1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Transport Linux driver
46  *
47  * Contact Information:
48  * Jon Mason <jon.mason@intel.com>
49  */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64 
65 #define NTB_TRANSPORT_VERSION	4
66 #define NTB_TRANSPORT_VER	"4"
67 #define NTB_TRANSPORT_NAME	"ntb_transport"
68 #define NTB_TRANSPORT_DESC	"Software Queue-Pair Transport over NTB"
69 #define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
70 
71 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
72 MODULE_VERSION(NTB_TRANSPORT_VER);
73 MODULE_LICENSE("Dual BSD/GPL");
74 MODULE_AUTHOR("Intel Corporation");
75 
76 static unsigned long max_mw_size;
77 module_param(max_mw_size, ulong, 0644);
78 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
79 
80 static unsigned int transport_mtu = 0x10000;
81 module_param(transport_mtu, uint, 0644);
82 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
83 
84 static unsigned char max_num_clients;
85 module_param(max_num_clients, byte, 0644);
86 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
87 
88 static unsigned int copy_bytes = 1024;
89 module_param(copy_bytes, uint, 0644);
90 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
91 
92 static bool use_dma;
93 module_param(use_dma, bool, 0644);
94 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
95 
96 static bool use_msi;
97 #ifdef CONFIG_NTB_MSI
98 module_param(use_msi, bool, 0644);
99 MODULE_PARM_DESC(use_msi, "Use MSI interrupts instead of doorbells");
100 #endif
101 
102 static struct dentry *nt_debugfs_dir;
103 
104 /* Only two-ports NTB devices are supported */
105 #define PIDX		NTB_DEF_PEER_IDX
106 
107 struct ntb_queue_entry {
108 	/* ntb_queue list reference */
109 	struct list_head entry;
110 	/* pointers to data to be transferred */
111 	void *cb_data;
112 	void *buf;
113 	unsigned int len;
114 	unsigned int flags;
115 	int retries;
116 	int errors;
117 	unsigned int tx_index;
118 	unsigned int rx_index;
119 
120 	struct ntb_transport_qp *qp;
121 	union {
122 		struct ntb_payload_header __iomem *tx_hdr;
123 		struct ntb_payload_header *rx_hdr;
124 	};
125 };
126 
127 struct ntb_rx_info {
128 	unsigned int entry;
129 };
130 
131 struct ntb_transport_qp {
132 	struct ntb_transport_ctx *transport;
133 	struct ntb_dev *ndev;
134 	void *cb_data;
135 	struct dma_chan *tx_dma_chan;
136 	struct dma_chan *rx_dma_chan;
137 
138 	bool client_ready;
139 	bool link_is_up;
140 	bool active;
141 
142 	u8 qp_num;	/* Only 64 QP's are allowed.  0-63 */
143 	u64 qp_bit;
144 
145 	struct ntb_rx_info __iomem *rx_info;
146 	struct ntb_rx_info *remote_rx_info;
147 
148 	void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
149 			   void *data, int len);
150 	struct list_head tx_free_q;
151 	spinlock_t ntb_tx_free_q_lock;
152 	void __iomem *tx_mw;
153 	phys_addr_t tx_mw_phys;
154 	size_t tx_mw_size;
155 	dma_addr_t tx_mw_dma_addr;
156 	unsigned int tx_index;
157 	unsigned int tx_max_entry;
158 	unsigned int tx_max_frame;
159 
160 	void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
161 			   void *data, int len);
162 	struct list_head rx_post_q;
163 	struct list_head rx_pend_q;
164 	struct list_head rx_free_q;
165 	/* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
166 	spinlock_t ntb_rx_q_lock;
167 	void *rx_buff;
168 	unsigned int rx_index;
169 	unsigned int rx_max_entry;
170 	unsigned int rx_max_frame;
171 	unsigned int rx_alloc_entry;
172 	dma_cookie_t last_cookie;
173 	struct tasklet_struct rxc_db_work;
174 
175 	void (*event_handler)(void *data, int status);
176 	struct delayed_work link_work;
177 	struct work_struct link_cleanup;
178 
179 	struct dentry *debugfs_dir;
180 	struct dentry *debugfs_stats;
181 
182 	/* Stats */
183 	u64 rx_bytes;
184 	u64 rx_pkts;
185 	u64 rx_ring_empty;
186 	u64 rx_err_no_buf;
187 	u64 rx_err_oflow;
188 	u64 rx_err_ver;
189 	u64 rx_memcpy;
190 	u64 rx_async;
191 	u64 tx_bytes;
192 	u64 tx_pkts;
193 	u64 tx_ring_full;
194 	u64 tx_err_no_buf;
195 	u64 tx_memcpy;
196 	u64 tx_async;
197 
198 	bool use_msi;
199 	int msi_irq;
200 	struct ntb_msi_desc msi_desc;
201 	struct ntb_msi_desc peer_msi_desc;
202 };
203 
204 struct ntb_transport_mw {
205 	phys_addr_t phys_addr;
206 	resource_size_t phys_size;
207 	void __iomem *vbase;
208 	size_t xlat_size;
209 	size_t buff_size;
210 	size_t alloc_size;
211 	void *alloc_addr;
212 	void *virt_addr;
213 	dma_addr_t dma_addr;
214 };
215 
216 struct ntb_transport_client_dev {
217 	struct list_head entry;
218 	struct ntb_transport_ctx *nt;
219 	struct device dev;
220 };
221 
222 struct ntb_transport_ctx {
223 	struct list_head entry;
224 	struct list_head client_devs;
225 
226 	struct ntb_dev *ndev;
227 
228 	struct ntb_transport_mw *mw_vec;
229 	struct ntb_transport_qp *qp_vec;
230 	unsigned int mw_count;
231 	unsigned int qp_count;
232 	u64 qp_bitmap;
233 	u64 qp_bitmap_free;
234 
235 	bool use_msi;
236 	unsigned int msi_spad_offset;
237 	u64 msi_db_mask;
238 
239 	bool link_is_up;
240 	struct delayed_work link_work;
241 	struct work_struct link_cleanup;
242 
243 	struct dentry *debugfs_node_dir;
244 };
245 
246 enum {
247 	DESC_DONE_FLAG = BIT(0),
248 	LINK_DOWN_FLAG = BIT(1),
249 };
250 
251 struct ntb_payload_header {
252 	unsigned int ver;
253 	unsigned int len;
254 	unsigned int flags;
255 };
256 
257 enum {
258 	VERSION = 0,
259 	QP_LINKS,
260 	NUM_QPS,
261 	NUM_MWS,
262 	MW0_SZ_HIGH,
263 	MW0_SZ_LOW,
264 };
265 
266 #define dev_client_dev(__dev) \
267 	container_of((__dev), struct ntb_transport_client_dev, dev)
268 
269 #define drv_client(__drv) \
270 	container_of((__drv), struct ntb_transport_client, driver)
271 
272 #define QP_TO_MW(nt, qp)	((qp) % nt->mw_count)
273 #define NTB_QP_DEF_NUM_ENTRIES	100
274 #define NTB_LINK_DOWN_TIMEOUT	10
275 
276 static void ntb_transport_rxc_db(unsigned long data);
277 static const struct ntb_ctx_ops ntb_transport_ops;
278 static struct ntb_client ntb_transport_client;
279 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
280 			       struct ntb_queue_entry *entry);
281 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
282 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
283 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
284 
285 
ntb_transport_bus_match(struct device * dev,struct device_driver * drv)286 static int ntb_transport_bus_match(struct device *dev,
287 				   struct device_driver *drv)
288 {
289 	return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
290 }
291 
ntb_transport_bus_probe(struct device * dev)292 static int ntb_transport_bus_probe(struct device *dev)
293 {
294 	const struct ntb_transport_client *client;
295 	int rc;
296 
297 	get_device(dev);
298 
299 	client = drv_client(dev->driver);
300 	rc = client->probe(dev);
301 	if (rc)
302 		put_device(dev);
303 
304 	return rc;
305 }
306 
ntb_transport_bus_remove(struct device * dev)307 static void ntb_transport_bus_remove(struct device *dev)
308 {
309 	const struct ntb_transport_client *client;
310 
311 	client = drv_client(dev->driver);
312 	client->remove(dev);
313 
314 	put_device(dev);
315 }
316 
317 static struct bus_type ntb_transport_bus = {
318 	.name = "ntb_transport",
319 	.match = ntb_transport_bus_match,
320 	.probe = ntb_transport_bus_probe,
321 	.remove = ntb_transport_bus_remove,
322 };
323 
324 static LIST_HEAD(ntb_transport_list);
325 
ntb_bus_init(struct ntb_transport_ctx * nt)326 static int ntb_bus_init(struct ntb_transport_ctx *nt)
327 {
328 	list_add_tail(&nt->entry, &ntb_transport_list);
329 	return 0;
330 }
331 
ntb_bus_remove(struct ntb_transport_ctx * nt)332 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
333 {
334 	struct ntb_transport_client_dev *client_dev, *cd;
335 
336 	list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
337 		dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
338 			dev_name(&client_dev->dev));
339 		list_del(&client_dev->entry);
340 		device_unregister(&client_dev->dev);
341 	}
342 
343 	list_del(&nt->entry);
344 }
345 
ntb_transport_client_release(struct device * dev)346 static void ntb_transport_client_release(struct device *dev)
347 {
348 	struct ntb_transport_client_dev *client_dev;
349 
350 	client_dev = dev_client_dev(dev);
351 	kfree(client_dev);
352 }
353 
354 /**
355  * ntb_transport_unregister_client_dev - Unregister NTB client device
356  * @device_name: Name of NTB client device
357  *
358  * Unregister an NTB client device with the NTB transport layer
359  */
ntb_transport_unregister_client_dev(char * device_name)360 void ntb_transport_unregister_client_dev(char *device_name)
361 {
362 	struct ntb_transport_client_dev *client, *cd;
363 	struct ntb_transport_ctx *nt;
364 
365 	list_for_each_entry(nt, &ntb_transport_list, entry)
366 		list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
367 			if (!strncmp(dev_name(&client->dev), device_name,
368 				     strlen(device_name))) {
369 				list_del(&client->entry);
370 				device_unregister(&client->dev);
371 			}
372 }
373 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
374 
375 /**
376  * ntb_transport_register_client_dev - Register NTB client device
377  * @device_name: Name of NTB client device
378  *
379  * Register an NTB client device with the NTB transport layer
380  */
ntb_transport_register_client_dev(char * device_name)381 int ntb_transport_register_client_dev(char *device_name)
382 {
383 	struct ntb_transport_client_dev *client_dev;
384 	struct ntb_transport_ctx *nt;
385 	int node;
386 	int rc, i = 0;
387 
388 	if (list_empty(&ntb_transport_list))
389 		return -ENODEV;
390 
391 	list_for_each_entry(nt, &ntb_transport_list, entry) {
392 		struct device *dev;
393 
394 		node = dev_to_node(&nt->ndev->dev);
395 
396 		client_dev = kzalloc_node(sizeof(*client_dev),
397 					  GFP_KERNEL, node);
398 		if (!client_dev) {
399 			rc = -ENOMEM;
400 			goto err;
401 		}
402 
403 		dev = &client_dev->dev;
404 
405 		/* setup and register client devices */
406 		dev_set_name(dev, "%s%d", device_name, i);
407 		dev->bus = &ntb_transport_bus;
408 		dev->release = ntb_transport_client_release;
409 		dev->parent = &nt->ndev->dev;
410 
411 		rc = device_register(dev);
412 		if (rc) {
413 			kfree(client_dev);
414 			goto err;
415 		}
416 
417 		list_add_tail(&client_dev->entry, &nt->client_devs);
418 		i++;
419 	}
420 
421 	return 0;
422 
423 err:
424 	ntb_transport_unregister_client_dev(device_name);
425 
426 	return rc;
427 }
428 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
429 
430 /**
431  * ntb_transport_register_client - Register NTB client driver
432  * @drv: NTB client driver to be registered
433  *
434  * Register an NTB client driver with the NTB transport layer
435  *
436  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
437  */
ntb_transport_register_client(struct ntb_transport_client * drv)438 int ntb_transport_register_client(struct ntb_transport_client *drv)
439 {
440 	drv->driver.bus = &ntb_transport_bus;
441 
442 	if (list_empty(&ntb_transport_list))
443 		return -ENODEV;
444 
445 	return driver_register(&drv->driver);
446 }
447 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
448 
449 /**
450  * ntb_transport_unregister_client - Unregister NTB client driver
451  * @drv: NTB client driver to be unregistered
452  *
453  * Unregister an NTB client driver with the NTB transport layer
454  *
455  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
456  */
ntb_transport_unregister_client(struct ntb_transport_client * drv)457 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
458 {
459 	driver_unregister(&drv->driver);
460 }
461 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
462 
debugfs_read(struct file * filp,char __user * ubuf,size_t count,loff_t * offp)463 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
464 			    loff_t *offp)
465 {
466 	struct ntb_transport_qp *qp;
467 	char *buf;
468 	ssize_t ret, out_offset, out_count;
469 
470 	qp = filp->private_data;
471 
472 	if (!qp || !qp->link_is_up)
473 		return 0;
474 
475 	out_count = 1000;
476 
477 	buf = kmalloc(out_count, GFP_KERNEL);
478 	if (!buf)
479 		return -ENOMEM;
480 
481 	out_offset = 0;
482 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
483 			       "\nNTB QP stats:\n\n");
484 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
485 			       "rx_bytes - \t%llu\n", qp->rx_bytes);
486 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
487 			       "rx_pkts - \t%llu\n", qp->rx_pkts);
488 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
489 			       "rx_memcpy - \t%llu\n", qp->rx_memcpy);
490 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
491 			       "rx_async - \t%llu\n", qp->rx_async);
492 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
493 			       "rx_ring_empty - %llu\n", qp->rx_ring_empty);
494 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
495 			       "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
496 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
497 			       "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
498 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
499 			       "rx_err_ver - \t%llu\n", qp->rx_err_ver);
500 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
501 			       "rx_buff - \t0x%p\n", qp->rx_buff);
502 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
503 			       "rx_index - \t%u\n", qp->rx_index);
504 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
505 			       "rx_max_entry - \t%u\n", qp->rx_max_entry);
506 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
507 			       "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
508 
509 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
510 			       "tx_bytes - \t%llu\n", qp->tx_bytes);
511 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
512 			       "tx_pkts - \t%llu\n", qp->tx_pkts);
513 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
514 			       "tx_memcpy - \t%llu\n", qp->tx_memcpy);
515 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
516 			       "tx_async - \t%llu\n", qp->tx_async);
517 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
518 			       "tx_ring_full - \t%llu\n", qp->tx_ring_full);
519 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
520 			       "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
521 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
522 			       "tx_mw - \t0x%p\n", qp->tx_mw);
523 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
524 			       "tx_index (H) - \t%u\n", qp->tx_index);
525 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
526 			       "RRI (T) - \t%u\n",
527 			       qp->remote_rx_info->entry);
528 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
529 			       "tx_max_entry - \t%u\n", qp->tx_max_entry);
530 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
531 			       "free tx - \t%u\n",
532 			       ntb_transport_tx_free_entry(qp));
533 
534 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
535 			       "\n");
536 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
537 			       "Using TX DMA - \t%s\n",
538 			       qp->tx_dma_chan ? "Yes" : "No");
539 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
540 			       "Using RX DMA - \t%s\n",
541 			       qp->rx_dma_chan ? "Yes" : "No");
542 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
543 			       "QP Link - \t%s\n",
544 			       qp->link_is_up ? "Up" : "Down");
545 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
546 			       "\n");
547 
548 	if (out_offset > out_count)
549 		out_offset = out_count;
550 
551 	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
552 	kfree(buf);
553 	return ret;
554 }
555 
556 static const struct file_operations ntb_qp_debugfs_stats = {
557 	.owner = THIS_MODULE,
558 	.open = simple_open,
559 	.read = debugfs_read,
560 };
561 
ntb_list_add(spinlock_t * lock,struct list_head * entry,struct list_head * list)562 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
563 			 struct list_head *list)
564 {
565 	unsigned long flags;
566 
567 	spin_lock_irqsave(lock, flags);
568 	list_add_tail(entry, list);
569 	spin_unlock_irqrestore(lock, flags);
570 }
571 
ntb_list_rm(spinlock_t * lock,struct list_head * list)572 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
573 					   struct list_head *list)
574 {
575 	struct ntb_queue_entry *entry;
576 	unsigned long flags;
577 
578 	spin_lock_irqsave(lock, flags);
579 	if (list_empty(list)) {
580 		entry = NULL;
581 		goto out;
582 	}
583 	entry = list_first_entry(list, struct ntb_queue_entry, entry);
584 	list_del(&entry->entry);
585 
586 out:
587 	spin_unlock_irqrestore(lock, flags);
588 
589 	return entry;
590 }
591 
ntb_list_mv(spinlock_t * lock,struct list_head * list,struct list_head * to_list)592 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
593 					   struct list_head *list,
594 					   struct list_head *to_list)
595 {
596 	struct ntb_queue_entry *entry;
597 	unsigned long flags;
598 
599 	spin_lock_irqsave(lock, flags);
600 
601 	if (list_empty(list)) {
602 		entry = NULL;
603 	} else {
604 		entry = list_first_entry(list, struct ntb_queue_entry, entry);
605 		list_move_tail(&entry->entry, to_list);
606 	}
607 
608 	spin_unlock_irqrestore(lock, flags);
609 
610 	return entry;
611 }
612 
ntb_transport_setup_qp_mw(struct ntb_transport_ctx * nt,unsigned int qp_num)613 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
614 				     unsigned int qp_num)
615 {
616 	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
617 	struct ntb_transport_mw *mw;
618 	struct ntb_dev *ndev = nt->ndev;
619 	struct ntb_queue_entry *entry;
620 	unsigned int rx_size, num_qps_mw;
621 	unsigned int mw_num, mw_count, qp_count;
622 	unsigned int i;
623 	int node;
624 
625 	mw_count = nt->mw_count;
626 	qp_count = nt->qp_count;
627 
628 	mw_num = QP_TO_MW(nt, qp_num);
629 	mw = &nt->mw_vec[mw_num];
630 
631 	if (!mw->virt_addr)
632 		return -ENOMEM;
633 
634 	if (mw_num < qp_count % mw_count)
635 		num_qps_mw = qp_count / mw_count + 1;
636 	else
637 		num_qps_mw = qp_count / mw_count;
638 
639 	rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
640 	qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
641 	rx_size -= sizeof(struct ntb_rx_info);
642 
643 	qp->remote_rx_info = qp->rx_buff + rx_size;
644 
645 	/* Due to housekeeping, there must be atleast 2 buffs */
646 	qp->rx_max_frame = min(transport_mtu, rx_size / 2);
647 	qp->rx_max_entry = rx_size / qp->rx_max_frame;
648 	qp->rx_index = 0;
649 
650 	/*
651 	 * Checking to see if we have more entries than the default.
652 	 * We should add additional entries if that is the case so we
653 	 * can be in sync with the transport frames.
654 	 */
655 	node = dev_to_node(&ndev->dev);
656 	for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
657 		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
658 		if (!entry)
659 			return -ENOMEM;
660 
661 		entry->qp = qp;
662 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
663 			     &qp->rx_free_q);
664 		qp->rx_alloc_entry++;
665 	}
666 
667 	qp->remote_rx_info->entry = qp->rx_max_entry - 1;
668 
669 	/* setup the hdr offsets with 0's */
670 	for (i = 0; i < qp->rx_max_entry; i++) {
671 		void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
672 				sizeof(struct ntb_payload_header));
673 		memset(offset, 0, sizeof(struct ntb_payload_header));
674 	}
675 
676 	qp->rx_pkts = 0;
677 	qp->tx_pkts = 0;
678 	qp->tx_index = 0;
679 
680 	return 0;
681 }
682 
ntb_transport_isr(int irq,void * dev)683 static irqreturn_t ntb_transport_isr(int irq, void *dev)
684 {
685 	struct ntb_transport_qp *qp = dev;
686 
687 	tasklet_schedule(&qp->rxc_db_work);
688 
689 	return IRQ_HANDLED;
690 }
691 
ntb_transport_setup_qp_peer_msi(struct ntb_transport_ctx * nt,unsigned int qp_num)692 static void ntb_transport_setup_qp_peer_msi(struct ntb_transport_ctx *nt,
693 					    unsigned int qp_num)
694 {
695 	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
696 	int spad = qp_num * 2 + nt->msi_spad_offset;
697 
698 	if (!nt->use_msi)
699 		return;
700 
701 	if (spad >= ntb_spad_count(nt->ndev))
702 		return;
703 
704 	qp->peer_msi_desc.addr_offset =
705 		ntb_peer_spad_read(qp->ndev, PIDX, spad);
706 	qp->peer_msi_desc.data =
707 		ntb_peer_spad_read(qp->ndev, PIDX, spad + 1);
708 
709 	dev_dbg(&qp->ndev->pdev->dev, "QP%d Peer MSI addr=%x data=%x\n",
710 		qp_num, qp->peer_msi_desc.addr_offset, qp->peer_msi_desc.data);
711 
712 	if (qp->peer_msi_desc.addr_offset) {
713 		qp->use_msi = true;
714 		dev_info(&qp->ndev->pdev->dev,
715 			 "Using MSI interrupts for QP%d\n", qp_num);
716 	}
717 }
718 
ntb_transport_setup_qp_msi(struct ntb_transport_ctx * nt,unsigned int qp_num)719 static void ntb_transport_setup_qp_msi(struct ntb_transport_ctx *nt,
720 				       unsigned int qp_num)
721 {
722 	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
723 	int spad = qp_num * 2 + nt->msi_spad_offset;
724 	int rc;
725 
726 	if (!nt->use_msi)
727 		return;
728 
729 	if (spad >= ntb_spad_count(nt->ndev)) {
730 		dev_warn_once(&qp->ndev->pdev->dev,
731 			      "Not enough SPADS to use MSI interrupts\n");
732 		return;
733 	}
734 
735 	ntb_spad_write(qp->ndev, spad, 0);
736 	ntb_spad_write(qp->ndev, spad + 1, 0);
737 
738 	if (!qp->msi_irq) {
739 		qp->msi_irq = ntbm_msi_request_irq(qp->ndev, ntb_transport_isr,
740 						   KBUILD_MODNAME, qp,
741 						   &qp->msi_desc);
742 		if (qp->msi_irq < 0) {
743 			dev_warn(&qp->ndev->pdev->dev,
744 				 "Unable to allocate MSI interrupt for qp%d\n",
745 				 qp_num);
746 			return;
747 		}
748 	}
749 
750 	rc = ntb_spad_write(qp->ndev, spad, qp->msi_desc.addr_offset);
751 	if (rc)
752 		goto err_free_interrupt;
753 
754 	rc = ntb_spad_write(qp->ndev, spad + 1, qp->msi_desc.data);
755 	if (rc)
756 		goto err_free_interrupt;
757 
758 	dev_dbg(&qp->ndev->pdev->dev, "QP%d MSI %d addr=%x data=%x\n",
759 		qp_num, qp->msi_irq, qp->msi_desc.addr_offset,
760 		qp->msi_desc.data);
761 
762 	return;
763 
764 err_free_interrupt:
765 	devm_free_irq(&nt->ndev->dev, qp->msi_irq, qp);
766 }
767 
ntb_transport_msi_peer_desc_changed(struct ntb_transport_ctx * nt)768 static void ntb_transport_msi_peer_desc_changed(struct ntb_transport_ctx *nt)
769 {
770 	int i;
771 
772 	dev_dbg(&nt->ndev->pdev->dev, "Peer MSI descriptors changed");
773 
774 	for (i = 0; i < nt->qp_count; i++)
775 		ntb_transport_setup_qp_peer_msi(nt, i);
776 }
777 
ntb_transport_msi_desc_changed(void * data)778 static void ntb_transport_msi_desc_changed(void *data)
779 {
780 	struct ntb_transport_ctx *nt = data;
781 	int i;
782 
783 	dev_dbg(&nt->ndev->pdev->dev, "MSI descriptors changed");
784 
785 	for (i = 0; i < nt->qp_count; i++)
786 		ntb_transport_setup_qp_msi(nt, i);
787 
788 	ntb_peer_db_set(nt->ndev, nt->msi_db_mask);
789 }
790 
ntb_free_mw(struct ntb_transport_ctx * nt,int num_mw)791 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
792 {
793 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
794 	struct pci_dev *pdev = nt->ndev->pdev;
795 
796 	if (!mw->virt_addr)
797 		return;
798 
799 	ntb_mw_clear_trans(nt->ndev, PIDX, num_mw);
800 	dma_free_coherent(&pdev->dev, mw->alloc_size,
801 			  mw->alloc_addr, mw->dma_addr);
802 	mw->xlat_size = 0;
803 	mw->buff_size = 0;
804 	mw->alloc_size = 0;
805 	mw->alloc_addr = NULL;
806 	mw->virt_addr = NULL;
807 }
808 
ntb_alloc_mw_buffer(struct ntb_transport_mw * mw,struct device * dma_dev,size_t align)809 static int ntb_alloc_mw_buffer(struct ntb_transport_mw *mw,
810 			       struct device *dma_dev, size_t align)
811 {
812 	dma_addr_t dma_addr;
813 	void *alloc_addr, *virt_addr;
814 	int rc;
815 
816 	alloc_addr = dma_alloc_coherent(dma_dev, mw->alloc_size,
817 					&dma_addr, GFP_KERNEL);
818 	if (!alloc_addr) {
819 		dev_err(dma_dev, "Unable to alloc MW buff of size %zu\n",
820 			mw->alloc_size);
821 		return -ENOMEM;
822 	}
823 	virt_addr = alloc_addr;
824 
825 	/*
826 	 * we must ensure that the memory address allocated is BAR size
827 	 * aligned in order for the XLAT register to take the value. This
828 	 * is a requirement of the hardware. It is recommended to setup CMA
829 	 * for BAR sizes equal or greater than 4MB.
830 	 */
831 	if (!IS_ALIGNED(dma_addr, align)) {
832 		if (mw->alloc_size > mw->buff_size) {
833 			virt_addr = PTR_ALIGN(alloc_addr, align);
834 			dma_addr = ALIGN(dma_addr, align);
835 		} else {
836 			rc = -ENOMEM;
837 			goto err;
838 		}
839 	}
840 
841 	mw->alloc_addr = alloc_addr;
842 	mw->virt_addr = virt_addr;
843 	mw->dma_addr = dma_addr;
844 
845 	return 0;
846 
847 err:
848 	dma_free_coherent(dma_dev, mw->alloc_size, alloc_addr, dma_addr);
849 
850 	return rc;
851 }
852 
ntb_set_mw(struct ntb_transport_ctx * nt,int num_mw,resource_size_t size)853 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
854 		      resource_size_t size)
855 {
856 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
857 	struct pci_dev *pdev = nt->ndev->pdev;
858 	size_t xlat_size, buff_size;
859 	resource_size_t xlat_align;
860 	resource_size_t xlat_align_size;
861 	int rc;
862 
863 	if (!size)
864 		return -EINVAL;
865 
866 	rc = ntb_mw_get_align(nt->ndev, PIDX, num_mw, &xlat_align,
867 			      &xlat_align_size, NULL);
868 	if (rc)
869 		return rc;
870 
871 	xlat_size = round_up(size, xlat_align_size);
872 	buff_size = round_up(size, xlat_align);
873 
874 	/* No need to re-setup */
875 	if (mw->xlat_size == xlat_size)
876 		return 0;
877 
878 	if (mw->buff_size)
879 		ntb_free_mw(nt, num_mw);
880 
881 	/* Alloc memory for receiving data.  Must be aligned */
882 	mw->xlat_size = xlat_size;
883 	mw->buff_size = buff_size;
884 	mw->alloc_size = buff_size;
885 
886 	rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
887 	if (rc) {
888 		mw->alloc_size *= 2;
889 		rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
890 		if (rc) {
891 			dev_err(&pdev->dev,
892 				"Unable to alloc aligned MW buff\n");
893 			mw->xlat_size = 0;
894 			mw->buff_size = 0;
895 			mw->alloc_size = 0;
896 			return rc;
897 		}
898 	}
899 
900 	/* Notify HW the memory location of the receive buffer */
901 	rc = ntb_mw_set_trans(nt->ndev, PIDX, num_mw, mw->dma_addr,
902 			      mw->xlat_size);
903 	if (rc) {
904 		dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
905 		ntb_free_mw(nt, num_mw);
906 		return -EIO;
907 	}
908 
909 	return 0;
910 }
911 
ntb_qp_link_down_reset(struct ntb_transport_qp * qp)912 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
913 {
914 	qp->link_is_up = false;
915 	qp->active = false;
916 
917 	qp->tx_index = 0;
918 	qp->rx_index = 0;
919 	qp->rx_bytes = 0;
920 	qp->rx_pkts = 0;
921 	qp->rx_ring_empty = 0;
922 	qp->rx_err_no_buf = 0;
923 	qp->rx_err_oflow = 0;
924 	qp->rx_err_ver = 0;
925 	qp->rx_memcpy = 0;
926 	qp->rx_async = 0;
927 	qp->tx_bytes = 0;
928 	qp->tx_pkts = 0;
929 	qp->tx_ring_full = 0;
930 	qp->tx_err_no_buf = 0;
931 	qp->tx_memcpy = 0;
932 	qp->tx_async = 0;
933 }
934 
ntb_qp_link_cleanup(struct ntb_transport_qp * qp)935 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
936 {
937 	struct ntb_transport_ctx *nt = qp->transport;
938 	struct pci_dev *pdev = nt->ndev->pdev;
939 
940 	dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
941 
942 	cancel_delayed_work_sync(&qp->link_work);
943 	ntb_qp_link_down_reset(qp);
944 
945 	if (qp->event_handler)
946 		qp->event_handler(qp->cb_data, qp->link_is_up);
947 }
948 
ntb_qp_link_cleanup_work(struct work_struct * work)949 static void ntb_qp_link_cleanup_work(struct work_struct *work)
950 {
951 	struct ntb_transport_qp *qp = container_of(work,
952 						   struct ntb_transport_qp,
953 						   link_cleanup);
954 	struct ntb_transport_ctx *nt = qp->transport;
955 
956 	ntb_qp_link_cleanup(qp);
957 
958 	if (nt->link_is_up)
959 		schedule_delayed_work(&qp->link_work,
960 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
961 }
962 
ntb_qp_link_down(struct ntb_transport_qp * qp)963 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
964 {
965 	schedule_work(&qp->link_cleanup);
966 }
967 
ntb_transport_link_cleanup(struct ntb_transport_ctx * nt)968 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
969 {
970 	struct ntb_transport_qp *qp;
971 	u64 qp_bitmap_alloc;
972 	unsigned int i, count;
973 
974 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
975 
976 	/* Pass along the info to any clients */
977 	for (i = 0; i < nt->qp_count; i++)
978 		if (qp_bitmap_alloc & BIT_ULL(i)) {
979 			qp = &nt->qp_vec[i];
980 			ntb_qp_link_cleanup(qp);
981 			cancel_work_sync(&qp->link_cleanup);
982 			cancel_delayed_work_sync(&qp->link_work);
983 		}
984 
985 	if (!nt->link_is_up)
986 		cancel_delayed_work_sync(&nt->link_work);
987 
988 	for (i = 0; i < nt->mw_count; i++)
989 		ntb_free_mw(nt, i);
990 
991 	/* The scratchpad registers keep the values if the remote side
992 	 * goes down, blast them now to give them a sane value the next
993 	 * time they are accessed
994 	 */
995 	count = ntb_spad_count(nt->ndev);
996 	for (i = 0; i < count; i++)
997 		ntb_spad_write(nt->ndev, i, 0);
998 }
999 
ntb_transport_link_cleanup_work(struct work_struct * work)1000 static void ntb_transport_link_cleanup_work(struct work_struct *work)
1001 {
1002 	struct ntb_transport_ctx *nt =
1003 		container_of(work, struct ntb_transport_ctx, link_cleanup);
1004 
1005 	ntb_transport_link_cleanup(nt);
1006 }
1007 
ntb_transport_event_callback(void * data)1008 static void ntb_transport_event_callback(void *data)
1009 {
1010 	struct ntb_transport_ctx *nt = data;
1011 
1012 	if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
1013 		schedule_delayed_work(&nt->link_work, 0);
1014 	else
1015 		schedule_work(&nt->link_cleanup);
1016 }
1017 
ntb_transport_link_work(struct work_struct * work)1018 static void ntb_transport_link_work(struct work_struct *work)
1019 {
1020 	struct ntb_transport_ctx *nt =
1021 		container_of(work, struct ntb_transport_ctx, link_work.work);
1022 	struct ntb_dev *ndev = nt->ndev;
1023 	struct pci_dev *pdev = ndev->pdev;
1024 	resource_size_t size;
1025 	u32 val;
1026 	int rc = 0, i, spad;
1027 
1028 	/* send the local info, in the opposite order of the way we read it */
1029 
1030 	if (nt->use_msi) {
1031 		rc = ntb_msi_setup_mws(ndev);
1032 		if (rc) {
1033 			dev_warn(&pdev->dev,
1034 				 "Failed to register MSI memory window: %d\n",
1035 				 rc);
1036 			nt->use_msi = false;
1037 		}
1038 	}
1039 
1040 	for (i = 0; i < nt->qp_count; i++)
1041 		ntb_transport_setup_qp_msi(nt, i);
1042 
1043 	for (i = 0; i < nt->mw_count; i++) {
1044 		size = nt->mw_vec[i].phys_size;
1045 
1046 		if (max_mw_size && size > max_mw_size)
1047 			size = max_mw_size;
1048 
1049 		spad = MW0_SZ_HIGH + (i * 2);
1050 		ntb_peer_spad_write(ndev, PIDX, spad, upper_32_bits(size));
1051 
1052 		spad = MW0_SZ_LOW + (i * 2);
1053 		ntb_peer_spad_write(ndev, PIDX, spad, lower_32_bits(size));
1054 	}
1055 
1056 	ntb_peer_spad_write(ndev, PIDX, NUM_MWS, nt->mw_count);
1057 
1058 	ntb_peer_spad_write(ndev, PIDX, NUM_QPS, nt->qp_count);
1059 
1060 	ntb_peer_spad_write(ndev, PIDX, VERSION, NTB_TRANSPORT_VERSION);
1061 
1062 	/* Query the remote side for its info */
1063 	val = ntb_spad_read(ndev, VERSION);
1064 	dev_dbg(&pdev->dev, "Remote version = %d\n", val);
1065 	if (val != NTB_TRANSPORT_VERSION)
1066 		goto out;
1067 
1068 	val = ntb_spad_read(ndev, NUM_QPS);
1069 	dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
1070 	if (val != nt->qp_count)
1071 		goto out;
1072 
1073 	val = ntb_spad_read(ndev, NUM_MWS);
1074 	dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
1075 	if (val != nt->mw_count)
1076 		goto out;
1077 
1078 	for (i = 0; i < nt->mw_count; i++) {
1079 		u64 val64;
1080 
1081 		val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
1082 		val64 = (u64)val << 32;
1083 
1084 		val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
1085 		val64 |= val;
1086 
1087 		dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
1088 
1089 		rc = ntb_set_mw(nt, i, val64);
1090 		if (rc)
1091 			goto out1;
1092 	}
1093 
1094 	nt->link_is_up = true;
1095 
1096 	for (i = 0; i < nt->qp_count; i++) {
1097 		struct ntb_transport_qp *qp = &nt->qp_vec[i];
1098 
1099 		ntb_transport_setup_qp_mw(nt, i);
1100 		ntb_transport_setup_qp_peer_msi(nt, i);
1101 
1102 		if (qp->client_ready)
1103 			schedule_delayed_work(&qp->link_work, 0);
1104 	}
1105 
1106 	return;
1107 
1108 out1:
1109 	for (i = 0; i < nt->mw_count; i++)
1110 		ntb_free_mw(nt, i);
1111 
1112 	/* if there's an actual failure, we should just bail */
1113 	if (rc < 0)
1114 		return;
1115 
1116 out:
1117 	if (ntb_link_is_up(ndev, NULL, NULL) == 1)
1118 		schedule_delayed_work(&nt->link_work,
1119 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1120 }
1121 
ntb_qp_link_work(struct work_struct * work)1122 static void ntb_qp_link_work(struct work_struct *work)
1123 {
1124 	struct ntb_transport_qp *qp = container_of(work,
1125 						   struct ntb_transport_qp,
1126 						   link_work.work);
1127 	struct pci_dev *pdev = qp->ndev->pdev;
1128 	struct ntb_transport_ctx *nt = qp->transport;
1129 	int val;
1130 
1131 	WARN_ON(!nt->link_is_up);
1132 
1133 	val = ntb_spad_read(nt->ndev, QP_LINKS);
1134 
1135 	ntb_peer_spad_write(nt->ndev, PIDX, QP_LINKS, val | BIT(qp->qp_num));
1136 
1137 	/* query remote spad for qp ready bits */
1138 	dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
1139 
1140 	/* See if the remote side is up */
1141 	if (val & BIT(qp->qp_num)) {
1142 		dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
1143 		qp->link_is_up = true;
1144 		qp->active = true;
1145 
1146 		if (qp->event_handler)
1147 			qp->event_handler(qp->cb_data, qp->link_is_up);
1148 
1149 		if (qp->active)
1150 			tasklet_schedule(&qp->rxc_db_work);
1151 	} else if (nt->link_is_up)
1152 		schedule_delayed_work(&qp->link_work,
1153 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1154 }
1155 
ntb_transport_init_queue(struct ntb_transport_ctx * nt,unsigned int qp_num)1156 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
1157 				    unsigned int qp_num)
1158 {
1159 	struct ntb_transport_qp *qp;
1160 	phys_addr_t mw_base;
1161 	resource_size_t mw_size;
1162 	unsigned int num_qps_mw, tx_size;
1163 	unsigned int mw_num, mw_count, qp_count;
1164 	u64 qp_offset;
1165 
1166 	mw_count = nt->mw_count;
1167 	qp_count = nt->qp_count;
1168 
1169 	mw_num = QP_TO_MW(nt, qp_num);
1170 
1171 	qp = &nt->qp_vec[qp_num];
1172 	qp->qp_num = qp_num;
1173 	qp->transport = nt;
1174 	qp->ndev = nt->ndev;
1175 	qp->client_ready = false;
1176 	qp->event_handler = NULL;
1177 	ntb_qp_link_down_reset(qp);
1178 
1179 	if (mw_num < qp_count % mw_count)
1180 		num_qps_mw = qp_count / mw_count + 1;
1181 	else
1182 		num_qps_mw = qp_count / mw_count;
1183 
1184 	mw_base = nt->mw_vec[mw_num].phys_addr;
1185 	mw_size = nt->mw_vec[mw_num].phys_size;
1186 
1187 	if (max_mw_size && mw_size > max_mw_size)
1188 		mw_size = max_mw_size;
1189 
1190 	tx_size = (unsigned int)mw_size / num_qps_mw;
1191 	qp_offset = tx_size * (qp_num / mw_count);
1192 
1193 	qp->tx_mw_size = tx_size;
1194 	qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1195 	if (!qp->tx_mw)
1196 		return -EINVAL;
1197 
1198 	qp->tx_mw_phys = mw_base + qp_offset;
1199 	if (!qp->tx_mw_phys)
1200 		return -EINVAL;
1201 
1202 	tx_size -= sizeof(struct ntb_rx_info);
1203 	qp->rx_info = qp->tx_mw + tx_size;
1204 
1205 	/* Due to housekeeping, there must be atleast 2 buffs */
1206 	qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1207 	qp->tx_max_entry = tx_size / qp->tx_max_frame;
1208 
1209 	if (nt->debugfs_node_dir) {
1210 		char debugfs_name[4];
1211 
1212 		snprintf(debugfs_name, 4, "qp%d", qp_num);
1213 		qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1214 						     nt->debugfs_node_dir);
1215 
1216 		qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1217 							qp->debugfs_dir, qp,
1218 							&ntb_qp_debugfs_stats);
1219 	} else {
1220 		qp->debugfs_dir = NULL;
1221 		qp->debugfs_stats = NULL;
1222 	}
1223 
1224 	INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1225 	INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1226 
1227 	spin_lock_init(&qp->ntb_rx_q_lock);
1228 	spin_lock_init(&qp->ntb_tx_free_q_lock);
1229 
1230 	INIT_LIST_HEAD(&qp->rx_post_q);
1231 	INIT_LIST_HEAD(&qp->rx_pend_q);
1232 	INIT_LIST_HEAD(&qp->rx_free_q);
1233 	INIT_LIST_HEAD(&qp->tx_free_q);
1234 
1235 	tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1236 		     (unsigned long)qp);
1237 
1238 	return 0;
1239 }
1240 
ntb_transport_probe(struct ntb_client * self,struct ntb_dev * ndev)1241 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1242 {
1243 	struct ntb_transport_ctx *nt;
1244 	struct ntb_transport_mw *mw;
1245 	unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1246 	u64 qp_bitmap;
1247 	int node;
1248 	int rc, i;
1249 
1250 	mw_count = ntb_peer_mw_count(ndev);
1251 
1252 	if (!ndev->ops->mw_set_trans) {
1253 		dev_err(&ndev->dev, "Inbound MW based NTB API is required\n");
1254 		return -EINVAL;
1255 	}
1256 
1257 	if (ntb_db_is_unsafe(ndev))
1258 		dev_dbg(&ndev->dev,
1259 			"doorbell is unsafe, proceed anyway...\n");
1260 	if (ntb_spad_is_unsafe(ndev))
1261 		dev_dbg(&ndev->dev,
1262 			"scratchpad is unsafe, proceed anyway...\n");
1263 
1264 	if (ntb_peer_port_count(ndev) != NTB_DEF_PEER_CNT)
1265 		dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n");
1266 
1267 	node = dev_to_node(&ndev->dev);
1268 
1269 	nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1270 	if (!nt)
1271 		return -ENOMEM;
1272 
1273 	nt->ndev = ndev;
1274 
1275 	/*
1276 	 * If we are using MSI, and have at least one extra memory window,
1277 	 * we will reserve the last MW for the MSI window.
1278 	 */
1279 	if (use_msi && mw_count > 1) {
1280 		rc = ntb_msi_init(ndev, ntb_transport_msi_desc_changed);
1281 		if (!rc) {
1282 			mw_count -= 1;
1283 			nt->use_msi = true;
1284 		}
1285 	}
1286 
1287 	spad_count = ntb_spad_count(ndev);
1288 
1289 	/* Limit the MW's based on the availability of scratchpads */
1290 
1291 	if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1292 		nt->mw_count = 0;
1293 		rc = -EINVAL;
1294 		goto err;
1295 	}
1296 
1297 	max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1298 	nt->mw_count = min(mw_count, max_mw_count_for_spads);
1299 
1300 	nt->msi_spad_offset = nt->mw_count * 2 + MW0_SZ_HIGH;
1301 
1302 	nt->mw_vec = kcalloc_node(mw_count, sizeof(*nt->mw_vec),
1303 				  GFP_KERNEL, node);
1304 	if (!nt->mw_vec) {
1305 		rc = -ENOMEM;
1306 		goto err;
1307 	}
1308 
1309 	for (i = 0; i < mw_count; i++) {
1310 		mw = &nt->mw_vec[i];
1311 
1312 		rc = ntb_peer_mw_get_addr(ndev, i, &mw->phys_addr,
1313 					  &mw->phys_size);
1314 		if (rc)
1315 			goto err1;
1316 
1317 		mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1318 		if (!mw->vbase) {
1319 			rc = -ENOMEM;
1320 			goto err1;
1321 		}
1322 
1323 		mw->buff_size = 0;
1324 		mw->xlat_size = 0;
1325 		mw->virt_addr = NULL;
1326 		mw->dma_addr = 0;
1327 	}
1328 
1329 	qp_bitmap = ntb_db_valid_mask(ndev);
1330 
1331 	qp_count = ilog2(qp_bitmap);
1332 	if (nt->use_msi) {
1333 		qp_count -= 1;
1334 		nt->msi_db_mask = 1 << qp_count;
1335 		ntb_db_clear_mask(ndev, nt->msi_db_mask);
1336 	}
1337 
1338 	if (max_num_clients && max_num_clients < qp_count)
1339 		qp_count = max_num_clients;
1340 	else if (nt->mw_count < qp_count)
1341 		qp_count = nt->mw_count;
1342 
1343 	qp_bitmap &= BIT_ULL(qp_count) - 1;
1344 
1345 	nt->qp_count = qp_count;
1346 	nt->qp_bitmap = qp_bitmap;
1347 	nt->qp_bitmap_free = qp_bitmap;
1348 
1349 	nt->qp_vec = kcalloc_node(qp_count, sizeof(*nt->qp_vec),
1350 				  GFP_KERNEL, node);
1351 	if (!nt->qp_vec) {
1352 		rc = -ENOMEM;
1353 		goto err1;
1354 	}
1355 
1356 	if (nt_debugfs_dir) {
1357 		nt->debugfs_node_dir =
1358 			debugfs_create_dir(pci_name(ndev->pdev),
1359 					   nt_debugfs_dir);
1360 	}
1361 
1362 	for (i = 0; i < qp_count; i++) {
1363 		rc = ntb_transport_init_queue(nt, i);
1364 		if (rc)
1365 			goto err2;
1366 	}
1367 
1368 	INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1369 	INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1370 
1371 	rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1372 	if (rc)
1373 		goto err2;
1374 
1375 	INIT_LIST_HEAD(&nt->client_devs);
1376 	rc = ntb_bus_init(nt);
1377 	if (rc)
1378 		goto err3;
1379 
1380 	nt->link_is_up = false;
1381 	ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1382 	ntb_link_event(ndev);
1383 
1384 	return 0;
1385 
1386 err3:
1387 	ntb_clear_ctx(ndev);
1388 err2:
1389 	kfree(nt->qp_vec);
1390 err1:
1391 	while (i--) {
1392 		mw = &nt->mw_vec[i];
1393 		iounmap(mw->vbase);
1394 	}
1395 	kfree(nt->mw_vec);
1396 err:
1397 	kfree(nt);
1398 	return rc;
1399 }
1400 
ntb_transport_free(struct ntb_client * self,struct ntb_dev * ndev)1401 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1402 {
1403 	struct ntb_transport_ctx *nt = ndev->ctx;
1404 	struct ntb_transport_qp *qp;
1405 	u64 qp_bitmap_alloc;
1406 	int i;
1407 
1408 	ntb_transport_link_cleanup(nt);
1409 	cancel_work_sync(&nt->link_cleanup);
1410 	cancel_delayed_work_sync(&nt->link_work);
1411 
1412 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1413 
1414 	/* verify that all the qp's are freed */
1415 	for (i = 0; i < nt->qp_count; i++) {
1416 		qp = &nt->qp_vec[i];
1417 		if (qp_bitmap_alloc & BIT_ULL(i))
1418 			ntb_transport_free_queue(qp);
1419 		debugfs_remove_recursive(qp->debugfs_dir);
1420 	}
1421 
1422 	ntb_link_disable(ndev);
1423 	ntb_clear_ctx(ndev);
1424 
1425 	ntb_bus_remove(nt);
1426 
1427 	for (i = nt->mw_count; i--; ) {
1428 		ntb_free_mw(nt, i);
1429 		iounmap(nt->mw_vec[i].vbase);
1430 	}
1431 
1432 	kfree(nt->qp_vec);
1433 	kfree(nt->mw_vec);
1434 	kfree(nt);
1435 }
1436 
ntb_complete_rxc(struct ntb_transport_qp * qp)1437 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1438 {
1439 	struct ntb_queue_entry *entry;
1440 	void *cb_data;
1441 	unsigned int len;
1442 	unsigned long irqflags;
1443 
1444 	spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1445 
1446 	while (!list_empty(&qp->rx_post_q)) {
1447 		entry = list_first_entry(&qp->rx_post_q,
1448 					 struct ntb_queue_entry, entry);
1449 		if (!(entry->flags & DESC_DONE_FLAG))
1450 			break;
1451 
1452 		entry->rx_hdr->flags = 0;
1453 		iowrite32(entry->rx_index, &qp->rx_info->entry);
1454 
1455 		cb_data = entry->cb_data;
1456 		len = entry->len;
1457 
1458 		list_move_tail(&entry->entry, &qp->rx_free_q);
1459 
1460 		spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1461 
1462 		if (qp->rx_handler && qp->client_ready)
1463 			qp->rx_handler(qp, qp->cb_data, cb_data, len);
1464 
1465 		spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1466 	}
1467 
1468 	spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1469 }
1470 
ntb_rx_copy_callback(void * data,const struct dmaengine_result * res)1471 static void ntb_rx_copy_callback(void *data,
1472 				 const struct dmaengine_result *res)
1473 {
1474 	struct ntb_queue_entry *entry = data;
1475 
1476 	/* we need to check DMA results if we are using DMA */
1477 	if (res) {
1478 		enum dmaengine_tx_result dma_err = res->result;
1479 
1480 		switch (dma_err) {
1481 		case DMA_TRANS_READ_FAILED:
1482 		case DMA_TRANS_WRITE_FAILED:
1483 			entry->errors++;
1484 			fallthrough;
1485 		case DMA_TRANS_ABORTED:
1486 		{
1487 			struct ntb_transport_qp *qp = entry->qp;
1488 			void *offset = qp->rx_buff + qp->rx_max_frame *
1489 					qp->rx_index;
1490 
1491 			ntb_memcpy_rx(entry, offset);
1492 			qp->rx_memcpy++;
1493 			return;
1494 		}
1495 
1496 		case DMA_TRANS_NOERROR:
1497 		default:
1498 			break;
1499 		}
1500 	}
1501 
1502 	entry->flags |= DESC_DONE_FLAG;
1503 
1504 	ntb_complete_rxc(entry->qp);
1505 }
1506 
ntb_memcpy_rx(struct ntb_queue_entry * entry,void * offset)1507 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1508 {
1509 	void *buf = entry->buf;
1510 	size_t len = entry->len;
1511 
1512 	memcpy(buf, offset, len);
1513 
1514 	/* Ensure that the data is fully copied out before clearing the flag */
1515 	wmb();
1516 
1517 	ntb_rx_copy_callback(entry, NULL);
1518 }
1519 
ntb_async_rx_submit(struct ntb_queue_entry * entry,void * offset)1520 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1521 {
1522 	struct dma_async_tx_descriptor *txd;
1523 	struct ntb_transport_qp *qp = entry->qp;
1524 	struct dma_chan *chan = qp->rx_dma_chan;
1525 	struct dma_device *device;
1526 	size_t pay_off, buff_off, len;
1527 	struct dmaengine_unmap_data *unmap;
1528 	dma_cookie_t cookie;
1529 	void *buf = entry->buf;
1530 
1531 	len = entry->len;
1532 	device = chan->device;
1533 	pay_off = (size_t)offset & ~PAGE_MASK;
1534 	buff_off = (size_t)buf & ~PAGE_MASK;
1535 
1536 	if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1537 		goto err;
1538 
1539 	unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1540 	if (!unmap)
1541 		goto err;
1542 
1543 	unmap->len = len;
1544 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1545 				      pay_off, len, DMA_TO_DEVICE);
1546 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1547 		goto err_get_unmap;
1548 
1549 	unmap->to_cnt = 1;
1550 
1551 	unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1552 				      buff_off, len, DMA_FROM_DEVICE);
1553 	if (dma_mapping_error(device->dev, unmap->addr[1]))
1554 		goto err_get_unmap;
1555 
1556 	unmap->from_cnt = 1;
1557 
1558 	txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1559 					     unmap->addr[0], len,
1560 					     DMA_PREP_INTERRUPT);
1561 	if (!txd)
1562 		goto err_get_unmap;
1563 
1564 	txd->callback_result = ntb_rx_copy_callback;
1565 	txd->callback_param = entry;
1566 	dma_set_unmap(txd, unmap);
1567 
1568 	cookie = dmaengine_submit(txd);
1569 	if (dma_submit_error(cookie))
1570 		goto err_set_unmap;
1571 
1572 	dmaengine_unmap_put(unmap);
1573 
1574 	qp->last_cookie = cookie;
1575 
1576 	qp->rx_async++;
1577 
1578 	return 0;
1579 
1580 err_set_unmap:
1581 	dmaengine_unmap_put(unmap);
1582 err_get_unmap:
1583 	dmaengine_unmap_put(unmap);
1584 err:
1585 	return -ENXIO;
1586 }
1587 
ntb_async_rx(struct ntb_queue_entry * entry,void * offset)1588 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1589 {
1590 	struct ntb_transport_qp *qp = entry->qp;
1591 	struct dma_chan *chan = qp->rx_dma_chan;
1592 	int res;
1593 
1594 	if (!chan)
1595 		goto err;
1596 
1597 	if (entry->len < copy_bytes)
1598 		goto err;
1599 
1600 	res = ntb_async_rx_submit(entry, offset);
1601 	if (res < 0)
1602 		goto err;
1603 
1604 	if (!entry->retries)
1605 		qp->rx_async++;
1606 
1607 	return;
1608 
1609 err:
1610 	ntb_memcpy_rx(entry, offset);
1611 	qp->rx_memcpy++;
1612 }
1613 
ntb_process_rxc(struct ntb_transport_qp * qp)1614 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1615 {
1616 	struct ntb_payload_header *hdr;
1617 	struct ntb_queue_entry *entry;
1618 	void *offset;
1619 
1620 	offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1621 	hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1622 
1623 	dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1624 		qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1625 
1626 	if (!(hdr->flags & DESC_DONE_FLAG)) {
1627 		dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1628 		qp->rx_ring_empty++;
1629 		return -EAGAIN;
1630 	}
1631 
1632 	if (hdr->flags & LINK_DOWN_FLAG) {
1633 		dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1634 		ntb_qp_link_down(qp);
1635 		hdr->flags = 0;
1636 		return -EAGAIN;
1637 	}
1638 
1639 	if (hdr->ver != (u32)qp->rx_pkts) {
1640 		dev_dbg(&qp->ndev->pdev->dev,
1641 			"version mismatch, expected %llu - got %u\n",
1642 			qp->rx_pkts, hdr->ver);
1643 		qp->rx_err_ver++;
1644 		return -EIO;
1645 	}
1646 
1647 	entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1648 	if (!entry) {
1649 		dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1650 		qp->rx_err_no_buf++;
1651 		return -EAGAIN;
1652 	}
1653 
1654 	entry->rx_hdr = hdr;
1655 	entry->rx_index = qp->rx_index;
1656 
1657 	if (hdr->len > entry->len) {
1658 		dev_dbg(&qp->ndev->pdev->dev,
1659 			"receive buffer overflow! Wanted %d got %d\n",
1660 			hdr->len, entry->len);
1661 		qp->rx_err_oflow++;
1662 
1663 		entry->len = -EIO;
1664 		entry->flags |= DESC_DONE_FLAG;
1665 
1666 		ntb_complete_rxc(qp);
1667 	} else {
1668 		dev_dbg(&qp->ndev->pdev->dev,
1669 			"RX OK index %u ver %u size %d into buf size %d\n",
1670 			qp->rx_index, hdr->ver, hdr->len, entry->len);
1671 
1672 		qp->rx_bytes += hdr->len;
1673 		qp->rx_pkts++;
1674 
1675 		entry->len = hdr->len;
1676 
1677 		ntb_async_rx(entry, offset);
1678 	}
1679 
1680 	qp->rx_index++;
1681 	qp->rx_index %= qp->rx_max_entry;
1682 
1683 	return 0;
1684 }
1685 
ntb_transport_rxc_db(unsigned long data)1686 static void ntb_transport_rxc_db(unsigned long data)
1687 {
1688 	struct ntb_transport_qp *qp = (void *)data;
1689 	int rc, i;
1690 
1691 	dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1692 		__func__, qp->qp_num);
1693 
1694 	/* Limit the number of packets processed in a single interrupt to
1695 	 * provide fairness to others
1696 	 */
1697 	for (i = 0; i < qp->rx_max_entry; i++) {
1698 		rc = ntb_process_rxc(qp);
1699 		if (rc)
1700 			break;
1701 	}
1702 
1703 	if (i && qp->rx_dma_chan)
1704 		dma_async_issue_pending(qp->rx_dma_chan);
1705 
1706 	if (i == qp->rx_max_entry) {
1707 		/* there is more work to do */
1708 		if (qp->active)
1709 			tasklet_schedule(&qp->rxc_db_work);
1710 	} else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1711 		/* the doorbell bit is set: clear it */
1712 		ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1713 		/* ntb_db_read ensures ntb_db_clear write is committed */
1714 		ntb_db_read(qp->ndev);
1715 
1716 		/* an interrupt may have arrived between finishing
1717 		 * ntb_process_rxc and clearing the doorbell bit:
1718 		 * there might be some more work to do.
1719 		 */
1720 		if (qp->active)
1721 			tasklet_schedule(&qp->rxc_db_work);
1722 	}
1723 }
1724 
ntb_tx_copy_callback(void * data,const struct dmaengine_result * res)1725 static void ntb_tx_copy_callback(void *data,
1726 				 const struct dmaengine_result *res)
1727 {
1728 	struct ntb_queue_entry *entry = data;
1729 	struct ntb_transport_qp *qp = entry->qp;
1730 	struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1731 
1732 	/* we need to check DMA results if we are using DMA */
1733 	if (res) {
1734 		enum dmaengine_tx_result dma_err = res->result;
1735 
1736 		switch (dma_err) {
1737 		case DMA_TRANS_READ_FAILED:
1738 		case DMA_TRANS_WRITE_FAILED:
1739 			entry->errors++;
1740 			fallthrough;
1741 		case DMA_TRANS_ABORTED:
1742 		{
1743 			void __iomem *offset =
1744 				qp->tx_mw + qp->tx_max_frame *
1745 				entry->tx_index;
1746 
1747 			/* resubmit via CPU */
1748 			ntb_memcpy_tx(entry, offset);
1749 			qp->tx_memcpy++;
1750 			return;
1751 		}
1752 
1753 		case DMA_TRANS_NOERROR:
1754 		default:
1755 			break;
1756 		}
1757 	}
1758 
1759 	iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1760 
1761 	if (qp->use_msi)
1762 		ntb_msi_peer_trigger(qp->ndev, PIDX, &qp->peer_msi_desc);
1763 	else
1764 		ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1765 
1766 	/* The entry length can only be zero if the packet is intended to be a
1767 	 * "link down" or similar.  Since no payload is being sent in these
1768 	 * cases, there is nothing to add to the completion queue.
1769 	 */
1770 	if (entry->len > 0) {
1771 		qp->tx_bytes += entry->len;
1772 
1773 		if (qp->tx_handler)
1774 			qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1775 				       entry->len);
1776 	}
1777 
1778 	ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1779 }
1780 
ntb_memcpy_tx(struct ntb_queue_entry * entry,void __iomem * offset)1781 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1782 {
1783 #ifdef ARCH_HAS_NOCACHE_UACCESS
1784 	/*
1785 	 * Using non-temporal mov to improve performance on non-cached
1786 	 * writes, even though we aren't actually copying from user space.
1787 	 */
1788 	__copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1789 #else
1790 	memcpy_toio(offset, entry->buf, entry->len);
1791 #endif
1792 
1793 	/* Ensure that the data is fully copied out before setting the flags */
1794 	wmb();
1795 
1796 	ntb_tx_copy_callback(entry, NULL);
1797 }
1798 
ntb_async_tx_submit(struct ntb_transport_qp * qp,struct ntb_queue_entry * entry)1799 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1800 			       struct ntb_queue_entry *entry)
1801 {
1802 	struct dma_async_tx_descriptor *txd;
1803 	struct dma_chan *chan = qp->tx_dma_chan;
1804 	struct dma_device *device;
1805 	size_t len = entry->len;
1806 	void *buf = entry->buf;
1807 	size_t dest_off, buff_off;
1808 	struct dmaengine_unmap_data *unmap;
1809 	dma_addr_t dest;
1810 	dma_cookie_t cookie;
1811 
1812 	device = chan->device;
1813 	dest = qp->tx_mw_dma_addr + qp->tx_max_frame * entry->tx_index;
1814 	buff_off = (size_t)buf & ~PAGE_MASK;
1815 	dest_off = (size_t)dest & ~PAGE_MASK;
1816 
1817 	if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1818 		goto err;
1819 
1820 	unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1821 	if (!unmap)
1822 		goto err;
1823 
1824 	unmap->len = len;
1825 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1826 				      buff_off, len, DMA_TO_DEVICE);
1827 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1828 		goto err_get_unmap;
1829 
1830 	unmap->to_cnt = 1;
1831 
1832 	txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1833 					     DMA_PREP_INTERRUPT);
1834 	if (!txd)
1835 		goto err_get_unmap;
1836 
1837 	txd->callback_result = ntb_tx_copy_callback;
1838 	txd->callback_param = entry;
1839 	dma_set_unmap(txd, unmap);
1840 
1841 	cookie = dmaengine_submit(txd);
1842 	if (dma_submit_error(cookie))
1843 		goto err_set_unmap;
1844 
1845 	dmaengine_unmap_put(unmap);
1846 
1847 	dma_async_issue_pending(chan);
1848 
1849 	return 0;
1850 err_set_unmap:
1851 	dmaengine_unmap_put(unmap);
1852 err_get_unmap:
1853 	dmaengine_unmap_put(unmap);
1854 err:
1855 	return -ENXIO;
1856 }
1857 
ntb_async_tx(struct ntb_transport_qp * qp,struct ntb_queue_entry * entry)1858 static void ntb_async_tx(struct ntb_transport_qp *qp,
1859 			 struct ntb_queue_entry *entry)
1860 {
1861 	struct ntb_payload_header __iomem *hdr;
1862 	struct dma_chan *chan = qp->tx_dma_chan;
1863 	void __iomem *offset;
1864 	int res;
1865 
1866 	entry->tx_index = qp->tx_index;
1867 	offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1868 	hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1869 	entry->tx_hdr = hdr;
1870 
1871 	iowrite32(entry->len, &hdr->len);
1872 	iowrite32((u32)qp->tx_pkts, &hdr->ver);
1873 
1874 	if (!chan)
1875 		goto err;
1876 
1877 	if (entry->len < copy_bytes)
1878 		goto err;
1879 
1880 	res = ntb_async_tx_submit(qp, entry);
1881 	if (res < 0)
1882 		goto err;
1883 
1884 	if (!entry->retries)
1885 		qp->tx_async++;
1886 
1887 	return;
1888 
1889 err:
1890 	ntb_memcpy_tx(entry, offset);
1891 	qp->tx_memcpy++;
1892 }
1893 
ntb_process_tx(struct ntb_transport_qp * qp,struct ntb_queue_entry * entry)1894 static int ntb_process_tx(struct ntb_transport_qp *qp,
1895 			  struct ntb_queue_entry *entry)
1896 {
1897 	if (qp->tx_index == qp->remote_rx_info->entry) {
1898 		qp->tx_ring_full++;
1899 		return -EAGAIN;
1900 	}
1901 
1902 	if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1903 		if (qp->tx_handler)
1904 			qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1905 
1906 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1907 			     &qp->tx_free_q);
1908 		return 0;
1909 	}
1910 
1911 	ntb_async_tx(qp, entry);
1912 
1913 	qp->tx_index++;
1914 	qp->tx_index %= qp->tx_max_entry;
1915 
1916 	qp->tx_pkts++;
1917 
1918 	return 0;
1919 }
1920 
ntb_send_link_down(struct ntb_transport_qp * qp)1921 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1922 {
1923 	struct pci_dev *pdev = qp->ndev->pdev;
1924 	struct ntb_queue_entry *entry;
1925 	int i, rc;
1926 
1927 	if (!qp->link_is_up)
1928 		return;
1929 
1930 	dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1931 
1932 	for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1933 		entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1934 		if (entry)
1935 			break;
1936 		msleep(100);
1937 	}
1938 
1939 	if (!entry)
1940 		return;
1941 
1942 	entry->cb_data = NULL;
1943 	entry->buf = NULL;
1944 	entry->len = 0;
1945 	entry->flags = LINK_DOWN_FLAG;
1946 
1947 	rc = ntb_process_tx(qp, entry);
1948 	if (rc)
1949 		dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1950 			qp->qp_num);
1951 
1952 	ntb_qp_link_down_reset(qp);
1953 }
1954 
ntb_dma_filter_fn(struct dma_chan * chan,void * node)1955 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1956 {
1957 	return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1958 }
1959 
1960 /**
1961  * ntb_transport_create_queue - Create a new NTB transport layer queue
1962  * @rx_handler: receive callback function
1963  * @tx_handler: transmit callback function
1964  * @event_handler: event callback function
1965  *
1966  * Create a new NTB transport layer queue and provide the queue with a callback
1967  * routine for both transmit and receive.  The receive callback routine will be
1968  * used to pass up data when the transport has received it on the queue.   The
1969  * transmit callback routine will be called when the transport has completed the
1970  * transmission of the data on the queue and the data is ready to be freed.
1971  *
1972  * RETURNS: pointer to newly created ntb_queue, NULL on error.
1973  */
1974 struct ntb_transport_qp *
ntb_transport_create_queue(void * data,struct device * client_dev,const struct ntb_queue_handlers * handlers)1975 ntb_transport_create_queue(void *data, struct device *client_dev,
1976 			   const struct ntb_queue_handlers *handlers)
1977 {
1978 	struct ntb_dev *ndev;
1979 	struct pci_dev *pdev;
1980 	struct ntb_transport_ctx *nt;
1981 	struct ntb_queue_entry *entry;
1982 	struct ntb_transport_qp *qp;
1983 	u64 qp_bit;
1984 	unsigned int free_queue;
1985 	dma_cap_mask_t dma_mask;
1986 	int node;
1987 	int i;
1988 
1989 	ndev = dev_ntb(client_dev->parent);
1990 	pdev = ndev->pdev;
1991 	nt = ndev->ctx;
1992 
1993 	node = dev_to_node(&ndev->dev);
1994 
1995 	free_queue = ffs(nt->qp_bitmap_free);
1996 	if (!free_queue)
1997 		goto err;
1998 
1999 	/* decrement free_queue to make it zero based */
2000 	free_queue--;
2001 
2002 	qp = &nt->qp_vec[free_queue];
2003 	qp_bit = BIT_ULL(qp->qp_num);
2004 
2005 	nt->qp_bitmap_free &= ~qp_bit;
2006 
2007 	qp->cb_data = data;
2008 	qp->rx_handler = handlers->rx_handler;
2009 	qp->tx_handler = handlers->tx_handler;
2010 	qp->event_handler = handlers->event_handler;
2011 
2012 	dma_cap_zero(dma_mask);
2013 	dma_cap_set(DMA_MEMCPY, dma_mask);
2014 
2015 	if (use_dma) {
2016 		qp->tx_dma_chan =
2017 			dma_request_channel(dma_mask, ntb_dma_filter_fn,
2018 					    (void *)(unsigned long)node);
2019 		if (!qp->tx_dma_chan)
2020 			dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
2021 
2022 		qp->rx_dma_chan =
2023 			dma_request_channel(dma_mask, ntb_dma_filter_fn,
2024 					    (void *)(unsigned long)node);
2025 		if (!qp->rx_dma_chan)
2026 			dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
2027 	} else {
2028 		qp->tx_dma_chan = NULL;
2029 		qp->rx_dma_chan = NULL;
2030 	}
2031 
2032 	qp->tx_mw_dma_addr = 0;
2033 	if (qp->tx_dma_chan) {
2034 		qp->tx_mw_dma_addr =
2035 			dma_map_resource(qp->tx_dma_chan->device->dev,
2036 					 qp->tx_mw_phys, qp->tx_mw_size,
2037 					 DMA_FROM_DEVICE, 0);
2038 		if (dma_mapping_error(qp->tx_dma_chan->device->dev,
2039 				      qp->tx_mw_dma_addr)) {
2040 			qp->tx_mw_dma_addr = 0;
2041 			goto err1;
2042 		}
2043 	}
2044 
2045 	dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
2046 		qp->tx_dma_chan ? "DMA" : "CPU");
2047 
2048 	dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
2049 		qp->rx_dma_chan ? "DMA" : "CPU");
2050 
2051 	for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
2052 		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
2053 		if (!entry)
2054 			goto err1;
2055 
2056 		entry->qp = qp;
2057 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
2058 			     &qp->rx_free_q);
2059 	}
2060 	qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
2061 
2062 	for (i = 0; i < qp->tx_max_entry; i++) {
2063 		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
2064 		if (!entry)
2065 			goto err2;
2066 
2067 		entry->qp = qp;
2068 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2069 			     &qp->tx_free_q);
2070 	}
2071 
2072 	ntb_db_clear(qp->ndev, qp_bit);
2073 	ntb_db_clear_mask(qp->ndev, qp_bit);
2074 
2075 	dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
2076 
2077 	return qp;
2078 
2079 err2:
2080 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
2081 		kfree(entry);
2082 err1:
2083 	qp->rx_alloc_entry = 0;
2084 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
2085 		kfree(entry);
2086 	if (qp->tx_mw_dma_addr)
2087 		dma_unmap_resource(qp->tx_dma_chan->device->dev,
2088 				   qp->tx_mw_dma_addr, qp->tx_mw_size,
2089 				   DMA_FROM_DEVICE, 0);
2090 	if (qp->tx_dma_chan)
2091 		dma_release_channel(qp->tx_dma_chan);
2092 	if (qp->rx_dma_chan)
2093 		dma_release_channel(qp->rx_dma_chan);
2094 	nt->qp_bitmap_free |= qp_bit;
2095 err:
2096 	return NULL;
2097 }
2098 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
2099 
2100 /**
2101  * ntb_transport_free_queue - Frees NTB transport queue
2102  * @qp: NTB queue to be freed
2103  *
2104  * Frees NTB transport queue
2105  */
ntb_transport_free_queue(struct ntb_transport_qp * qp)2106 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
2107 {
2108 	struct pci_dev *pdev;
2109 	struct ntb_queue_entry *entry;
2110 	u64 qp_bit;
2111 
2112 	if (!qp)
2113 		return;
2114 
2115 	pdev = qp->ndev->pdev;
2116 
2117 	qp->active = false;
2118 
2119 	if (qp->tx_dma_chan) {
2120 		struct dma_chan *chan = qp->tx_dma_chan;
2121 		/* Putting the dma_chan to NULL will force any new traffic to be
2122 		 * processed by the CPU instead of the DAM engine
2123 		 */
2124 		qp->tx_dma_chan = NULL;
2125 
2126 		/* Try to be nice and wait for any queued DMA engine
2127 		 * transactions to process before smashing it with a rock
2128 		 */
2129 		dma_sync_wait(chan, qp->last_cookie);
2130 		dmaengine_terminate_all(chan);
2131 
2132 		dma_unmap_resource(chan->device->dev,
2133 				   qp->tx_mw_dma_addr, qp->tx_mw_size,
2134 				   DMA_FROM_DEVICE, 0);
2135 
2136 		dma_release_channel(chan);
2137 	}
2138 
2139 	if (qp->rx_dma_chan) {
2140 		struct dma_chan *chan = qp->rx_dma_chan;
2141 		/* Putting the dma_chan to NULL will force any new traffic to be
2142 		 * processed by the CPU instead of the DAM engine
2143 		 */
2144 		qp->rx_dma_chan = NULL;
2145 
2146 		/* Try to be nice and wait for any queued DMA engine
2147 		 * transactions to process before smashing it with a rock
2148 		 */
2149 		dma_sync_wait(chan, qp->last_cookie);
2150 		dmaengine_terminate_all(chan);
2151 		dma_release_channel(chan);
2152 	}
2153 
2154 	qp_bit = BIT_ULL(qp->qp_num);
2155 
2156 	ntb_db_set_mask(qp->ndev, qp_bit);
2157 	tasklet_kill(&qp->rxc_db_work);
2158 
2159 	cancel_delayed_work_sync(&qp->link_work);
2160 
2161 	qp->cb_data = NULL;
2162 	qp->rx_handler = NULL;
2163 	qp->tx_handler = NULL;
2164 	qp->event_handler = NULL;
2165 
2166 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
2167 		kfree(entry);
2168 
2169 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
2170 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
2171 		kfree(entry);
2172 	}
2173 
2174 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
2175 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
2176 		kfree(entry);
2177 	}
2178 
2179 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
2180 		kfree(entry);
2181 
2182 	qp->transport->qp_bitmap_free |= qp_bit;
2183 
2184 	dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
2185 }
2186 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
2187 
2188 /**
2189  * ntb_transport_rx_remove - Dequeues enqueued rx packet
2190  * @qp: NTB queue to be freed
2191  * @len: pointer to variable to write enqueued buffers length
2192  *
2193  * Dequeues unused buffers from receive queue.  Should only be used during
2194  * shutdown of qp.
2195  *
2196  * RETURNS: NULL error value on error, or void* for success.
2197  */
ntb_transport_rx_remove(struct ntb_transport_qp * qp,unsigned int * len)2198 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
2199 {
2200 	struct ntb_queue_entry *entry;
2201 	void *buf;
2202 
2203 	if (!qp || qp->client_ready)
2204 		return NULL;
2205 
2206 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
2207 	if (!entry)
2208 		return NULL;
2209 
2210 	buf = entry->cb_data;
2211 	*len = entry->len;
2212 
2213 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
2214 
2215 	return buf;
2216 }
2217 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
2218 
2219 /**
2220  * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
2221  * @qp: NTB transport layer queue the entry is to be enqueued on
2222  * @cb: per buffer pointer for callback function to use
2223  * @data: pointer to data buffer that incoming packets will be copied into
2224  * @len: length of the data buffer
2225  *
2226  * Enqueue a new receive buffer onto the transport queue into which a NTB
2227  * payload can be received into.
2228  *
2229  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2230  */
ntb_transport_rx_enqueue(struct ntb_transport_qp * qp,void * cb,void * data,unsigned int len)2231 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2232 			     unsigned int len)
2233 {
2234 	struct ntb_queue_entry *entry;
2235 
2236 	if (!qp)
2237 		return -EINVAL;
2238 
2239 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
2240 	if (!entry)
2241 		return -ENOMEM;
2242 
2243 	entry->cb_data = cb;
2244 	entry->buf = data;
2245 	entry->len = len;
2246 	entry->flags = 0;
2247 	entry->retries = 0;
2248 	entry->errors = 0;
2249 	entry->rx_index = 0;
2250 
2251 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2252 
2253 	if (qp->active)
2254 		tasklet_schedule(&qp->rxc_db_work);
2255 
2256 	return 0;
2257 }
2258 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2259 
2260 /**
2261  * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2262  * @qp: NTB transport layer queue the entry is to be enqueued on
2263  * @cb: per buffer pointer for callback function to use
2264  * @data: pointer to data buffer that will be sent
2265  * @len: length of the data buffer
2266  *
2267  * Enqueue a new transmit buffer onto the transport queue from which a NTB
2268  * payload will be transmitted.  This assumes that a lock is being held to
2269  * serialize access to the qp.
2270  *
2271  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2272  */
ntb_transport_tx_enqueue(struct ntb_transport_qp * qp,void * cb,void * data,unsigned int len)2273 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2274 			     unsigned int len)
2275 {
2276 	struct ntb_queue_entry *entry;
2277 	int rc;
2278 
2279 	if (!qp || !qp->link_is_up || !len)
2280 		return -EINVAL;
2281 
2282 	entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2283 	if (!entry) {
2284 		qp->tx_err_no_buf++;
2285 		return -EBUSY;
2286 	}
2287 
2288 	entry->cb_data = cb;
2289 	entry->buf = data;
2290 	entry->len = len;
2291 	entry->flags = 0;
2292 	entry->errors = 0;
2293 	entry->retries = 0;
2294 	entry->tx_index = 0;
2295 
2296 	rc = ntb_process_tx(qp, entry);
2297 	if (rc)
2298 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2299 			     &qp->tx_free_q);
2300 
2301 	return rc;
2302 }
2303 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2304 
2305 /**
2306  * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2307  * @qp: NTB transport layer queue to be enabled
2308  *
2309  * Notify NTB transport layer of client readiness to use queue
2310  */
ntb_transport_link_up(struct ntb_transport_qp * qp)2311 void ntb_transport_link_up(struct ntb_transport_qp *qp)
2312 {
2313 	if (!qp)
2314 		return;
2315 
2316 	qp->client_ready = true;
2317 
2318 	if (qp->transport->link_is_up)
2319 		schedule_delayed_work(&qp->link_work, 0);
2320 }
2321 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2322 
2323 /**
2324  * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2325  * @qp: NTB transport layer queue to be disabled
2326  *
2327  * Notify NTB transport layer of client's desire to no longer receive data on
2328  * transport queue specified.  It is the client's responsibility to ensure all
2329  * entries on queue are purged or otherwise handled appropriately.
2330  */
ntb_transport_link_down(struct ntb_transport_qp * qp)2331 void ntb_transport_link_down(struct ntb_transport_qp *qp)
2332 {
2333 	int val;
2334 
2335 	if (!qp)
2336 		return;
2337 
2338 	qp->client_ready = false;
2339 
2340 	val = ntb_spad_read(qp->ndev, QP_LINKS);
2341 
2342 	ntb_peer_spad_write(qp->ndev, PIDX, QP_LINKS, val & ~BIT(qp->qp_num));
2343 
2344 	if (qp->link_is_up)
2345 		ntb_send_link_down(qp);
2346 	else
2347 		cancel_delayed_work_sync(&qp->link_work);
2348 }
2349 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2350 
2351 /**
2352  * ntb_transport_link_query - Query transport link state
2353  * @qp: NTB transport layer queue to be queried
2354  *
2355  * Query connectivity to the remote system of the NTB transport queue
2356  *
2357  * RETURNS: true for link up or false for link down
2358  */
ntb_transport_link_query(struct ntb_transport_qp * qp)2359 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2360 {
2361 	if (!qp)
2362 		return false;
2363 
2364 	return qp->link_is_up;
2365 }
2366 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2367 
2368 /**
2369  * ntb_transport_qp_num - Query the qp number
2370  * @qp: NTB transport layer queue to be queried
2371  *
2372  * Query qp number of the NTB transport queue
2373  *
2374  * RETURNS: a zero based number specifying the qp number
2375  */
ntb_transport_qp_num(struct ntb_transport_qp * qp)2376 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2377 {
2378 	if (!qp)
2379 		return 0;
2380 
2381 	return qp->qp_num;
2382 }
2383 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2384 
2385 /**
2386  * ntb_transport_max_size - Query the max payload size of a qp
2387  * @qp: NTB transport layer queue to be queried
2388  *
2389  * Query the maximum payload size permissible on the given qp
2390  *
2391  * RETURNS: the max payload size of a qp
2392  */
ntb_transport_max_size(struct ntb_transport_qp * qp)2393 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2394 {
2395 	unsigned int max_size;
2396 	unsigned int copy_align;
2397 	struct dma_chan *rx_chan, *tx_chan;
2398 
2399 	if (!qp)
2400 		return 0;
2401 
2402 	rx_chan = qp->rx_dma_chan;
2403 	tx_chan = qp->tx_dma_chan;
2404 
2405 	copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2406 			 tx_chan ? tx_chan->device->copy_align : 0);
2407 
2408 	/* If DMA engine usage is possible, try to find the max size for that */
2409 	max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2410 	max_size = round_down(max_size, 1 << copy_align);
2411 
2412 	return max_size;
2413 }
2414 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2415 
ntb_transport_tx_free_entry(struct ntb_transport_qp * qp)2416 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2417 {
2418 	unsigned int head = qp->tx_index;
2419 	unsigned int tail = qp->remote_rx_info->entry;
2420 
2421 	return tail > head ? tail - head : qp->tx_max_entry + tail - head;
2422 }
2423 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2424 
ntb_transport_doorbell_callback(void * data,int vector)2425 static void ntb_transport_doorbell_callback(void *data, int vector)
2426 {
2427 	struct ntb_transport_ctx *nt = data;
2428 	struct ntb_transport_qp *qp;
2429 	u64 db_bits;
2430 	unsigned int qp_num;
2431 
2432 	if (ntb_db_read(nt->ndev) & nt->msi_db_mask) {
2433 		ntb_transport_msi_peer_desc_changed(nt);
2434 		ntb_db_clear(nt->ndev, nt->msi_db_mask);
2435 	}
2436 
2437 	db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2438 		   ntb_db_vector_mask(nt->ndev, vector));
2439 
2440 	while (db_bits) {
2441 		qp_num = __ffs(db_bits);
2442 		qp = &nt->qp_vec[qp_num];
2443 
2444 		if (qp->active)
2445 			tasklet_schedule(&qp->rxc_db_work);
2446 
2447 		db_bits &= ~BIT_ULL(qp_num);
2448 	}
2449 }
2450 
2451 static const struct ntb_ctx_ops ntb_transport_ops = {
2452 	.link_event = ntb_transport_event_callback,
2453 	.db_event = ntb_transport_doorbell_callback,
2454 };
2455 
2456 static struct ntb_client ntb_transport_client = {
2457 	.ops = {
2458 		.probe = ntb_transport_probe,
2459 		.remove = ntb_transport_free,
2460 	},
2461 };
2462 
ntb_transport_init(void)2463 static int __init ntb_transport_init(void)
2464 {
2465 	int rc;
2466 
2467 	pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2468 
2469 	if (debugfs_initialized())
2470 		nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2471 
2472 	rc = bus_register(&ntb_transport_bus);
2473 	if (rc)
2474 		goto err_bus;
2475 
2476 	rc = ntb_register_client(&ntb_transport_client);
2477 	if (rc)
2478 		goto err_client;
2479 
2480 	return 0;
2481 
2482 err_client:
2483 	bus_unregister(&ntb_transport_bus);
2484 err_bus:
2485 	debugfs_remove_recursive(nt_debugfs_dir);
2486 	return rc;
2487 }
2488 module_init(ntb_transport_init);
2489 
ntb_transport_exit(void)2490 static void __exit ntb_transport_exit(void)
2491 {
2492 	ntb_unregister_client(&ntb_transport_client);
2493 	bus_unregister(&ntb_transport_bus);
2494 	debugfs_remove_recursive(nt_debugfs_dir);
2495 }
2496 module_exit(ntb_transport_exit);
2497