1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis */
2 /* SPDX-License-Identifier: Unlicense */
3 /**
4 @file noekeon.c
5 Implementation of the Noekeon block cipher by Tom St Denis
6 */
7 #include "tomcrypt_private.h"
8
9 #ifdef LTC_NOEKEON
10
11 const struct ltc_cipher_descriptor noekeon_desc =
12 {
13 "noekeon",
14 16,
15 16, 16, 16, 16,
16 &noekeon_setup,
17 &noekeon_ecb_encrypt,
18 &noekeon_ecb_decrypt,
19 &noekeon_test,
20 &noekeon_done,
21 &noekeon_keysize,
22 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
23 };
24
25 static const ulong32 RC[] = {
26 0x00000080UL, 0x0000001bUL, 0x00000036UL, 0x0000006cUL,
27 0x000000d8UL, 0x000000abUL, 0x0000004dUL, 0x0000009aUL,
28 0x0000002fUL, 0x0000005eUL, 0x000000bcUL, 0x00000063UL,
29 0x000000c6UL, 0x00000097UL, 0x00000035UL, 0x0000006aUL,
30 0x000000d4UL
31 };
32
33 #define kTHETA(a, b, c, d) \
34 temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
35 b ^= temp; d ^= temp; \
36 temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
37 a ^= temp; c ^= temp;
38
39 #define THETA(k, a, b, c, d) \
40 temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
41 b ^= temp ^ k[1]; d ^= temp ^ k[3]; \
42 temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
43 a ^= temp ^ k[0]; c ^= temp ^ k[2];
44
45 #define GAMMA(a, b, c, d) \
46 b ^= ~(d|c); \
47 a ^= c&b; \
48 temp = d; d = a; a = temp;\
49 c ^= a ^ b ^ d; \
50 b ^= ~(d|c); \
51 a ^= c&b;
52
53 #define PI1(a, b, c, d) \
54 b = ROLc(b, 1); c = ROLc(c, 5); d = ROLc(d, 2);
55
56 #define PI2(a, b, c, d) \
57 b = RORc(b, 1); c = RORc(c, 5); d = RORc(d, 2);
58
59 /**
60 Initialize the Noekeon block cipher
61 @param key The symmetric key you wish to pass
62 @param keylen The key length in bytes
63 @param num_rounds The number of rounds desired (0 for default)
64 @param skey The key in as scheduled by this function.
65 @return CRYPT_OK if successful
66 */
noekeon_setup(const unsigned char * key,int keylen,int num_rounds,symmetric_key * skey)67 int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
68 {
69 ulong32 temp;
70
71 LTC_ARGCHK(key != NULL);
72 LTC_ARGCHK(skey != NULL);
73
74 if (keylen != 16) {
75 return CRYPT_INVALID_KEYSIZE;
76 }
77
78 if (num_rounds != 16 && num_rounds != 0) {
79 return CRYPT_INVALID_ROUNDS;
80 }
81
82 LOAD32H(skey->noekeon.K[0],&key[0]);
83 LOAD32H(skey->noekeon.K[1],&key[4]);
84 LOAD32H(skey->noekeon.K[2],&key[8]);
85 LOAD32H(skey->noekeon.K[3],&key[12]);
86
87 LOAD32H(skey->noekeon.dK[0],&key[0]);
88 LOAD32H(skey->noekeon.dK[1],&key[4]);
89 LOAD32H(skey->noekeon.dK[2],&key[8]);
90 LOAD32H(skey->noekeon.dK[3],&key[12]);
91
92 kTHETA(skey->noekeon.dK[0], skey->noekeon.dK[1], skey->noekeon.dK[2], skey->noekeon.dK[3]);
93
94 return CRYPT_OK;
95 }
96
97 /**
98 Encrypts a block of text with Noekeon
99 @param pt The input plaintext (16 bytes)
100 @param ct The output ciphertext (16 bytes)
101 @param skey The key as scheduled
102 @return CRYPT_OK if successful
103 */
104 #ifdef LTC_CLEAN_STACK
s_noekeon_ecb_encrypt(const unsigned char * pt,unsigned char * ct,const symmetric_key * skey)105 static int s_noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
106 #else
107 int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
108 #endif
109 {
110 ulong32 a,b,c,d,temp;
111 int r;
112
113 LTC_ARGCHK(skey != NULL);
114 LTC_ARGCHK(pt != NULL);
115 LTC_ARGCHK(ct != NULL);
116
117 LOAD32H(a,&pt[0]); LOAD32H(b,&pt[4]);
118 LOAD32H(c,&pt[8]); LOAD32H(d,&pt[12]);
119
120 #define ROUND(i) \
121 a ^= RC[i]; \
122 THETA(skey->noekeon.K, a,b,c,d); \
123 PI1(a,b,c,d); \
124 GAMMA(a,b,c,d); \
125 PI2(a,b,c,d);
126
127 for (r = 0; r < 16; ++r) {
128 ROUND(r);
129 }
130
131 #undef ROUND
132
133 a ^= RC[16];
134 THETA(skey->noekeon.K, a, b, c, d);
135
136 STORE32H(a,&ct[0]); STORE32H(b,&ct[4]);
137 STORE32H(c,&ct[8]); STORE32H(d,&ct[12]);
138
139 return CRYPT_OK;
140 }
141
142 #ifdef LTC_CLEAN_STACK
noekeon_ecb_encrypt(const unsigned char * pt,unsigned char * ct,const symmetric_key * skey)143 int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
144 {
145 int err = s_noekeon_ecb_encrypt(pt, ct, skey);
146 burn_stack(sizeof(ulong32) * 5 + sizeof(int));
147 return err;
148 }
149 #endif
150
151 /**
152 Decrypts a block of text with Noekeon
153 @param ct The input ciphertext (16 bytes)
154 @param pt The output plaintext (16 bytes)
155 @param skey The key as scheduled
156 @return CRYPT_OK if successful
157 */
158 #ifdef LTC_CLEAN_STACK
s_noekeon_ecb_decrypt(const unsigned char * ct,unsigned char * pt,const symmetric_key * skey)159 static int s_noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
160 #else
161 int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
162 #endif
163 {
164 ulong32 a,b,c,d, temp;
165 int r;
166
167 LTC_ARGCHK(skey != NULL);
168 LTC_ARGCHK(pt != NULL);
169 LTC_ARGCHK(ct != NULL);
170
171 LOAD32H(a,&ct[0]); LOAD32H(b,&ct[4]);
172 LOAD32H(c,&ct[8]); LOAD32H(d,&ct[12]);
173
174
175 #define ROUND(i) \
176 THETA(skey->noekeon.dK, a,b,c,d); \
177 a ^= RC[i]; \
178 PI1(a,b,c,d); \
179 GAMMA(a,b,c,d); \
180 PI2(a,b,c,d);
181
182 for (r = 16; r > 0; --r) {
183 ROUND(r);
184 }
185
186 #undef ROUND
187
188 THETA(skey->noekeon.dK, a,b,c,d);
189 a ^= RC[0];
190 STORE32H(a,&pt[0]); STORE32H(b, &pt[4]);
191 STORE32H(c,&pt[8]); STORE32H(d, &pt[12]);
192 return CRYPT_OK;
193 }
194
195 #ifdef LTC_CLEAN_STACK
noekeon_ecb_decrypt(const unsigned char * ct,unsigned char * pt,const symmetric_key * skey)196 int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
197 {
198 int err = s_noekeon_ecb_decrypt(ct, pt, skey);
199 burn_stack(sizeof(ulong32) * 5 + sizeof(int));
200 return err;
201 }
202 #endif
203
204 /**
205 Performs a self-test of the Noekeon block cipher
206 @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
207 */
noekeon_test(void)208 int noekeon_test(void)
209 {
210 #ifndef LTC_TEST
211 return CRYPT_NOP;
212 #else
213 static const struct {
214 int keylen;
215 unsigned char key[16], pt[16], ct[16];
216 } tests[] = {
217 {
218 16,
219 { 0xAA, 0x3C, 0x8C, 0x86, 0xD9, 0x8B, 0xF8, 0xBE, 0x21, 0xE0, 0x36, 0x09, 0x78, 0xFB, 0xE4, 0x90 },
220 { 0xE4, 0x96, 0x6C, 0xD3, 0x13, 0xA0, 0x6C, 0xAF, 0xD0, 0x23, 0xC9, 0xFD, 0x45, 0x32, 0x23, 0x16 },
221 { 0xA6, 0xEC, 0xB8, 0xA8, 0x61, 0xFD, 0x62, 0xD9, 0x13, 0x02, 0xFE, 0x9E, 0x47, 0x01, 0x3F, 0xC3 }
222 },
223 {
224 16,
225 { 0xED, 0x43, 0xD1, 0x87, 0x21, 0x7E, 0xE0, 0x97, 0x3D, 0x76, 0xC3, 0x37, 0x2E, 0x7D, 0xAE, 0xD3 },
226 { 0xE3, 0x38, 0x32, 0xCC, 0xF2, 0x2F, 0x2F, 0x0A, 0x4A, 0x8B, 0x8F, 0x18, 0x12, 0x20, 0x17, 0xD3 },
227 { 0x94, 0xA5, 0xDF, 0xF5, 0xAE, 0x1C, 0xBB, 0x22, 0xAD, 0xEB, 0xA7, 0x0D, 0xB7, 0x82, 0x90, 0xA0 }
228 },
229 {
230 16,
231 { 0x6F, 0xDC, 0x23, 0x38, 0xF2, 0x10, 0xFB, 0xD3, 0xC1, 0x8C, 0x02, 0xF6, 0xB4, 0x6A, 0xD5, 0xA8 },
232 { 0xDB, 0x29, 0xED, 0xB5, 0x5F, 0xB3, 0x60, 0x3A, 0x92, 0xA8, 0xEB, 0x9C, 0x6D, 0x9D, 0x3E, 0x8F },
233 { 0x78, 0xF3, 0x6F, 0xF8, 0x9E, 0xBB, 0x8C, 0x6A, 0xE8, 0x10, 0xF7, 0x00, 0x22, 0x15, 0x30, 0x3D }
234 },
235 {
236 16,
237 { 0x2C, 0x0C, 0x02, 0xEF, 0x6B, 0xC4, 0xF2, 0x0B, 0x2E, 0xB9, 0xE0, 0xBF, 0xD9, 0x36, 0xC2, 0x4E },
238 { 0x84, 0xE2, 0xFE, 0x64, 0xB1, 0xB9, 0xFE, 0x76, 0xA8, 0x3F, 0x45, 0xC7, 0x40, 0x7A, 0xAF, 0xEE },
239 { 0x2A, 0x08, 0xD6, 0xA2, 0x1C, 0x63, 0x08, 0xB0, 0xF8, 0xBC, 0xB3, 0xA1, 0x66, 0xF7, 0xAE, 0xCF }
240 },
241 {
242 16,
243 { 0x6F, 0x30, 0xF8, 0x9F, 0xDA, 0x6E, 0xA0, 0x91, 0x04, 0x0F, 0x6C, 0x8B, 0x7D, 0xF7, 0x2A, 0x4B },
244 { 0x65, 0xB6, 0xA6, 0xD0, 0x42, 0x14, 0x08, 0x60, 0x34, 0x8D, 0x37, 0x2F, 0x01, 0xF0, 0x46, 0xBE },
245 { 0x66, 0xAC, 0x0B, 0x62, 0x1D, 0x68, 0x11, 0xF5, 0x27, 0xB1, 0x13, 0x5D, 0xF3, 0x2A, 0xE9, 0x18 }
246 },
247 {
248 16,
249 { 0xCA, 0xA4, 0x16, 0xB7, 0x1C, 0x92, 0x2E, 0xAD, 0xEB, 0xA7, 0xDB, 0x69, 0x92, 0xCB, 0x35, 0xEF },
250 { 0x81, 0x6F, 0x8E, 0x4D, 0x96, 0xC6, 0xB3, 0x67, 0x83, 0xF5, 0x63, 0xC7, 0x20, 0x6D, 0x40, 0x23 },
251 { 0x44, 0xF7, 0x63, 0x62, 0xF0, 0x43, 0xBB, 0x67, 0x4A, 0x75, 0x12, 0x42, 0x46, 0x29, 0x28, 0x19 }
252 },
253 {
254 16,
255 { 0x6B, 0xCF, 0x22, 0x2F, 0xE0, 0x1B, 0xB0, 0xAA, 0xD8, 0x3C, 0x91, 0x99, 0x18, 0xB2, 0x28, 0xE8 },
256 { 0x7C, 0x37, 0xC7, 0xD0, 0xAC, 0x92, 0x29, 0xF1, 0x60, 0x82, 0x93, 0x89, 0xAA, 0x61, 0xAA, 0xA9 },
257 { 0xE5, 0x89, 0x1B, 0xB3, 0xFE, 0x8B, 0x0C, 0xA1, 0xA6, 0xC7, 0xBE, 0x12, 0x73, 0x0F, 0xC1, 0x19 }
258 },
259 {
260 16,
261 { 0xE6, 0xD0, 0xF1, 0x03, 0x2E, 0xDE, 0x70, 0x8D, 0xD8, 0x9E, 0x36, 0x5C, 0x05, 0x52, 0xE7, 0x0D },
262 { 0xE2, 0x42, 0xE7, 0x92, 0x0E, 0xF7, 0x82, 0xA2, 0xB8, 0x21, 0x8D, 0x26, 0xBA, 0x2D, 0xE6, 0x32 },
263 { 0x1E, 0xDD, 0x75, 0x22, 0xB9, 0x36, 0x8A, 0x0F, 0x32, 0xFD, 0xD4, 0x48, 0x65, 0x12, 0x5A, 0x2F }
264 }
265 };
266 symmetric_key key;
267 unsigned char tmp[2][16];
268 int err, i, y;
269
270 for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
271 zeromem(&key, sizeof(key));
272 if ((err = noekeon_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
273 return err;
274 }
275
276 noekeon_ecb_encrypt(tests[i].pt, tmp[0], &key);
277 noekeon_ecb_decrypt(tmp[0], tmp[1], &key);
278 if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "Noekeon Encrypt", i) ||
279 compare_testvector(tmp[1], 16, tests[i].pt, 16, "Noekeon Decrypt", i)) {
280 return CRYPT_FAIL_TESTVECTOR;
281 }
282
283 /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
284 for (y = 0; y < 16; y++) tmp[0][y] = 0;
285 for (y = 0; y < 1000; y++) noekeon_ecb_encrypt(tmp[0], tmp[0], &key);
286 for (y = 0; y < 1000; y++) noekeon_ecb_decrypt(tmp[0], tmp[0], &key);
287 for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
288 }
289 return CRYPT_OK;
290 #endif
291 }
292
293 /** Terminate the context
294 @param skey The scheduled key
295 */
noekeon_done(symmetric_key * skey)296 void noekeon_done(symmetric_key *skey)
297 {
298 LTC_UNUSED_PARAM(skey);
299 }
300
301 /**
302 Gets suitable key size
303 @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
304 @return CRYPT_OK if the input key size is acceptable.
305 */
noekeon_keysize(int * keysize)306 int noekeon_keysize(int *keysize)
307 {
308 LTC_ARGCHK(keysize != NULL);
309 if (*keysize < 16) {
310 return CRYPT_INVALID_KEYSIZE;
311 }
312 *keysize = 16;
313 return CRYPT_OK;
314 }
315
316 #endif
317
318