1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/direct.c
4 *
5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 *
7 * High-performance uncached I/O for the Linux NFS client
8 *
9 * There are important applications whose performance or correctness
10 * depends on uncached access to file data. Database clusters
11 * (multiple copies of the same instance running on separate hosts)
12 * implement their own cache coherency protocol that subsumes file
13 * system cache protocols. Applications that process datasets
14 * considerably larger than the client's memory do not always benefit
15 * from a local cache. A streaming video server, for instance, has no
16 * need to cache the contents of a file.
17 *
18 * When an application requests uncached I/O, all read and write requests
19 * are made directly to the server; data stored or fetched via these
20 * requests is not cached in the Linux page cache. The client does not
21 * correct unaligned requests from applications. All requested bytes are
22 * held on permanent storage before a direct write system call returns to
23 * an application.
24 *
25 * Solaris implements an uncached I/O facility called directio() that
26 * is used for backups and sequential I/O to very large files. Solaris
27 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28 * an undocumented mount option.
29 *
30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31 * help from Andrew Morton.
32 *
33 * 18 Dec 2001 Initial implementation for 2.4 --cel
34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
35 * 08 Jun 2003 Port to 2.5 APIs --cel
36 * 31 Mar 2004 Handle direct I/O without VFS support --cel
37 * 15 Sep 2004 Parallel async reads --cel
38 * 04 May 2005 support O_DIRECT with aio --cel
39 *
40 */
41
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 #include <linux/slab.h>
49 #include <linux/task_io_accounting_ops.h>
50 #include <linux/module.h>
51
52 #include <linux/nfs_fs.h>
53 #include <linux/nfs_page.h>
54 #include <linux/sunrpc/clnt.h>
55
56 #include <linux/uaccess.h>
57 #include <linux/atomic.h>
58
59 #include "internal.h"
60 #include "iostat.h"
61 #include "pnfs.h"
62 #include "fscache.h"
63 #include "nfstrace.h"
64
65 #define NFSDBG_FACILITY NFSDBG_VFS
66
67 static struct kmem_cache *nfs_direct_cachep;
68
69 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
70 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
71 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
72 static void nfs_direct_write_schedule_work(struct work_struct *work);
73
get_dreq(struct nfs_direct_req * dreq)74 static inline void get_dreq(struct nfs_direct_req *dreq)
75 {
76 atomic_inc(&dreq->io_count);
77 }
78
put_dreq(struct nfs_direct_req * dreq)79 static inline int put_dreq(struct nfs_direct_req *dreq)
80 {
81 return atomic_dec_and_test(&dreq->io_count);
82 }
83
84 static void
nfs_direct_handle_truncated(struct nfs_direct_req * dreq,const struct nfs_pgio_header * hdr,ssize_t dreq_len)85 nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
86 const struct nfs_pgio_header *hdr,
87 ssize_t dreq_len)
88 {
89 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
90 test_bit(NFS_IOHDR_EOF, &hdr->flags)))
91 return;
92 if (dreq->max_count >= dreq_len) {
93 dreq->max_count = dreq_len;
94 if (dreq->count > dreq_len)
95 dreq->count = dreq_len;
96
97 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
98 dreq->error = hdr->error;
99 else /* Clear outstanding error if this is EOF */
100 dreq->error = 0;
101 }
102 }
103
104 static void
nfs_direct_count_bytes(struct nfs_direct_req * dreq,const struct nfs_pgio_header * hdr)105 nfs_direct_count_bytes(struct nfs_direct_req *dreq,
106 const struct nfs_pgio_header *hdr)
107 {
108 loff_t hdr_end = hdr->io_start + hdr->good_bytes;
109 ssize_t dreq_len = 0;
110
111 if (hdr_end > dreq->io_start)
112 dreq_len = hdr_end - dreq->io_start;
113
114 nfs_direct_handle_truncated(dreq, hdr, dreq_len);
115
116 if (dreq_len > dreq->max_count)
117 dreq_len = dreq->max_count;
118
119 if (dreq->count < dreq_len)
120 dreq->count = dreq_len;
121 }
122
123 /**
124 * nfs_swap_rw - NFS address space operation for swap I/O
125 * @iocb: target I/O control block
126 * @iter: I/O buffer
127 *
128 * Perform IO to the swap-file. This is much like direct IO.
129 */
nfs_swap_rw(struct kiocb * iocb,struct iov_iter * iter)130 int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter)
131 {
132 ssize_t ret;
133
134 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
135
136 if (iov_iter_rw(iter) == READ)
137 ret = nfs_file_direct_read(iocb, iter, true);
138 else
139 ret = nfs_file_direct_write(iocb, iter, true);
140 if (ret < 0)
141 return ret;
142 return 0;
143 }
144
nfs_direct_release_pages(struct page ** pages,unsigned int npages)145 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
146 {
147 unsigned int i;
148 for (i = 0; i < npages; i++)
149 put_page(pages[i]);
150 }
151
nfs_init_cinfo_from_dreq(struct nfs_commit_info * cinfo,struct nfs_direct_req * dreq)152 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
153 struct nfs_direct_req *dreq)
154 {
155 cinfo->inode = dreq->inode;
156 cinfo->mds = &dreq->mds_cinfo;
157 cinfo->ds = &dreq->ds_cinfo;
158 cinfo->dreq = dreq;
159 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
160 }
161
nfs_direct_req_alloc(void)162 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
163 {
164 struct nfs_direct_req *dreq;
165
166 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
167 if (!dreq)
168 return NULL;
169
170 kref_init(&dreq->kref);
171 kref_get(&dreq->kref);
172 init_completion(&dreq->completion);
173 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
174 pnfs_init_ds_commit_info(&dreq->ds_cinfo);
175 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
176 spin_lock_init(&dreq->lock);
177
178 return dreq;
179 }
180
nfs_direct_req_free(struct kref * kref)181 static void nfs_direct_req_free(struct kref *kref)
182 {
183 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
184
185 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
186 if (dreq->l_ctx != NULL)
187 nfs_put_lock_context(dreq->l_ctx);
188 if (dreq->ctx != NULL)
189 put_nfs_open_context(dreq->ctx);
190 kmem_cache_free(nfs_direct_cachep, dreq);
191 }
192
nfs_direct_req_release(struct nfs_direct_req * dreq)193 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
194 {
195 kref_put(&dreq->kref, nfs_direct_req_free);
196 }
197
nfs_dreq_bytes_left(struct nfs_direct_req * dreq)198 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
199 {
200 return dreq->bytes_left;
201 }
202 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
203
204 /*
205 * Collects and returns the final error value/byte-count.
206 */
nfs_direct_wait(struct nfs_direct_req * dreq)207 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
208 {
209 ssize_t result = -EIOCBQUEUED;
210
211 /* Async requests don't wait here */
212 if (dreq->iocb)
213 goto out;
214
215 result = wait_for_completion_killable(&dreq->completion);
216
217 if (!result) {
218 result = dreq->count;
219 WARN_ON_ONCE(dreq->count < 0);
220 }
221 if (!result)
222 result = dreq->error;
223
224 out:
225 return (ssize_t) result;
226 }
227
228 /*
229 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
230 * the iocb is still valid here if this is a synchronous request.
231 */
nfs_direct_complete(struct nfs_direct_req * dreq)232 static void nfs_direct_complete(struct nfs_direct_req *dreq)
233 {
234 struct inode *inode = dreq->inode;
235
236 inode_dio_end(inode);
237
238 if (dreq->iocb) {
239 long res = (long) dreq->error;
240 if (dreq->count != 0) {
241 res = (long) dreq->count;
242 WARN_ON_ONCE(dreq->count < 0);
243 }
244 dreq->iocb->ki_complete(dreq->iocb, res);
245 }
246
247 complete(&dreq->completion);
248
249 nfs_direct_req_release(dreq);
250 }
251
nfs_direct_read_completion(struct nfs_pgio_header * hdr)252 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
253 {
254 unsigned long bytes = 0;
255 struct nfs_direct_req *dreq = hdr->dreq;
256
257 spin_lock(&dreq->lock);
258 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
259 spin_unlock(&dreq->lock);
260 goto out_put;
261 }
262
263 nfs_direct_count_bytes(dreq, hdr);
264 spin_unlock(&dreq->lock);
265
266 while (!list_empty(&hdr->pages)) {
267 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
268 struct page *page = req->wb_page;
269
270 if (!PageCompound(page) && bytes < hdr->good_bytes &&
271 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
272 set_page_dirty(page);
273 bytes += req->wb_bytes;
274 nfs_list_remove_request(req);
275 nfs_release_request(req);
276 }
277 out_put:
278 if (put_dreq(dreq))
279 nfs_direct_complete(dreq);
280 hdr->release(hdr);
281 }
282
nfs_read_sync_pgio_error(struct list_head * head,int error)283 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
284 {
285 struct nfs_page *req;
286
287 while (!list_empty(head)) {
288 req = nfs_list_entry(head->next);
289 nfs_list_remove_request(req);
290 nfs_release_request(req);
291 }
292 }
293
nfs_direct_pgio_init(struct nfs_pgio_header * hdr)294 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
295 {
296 get_dreq(hdr->dreq);
297 }
298
299 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
300 .error_cleanup = nfs_read_sync_pgio_error,
301 .init_hdr = nfs_direct_pgio_init,
302 .completion = nfs_direct_read_completion,
303 };
304
305 /*
306 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
307 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
308 * bail and stop sending more reads. Read length accounting is
309 * handled automatically by nfs_direct_read_result(). Otherwise, if
310 * no requests have been sent, just return an error.
311 */
312
nfs_direct_read_schedule_iovec(struct nfs_direct_req * dreq,struct iov_iter * iter,loff_t pos)313 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
314 struct iov_iter *iter,
315 loff_t pos)
316 {
317 struct nfs_pageio_descriptor desc;
318 struct inode *inode = dreq->inode;
319 ssize_t result = -EINVAL;
320 size_t requested_bytes = 0;
321 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
322
323 nfs_pageio_init_read(&desc, dreq->inode, false,
324 &nfs_direct_read_completion_ops);
325 get_dreq(dreq);
326 desc.pg_dreq = dreq;
327 inode_dio_begin(inode);
328
329 while (iov_iter_count(iter)) {
330 struct page **pagevec;
331 size_t bytes;
332 size_t pgbase;
333 unsigned npages, i;
334
335 result = iov_iter_get_pages_alloc2(iter, &pagevec,
336 rsize, &pgbase);
337 if (result < 0)
338 break;
339
340 bytes = result;
341 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
342 for (i = 0; i < npages; i++) {
343 struct nfs_page *req;
344 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
345 /* XXX do we need to do the eof zeroing found in async_filler? */
346 req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
347 pgbase, pos, req_len);
348 if (IS_ERR(req)) {
349 result = PTR_ERR(req);
350 break;
351 }
352 if (!nfs_pageio_add_request(&desc, req)) {
353 result = desc.pg_error;
354 nfs_release_request(req);
355 break;
356 }
357 pgbase = 0;
358 bytes -= req_len;
359 requested_bytes += req_len;
360 pos += req_len;
361 dreq->bytes_left -= req_len;
362 }
363 nfs_direct_release_pages(pagevec, npages);
364 kvfree(pagevec);
365 if (result < 0)
366 break;
367 }
368
369 nfs_pageio_complete(&desc);
370
371 /*
372 * If no bytes were started, return the error, and let the
373 * generic layer handle the completion.
374 */
375 if (requested_bytes == 0) {
376 inode_dio_end(inode);
377 nfs_direct_req_release(dreq);
378 return result < 0 ? result : -EIO;
379 }
380
381 if (put_dreq(dreq))
382 nfs_direct_complete(dreq);
383 return requested_bytes;
384 }
385
386 /**
387 * nfs_file_direct_read - file direct read operation for NFS files
388 * @iocb: target I/O control block
389 * @iter: vector of user buffers into which to read data
390 * @swap: flag indicating this is swap IO, not O_DIRECT IO
391 *
392 * We use this function for direct reads instead of calling
393 * generic_file_aio_read() in order to avoid gfar's check to see if
394 * the request starts before the end of the file. For that check
395 * to work, we must generate a GETATTR before each direct read, and
396 * even then there is a window between the GETATTR and the subsequent
397 * READ where the file size could change. Our preference is simply
398 * to do all reads the application wants, and the server will take
399 * care of managing the end of file boundary.
400 *
401 * This function also eliminates unnecessarily updating the file's
402 * atime locally, as the NFS server sets the file's atime, and this
403 * client must read the updated atime from the server back into its
404 * cache.
405 */
nfs_file_direct_read(struct kiocb * iocb,struct iov_iter * iter,bool swap)406 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
407 bool swap)
408 {
409 struct file *file = iocb->ki_filp;
410 struct address_space *mapping = file->f_mapping;
411 struct inode *inode = mapping->host;
412 struct nfs_direct_req *dreq;
413 struct nfs_lock_context *l_ctx;
414 ssize_t result, requested;
415 size_t count = iov_iter_count(iter);
416 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
417
418 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
419 file, count, (long long) iocb->ki_pos);
420
421 result = 0;
422 if (!count)
423 goto out;
424
425 task_io_account_read(count);
426
427 result = -ENOMEM;
428 dreq = nfs_direct_req_alloc();
429 if (dreq == NULL)
430 goto out;
431
432 dreq->inode = inode;
433 dreq->bytes_left = dreq->max_count = count;
434 dreq->io_start = iocb->ki_pos;
435 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
436 l_ctx = nfs_get_lock_context(dreq->ctx);
437 if (IS_ERR(l_ctx)) {
438 result = PTR_ERR(l_ctx);
439 nfs_direct_req_release(dreq);
440 goto out_release;
441 }
442 dreq->l_ctx = l_ctx;
443 if (!is_sync_kiocb(iocb))
444 dreq->iocb = iocb;
445
446 if (user_backed_iter(iter))
447 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
448
449 if (!swap)
450 nfs_start_io_direct(inode);
451
452 NFS_I(inode)->read_io += count;
453 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
454
455 if (!swap)
456 nfs_end_io_direct(inode);
457
458 if (requested > 0) {
459 result = nfs_direct_wait(dreq);
460 if (result > 0) {
461 requested -= result;
462 iocb->ki_pos += result;
463 }
464 iov_iter_revert(iter, requested);
465 } else {
466 result = requested;
467 }
468
469 out_release:
470 nfs_direct_req_release(dreq);
471 out:
472 return result;
473 }
474
475 static void
nfs_direct_join_group(struct list_head * list,struct inode * inode)476 nfs_direct_join_group(struct list_head *list, struct inode *inode)
477 {
478 struct nfs_page *req, *next;
479
480 list_for_each_entry(req, list, wb_list) {
481 if (req->wb_head != req || req->wb_this_page == req)
482 continue;
483 for (next = req->wb_this_page;
484 next != req->wb_head;
485 next = next->wb_this_page) {
486 nfs_list_remove_request(next);
487 nfs_release_request(next);
488 }
489 nfs_join_page_group(req, inode);
490 }
491 }
492
493 static void
nfs_direct_write_scan_commit_list(struct inode * inode,struct list_head * list,struct nfs_commit_info * cinfo)494 nfs_direct_write_scan_commit_list(struct inode *inode,
495 struct list_head *list,
496 struct nfs_commit_info *cinfo)
497 {
498 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
499 pnfs_recover_commit_reqs(list, cinfo);
500 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
501 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
502 }
503
nfs_direct_write_reschedule(struct nfs_direct_req * dreq)504 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
505 {
506 struct nfs_pageio_descriptor desc;
507 struct nfs_page *req, *tmp;
508 LIST_HEAD(reqs);
509 struct nfs_commit_info cinfo;
510 LIST_HEAD(failed);
511
512 nfs_init_cinfo_from_dreq(&cinfo, dreq);
513 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
514
515 nfs_direct_join_group(&reqs, dreq->inode);
516
517 dreq->count = 0;
518 dreq->max_count = 0;
519 list_for_each_entry(req, &reqs, wb_list)
520 dreq->max_count += req->wb_bytes;
521 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
522 get_dreq(dreq);
523
524 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
525 &nfs_direct_write_completion_ops);
526 desc.pg_dreq = dreq;
527
528 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
529 /* Bump the transmission count */
530 req->wb_nio++;
531 if (!nfs_pageio_add_request(&desc, req)) {
532 nfs_list_move_request(req, &failed);
533 spin_lock(&cinfo.inode->i_lock);
534 dreq->flags = 0;
535 if (desc.pg_error < 0)
536 dreq->error = desc.pg_error;
537 else
538 dreq->error = -EIO;
539 spin_unlock(&cinfo.inode->i_lock);
540 }
541 nfs_release_request(req);
542 }
543 nfs_pageio_complete(&desc);
544
545 while (!list_empty(&failed)) {
546 req = nfs_list_entry(failed.next);
547 nfs_list_remove_request(req);
548 nfs_unlock_and_release_request(req);
549 }
550
551 if (put_dreq(dreq))
552 nfs_direct_write_complete(dreq);
553 }
554
nfs_direct_commit_complete(struct nfs_commit_data * data)555 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
556 {
557 const struct nfs_writeverf *verf = data->res.verf;
558 struct nfs_direct_req *dreq = data->dreq;
559 struct nfs_commit_info cinfo;
560 struct nfs_page *req;
561 int status = data->task.tk_status;
562
563 trace_nfs_direct_commit_complete(dreq);
564
565 if (status < 0) {
566 /* Errors in commit are fatal */
567 dreq->error = status;
568 dreq->max_count = 0;
569 dreq->count = 0;
570 dreq->flags = NFS_ODIRECT_DONE;
571 } else {
572 status = dreq->error;
573 }
574
575 nfs_init_cinfo_from_dreq(&cinfo, dreq);
576
577 while (!list_empty(&data->pages)) {
578 req = nfs_list_entry(data->pages.next);
579 nfs_list_remove_request(req);
580 if (status >= 0 && !nfs_write_match_verf(verf, req)) {
581 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
582 /*
583 * Despite the reboot, the write was successful,
584 * so reset wb_nio.
585 */
586 req->wb_nio = 0;
587 nfs_mark_request_commit(req, NULL, &cinfo, 0);
588 } else /* Error or match */
589 nfs_release_request(req);
590 nfs_unlock_and_release_request(req);
591 }
592
593 if (nfs_commit_end(cinfo.mds))
594 nfs_direct_write_complete(dreq);
595 }
596
nfs_direct_resched_write(struct nfs_commit_info * cinfo,struct nfs_page * req)597 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
598 struct nfs_page *req)
599 {
600 struct nfs_direct_req *dreq = cinfo->dreq;
601
602 trace_nfs_direct_resched_write(dreq);
603
604 spin_lock(&dreq->lock);
605 if (dreq->flags != NFS_ODIRECT_DONE)
606 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
607 spin_unlock(&dreq->lock);
608 nfs_mark_request_commit(req, NULL, cinfo, 0);
609 }
610
611 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
612 .completion = nfs_direct_commit_complete,
613 .resched_write = nfs_direct_resched_write,
614 };
615
nfs_direct_commit_schedule(struct nfs_direct_req * dreq)616 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
617 {
618 int res;
619 struct nfs_commit_info cinfo;
620 LIST_HEAD(mds_list);
621
622 nfs_init_cinfo_from_dreq(&cinfo, dreq);
623 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
624 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
625 if (res < 0) /* res == -ENOMEM */
626 nfs_direct_write_reschedule(dreq);
627 }
628
nfs_direct_write_clear_reqs(struct nfs_direct_req * dreq)629 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
630 {
631 struct nfs_commit_info cinfo;
632 struct nfs_page *req;
633 LIST_HEAD(reqs);
634
635 nfs_init_cinfo_from_dreq(&cinfo, dreq);
636 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
637
638 while (!list_empty(&reqs)) {
639 req = nfs_list_entry(reqs.next);
640 nfs_list_remove_request(req);
641 nfs_release_request(req);
642 nfs_unlock_and_release_request(req);
643 }
644 }
645
nfs_direct_write_schedule_work(struct work_struct * work)646 static void nfs_direct_write_schedule_work(struct work_struct *work)
647 {
648 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
649 int flags = dreq->flags;
650
651 dreq->flags = 0;
652 switch (flags) {
653 case NFS_ODIRECT_DO_COMMIT:
654 nfs_direct_commit_schedule(dreq);
655 break;
656 case NFS_ODIRECT_RESCHED_WRITES:
657 nfs_direct_write_reschedule(dreq);
658 break;
659 default:
660 nfs_direct_write_clear_reqs(dreq);
661 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
662 nfs_direct_complete(dreq);
663 }
664 }
665
nfs_direct_write_complete(struct nfs_direct_req * dreq)666 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
667 {
668 trace_nfs_direct_write_complete(dreq);
669 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
670 }
671
nfs_direct_write_completion(struct nfs_pgio_header * hdr)672 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
673 {
674 struct nfs_direct_req *dreq = hdr->dreq;
675 struct nfs_commit_info cinfo;
676 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
677 int flags = NFS_ODIRECT_DONE;
678
679 trace_nfs_direct_write_completion(dreq);
680
681 nfs_init_cinfo_from_dreq(&cinfo, dreq);
682
683 spin_lock(&dreq->lock);
684 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
685 spin_unlock(&dreq->lock);
686 goto out_put;
687 }
688
689 nfs_direct_count_bytes(dreq, hdr);
690 if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags)) {
691 if (!dreq->flags)
692 dreq->flags = NFS_ODIRECT_DO_COMMIT;
693 flags = dreq->flags;
694 }
695 spin_unlock(&dreq->lock);
696
697 while (!list_empty(&hdr->pages)) {
698
699 req = nfs_list_entry(hdr->pages.next);
700 nfs_list_remove_request(req);
701 if (flags == NFS_ODIRECT_DO_COMMIT) {
702 kref_get(&req->wb_kref);
703 memcpy(&req->wb_verf, &hdr->verf.verifier,
704 sizeof(req->wb_verf));
705 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
706 hdr->ds_commit_idx);
707 } else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
708 kref_get(&req->wb_kref);
709 nfs_mark_request_commit(req, NULL, &cinfo, 0);
710 }
711 nfs_unlock_and_release_request(req);
712 }
713
714 out_put:
715 if (put_dreq(dreq))
716 nfs_direct_write_complete(dreq);
717 hdr->release(hdr);
718 }
719
nfs_write_sync_pgio_error(struct list_head * head,int error)720 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
721 {
722 struct nfs_page *req;
723
724 while (!list_empty(head)) {
725 req = nfs_list_entry(head->next);
726 nfs_list_remove_request(req);
727 nfs_unlock_and_release_request(req);
728 }
729 }
730
nfs_direct_write_reschedule_io(struct nfs_pgio_header * hdr)731 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
732 {
733 struct nfs_direct_req *dreq = hdr->dreq;
734
735 trace_nfs_direct_write_reschedule_io(dreq);
736
737 spin_lock(&dreq->lock);
738 if (dreq->error == 0) {
739 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
740 /* fake unstable write to let common nfs resend pages */
741 hdr->verf.committed = NFS_UNSTABLE;
742 hdr->good_bytes = hdr->args.offset + hdr->args.count -
743 hdr->io_start;
744 }
745 spin_unlock(&dreq->lock);
746 }
747
748 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
749 .error_cleanup = nfs_write_sync_pgio_error,
750 .init_hdr = nfs_direct_pgio_init,
751 .completion = nfs_direct_write_completion,
752 .reschedule_io = nfs_direct_write_reschedule_io,
753 };
754
755
756 /*
757 * NB: Return the value of the first error return code. Subsequent
758 * errors after the first one are ignored.
759 */
760 /*
761 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
762 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
763 * bail and stop sending more writes. Write length accounting is
764 * handled automatically by nfs_direct_write_result(). Otherwise, if
765 * no requests have been sent, just return an error.
766 */
nfs_direct_write_schedule_iovec(struct nfs_direct_req * dreq,struct iov_iter * iter,loff_t pos,int ioflags)767 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
768 struct iov_iter *iter,
769 loff_t pos, int ioflags)
770 {
771 struct nfs_pageio_descriptor desc;
772 struct inode *inode = dreq->inode;
773 ssize_t result = 0;
774 size_t requested_bytes = 0;
775 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
776
777 trace_nfs_direct_write_schedule_iovec(dreq);
778
779 nfs_pageio_init_write(&desc, inode, ioflags, false,
780 &nfs_direct_write_completion_ops);
781 desc.pg_dreq = dreq;
782 get_dreq(dreq);
783 inode_dio_begin(inode);
784
785 NFS_I(inode)->write_io += iov_iter_count(iter);
786 while (iov_iter_count(iter)) {
787 struct page **pagevec;
788 size_t bytes;
789 size_t pgbase;
790 unsigned npages, i;
791
792 result = iov_iter_get_pages_alloc2(iter, &pagevec,
793 wsize, &pgbase);
794 if (result < 0)
795 break;
796
797 bytes = result;
798 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
799 for (i = 0; i < npages; i++) {
800 struct nfs_page *req;
801 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
802
803 req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
804 pgbase, pos, req_len);
805 if (IS_ERR(req)) {
806 result = PTR_ERR(req);
807 break;
808 }
809
810 if (desc.pg_error < 0) {
811 nfs_free_request(req);
812 result = desc.pg_error;
813 break;
814 }
815
816 nfs_lock_request(req);
817 if (!nfs_pageio_add_request(&desc, req)) {
818 result = desc.pg_error;
819 nfs_unlock_and_release_request(req);
820 break;
821 }
822 pgbase = 0;
823 bytes -= req_len;
824 requested_bytes += req_len;
825 pos += req_len;
826 dreq->bytes_left -= req_len;
827 }
828 nfs_direct_release_pages(pagevec, npages);
829 kvfree(pagevec);
830 if (result < 0)
831 break;
832 }
833 nfs_pageio_complete(&desc);
834
835 /*
836 * If no bytes were started, return the error, and let the
837 * generic layer handle the completion.
838 */
839 if (requested_bytes == 0) {
840 inode_dio_end(inode);
841 nfs_direct_req_release(dreq);
842 return result < 0 ? result : -EIO;
843 }
844
845 if (put_dreq(dreq))
846 nfs_direct_write_complete(dreq);
847 return requested_bytes;
848 }
849
850 /**
851 * nfs_file_direct_write - file direct write operation for NFS files
852 * @iocb: target I/O control block
853 * @iter: vector of user buffers from which to write data
854 * @swap: flag indicating this is swap IO, not O_DIRECT IO
855 *
856 * We use this function for direct writes instead of calling
857 * generic_file_aio_write() in order to avoid taking the inode
858 * semaphore and updating the i_size. The NFS server will set
859 * the new i_size and this client must read the updated size
860 * back into its cache. We let the server do generic write
861 * parameter checking and report problems.
862 *
863 * We eliminate local atime updates, see direct read above.
864 *
865 * We avoid unnecessary page cache invalidations for normal cached
866 * readers of this file.
867 *
868 * Note that O_APPEND is not supported for NFS direct writes, as there
869 * is no atomic O_APPEND write facility in the NFS protocol.
870 */
nfs_file_direct_write(struct kiocb * iocb,struct iov_iter * iter,bool swap)871 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
872 bool swap)
873 {
874 ssize_t result, requested;
875 size_t count;
876 struct file *file = iocb->ki_filp;
877 struct address_space *mapping = file->f_mapping;
878 struct inode *inode = mapping->host;
879 struct nfs_direct_req *dreq;
880 struct nfs_lock_context *l_ctx;
881 loff_t pos, end;
882
883 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
884 file, iov_iter_count(iter), (long long) iocb->ki_pos);
885
886 if (swap)
887 /* bypass generic checks */
888 result = iov_iter_count(iter);
889 else
890 result = generic_write_checks(iocb, iter);
891 if (result <= 0)
892 return result;
893 count = result;
894 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
895
896 pos = iocb->ki_pos;
897 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
898
899 task_io_account_write(count);
900
901 result = -ENOMEM;
902 dreq = nfs_direct_req_alloc();
903 if (!dreq)
904 goto out;
905
906 dreq->inode = inode;
907 dreq->bytes_left = dreq->max_count = count;
908 dreq->io_start = pos;
909 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
910 l_ctx = nfs_get_lock_context(dreq->ctx);
911 if (IS_ERR(l_ctx)) {
912 result = PTR_ERR(l_ctx);
913 nfs_direct_req_release(dreq);
914 goto out_release;
915 }
916 dreq->l_ctx = l_ctx;
917 if (!is_sync_kiocb(iocb))
918 dreq->iocb = iocb;
919 pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
920
921 if (swap) {
922 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
923 FLUSH_STABLE);
924 } else {
925 nfs_start_io_direct(inode);
926
927 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
928 FLUSH_COND_STABLE);
929
930 if (mapping->nrpages) {
931 invalidate_inode_pages2_range(mapping,
932 pos >> PAGE_SHIFT, end);
933 }
934
935 nfs_end_io_direct(inode);
936 }
937
938 if (requested > 0) {
939 result = nfs_direct_wait(dreq);
940 if (result > 0) {
941 requested -= result;
942 iocb->ki_pos = pos + result;
943 /* XXX: should check the generic_write_sync retval */
944 generic_write_sync(iocb, result);
945 }
946 iov_iter_revert(iter, requested);
947 } else {
948 result = requested;
949 }
950 nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE);
951 out_release:
952 nfs_direct_req_release(dreq);
953 out:
954 return result;
955 }
956
957 /**
958 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
959 *
960 */
nfs_init_directcache(void)961 int __init nfs_init_directcache(void)
962 {
963 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
964 sizeof(struct nfs_direct_req),
965 0, (SLAB_RECLAIM_ACCOUNT|
966 SLAB_MEM_SPREAD),
967 NULL);
968 if (nfs_direct_cachep == NULL)
969 return -ENOMEM;
970
971 return 0;
972 }
973
974 /**
975 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
976 *
977 */
nfs_destroy_directcache(void)978 void nfs_destroy_directcache(void)
979 {
980 kmem_cache_destroy(nfs_direct_cachep);
981 }
982