1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis */
2 /* SPDX-License-Identifier: Unlicense */
3 /**
4    @file noekeon.c
5    Implementation of the Noekeon block cipher by Tom St Denis
6 */
7 #include "tomcrypt_private.h"
8 
9 #ifdef LTC_NOEKEON
10 
11 const struct ltc_cipher_descriptor noekeon_desc =
12 {
13     "noekeon",
14     16,
15     16, 16, 16, 16,
16     &noekeon_setup,
17     &noekeon_ecb_encrypt,
18     &noekeon_ecb_decrypt,
19     &noekeon_test,
20     &noekeon_done,
21     &noekeon_keysize,
22     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
23 };
24 
25 static const ulong32 RC[] = {
26    0x00000080UL, 0x0000001bUL, 0x00000036UL, 0x0000006cUL,
27    0x000000d8UL, 0x000000abUL, 0x0000004dUL, 0x0000009aUL,
28    0x0000002fUL, 0x0000005eUL, 0x000000bcUL, 0x00000063UL,
29    0x000000c6UL, 0x00000097UL, 0x00000035UL, 0x0000006aUL,
30    0x000000d4UL
31 };
32 
33 #define kTHETA(a, b, c, d)                                 \
34     temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
35     b ^= temp; d ^= temp;                                  \
36     temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
37     a ^= temp; c ^= temp;
38 
39 #define THETA(k, a, b, c, d)                               \
40     temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
41     b ^= temp ^ k[1]; d ^= temp ^ k[3];                    \
42     temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
43     a ^= temp ^ k[0]; c ^= temp ^ k[2];
44 
45 #define GAMMA(a, b, c, d)     \
46     b ^= ~(d|c);              \
47     a ^= c&b;                 \
48     temp = d; d = a; a = temp;\
49     c ^= a ^ b ^ d;           \
50     b ^= ~(d|c);              \
51     a ^= c&b;
52 
53 #define PI1(a, b, c, d) \
54     b = ROLc(b, 1); c = ROLc(c, 5); d = ROLc(d, 2);
55 
56 #define PI2(a, b, c, d) \
57     b = RORc(b, 1); c = RORc(c, 5); d = RORc(d, 2);
58 
59  /**
60     Initialize the Noekeon block cipher
61     @param key The symmetric key you wish to pass
62     @param keylen The key length in bytes
63     @param num_rounds The number of rounds desired (0 for default)
64     @param skey The key in as scheduled by this function.
65     @return CRYPT_OK if successful
66  */
noekeon_setup(const unsigned char * key,int keylen,int num_rounds,symmetric_key * skey)67 int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
68 {
69    ulong32 temp;
70 
71    LTC_ARGCHK(key != NULL);
72    LTC_ARGCHK(skey != NULL);
73 
74    if (keylen != 16) {
75       return CRYPT_INVALID_KEYSIZE;
76    }
77 
78    if (num_rounds != 16 && num_rounds != 0) {
79       return CRYPT_INVALID_ROUNDS;
80    }
81 
82    LOAD32H(skey->noekeon.K[0],&key[0]);
83    LOAD32H(skey->noekeon.K[1],&key[4]);
84    LOAD32H(skey->noekeon.K[2],&key[8]);
85    LOAD32H(skey->noekeon.K[3],&key[12]);
86 
87    LOAD32H(skey->noekeon.dK[0],&key[0]);
88    LOAD32H(skey->noekeon.dK[1],&key[4]);
89    LOAD32H(skey->noekeon.dK[2],&key[8]);
90    LOAD32H(skey->noekeon.dK[3],&key[12]);
91 
92    kTHETA(skey->noekeon.dK[0], skey->noekeon.dK[1], skey->noekeon.dK[2], skey->noekeon.dK[3]);
93 
94    return CRYPT_OK;
95 }
96 
97 /**
98   Encrypts a block of text with Noekeon
99   @param pt The input plaintext (16 bytes)
100   @param ct The output ciphertext (16 bytes)
101   @param skey The key as scheduled
102   @return CRYPT_OK if successful
103 */
104 #ifdef LTC_CLEAN_STACK
s_noekeon_ecb_encrypt(const unsigned char * pt,unsigned char * ct,const symmetric_key * skey)105 static int s_noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
106 #else
107 int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
108 #endif
109 {
110    ulong32 a,b,c,d,temp;
111    int r;
112 
113    LTC_ARGCHK(skey != NULL);
114    LTC_ARGCHK(pt   != NULL);
115    LTC_ARGCHK(ct   != NULL);
116 
117    LOAD32H(a,&pt[0]); LOAD32H(b,&pt[4]);
118    LOAD32H(c,&pt[8]); LOAD32H(d,&pt[12]);
119 
120 #define ROUND(i) \
121        a ^= RC[i]; \
122        THETA(skey->noekeon.K, a,b,c,d); \
123        PI1(a,b,c,d); \
124        GAMMA(a,b,c,d); \
125        PI2(a,b,c,d);
126 
127    for (r = 0; r < 16; ++r) {
128        ROUND(r);
129    }
130 
131 #undef ROUND
132 
133    a ^= RC[16];
134    THETA(skey->noekeon.K, a, b, c, d);
135 
136    STORE32H(a,&ct[0]); STORE32H(b,&ct[4]);
137    STORE32H(c,&ct[8]); STORE32H(d,&ct[12]);
138 
139    return CRYPT_OK;
140 }
141 
142 #ifdef LTC_CLEAN_STACK
noekeon_ecb_encrypt(const unsigned char * pt,unsigned char * ct,const symmetric_key * skey)143 int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
144 {
145    int err = s_noekeon_ecb_encrypt(pt, ct, skey);
146    burn_stack(sizeof(ulong32) * 5 + sizeof(int));
147    return err;
148 }
149 #endif
150 
151 /**
152   Decrypts a block of text with Noekeon
153   @param ct The input ciphertext (16 bytes)
154   @param pt The output plaintext (16 bytes)
155   @param skey The key as scheduled
156   @return CRYPT_OK if successful
157 */
158 #ifdef LTC_CLEAN_STACK
s_noekeon_ecb_decrypt(const unsigned char * ct,unsigned char * pt,const symmetric_key * skey)159 static int s_noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
160 #else
161 int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
162 #endif
163 {
164    ulong32 a,b,c,d, temp;
165    int r;
166 
167    LTC_ARGCHK(skey != NULL);
168    LTC_ARGCHK(pt   != NULL);
169    LTC_ARGCHK(ct   != NULL);
170 
171    LOAD32H(a,&ct[0]); LOAD32H(b,&ct[4]);
172    LOAD32H(c,&ct[8]); LOAD32H(d,&ct[12]);
173 
174 
175 #define ROUND(i) \
176        THETA(skey->noekeon.dK, a,b,c,d); \
177        a ^= RC[i]; \
178        PI1(a,b,c,d); \
179        GAMMA(a,b,c,d); \
180        PI2(a,b,c,d);
181 
182    for (r = 16; r > 0; --r) {
183        ROUND(r);
184    }
185 
186 #undef ROUND
187 
188    THETA(skey->noekeon.dK, a,b,c,d);
189    a ^= RC[0];
190    STORE32H(a,&pt[0]); STORE32H(b, &pt[4]);
191    STORE32H(c,&pt[8]); STORE32H(d, &pt[12]);
192    return CRYPT_OK;
193 }
194 
195 #ifdef LTC_CLEAN_STACK
noekeon_ecb_decrypt(const unsigned char * ct,unsigned char * pt,const symmetric_key * skey)196 int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
197 {
198    int err = s_noekeon_ecb_decrypt(ct, pt, skey);
199    burn_stack(sizeof(ulong32) * 5 + sizeof(int));
200    return err;
201 }
202 #endif
203 
204 /**
205   Performs a self-test of the Noekeon block cipher
206   @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
207 */
noekeon_test(void)208 int noekeon_test(void)
209 {
210  #ifndef LTC_TEST
211     return CRYPT_NOP;
212  #else
213  static const struct {
214      int keylen;
215      unsigned char key[16], pt[16], ct[16];
216  } tests[] = {
217    {
218       16,
219       { 0xAA, 0x3C, 0x8C, 0x86, 0xD9, 0x8B, 0xF8, 0xBE, 0x21, 0xE0, 0x36, 0x09, 0x78, 0xFB, 0xE4, 0x90 },
220       { 0xE4, 0x96, 0x6C, 0xD3, 0x13, 0xA0, 0x6C, 0xAF, 0xD0, 0x23, 0xC9, 0xFD, 0x45, 0x32, 0x23, 0x16 },
221       { 0xA6, 0xEC, 0xB8, 0xA8, 0x61, 0xFD, 0x62, 0xD9, 0x13, 0x02, 0xFE, 0x9E, 0x47, 0x01, 0x3F, 0xC3 }
222    },
223    {
224       16,
225       { 0xED, 0x43, 0xD1, 0x87, 0x21, 0x7E, 0xE0, 0x97, 0x3D, 0x76, 0xC3, 0x37, 0x2E, 0x7D, 0xAE, 0xD3 },
226       { 0xE3, 0x38, 0x32, 0xCC, 0xF2, 0x2F, 0x2F, 0x0A, 0x4A, 0x8B, 0x8F, 0x18, 0x12, 0x20, 0x17, 0xD3 },
227       { 0x94, 0xA5, 0xDF, 0xF5, 0xAE, 0x1C, 0xBB, 0x22, 0xAD, 0xEB, 0xA7, 0x0D, 0xB7, 0x82, 0x90, 0xA0 }
228    },
229    {
230       16,
231       { 0x6F, 0xDC, 0x23, 0x38, 0xF2, 0x10, 0xFB, 0xD3, 0xC1, 0x8C, 0x02, 0xF6, 0xB4, 0x6A, 0xD5, 0xA8 },
232       { 0xDB, 0x29, 0xED, 0xB5, 0x5F, 0xB3, 0x60, 0x3A, 0x92, 0xA8, 0xEB, 0x9C, 0x6D, 0x9D, 0x3E, 0x8F },
233       { 0x78, 0xF3, 0x6F, 0xF8, 0x9E, 0xBB, 0x8C, 0x6A, 0xE8, 0x10, 0xF7, 0x00, 0x22, 0x15, 0x30, 0x3D }
234    },
235    {
236       16,
237       { 0x2C, 0x0C, 0x02, 0xEF, 0x6B, 0xC4, 0xF2, 0x0B, 0x2E, 0xB9, 0xE0, 0xBF, 0xD9, 0x36, 0xC2, 0x4E },
238       { 0x84, 0xE2, 0xFE, 0x64, 0xB1, 0xB9, 0xFE, 0x76, 0xA8, 0x3F, 0x45, 0xC7, 0x40, 0x7A, 0xAF, 0xEE },
239       { 0x2A, 0x08, 0xD6, 0xA2, 0x1C, 0x63, 0x08, 0xB0, 0xF8, 0xBC, 0xB3, 0xA1, 0x66, 0xF7, 0xAE, 0xCF }
240    },
241    {
242       16,
243       { 0x6F, 0x30, 0xF8, 0x9F, 0xDA, 0x6E, 0xA0, 0x91, 0x04, 0x0F, 0x6C, 0x8B, 0x7D, 0xF7, 0x2A, 0x4B },
244       { 0x65, 0xB6, 0xA6, 0xD0, 0x42, 0x14, 0x08, 0x60, 0x34, 0x8D, 0x37, 0x2F, 0x01, 0xF0, 0x46, 0xBE },
245       { 0x66, 0xAC, 0x0B, 0x62, 0x1D, 0x68, 0x11, 0xF5, 0x27, 0xB1, 0x13, 0x5D, 0xF3, 0x2A, 0xE9, 0x18 }
246    },
247    {
248       16,
249       { 0xCA, 0xA4, 0x16, 0xB7, 0x1C, 0x92, 0x2E, 0xAD, 0xEB, 0xA7, 0xDB, 0x69, 0x92, 0xCB, 0x35, 0xEF },
250       { 0x81, 0x6F, 0x8E, 0x4D, 0x96, 0xC6, 0xB3, 0x67, 0x83, 0xF5, 0x63, 0xC7, 0x20, 0x6D, 0x40, 0x23 },
251       { 0x44, 0xF7, 0x63, 0x62, 0xF0, 0x43, 0xBB, 0x67, 0x4A, 0x75, 0x12, 0x42, 0x46, 0x29, 0x28, 0x19 }
252    },
253    {
254       16,
255       { 0x6B, 0xCF, 0x22, 0x2F, 0xE0, 0x1B, 0xB0, 0xAA, 0xD8, 0x3C, 0x91, 0x99, 0x18, 0xB2, 0x28, 0xE8 },
256       { 0x7C, 0x37, 0xC7, 0xD0, 0xAC, 0x92, 0x29, 0xF1, 0x60, 0x82, 0x93, 0x89, 0xAA, 0x61, 0xAA, 0xA9 },
257       { 0xE5, 0x89, 0x1B, 0xB3, 0xFE, 0x8B, 0x0C, 0xA1, 0xA6, 0xC7, 0xBE, 0x12, 0x73, 0x0F, 0xC1, 0x19 }
258    },
259    {
260       16,
261       { 0xE6, 0xD0, 0xF1, 0x03, 0x2E, 0xDE, 0x70, 0x8D, 0xD8, 0x9E, 0x36, 0x5C, 0x05, 0x52, 0xE7, 0x0D },
262       { 0xE2, 0x42, 0xE7, 0x92, 0x0E, 0xF7, 0x82, 0xA2, 0xB8, 0x21, 0x8D, 0x26, 0xBA, 0x2D, 0xE6, 0x32 },
263       { 0x1E, 0xDD, 0x75, 0x22, 0xB9, 0x36, 0x8A, 0x0F, 0x32, 0xFD, 0xD4, 0x48, 0x65, 0x12, 0x5A, 0x2F }
264    }
265  };
266  symmetric_key key;
267  unsigned char tmp[2][16];
268  int err, i, y;
269 
270  for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
271     zeromem(&key, sizeof(key));
272     if ((err = noekeon_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
273        return err;
274     }
275 
276     noekeon_ecb_encrypt(tests[i].pt, tmp[0], &key);
277     noekeon_ecb_decrypt(tmp[0], tmp[1], &key);
278     if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "Noekeon Encrypt", i) ||
279           compare_testvector(tmp[1], 16, tests[i].pt, 16, "Noekeon Decrypt", i)) {
280         return CRYPT_FAIL_TESTVECTOR;
281     }
282 
283     /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
284     for (y = 0; y < 16; y++) tmp[0][y] = 0;
285     for (y = 0; y < 1000; y++) noekeon_ecb_encrypt(tmp[0], tmp[0], &key);
286     for (y = 0; y < 1000; y++) noekeon_ecb_decrypt(tmp[0], tmp[0], &key);
287     for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
288  }
289  return CRYPT_OK;
290  #endif
291 }
292 
293 /** Terminate the context
294    @param skey    The scheduled key
295 */
noekeon_done(symmetric_key * skey)296 void noekeon_done(symmetric_key *skey)
297 {
298   LTC_UNUSED_PARAM(skey);
299 }
300 
301 /**
302   Gets suitable key size
303   @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
304   @return CRYPT_OK if the input key size is acceptable.
305 */
noekeon_keysize(int * keysize)306 int noekeon_keysize(int *keysize)
307 {
308    LTC_ARGCHK(keysize != NULL);
309    if (*keysize < 16) {
310       return CRYPT_INVALID_KEYSIZE;
311    }
312    *keysize = 16;
313    return CRYPT_OK;
314 }
315 
316 #endif
317 
318