
3290 * Optimize away all write operations, since the server
3291 * will check permissions when we perform the op.
3292 */
3293 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3294 goto out;
3295 }
3296
3297 force_lookup:
3298 if (!NFS_PROTO(inode)->access)
3299 goto out_notsup;
3300
3301 res = nfs_do_access(inode, cred, mask);
3302 out:
3303 if (!res && (mask & MAY_EXEC))
3304 res = nfs_execute_ok(inode, mask);
3305
3306 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3307 inode->i_sb->s_id, inode->i_ino, mask, res);
3308 return res;
3309 out_notsup:
3310 if (mask & MAY_NOT_BLOCK)
3311 return -ECHILD;
3312
3313 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3314 NFS_INO_INVALID_OTHER);
3315 if (res == 0)
3316 res = generic_permission(&nop_mnt_idmap, inode, mask);
3317 goto out;
3318 }
3319 EXPORT_SYMBOL_GPL(nfs_permission);
3320