1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2012 Intel Corporation. All rights reserved.
8 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * BSD LICENSE
15 *
16 * Copyright(c) 2012 Intel Corporation. All rights reserved.
17 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 *
23 * * Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * * Redistributions in binary form must reproduce the above copy
26 * notice, this list of conditions and the following disclaimer in
27 * the documentation and/or other materials provided with the
28 * distribution.
29 * * Neither the name of Intel Corporation nor the names of its
30 * contributors may be used to endorse or promote products derived
31 * from this software without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44 *
45 * PCIe NTB Transport Linux driver
46 *
47 * Contact Information:
48 * Jon Mason <jon.mason@intel.com>
49 */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64
65 #define NTB_TRANSPORT_VERSION 4
66 #define NTB_TRANSPORT_VER "4"
67 #define NTB_TRANSPORT_NAME "ntb_transport"
68 #define NTB_TRANSPORT_DESC "Software Queue-Pair Transport over NTB"
69 #define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
70
71 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
72 MODULE_VERSION(NTB_TRANSPORT_VER);
73 MODULE_LICENSE("Dual BSD/GPL");
74 MODULE_AUTHOR("Intel Corporation");
75
76 static unsigned long max_mw_size;
77 module_param(max_mw_size, ulong, 0644);
78 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
79
80 static unsigned int transport_mtu = 0x10000;
81 module_param(transport_mtu, uint, 0644);
82 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
83
84 static unsigned char max_num_clients;
85 module_param(max_num_clients, byte, 0644);
86 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
87
88 static unsigned int copy_bytes = 1024;
89 module_param(copy_bytes, uint, 0644);
90 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
91
92 static bool use_dma;
93 module_param(use_dma, bool, 0644);
94 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
95
96 static bool use_msi;
97 #ifdef CONFIG_NTB_MSI
98 module_param(use_msi, bool, 0644);
99 MODULE_PARM_DESC(use_msi, "Use MSI interrupts instead of doorbells");
100 #endif
101
102 static struct dentry *nt_debugfs_dir;
103
104 /* Only two-ports NTB devices are supported */
105 #define PIDX NTB_DEF_PEER_IDX
106
107 struct ntb_queue_entry {
108 /* ntb_queue list reference */
109 struct list_head entry;
110 /* pointers to data to be transferred */
111 void *cb_data;
112 void *buf;
113 unsigned int len;
114 unsigned int flags;
115 int retries;
116 int errors;
117 unsigned int tx_index;
118 unsigned int rx_index;
119
120 struct ntb_transport_qp *qp;
121 union {
122 struct ntb_payload_header __iomem *tx_hdr;
123 struct ntb_payload_header *rx_hdr;
124 };
125 };
126
127 struct ntb_rx_info {
128 unsigned int entry;
129 };
130
131 struct ntb_transport_qp {
132 struct ntb_transport_ctx *transport;
133 struct ntb_dev *ndev;
134 void *cb_data;
135 struct dma_chan *tx_dma_chan;
136 struct dma_chan *rx_dma_chan;
137
138 bool client_ready;
139 bool link_is_up;
140 bool active;
141
142 u8 qp_num; /* Only 64 QP's are allowed. 0-63 */
143 u64 qp_bit;
144
145 struct ntb_rx_info __iomem *rx_info;
146 struct ntb_rx_info *remote_rx_info;
147
148 void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
149 void *data, int len);
150 struct list_head tx_free_q;
151 spinlock_t ntb_tx_free_q_lock;
152 void __iomem *tx_mw;
153 phys_addr_t tx_mw_phys;
154 size_t tx_mw_size;
155 dma_addr_t tx_mw_dma_addr;
156 unsigned int tx_index;
157 unsigned int tx_max_entry;
158 unsigned int tx_max_frame;
159
160 void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
161 void *data, int len);
162 struct list_head rx_post_q;
163 struct list_head rx_pend_q;
164 struct list_head rx_free_q;
165 /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
166 spinlock_t ntb_rx_q_lock;
167 void *rx_buff;
168 unsigned int rx_index;
169 unsigned int rx_max_entry;
170 unsigned int rx_max_frame;
171 unsigned int rx_alloc_entry;
172 dma_cookie_t last_cookie;
173 struct tasklet_struct rxc_db_work;
174
175 void (*event_handler)(void *data, int status);
176 struct delayed_work link_work;
177 struct work_struct link_cleanup;
178
179 struct dentry *debugfs_dir;
180 struct dentry *debugfs_stats;
181
182 /* Stats */
183 u64 rx_bytes;
184 u64 rx_pkts;
185 u64 rx_ring_empty;
186 u64 rx_err_no_buf;
187 u64 rx_err_oflow;
188 u64 rx_err_ver;
189 u64 rx_memcpy;
190 u64 rx_async;
191 u64 tx_bytes;
192 u64 tx_pkts;
193 u64 tx_ring_full;
194 u64 tx_err_no_buf;
195 u64 tx_memcpy;
196 u64 tx_async;
197
198 bool use_msi;
199 int msi_irq;
200 struct ntb_msi_desc msi_desc;
201 struct ntb_msi_desc peer_msi_desc;
202 };
203
204 struct ntb_transport_mw {
205 phys_addr_t phys_addr;
206 resource_size_t phys_size;
207 void __iomem *vbase;
208 size_t xlat_size;
209 size_t buff_size;
210 size_t alloc_size;
211 void *alloc_addr;
212 void *virt_addr;
213 dma_addr_t dma_addr;
214 };
215
216 struct ntb_transport_client_dev {
217 struct list_head entry;
218 struct ntb_transport_ctx *nt;
219 struct device dev;
220 };
221
222 struct ntb_transport_ctx {
223 struct list_head entry;
224 struct list_head client_devs;
225
226 struct ntb_dev *ndev;
227
228 struct ntb_transport_mw *mw_vec;
229 struct ntb_transport_qp *qp_vec;
230 unsigned int mw_count;
231 unsigned int qp_count;
232 u64 qp_bitmap;
233 u64 qp_bitmap_free;
234
235 bool use_msi;
236 unsigned int msi_spad_offset;
237 u64 msi_db_mask;
238
239 bool link_is_up;
240 struct delayed_work link_work;
241 struct work_struct link_cleanup;
242
243 struct dentry *debugfs_node_dir;
244 };
245
246 enum {
247 DESC_DONE_FLAG = BIT(0),
248 LINK_DOWN_FLAG = BIT(1),
249 };
250
251 struct ntb_payload_header {
252 unsigned int ver;
253 unsigned int len;
254 unsigned int flags;
255 };
256
257 enum {
258 VERSION = 0,
259 QP_LINKS,
260 NUM_QPS,
261 NUM_MWS,
262 MW0_SZ_HIGH,
263 MW0_SZ_LOW,
264 };
265
266 #define dev_client_dev(__dev) \
267 container_of((__dev), struct ntb_transport_client_dev, dev)
268
269 #define drv_client(__drv) \
270 container_of((__drv), struct ntb_transport_client, driver)
271
272 #define QP_TO_MW(nt, qp) ((qp) % nt->mw_count)
273 #define NTB_QP_DEF_NUM_ENTRIES 100
274 #define NTB_LINK_DOWN_TIMEOUT 10
275
276 static void ntb_transport_rxc_db(unsigned long data);
277 static const struct ntb_ctx_ops ntb_transport_ops;
278 static struct ntb_client ntb_transport_client;
279 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
280 struct ntb_queue_entry *entry);
281 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
282 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
283 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
284
285
ntb_transport_bus_match(struct device * dev,struct device_driver * drv)286 static int ntb_transport_bus_match(struct device *dev,
287 struct device_driver *drv)
288 {
289 return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
290 }
291
ntb_transport_bus_probe(struct device * dev)292 static int ntb_transport_bus_probe(struct device *dev)
293 {
294 const struct ntb_transport_client *client;
295 int rc;
296
297 get_device(dev);
298
299 client = drv_client(dev->driver);
300 rc = client->probe(dev);
301 if (rc)
302 put_device(dev);
303
304 return rc;
305 }
306
ntb_transport_bus_remove(struct device * dev)307 static void ntb_transport_bus_remove(struct device *dev)
308 {
309 const struct ntb_transport_client *client;
310
311 client = drv_client(dev->driver);
312 client->remove(dev);
313
314 put_device(dev);
315 }
316
317 static struct bus_type ntb_transport_bus = {
318 .name = "ntb_transport",
319 .match = ntb_transport_bus_match,
320 .probe = ntb_transport_bus_probe,
321 .remove = ntb_transport_bus_remove,
322 };
323
324 static LIST_HEAD(ntb_transport_list);
325
ntb_bus_init(struct ntb_transport_ctx * nt)326 static int ntb_bus_init(struct ntb_transport_ctx *nt)
327 {
328 list_add_tail(&nt->entry, &ntb_transport_list);
329 return 0;
330 }
331
ntb_bus_remove(struct ntb_transport_ctx * nt)332 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
333 {
334 struct ntb_transport_client_dev *client_dev, *cd;
335
336 list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
337 dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
338 dev_name(&client_dev->dev));
339 list_del(&client_dev->entry);
340 device_unregister(&client_dev->dev);
341 }
342
343 list_del(&nt->entry);
344 }
345
ntb_transport_client_release(struct device * dev)346 static void ntb_transport_client_release(struct device *dev)
347 {
348 struct ntb_transport_client_dev *client_dev;
349
350 client_dev = dev_client_dev(dev);
351 kfree(client_dev);
352 }
353
354 /**
355 * ntb_transport_unregister_client_dev - Unregister NTB client device
356 * @device_name: Name of NTB client device
357 *
358 * Unregister an NTB client device with the NTB transport layer
359 */
ntb_transport_unregister_client_dev(char * device_name)360 void ntb_transport_unregister_client_dev(char *device_name)
361 {
362 struct ntb_transport_client_dev *client, *cd;
363 struct ntb_transport_ctx *nt;
364
365 list_for_each_entry(nt, &ntb_transport_list, entry)
366 list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
367 if (!strncmp(dev_name(&client->dev), device_name,
368 strlen(device_name))) {
369 list_del(&client->entry);
370 device_unregister(&client->dev);
371 }
372 }
373 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
374
375 /**
376 * ntb_transport_register_client_dev - Register NTB client device
377 * @device_name: Name of NTB client device
378 *
379 * Register an NTB client device with the NTB transport layer
380 */
ntb_transport_register_client_dev(char * device_name)381 int ntb_transport_register_client_dev(char *device_name)
382 {
383 struct ntb_transport_client_dev *client_dev;
384 struct ntb_transport_ctx *nt;
385 int node;
386 int rc, i = 0;
387
388 if (list_empty(&ntb_transport_list))
389 return -ENODEV;
390
391 list_for_each_entry(nt, &ntb_transport_list, entry) {
392 struct device *dev;
393
394 node = dev_to_node(&nt->ndev->dev);
395
396 client_dev = kzalloc_node(sizeof(*client_dev),
397 GFP_KERNEL, node);
398 if (!client_dev) {
399 rc = -ENOMEM;
400 goto err;
401 }
402
403 dev = &client_dev->dev;
404
405 /* setup and register client devices */
406 dev_set_name(dev, "%s%d", device_name, i);
407 dev->bus = &ntb_transport_bus;
408 dev->release = ntb_transport_client_release;
409 dev->parent = &nt->ndev->dev;
410
411 rc = device_register(dev);
412 if (rc) {
413 kfree(client_dev);
414 goto err;
415 }
416
417 list_add_tail(&client_dev->entry, &nt->client_devs);
418 i++;
419 }
420
421 return 0;
422
423 err:
424 ntb_transport_unregister_client_dev(device_name);
425
426 return rc;
427 }
428 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
429
430 /**
431 * ntb_transport_register_client - Register NTB client driver
432 * @drv: NTB client driver to be registered
433 *
434 * Register an NTB client driver with the NTB transport layer
435 *
436 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
437 */
ntb_transport_register_client(struct ntb_transport_client * drv)438 int ntb_transport_register_client(struct ntb_transport_client *drv)
439 {
440 drv->driver.bus = &ntb_transport_bus;
441
442 if (list_empty(&ntb_transport_list))
443 return -ENODEV;
444
445 return driver_register(&drv->driver);
446 }
447 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
448
449 /**
450 * ntb_transport_unregister_client - Unregister NTB client driver
451 * @drv: NTB client driver to be unregistered
452 *
453 * Unregister an NTB client driver with the NTB transport layer
454 *
455 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
456 */
ntb_transport_unregister_client(struct ntb_transport_client * drv)457 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
458 {
459 driver_unregister(&drv->driver);
460 }
461 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
462
debugfs_read(struct file * filp,char __user * ubuf,size_t count,loff_t * offp)463 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
464 loff_t *offp)
465 {
466 struct ntb_transport_qp *qp;
467 char *buf;
468 ssize_t ret, out_offset, out_count;
469
470 qp = filp->private_data;
471
472 if (!qp || !qp->link_is_up)
473 return 0;
474
475 out_count = 1000;
476
477 buf = kmalloc(out_count, GFP_KERNEL);
478 if (!buf)
479 return -ENOMEM;
480
481 out_offset = 0;
482 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
483 "\nNTB QP stats:\n\n");
484 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
485 "rx_bytes - \t%llu\n", qp->rx_bytes);
486 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
487 "rx_pkts - \t%llu\n", qp->rx_pkts);
488 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
489 "rx_memcpy - \t%llu\n", qp->rx_memcpy);
490 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
491 "rx_async - \t%llu\n", qp->rx_async);
492 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
493 "rx_ring_empty - %llu\n", qp->rx_ring_empty);
494 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
495 "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
496 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
497 "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
498 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
499 "rx_err_ver - \t%llu\n", qp->rx_err_ver);
500 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
501 "rx_buff - \t0x%p\n", qp->rx_buff);
502 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
503 "rx_index - \t%u\n", qp->rx_index);
504 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
505 "rx_max_entry - \t%u\n", qp->rx_max_entry);
506 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
507 "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
508
509 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
510 "tx_bytes - \t%llu\n", qp->tx_bytes);
511 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
512 "tx_pkts - \t%llu\n", qp->tx_pkts);
513 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
514 "tx_memcpy - \t%llu\n", qp->tx_memcpy);
515 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
516 "tx_async - \t%llu\n", qp->tx_async);
517 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
518 "tx_ring_full - \t%llu\n", qp->tx_ring_full);
519 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
520 "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
521 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
522 "tx_mw - \t0x%p\n", qp->tx_mw);
523 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
524 "tx_index (H) - \t%u\n", qp->tx_index);
525 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
526 "RRI (T) - \t%u\n",
527 qp->remote_rx_info->entry);
528 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
529 "tx_max_entry - \t%u\n", qp->tx_max_entry);
530 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
531 "free tx - \t%u\n",
532 ntb_transport_tx_free_entry(qp));
533
534 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
535 "\n");
536 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
537 "Using TX DMA - \t%s\n",
538 qp->tx_dma_chan ? "Yes" : "No");
539 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
540 "Using RX DMA - \t%s\n",
541 qp->rx_dma_chan ? "Yes" : "No");
542 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
543 "QP Link - \t%s\n",
544 qp->link_is_up ? "Up" : "Down");
545 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
546 "\n");
547
548 if (out_offset > out_count)
549 out_offset = out_count;
550
551 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
552 kfree(buf);
553 return ret;
554 }
555
556 static const struct file_operations ntb_qp_debugfs_stats = {
557 .owner = THIS_MODULE,
558 .open = simple_open,
559 .read = debugfs_read,
560 };
561
ntb_list_add(spinlock_t * lock,struct list_head * entry,struct list_head * list)562 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
563 struct list_head *list)
564 {
565 unsigned long flags;
566
567 spin_lock_irqsave(lock, flags);
568 list_add_tail(entry, list);
569 spin_unlock_irqrestore(lock, flags);
570 }
571
ntb_list_rm(spinlock_t * lock,struct list_head * list)572 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
573 struct list_head *list)
574 {
575 struct ntb_queue_entry *entry;
576 unsigned long flags;
577
578 spin_lock_irqsave(lock, flags);
579 if (list_empty(list)) {
580 entry = NULL;
581 goto out;
582 }
583 entry = list_first_entry(list, struct ntb_queue_entry, entry);
584 list_del(&entry->entry);
585
586 out:
587 spin_unlock_irqrestore(lock, flags);
588
589 return entry;
590 }
591
ntb_list_mv(spinlock_t * lock,struct list_head * list,struct list_head * to_list)592 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
593 struct list_head *list,
594 struct list_head *to_list)
595 {
596 struct ntb_queue_entry *entry;
597 unsigned long flags;
598
599 spin_lock_irqsave(lock, flags);
600
601 if (list_empty(list)) {
602 entry = NULL;
603 } else {
604 entry = list_first_entry(list, struct ntb_queue_entry, entry);
605 list_move_tail(&entry->entry, to_list);
606 }
607
608 spin_unlock_irqrestore(lock, flags);
609
610 return entry;
611 }
612
ntb_transport_setup_qp_mw(struct ntb_transport_ctx * nt,unsigned int qp_num)613 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
614 unsigned int qp_num)
615 {
616 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
617 struct ntb_transport_mw *mw;
618 struct ntb_dev *ndev = nt->ndev;
619 struct ntb_queue_entry *entry;
620 unsigned int rx_size, num_qps_mw;
621 unsigned int mw_num, mw_count, qp_count;
622 unsigned int i;
623 int node;
624
625 mw_count = nt->mw_count;
626 qp_count = nt->qp_count;
627
628 mw_num = QP_TO_MW(nt, qp_num);
629 mw = &nt->mw_vec[mw_num];
630
631 if (!mw->virt_addr)
632 return -ENOMEM;
633
634 if (mw_num < qp_count % mw_count)
635 num_qps_mw = qp_count / mw_count + 1;
636 else
637 num_qps_mw = qp_count / mw_count;
638
639 rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
640 qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
641 rx_size -= sizeof(struct ntb_rx_info);
642
643 qp->remote_rx_info = qp->rx_buff + rx_size;
644
645 /* Due to housekeeping, there must be atleast 2 buffs */
646 qp->rx_max_frame = min(transport_mtu, rx_size / 2);
647 qp->rx_max_entry = rx_size / qp->rx_max_frame;
648 qp->rx_index = 0;
649
650 /*
651 * Checking to see if we have more entries than the default.
652 * We should add additional entries if that is the case so we
653 * can be in sync with the transport frames.
654 */
655 node = dev_to_node(&ndev->dev);
656 for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
657 entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
658 if (!entry)
659 return -ENOMEM;
660
661 entry->qp = qp;
662 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
663 &qp->rx_free_q);
664 qp->rx_alloc_entry++;
665 }
666
667 qp->remote_rx_info->entry = qp->rx_max_entry - 1;
668
669 /* setup the hdr offsets with 0's */
670 for (i = 0; i < qp->rx_max_entry; i++) {
671 void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
672 sizeof(struct ntb_payload_header));
673 memset(offset, 0, sizeof(struct ntb_payload_header));
674 }
675
676 qp->rx_pkts = 0;
677 qp->tx_pkts = 0;
678 qp->tx_index = 0;
679
680 return 0;
681 }
682
ntb_transport_isr(int irq,void * dev)683 static irqreturn_t ntb_transport_isr(int irq, void *dev)
684 {
685 struct ntb_transport_qp *qp = dev;
686
687 tasklet_schedule(&qp->rxc_db_work);
688
689 return IRQ_HANDLED;
690 }
691
ntb_transport_setup_qp_peer_msi(struct ntb_transport_ctx * nt,unsigned int qp_num)692 static void ntb_transport_setup_qp_peer_msi(struct ntb_transport_ctx *nt,
693 unsigned int qp_num)
694 {
695 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
696 int spad = qp_num * 2 + nt->msi_spad_offset;
697
698 if (!nt->use_msi)
699 return;
700
701 if (spad >= ntb_spad_count(nt->ndev))
702 return;
703
704 qp->peer_msi_desc.addr_offset =
705 ntb_peer_spad_read(qp->ndev, PIDX, spad);
706 qp->peer_msi_desc.data =
707 ntb_peer_spad_read(qp->ndev, PIDX, spad + 1);
708
709 dev_dbg(&qp->ndev->pdev->dev, "QP%d Peer MSI addr=%x data=%x\n",
710 qp_num, qp->peer_msi_desc.addr_offset, qp->peer_msi_desc.data);
711
712 if (qp->peer_msi_desc.addr_offset) {
713 qp->use_msi = true;
714 dev_info(&qp->ndev->pdev->dev,
715 "Using MSI interrupts for QP%d\n", qp_num);
716 }
717 }
718
ntb_transport_setup_qp_msi(struct ntb_transport_ctx * nt,unsigned int qp_num)719 static void ntb_transport_setup_qp_msi(struct ntb_transport_ctx *nt,
720 unsigned int qp_num)
721 {
722 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
723 int spad = qp_num * 2 + nt->msi_spad_offset;
724 int rc;
725
726 if (!nt->use_msi)
727 return;
728
729 if (spad >= ntb_spad_count(nt->ndev)) {
730 dev_warn_once(&qp->ndev->pdev->dev,
731 "Not enough SPADS to use MSI interrupts\n");
732 return;
733 }
734
735 ntb_spad_write(qp->ndev, spad, 0);
736 ntb_spad_write(qp->ndev, spad + 1, 0);
737
738 if (!qp->msi_irq) {
739 qp->msi_irq = ntbm_msi_request_irq(qp->ndev, ntb_transport_isr,
740 KBUILD_MODNAME, qp,
741 &qp->msi_desc);
742 if (qp->msi_irq < 0) {
743 dev_warn(&qp->ndev->pdev->dev,
744 "Unable to allocate MSI interrupt for qp%d\n",
745 qp_num);
746 return;
747 }
748 }
749
750 rc = ntb_spad_write(qp->ndev, spad, qp->msi_desc.addr_offset);
751 if (rc)
752 goto err_free_interrupt;
753
754 rc = ntb_spad_write(qp->ndev, spad + 1, qp->msi_desc.data);
755 if (rc)
756 goto err_free_interrupt;
757
758 dev_dbg(&qp->ndev->pdev->dev, "QP%d MSI %d addr=%x data=%x\n",
759 qp_num, qp->msi_irq, qp->msi_desc.addr_offset,
760 qp->msi_desc.data);
761
762 return;
763
764 err_free_interrupt:
765 devm_free_irq(&nt->ndev->dev, qp->msi_irq, qp);
766 }
767
ntb_transport_msi_peer_desc_changed(struct ntb_transport_ctx * nt)768 static void ntb_transport_msi_peer_desc_changed(struct ntb_transport_ctx *nt)
769 {
770 int i;
771
772 dev_dbg(&nt->ndev->pdev->dev, "Peer MSI descriptors changed");
773
774 for (i = 0; i < nt->qp_count; i++)
775 ntb_transport_setup_qp_peer_msi(nt, i);
776 }
777
ntb_transport_msi_desc_changed(void * data)778 static void ntb_transport_msi_desc_changed(void *data)
779 {
780 struct ntb_transport_ctx *nt = data;
781 int i;
782
783 dev_dbg(&nt->ndev->pdev->dev, "MSI descriptors changed");
784
785 for (i = 0; i < nt->qp_count; i++)
786 ntb_transport_setup_qp_msi(nt, i);
787
788 ntb_peer_db_set(nt->ndev, nt->msi_db_mask);
789 }
790
ntb_free_mw(struct ntb_transport_ctx * nt,int num_mw)791 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
792 {
793 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
794 struct pci_dev *pdev = nt->ndev->pdev;
795
796 if (!mw->virt_addr)
797 return;
798
799 ntb_mw_clear_trans(nt->ndev, PIDX, num_mw);
800 dma_free_coherent(&pdev->dev, mw->alloc_size,
801 mw->alloc_addr, mw->dma_addr);
802 mw->xlat_size = 0;
803 mw->buff_size = 0;
804 mw->alloc_size = 0;
805 mw->alloc_addr = NULL;
806 mw->virt_addr = NULL;
807 }
808
ntb_alloc_mw_buffer(struct ntb_transport_mw * mw,struct device * dma_dev,size_t align)809 static int ntb_alloc_mw_buffer(struct ntb_transport_mw *mw,
810 struct device *dma_dev, size_t align)
811 {
812 dma_addr_t dma_addr;
813 void *alloc_addr, *virt_addr;
814 int rc;
815
816 alloc_addr = dma_alloc_coherent(dma_dev, mw->alloc_size,
817 &dma_addr, GFP_KERNEL);
818 if (!alloc_addr) {
819 dev_err(dma_dev, "Unable to alloc MW buff of size %zu\n",
820 mw->alloc_size);
821 return -ENOMEM;
822 }
823 virt_addr = alloc_addr;
824
825 /*
826 * we must ensure that the memory address allocated is BAR size
827 * aligned in order for the XLAT register to take the value. This
828 * is a requirement of the hardware. It is recommended to setup CMA
829 * for BAR sizes equal or greater than 4MB.
830 */
831 if (!IS_ALIGNED(dma_addr, align)) {
832 if (mw->alloc_size > mw->buff_size) {
833 virt_addr = PTR_ALIGN(alloc_addr, align);
834 dma_addr = ALIGN(dma_addr, align);
835 } else {
836 rc = -ENOMEM;
837 goto err;
838 }
839 }
840
841 mw->alloc_addr = alloc_addr;
842 mw->virt_addr = virt_addr;
843 mw->dma_addr = dma_addr;
844
845 return 0;
846
847 err:
848 dma_free_coherent(dma_dev, mw->alloc_size, alloc_addr, dma_addr);
849
850 return rc;
851 }
852
ntb_set_mw(struct ntb_transport_ctx * nt,int num_mw,resource_size_t size)853 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
854 resource_size_t size)
855 {
856 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
857 struct pci_dev *pdev = nt->ndev->pdev;
858 size_t xlat_size, buff_size;
859 resource_size_t xlat_align;
860 resource_size_t xlat_align_size;
861 int rc;
862
863 if (!size)
864 return -EINVAL;
865
866 rc = ntb_mw_get_align(nt->ndev, PIDX, num_mw, &xlat_align,
867 &xlat_align_size, NULL);
868 if (rc)
869 return rc;
870
871 xlat_size = round_up(size, xlat_align_size);
872 buff_size = round_up(size, xlat_align);
873
874 /* No need to re-setup */
875 if (mw->xlat_size == xlat_size)
876 return 0;
877
878 if (mw->buff_size)
879 ntb_free_mw(nt, num_mw);
880
881 /* Alloc memory for receiving data. Must be aligned */
882 mw->xlat_size = xlat_size;
883 mw->buff_size = buff_size;
884 mw->alloc_size = buff_size;
885
886 rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
887 if (rc) {
888 mw->alloc_size *= 2;
889 rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
890 if (rc) {
891 dev_err(&pdev->dev,
892 "Unable to alloc aligned MW buff\n");
893 mw->xlat_size = 0;
894 mw->buff_size = 0;
895 mw->alloc_size = 0;
896 return rc;
897 }
898 }
899
900 /* Notify HW the memory location of the receive buffer */
901 rc = ntb_mw_set_trans(nt->ndev, PIDX, num_mw, mw->dma_addr,
902 mw->xlat_size);
903 if (rc) {
904 dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
905 ntb_free_mw(nt, num_mw);
906 return -EIO;
907 }
908
909 return 0;
910 }
911
ntb_qp_link_down_reset(struct ntb_transport_qp * qp)912 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
913 {
914 qp->link_is_up = false;
915 qp->active = false;
916
917 qp->tx_index = 0;
918 qp->rx_index = 0;
919 qp->rx_bytes = 0;
920 qp->rx_pkts = 0;
921 qp->rx_ring_empty = 0;
922 qp->rx_err_no_buf = 0;
923 qp->rx_err_oflow = 0;
924 qp->rx_err_ver = 0;
925 qp->rx_memcpy = 0;
926 qp->rx_async = 0;
927 qp->tx_bytes = 0;
928 qp->tx_pkts = 0;
929 qp->tx_ring_full = 0;
930 qp->tx_err_no_buf = 0;
931 qp->tx_memcpy = 0;
932 qp->tx_async = 0;
933 }
934
ntb_qp_link_cleanup(struct ntb_transport_qp * qp)935 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
936 {
937 struct ntb_transport_ctx *nt = qp->transport;
938 struct pci_dev *pdev = nt->ndev->pdev;
939
940 dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
941
942 cancel_delayed_work_sync(&qp->link_work);
943 ntb_qp_link_down_reset(qp);
944
945 if (qp->event_handler)
946 qp->event_handler(qp->cb_data, qp->link_is_up);
947 }
948
ntb_qp_link_cleanup_work(struct work_struct * work)949 static void ntb_qp_link_cleanup_work(struct work_struct *work)
950 {
951 struct ntb_transport_qp *qp = container_of(work,
952 struct ntb_transport_qp,
953 link_cleanup);
954 struct ntb_transport_ctx *nt = qp->transport;
955
956 ntb_qp_link_cleanup(qp);
957
958 if (nt->link_is_up)
959 schedule_delayed_work(&qp->link_work,
960 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
961 }
962
ntb_qp_link_down(struct ntb_transport_qp * qp)963 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
964 {
965 schedule_work(&qp->link_cleanup);
966 }
967
ntb_transport_link_cleanup(struct ntb_transport_ctx * nt)968 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
969 {
970 struct ntb_transport_qp *qp;
971 u64 qp_bitmap_alloc;
972 unsigned int i, count;
973
974 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
975
976 /* Pass along the info to any clients */
977 for (i = 0; i < nt->qp_count; i++)
978 if (qp_bitmap_alloc & BIT_ULL(i)) {
979 qp = &nt->qp_vec[i];
980 ntb_qp_link_cleanup(qp);
981 cancel_work_sync(&qp->link_cleanup);
982 cancel_delayed_work_sync(&qp->link_work);
983 }
984
985 if (!nt->link_is_up)
986 cancel_delayed_work_sync(&nt->link_work);
987
988 for (i = 0; i < nt->mw_count; i++)
989 ntb_free_mw(nt, i);
990
991 /* The scratchpad registers keep the values if the remote side
992 * goes down, blast them now to give them a sane value the next
993 * time they are accessed
994 */
995 count = ntb_spad_count(nt->ndev);
996 for (i = 0; i < count; i++)
997 ntb_spad_write(nt->ndev, i, 0);
998 }
999
ntb_transport_link_cleanup_work(struct work_struct * work)1000 static void ntb_transport_link_cleanup_work(struct work_struct *work)
1001 {
1002 struct ntb_transport_ctx *nt =
1003 container_of(work, struct ntb_transport_ctx, link_cleanup);
1004
1005 ntb_transport_link_cleanup(nt);
1006 }
1007
ntb_transport_event_callback(void * data)1008 static void ntb_transport_event_callback(void *data)
1009 {
1010 struct ntb_transport_ctx *nt = data;
1011
1012 if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
1013 schedule_delayed_work(&nt->link_work, 0);
1014 else
1015 schedule_work(&nt->link_cleanup);
1016 }
1017
ntb_transport_link_work(struct work_struct * work)1018 static void ntb_transport_link_work(struct work_struct *work)
1019 {
1020 struct ntb_transport_ctx *nt =
1021 container_of(work, struct ntb_transport_ctx, link_work.work);
1022 struct ntb_dev *ndev = nt->ndev;
1023 struct pci_dev *pdev = ndev->pdev;
1024 resource_size_t size;
1025 u32 val;
1026 int rc = 0, i, spad;
1027
1028 /* send the local info, in the opposite order of the way we read it */
1029
1030 if (nt->use_msi) {
1031 rc = ntb_msi_setup_mws(ndev);
1032 if (rc) {
1033 dev_warn(&pdev->dev,
1034 "Failed to register MSI memory window: %d\n",
1035 rc);
1036 nt->use_msi = false;
1037 }
1038 }
1039
1040 for (i = 0; i < nt->qp_count; i++)
1041 ntb_transport_setup_qp_msi(nt, i);
1042
1043 for (i = 0; i < nt->mw_count; i++) {
1044 size = nt->mw_vec[i].phys_size;
1045
1046 if (max_mw_size && size > max_mw_size)
1047 size = max_mw_size;
1048
1049 spad = MW0_SZ_HIGH + (i * 2);
1050 ntb_peer_spad_write(ndev, PIDX, spad, upper_32_bits(size));
1051
1052 spad = MW0_SZ_LOW + (i * 2);
1053 ntb_peer_spad_write(ndev, PIDX, spad, lower_32_bits(size));
1054 }
1055
1056 ntb_peer_spad_write(ndev, PIDX, NUM_MWS, nt->mw_count);
1057
1058 ntb_peer_spad_write(ndev, PIDX, NUM_QPS, nt->qp_count);
1059
1060 ntb_peer_spad_write(ndev, PIDX, VERSION, NTB_TRANSPORT_VERSION);
1061
1062 /* Query the remote side for its info */
1063 val = ntb_spad_read(ndev, VERSION);
1064 dev_dbg(&pdev->dev, "Remote version = %d\n", val);
1065 if (val != NTB_TRANSPORT_VERSION)
1066 goto out;
1067
1068 val = ntb_spad_read(ndev, NUM_QPS);
1069 dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
1070 if (val != nt->qp_count)
1071 goto out;
1072
1073 val = ntb_spad_read(ndev, NUM_MWS);
1074 dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
1075 if (val != nt->mw_count)
1076 goto out;
1077
1078 for (i = 0; i < nt->mw_count; i++) {
1079 u64 val64;
1080
1081 val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
1082 val64 = (u64)val << 32;
1083
1084 val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
1085 val64 |= val;
1086
1087 dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
1088
1089 rc = ntb_set_mw(nt, i, val64);
1090 if (rc)
1091 goto out1;
1092 }
1093
1094 nt->link_is_up = true;
1095
1096 for (i = 0; i < nt->qp_count; i++) {
1097 struct ntb_transport_qp *qp = &nt->qp_vec[i];
1098
1099 ntb_transport_setup_qp_mw(nt, i);
1100 ntb_transport_setup_qp_peer_msi(nt, i);
1101
1102 if (qp->client_ready)
1103 schedule_delayed_work(&qp->link_work, 0);
1104 }
1105
1106 return;
1107
1108 out1:
1109 for (i = 0; i < nt->mw_count; i++)
1110 ntb_free_mw(nt, i);
1111
1112 /* if there's an actual failure, we should just bail */
1113 if (rc < 0)
1114 return;
1115
1116 out:
1117 if (ntb_link_is_up(ndev, NULL, NULL) == 1)
1118 schedule_delayed_work(&nt->link_work,
1119 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1120 }
1121
ntb_qp_link_work(struct work_struct * work)1122 static void ntb_qp_link_work(struct work_struct *work)
1123 {
1124 struct ntb_transport_qp *qp = container_of(work,
1125 struct ntb_transport_qp,
1126 link_work.work);
1127 struct pci_dev *pdev = qp->ndev->pdev;
1128 struct ntb_transport_ctx *nt = qp->transport;
1129 int val;
1130
1131 WARN_ON(!nt->link_is_up);
1132
1133 val = ntb_spad_read(nt->ndev, QP_LINKS);
1134
1135 ntb_peer_spad_write(nt->ndev, PIDX, QP_LINKS, val | BIT(qp->qp_num));
1136
1137 /* query remote spad for qp ready bits */
1138 dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
1139
1140 /* See if the remote side is up */
1141 if (val & BIT(qp->qp_num)) {
1142 dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
1143 qp->link_is_up = true;
1144 qp->active = true;
1145
1146 if (qp->event_handler)
1147 qp->event_handler(qp->cb_data, qp->link_is_up);
1148
1149 if (qp->active)
1150 tasklet_schedule(&qp->rxc_db_work);
1151 } else if (nt->link_is_up)
1152 schedule_delayed_work(&qp->link_work,
1153 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1154 }
1155
ntb_transport_init_queue(struct ntb_transport_ctx * nt,unsigned int qp_num)1156 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
1157 unsigned int qp_num)
1158 {
1159 struct ntb_transport_qp *qp;
1160 phys_addr_t mw_base;
1161 resource_size_t mw_size;
1162 unsigned int num_qps_mw, tx_size;
1163 unsigned int mw_num, mw_count, qp_count;
1164 u64 qp_offset;
1165
1166 mw_count = nt->mw_count;
1167 qp_count = nt->qp_count;
1168
1169 mw_num = QP_TO_MW(nt, qp_num);
1170
1171 qp = &nt->qp_vec[qp_num];
1172 qp->qp_num = qp_num;
1173 qp->transport = nt;
1174 qp->ndev = nt->ndev;
1175 qp->client_ready = false;
1176 qp->event_handler = NULL;
1177 ntb_qp_link_down_reset(qp);
1178
1179 if (mw_num < qp_count % mw_count)
1180 num_qps_mw = qp_count / mw_count + 1;
1181 else
1182 num_qps_mw = qp_count / mw_count;
1183
1184 mw_base = nt->mw_vec[mw_num].phys_addr;
1185 mw_size = nt->mw_vec[mw_num].phys_size;
1186
1187 if (max_mw_size && mw_size > max_mw_size)
1188 mw_size = max_mw_size;
1189
1190 tx_size = (unsigned int)mw_size / num_qps_mw;
1191 qp_offset = tx_size * (qp_num / mw_count);
1192
1193 qp->tx_mw_size = tx_size;
1194 qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1195 if (!qp->tx_mw)
1196 return -EINVAL;
1197
1198 qp->tx_mw_phys = mw_base + qp_offset;
1199 if (!qp->tx_mw_phys)
1200 return -EINVAL;
1201
1202 tx_size -= sizeof(struct ntb_rx_info);
1203 qp->rx_info = qp->tx_mw + tx_size;
1204
1205 /* Due to housekeeping, there must be atleast 2 buffs */
1206 qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1207 qp->tx_max_entry = tx_size / qp->tx_max_frame;
1208
1209 if (nt->debugfs_node_dir) {
1210 char debugfs_name[4];
1211
1212 snprintf(debugfs_name, 4, "qp%d", qp_num);
1213 qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1214 nt->debugfs_node_dir);
1215
1216 qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1217 qp->debugfs_dir, qp,
1218 &ntb_qp_debugfs_stats);
1219 } else {
1220 qp->debugfs_dir = NULL;
1221 qp->debugfs_stats = NULL;
1222 }
1223
1224 INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1225 INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1226
1227 spin_lock_init(&qp->ntb_rx_q_lock);
1228 spin_lock_init(&qp->ntb_tx_free_q_lock);
1229
1230 INIT_LIST_HEAD(&qp->rx_post_q);
1231 INIT_LIST_HEAD(&qp->rx_pend_q);
1232 INIT_LIST_HEAD(&qp->rx_free_q);
1233 INIT_LIST_HEAD(&qp->tx_free_q);
1234
1235 tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1236 (unsigned long)qp);
1237
1238 return 0;
1239 }
1240
ntb_transport_probe(struct ntb_client * self,struct ntb_dev * ndev)1241 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1242 {
1243 struct ntb_transport_ctx *nt;
1244 struct ntb_transport_mw *mw;
1245 unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1246 u64 qp_bitmap;
1247 int node;
1248 int rc, i;
1249
1250 mw_count = ntb_peer_mw_count(ndev);
1251
1252 if (!ndev->ops->mw_set_trans) {
1253 dev_err(&ndev->dev, "Inbound MW based NTB API is required\n");
1254 return -EINVAL;
1255 }
1256
1257 if (ntb_db_is_unsafe(ndev))
1258 dev_dbg(&ndev->dev,
1259 "doorbell is unsafe, proceed anyway...\n");
1260 if (ntb_spad_is_unsafe(ndev))
1261 dev_dbg(&ndev->dev,
1262 "scratchpad is unsafe, proceed anyway...\n");
1263
1264 if (ntb_peer_port_count(ndev) != NTB_DEF_PEER_CNT)
1265 dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n");
1266
1267 node = dev_to_node(&ndev->dev);
1268
1269 nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1270 if (!nt)
1271 return -ENOMEM;
1272
1273 nt->ndev = ndev;
1274
1275 /*
1276 * If we are using MSI, and have at least one extra memory window,
1277 * we will reserve the last MW for the MSI window.
1278 */
1279 if (use_msi && mw_count > 1) {
1280 rc = ntb_msi_init(ndev, ntb_transport_msi_desc_changed);
1281 if (!rc) {
1282 mw_count -= 1;
1283 nt->use_msi = true;
1284 }
1285 }
1286
1287 spad_count = ntb_spad_count(ndev);
1288
1289 /* Limit the MW's based on the availability of scratchpads */
1290
1291 if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1292 nt->mw_count = 0;
1293 rc = -EINVAL;
1294 goto err;
1295 }
1296
1297 max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1298 nt->mw_count = min(mw_count, max_mw_count_for_spads);
1299
1300 nt->msi_spad_offset = nt->mw_count * 2 + MW0_SZ_HIGH;
1301
1302 nt->mw_vec = kcalloc_node(mw_count, sizeof(*nt->mw_vec),
1303 GFP_KERNEL, node);
1304 if (!nt->mw_vec) {
1305 rc = -ENOMEM;
1306 goto err;
1307 }
1308
1309 for (i = 0; i < mw_count; i++) {
1310 mw = &nt->mw_vec[i];
1311
1312 rc = ntb_peer_mw_get_addr(ndev, i, &mw->phys_addr,
1313 &mw->phys_size);
1314 if (rc)
1315 goto err1;
1316
1317 mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1318 if (!mw->vbase) {
1319 rc = -ENOMEM;
1320 goto err1;
1321 }
1322
1323 mw->buff_size = 0;
1324 mw->xlat_size = 0;
1325 mw->virt_addr = NULL;
1326 mw->dma_addr = 0;
1327 }
1328
1329 qp_bitmap = ntb_db_valid_mask(ndev);
1330
1331 qp_count = ilog2(qp_bitmap);
1332 if (nt->use_msi) {
1333 qp_count -= 1;
1334 nt->msi_db_mask = 1 << qp_count;
1335 ntb_db_clear_mask(ndev, nt->msi_db_mask);
1336 }
1337
1338 if (max_num_clients && max_num_clients < qp_count)
1339 qp_count = max_num_clients;
1340 else if (nt->mw_count < qp_count)
1341 qp_count = nt->mw_count;
1342
1343 qp_bitmap &= BIT_ULL(qp_count) - 1;
1344
1345 nt->qp_count = qp_count;
1346 nt->qp_bitmap = qp_bitmap;
1347 nt->qp_bitmap_free = qp_bitmap;
1348
1349 nt->qp_vec = kcalloc_node(qp_count, sizeof(*nt->qp_vec),
1350 GFP_KERNEL, node);
1351 if (!nt->qp_vec) {
1352 rc = -ENOMEM;
1353 goto err1;
1354 }
1355
1356 if (nt_debugfs_dir) {
1357 nt->debugfs_node_dir =
1358 debugfs_create_dir(pci_name(ndev->pdev),
1359 nt_debugfs_dir);
1360 }
1361
1362 for (i = 0; i < qp_count; i++) {
1363 rc = ntb_transport_init_queue(nt, i);
1364 if (rc)
1365 goto err2;
1366 }
1367
1368 INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1369 INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1370
1371 rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1372 if (rc)
1373 goto err2;
1374
1375 INIT_LIST_HEAD(&nt->client_devs);
1376 rc = ntb_bus_init(nt);
1377 if (rc)
1378 goto err3;
1379
1380 nt->link_is_up = false;
1381 ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1382 ntb_link_event(ndev);
1383
1384 return 0;
1385
1386 err3:
1387 ntb_clear_ctx(ndev);
1388 err2:
1389 kfree(nt->qp_vec);
1390 err1:
1391 while (i--) {
1392 mw = &nt->mw_vec[i];
1393 iounmap(mw->vbase);
1394 }
1395 kfree(nt->mw_vec);
1396 err:
1397 kfree(nt);
1398 return rc;
1399 }
1400
ntb_transport_free(struct ntb_client * self,struct ntb_dev * ndev)1401 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1402 {
1403 struct ntb_transport_ctx *nt = ndev->ctx;
1404 struct ntb_transport_qp *qp;
1405 u64 qp_bitmap_alloc;
1406 int i;
1407
1408 ntb_transport_link_cleanup(nt);
1409 cancel_work_sync(&nt->link_cleanup);
1410 cancel_delayed_work_sync(&nt->link_work);
1411
1412 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1413
1414 /* verify that all the qp's are freed */
1415 for (i = 0; i < nt->qp_count; i++) {
1416 qp = &nt->qp_vec[i];
1417 if (qp_bitmap_alloc & BIT_ULL(i))
1418 ntb_transport_free_queue(qp);
1419 debugfs_remove_recursive(qp->debugfs_dir);
1420 }
1421
1422 ntb_link_disable(ndev);
1423 ntb_clear_ctx(ndev);
1424
1425 ntb_bus_remove(nt);
1426
1427 for (i = nt->mw_count; i--; ) {
1428 ntb_free_mw(nt, i);
1429 iounmap(nt->mw_vec[i].vbase);
1430 }
1431
1432 kfree(nt->qp_vec);
1433 kfree(nt->mw_vec);
1434 kfree(nt);
1435 }
1436
ntb_complete_rxc(struct ntb_transport_qp * qp)1437 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1438 {
1439 struct ntb_queue_entry *entry;
1440 void *cb_data;
1441 unsigned int len;
1442 unsigned long irqflags;
1443
1444 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1445
1446 while (!list_empty(&qp->rx_post_q)) {
1447 entry = list_first_entry(&qp->rx_post_q,
1448 struct ntb_queue_entry, entry);
1449 if (!(entry->flags & DESC_DONE_FLAG))
1450 break;
1451
1452 entry->rx_hdr->flags = 0;
1453 iowrite32(entry->rx_index, &qp->rx_info->entry);
1454
1455 cb_data = entry->cb_data;
1456 len = entry->len;
1457
1458 list_move_tail(&entry->entry, &qp->rx_free_q);
1459
1460 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1461
1462 if (qp->rx_handler && qp->client_ready)
1463 qp->rx_handler(qp, qp->cb_data, cb_data, len);
1464
1465 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1466 }
1467
1468 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1469 }
1470
ntb_rx_copy_callback(void * data,const struct dmaengine_result * res)1471 static void ntb_rx_copy_callback(void *data,
1472 const struct dmaengine_result *res)
1473 {
1474 struct ntb_queue_entry *entry = data;
1475
1476 /* we need to check DMA results if we are using DMA */
1477 if (res) {
1478 enum dmaengine_tx_result dma_err = res->result;
1479
1480 switch (dma_err) {
1481 case DMA_TRANS_READ_FAILED:
1482 case DMA_TRANS_WRITE_FAILED:
1483 entry->errors++;
1484 fallthrough;
1485 case DMA_TRANS_ABORTED:
1486 {
1487 struct ntb_transport_qp *qp = entry->qp;
1488 void *offset = qp->rx_buff + qp->rx_max_frame *
1489 qp->rx_index;
1490
1491 ntb_memcpy_rx(entry, offset);
1492 qp->rx_memcpy++;
1493 return;
1494 }
1495
1496 case DMA_TRANS_NOERROR:
1497 default:
1498 break;
1499 }
1500 }
1501
1502 entry->flags |= DESC_DONE_FLAG;
1503
1504 ntb_complete_rxc(entry->qp);
1505 }
1506
ntb_memcpy_rx(struct ntb_queue_entry * entry,void * offset)1507 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1508 {
1509 void *buf = entry->buf;
1510 size_t len = entry->len;
1511
1512 memcpy(buf, offset, len);
1513
1514 /* Ensure that the data is fully copied out before clearing the flag */
1515 wmb();
1516
1517 ntb_rx_copy_callback(entry, NULL);
1518 }
1519
ntb_async_rx_submit(struct ntb_queue_entry * entry,void * offset)1520 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1521 {
1522 struct dma_async_tx_descriptor *txd;
1523 struct ntb_transport_qp *qp = entry->qp;
1524 struct dma_chan *chan = qp->rx_dma_chan;
1525 struct dma_device *device;
1526 size_t pay_off, buff_off, len;
1527 struct dmaengine_unmap_data *unmap;
1528 dma_cookie_t cookie;
1529 void *buf = entry->buf;
1530
1531 len = entry->len;
1532 device = chan->device;
1533 pay_off = (size_t)offset & ~PAGE_MASK;
1534 buff_off = (size_t)buf & ~PAGE_MASK;
1535
1536 if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1537 goto err;
1538
1539 unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1540 if (!unmap)
1541 goto err;
1542
1543 unmap->len = len;
1544 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1545 pay_off, len, DMA_TO_DEVICE);
1546 if (dma_mapping_error(device->dev, unmap->addr[0]))
1547 goto err_get_unmap;
1548
1549 unmap->to_cnt = 1;
1550
1551 unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1552 buff_off, len, DMA_FROM_DEVICE);
1553 if (dma_mapping_error(device->dev, unmap->addr[1]))
1554 goto err_get_unmap;
1555
1556 unmap->from_cnt = 1;
1557
1558 txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1559 unmap->addr[0], len,
1560 DMA_PREP_INTERRUPT);
1561 if (!txd)
1562 goto err_get_unmap;
1563
1564 txd->callback_result = ntb_rx_copy_callback;
1565 txd->callback_param = entry;
1566 dma_set_unmap(txd, unmap);
1567
1568 cookie = dmaengine_submit(txd);
1569 if (dma_submit_error(cookie))
1570 goto err_set_unmap;
1571
1572 dmaengine_unmap_put(unmap);
1573
1574 qp->last_cookie = cookie;
1575
1576 qp->rx_async++;
1577
1578 return 0;
1579
1580 err_set_unmap:
1581 dmaengine_unmap_put(unmap);
1582 err_get_unmap:
1583 dmaengine_unmap_put(unmap);
1584 err:
1585 return -ENXIO;
1586 }
1587
ntb_async_rx(struct ntb_queue_entry * entry,void * offset)1588 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1589 {
1590 struct ntb_transport_qp *qp = entry->qp;
1591 struct dma_chan *chan = qp->rx_dma_chan;
1592 int res;
1593
1594 if (!chan)
1595 goto err;
1596
1597 if (entry->len < copy_bytes)
1598 goto err;
1599
1600 res = ntb_async_rx_submit(entry, offset);
1601 if (res < 0)
1602 goto err;
1603
1604 if (!entry->retries)
1605 qp->rx_async++;
1606
1607 return;
1608
1609 err:
1610 ntb_memcpy_rx(entry, offset);
1611 qp->rx_memcpy++;
1612 }
1613
ntb_process_rxc(struct ntb_transport_qp * qp)1614 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1615 {
1616 struct ntb_payload_header *hdr;
1617 struct ntb_queue_entry *entry;
1618 void *offset;
1619
1620 offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1621 hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1622
1623 dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1624 qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1625
1626 if (!(hdr->flags & DESC_DONE_FLAG)) {
1627 dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1628 qp->rx_ring_empty++;
1629 return -EAGAIN;
1630 }
1631
1632 if (hdr->flags & LINK_DOWN_FLAG) {
1633 dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1634 ntb_qp_link_down(qp);
1635 hdr->flags = 0;
1636 return -EAGAIN;
1637 }
1638
1639 if (hdr->ver != (u32)qp->rx_pkts) {
1640 dev_dbg(&qp->ndev->pdev->dev,
1641 "version mismatch, expected %llu - got %u\n",
1642 qp->rx_pkts, hdr->ver);
1643 qp->rx_err_ver++;
1644 return -EIO;
1645 }
1646
1647 entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1648 if (!entry) {
1649 dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1650 qp->rx_err_no_buf++;
1651 return -EAGAIN;
1652 }
1653
1654 entry->rx_hdr = hdr;
1655 entry->rx_index = qp->rx_index;
1656
1657 if (hdr->len > entry->len) {
1658 dev_dbg(&qp->ndev->pdev->dev,
1659 "receive buffer overflow! Wanted %d got %d\n",
1660 hdr->len, entry->len);
1661 qp->rx_err_oflow++;
1662
1663 entry->len = -EIO;
1664 entry->flags |= DESC_DONE_FLAG;
1665
1666 ntb_complete_rxc(qp);
1667 } else {
1668 dev_dbg(&qp->ndev->pdev->dev,
1669 "RX OK index %u ver %u size %d into buf size %d\n",
1670 qp->rx_index, hdr->ver, hdr->len, entry->len);
1671
1672 qp->rx_bytes += hdr->len;
1673 qp->rx_pkts++;
1674
1675 entry->len = hdr->len;
1676
1677 ntb_async_rx(entry, offset);
1678 }
1679
1680 qp->rx_index++;
1681 qp->rx_index %= qp->rx_max_entry;
1682
1683 return 0;
1684 }
1685
ntb_transport_rxc_db(unsigned long data)1686 static void ntb_transport_rxc_db(unsigned long data)
1687 {
1688 struct ntb_transport_qp *qp = (void *)data;
1689 int rc, i;
1690
1691 dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1692 __func__, qp->qp_num);
1693
1694 /* Limit the number of packets processed in a single interrupt to
1695 * provide fairness to others
1696 */
1697 for (i = 0; i < qp->rx_max_entry; i++) {
1698 rc = ntb_process_rxc(qp);
1699 if (rc)
1700 break;
1701 }
1702
1703 if (i && qp->rx_dma_chan)
1704 dma_async_issue_pending(qp->rx_dma_chan);
1705
1706 if (i == qp->rx_max_entry) {
1707 /* there is more work to do */
1708 if (qp->active)
1709 tasklet_schedule(&qp->rxc_db_work);
1710 } else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1711 /* the doorbell bit is set: clear it */
1712 ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1713 /* ntb_db_read ensures ntb_db_clear write is committed */
1714 ntb_db_read(qp->ndev);
1715
1716 /* an interrupt may have arrived between finishing
1717 * ntb_process_rxc and clearing the doorbell bit:
1718 * there might be some more work to do.
1719 */
1720 if (qp->active)
1721 tasklet_schedule(&qp->rxc_db_work);
1722 }
1723 }
1724
ntb_tx_copy_callback(void * data,const struct dmaengine_result * res)1725 static void ntb_tx_copy_callback(void *data,
1726 const struct dmaengine_result *res)
1727 {
1728 struct ntb_queue_entry *entry = data;
1729 struct ntb_transport_qp *qp = entry->qp;
1730 struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1731
1732 /* we need to check DMA results if we are using DMA */
1733 if (res) {
1734 enum dmaengine_tx_result dma_err = res->result;
1735
1736 switch (dma_err) {
1737 case DMA_TRANS_READ_FAILED:
1738 case DMA_TRANS_WRITE_FAILED:
1739 entry->errors++;
1740 fallthrough;
1741 case DMA_TRANS_ABORTED:
1742 {
1743 void __iomem *offset =
1744 qp->tx_mw + qp->tx_max_frame *
1745 entry->tx_index;
1746
1747 /* resubmit via CPU */
1748 ntb_memcpy_tx(entry, offset);
1749 qp->tx_memcpy++;
1750 return;
1751 }
1752
1753 case DMA_TRANS_NOERROR:
1754 default:
1755 break;
1756 }
1757 }
1758
1759 iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1760
1761 if (qp->use_msi)
1762 ntb_msi_peer_trigger(qp->ndev, PIDX, &qp->peer_msi_desc);
1763 else
1764 ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1765
1766 /* The entry length can only be zero if the packet is intended to be a
1767 * "link down" or similar. Since no payload is being sent in these
1768 * cases, there is nothing to add to the completion queue.
1769 */
1770 if (entry->len > 0) {
1771 qp->tx_bytes += entry->len;
1772
1773 if (qp->tx_handler)
1774 qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1775 entry->len);
1776 }
1777
1778 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1779 }
1780
ntb_memcpy_tx(struct ntb_queue_entry * entry,void __iomem * offset)1781 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1782 {
1783 #ifdef ARCH_HAS_NOCACHE_UACCESS
1784 /*
1785 * Using non-temporal mov to improve performance on non-cached
1786 * writes, even though we aren't actually copying from user space.
1787 */
1788 __copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1789 #else
1790 memcpy_toio(offset, entry->buf, entry->len);
1791 #endif
1792
1793 /* Ensure that the data is fully copied out before setting the flags */
1794 wmb();
1795
1796 ntb_tx_copy_callback(entry, NULL);
1797 }
1798
ntb_async_tx_submit(struct ntb_transport_qp * qp,struct ntb_queue_entry * entry)1799 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1800 struct ntb_queue_entry *entry)
1801 {
1802 struct dma_async_tx_descriptor *txd;
1803 struct dma_chan *chan = qp->tx_dma_chan;
1804 struct dma_device *device;
1805 size_t len = entry->len;
1806 void *buf = entry->buf;
1807 size_t dest_off, buff_off;
1808 struct dmaengine_unmap_data *unmap;
1809 dma_addr_t dest;
1810 dma_cookie_t cookie;
1811
1812 device = chan->device;
1813 dest = qp->tx_mw_dma_addr + qp->tx_max_frame * entry->tx_index;
1814 buff_off = (size_t)buf & ~PAGE_MASK;
1815 dest_off = (size_t)dest & ~PAGE_MASK;
1816
1817 if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1818 goto err;
1819
1820 unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1821 if (!unmap)
1822 goto err;
1823
1824 unmap->len = len;
1825 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1826 buff_off, len, DMA_TO_DEVICE);
1827 if (dma_mapping_error(device->dev, unmap->addr[0]))
1828 goto err_get_unmap;
1829
1830 unmap->to_cnt = 1;
1831
1832 txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1833 DMA_PREP_INTERRUPT);
1834 if (!txd)
1835 goto err_get_unmap;
1836
1837 txd->callback_result = ntb_tx_copy_callback;
1838 txd->callback_param = entry;
1839 dma_set_unmap(txd, unmap);
1840
1841 cookie = dmaengine_submit(txd);
1842 if (dma_submit_error(cookie))
1843 goto err_set_unmap;
1844
1845 dmaengine_unmap_put(unmap);
1846
1847 dma_async_issue_pending(chan);
1848
1849 return 0;
1850 err_set_unmap:
1851 dmaengine_unmap_put(unmap);
1852 err_get_unmap:
1853 dmaengine_unmap_put(unmap);
1854 err:
1855 return -ENXIO;
1856 }
1857
ntb_async_tx(struct ntb_transport_qp * qp,struct ntb_queue_entry * entry)1858 static void ntb_async_tx(struct ntb_transport_qp *qp,
1859 struct ntb_queue_entry *entry)
1860 {
1861 struct ntb_payload_header __iomem *hdr;
1862 struct dma_chan *chan = qp->tx_dma_chan;
1863 void __iomem *offset;
1864 int res;
1865
1866 entry->tx_index = qp->tx_index;
1867 offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1868 hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1869 entry->tx_hdr = hdr;
1870
1871 iowrite32(entry->len, &hdr->len);
1872 iowrite32((u32)qp->tx_pkts, &hdr->ver);
1873
1874 if (!chan)
1875 goto err;
1876
1877 if (entry->len < copy_bytes)
1878 goto err;
1879
1880 res = ntb_async_tx_submit(qp, entry);
1881 if (res < 0)
1882 goto err;
1883
1884 if (!entry->retries)
1885 qp->tx_async++;
1886
1887 return;
1888
1889 err:
1890 ntb_memcpy_tx(entry, offset);
1891 qp->tx_memcpy++;
1892 }
1893
ntb_process_tx(struct ntb_transport_qp * qp,struct ntb_queue_entry * entry)1894 static int ntb_process_tx(struct ntb_transport_qp *qp,
1895 struct ntb_queue_entry *entry)
1896 {
1897 if (qp->tx_index == qp->remote_rx_info->entry) {
1898 qp->tx_ring_full++;
1899 return -EAGAIN;
1900 }
1901
1902 if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1903 if (qp->tx_handler)
1904 qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1905
1906 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1907 &qp->tx_free_q);
1908 return 0;
1909 }
1910
1911 ntb_async_tx(qp, entry);
1912
1913 qp->tx_index++;
1914 qp->tx_index %= qp->tx_max_entry;
1915
1916 qp->tx_pkts++;
1917
1918 return 0;
1919 }
1920
ntb_send_link_down(struct ntb_transport_qp * qp)1921 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1922 {
1923 struct pci_dev *pdev = qp->ndev->pdev;
1924 struct ntb_queue_entry *entry;
1925 int i, rc;
1926
1927 if (!qp->link_is_up)
1928 return;
1929
1930 dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1931
1932 for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1933 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1934 if (entry)
1935 break;
1936 msleep(100);
1937 }
1938
1939 if (!entry)
1940 return;
1941
1942 entry->cb_data = NULL;
1943 entry->buf = NULL;
1944 entry->len = 0;
1945 entry->flags = LINK_DOWN_FLAG;
1946
1947 rc = ntb_process_tx(qp, entry);
1948 if (rc)
1949 dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1950 qp->qp_num);
1951
1952 ntb_qp_link_down_reset(qp);
1953 }
1954
ntb_dma_filter_fn(struct dma_chan * chan,void * node)1955 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1956 {
1957 return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1958 }
1959
1960 /**
1961 * ntb_transport_create_queue - Create a new NTB transport layer queue
1962 * @rx_handler: receive callback function
1963 * @tx_handler: transmit callback function
1964 * @event_handler: event callback function
1965 *
1966 * Create a new NTB transport layer queue and provide the queue with a callback
1967 * routine for both transmit and receive. The receive callback routine will be
1968 * used to pass up data when the transport has received it on the queue. The
1969 * transmit callback routine will be called when the transport has completed the
1970 * transmission of the data on the queue and the data is ready to be freed.
1971 *
1972 * RETURNS: pointer to newly created ntb_queue, NULL on error.
1973 */
1974 struct ntb_transport_qp *
ntb_transport_create_queue(void * data,struct device * client_dev,const struct ntb_queue_handlers * handlers)1975 ntb_transport_create_queue(void *data, struct device *client_dev,
1976 const struct ntb_queue_handlers *handlers)
1977 {
1978 struct ntb_dev *ndev;
1979 struct pci_dev *pdev;
1980 struct ntb_transport_ctx *nt;
1981 struct ntb_queue_entry *entry;
1982 struct ntb_transport_qp *qp;
1983 u64 qp_bit;
1984 unsigned int free_queue;
1985 dma_cap_mask_t dma_mask;
1986 int node;
1987 int i;
1988
1989 ndev = dev_ntb(client_dev->parent);
1990 pdev = ndev->pdev;
1991 nt = ndev->ctx;
1992
1993 node = dev_to_node(&ndev->dev);
1994
1995 free_queue = ffs(nt->qp_bitmap_free);
1996 if (!free_queue)
1997 goto err;
1998
1999 /* decrement free_queue to make it zero based */
2000 free_queue--;
2001
2002 qp = &nt->qp_vec[free_queue];
2003 qp_bit = BIT_ULL(qp->qp_num);
2004
2005 nt->qp_bitmap_free &= ~qp_bit;
2006
2007 qp->cb_data = data;
2008 qp->rx_handler = handlers->rx_handler;
2009 qp->tx_handler = handlers->tx_handler;
2010 qp->event_handler = handlers->event_handler;
2011
2012 dma_cap_zero(dma_mask);
2013 dma_cap_set(DMA_MEMCPY, dma_mask);
2014
2015 if (use_dma) {
2016 qp->tx_dma_chan =
2017 dma_request_channel(dma_mask, ntb_dma_filter_fn,
2018 (void *)(unsigned long)node);
2019 if (!qp->tx_dma_chan)
2020 dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
2021
2022 qp->rx_dma_chan =
2023 dma_request_channel(dma_mask, ntb_dma_filter_fn,
2024 (void *)(unsigned long)node);
2025 if (!qp->rx_dma_chan)
2026 dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
2027 } else {
2028 qp->tx_dma_chan = NULL;
2029 qp->rx_dma_chan = NULL;
2030 }
2031
2032 qp->tx_mw_dma_addr = 0;
2033 if (qp->tx_dma_chan) {
2034 qp->tx_mw_dma_addr =
2035 dma_map_resource(qp->tx_dma_chan->device->dev,
2036 qp->tx_mw_phys, qp->tx_mw_size,
2037 DMA_FROM_DEVICE, 0);
2038 if (dma_mapping_error(qp->tx_dma_chan->device->dev,
2039 qp->tx_mw_dma_addr)) {
2040 qp->tx_mw_dma_addr = 0;
2041 goto err1;
2042 }
2043 }
2044
2045 dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
2046 qp->tx_dma_chan ? "DMA" : "CPU");
2047
2048 dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
2049 qp->rx_dma_chan ? "DMA" : "CPU");
2050
2051 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
2052 entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
2053 if (!entry)
2054 goto err1;
2055
2056 entry->qp = qp;
2057 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
2058 &qp->rx_free_q);
2059 }
2060 qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
2061
2062 for (i = 0; i < qp->tx_max_entry; i++) {
2063 entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
2064 if (!entry)
2065 goto err2;
2066
2067 entry->qp = qp;
2068 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2069 &qp->tx_free_q);
2070 }
2071
2072 ntb_db_clear(qp->ndev, qp_bit);
2073 ntb_db_clear_mask(qp->ndev, qp_bit);
2074
2075 dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
2076
2077 return qp;
2078
2079 err2:
2080 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
2081 kfree(entry);
2082 err1:
2083 qp->rx_alloc_entry = 0;
2084 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
2085 kfree(entry);
2086 if (qp->tx_mw_dma_addr)
2087 dma_unmap_resource(qp->tx_dma_chan->device->dev,
2088 qp->tx_mw_dma_addr, qp->tx_mw_size,
2089 DMA_FROM_DEVICE, 0);
2090 if (qp->tx_dma_chan)
2091 dma_release_channel(qp->tx_dma_chan);
2092 if (qp->rx_dma_chan)
2093 dma_release_channel(qp->rx_dma_chan);
2094 nt->qp_bitmap_free |= qp_bit;
2095 err:
2096 return NULL;
2097 }
2098 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
2099
2100 /**
2101 * ntb_transport_free_queue - Frees NTB transport queue
2102 * @qp: NTB queue to be freed
2103 *
2104 * Frees NTB transport queue
2105 */
ntb_transport_free_queue(struct ntb_transport_qp * qp)2106 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
2107 {
2108 struct pci_dev *pdev;
2109 struct ntb_queue_entry *entry;
2110 u64 qp_bit;
2111
2112 if (!qp)
2113 return;
2114
2115 pdev = qp->ndev->pdev;
2116
2117 qp->active = false;
2118
2119 if (qp->tx_dma_chan) {
2120 struct dma_chan *chan = qp->tx_dma_chan;
2121 /* Putting the dma_chan to NULL will force any new traffic to be
2122 * processed by the CPU instead of the DAM engine
2123 */
2124 qp->tx_dma_chan = NULL;
2125
2126 /* Try to be nice and wait for any queued DMA engine
2127 * transactions to process before smashing it with a rock
2128 */
2129 dma_sync_wait(chan, qp->last_cookie);
2130 dmaengine_terminate_all(chan);
2131
2132 dma_unmap_resource(chan->device->dev,
2133 qp->tx_mw_dma_addr, qp->tx_mw_size,
2134 DMA_FROM_DEVICE, 0);
2135
2136 dma_release_channel(chan);
2137 }
2138
2139 if (qp->rx_dma_chan) {
2140 struct dma_chan *chan = qp->rx_dma_chan;
2141 /* Putting the dma_chan to NULL will force any new traffic to be
2142 * processed by the CPU instead of the DAM engine
2143 */
2144 qp->rx_dma_chan = NULL;
2145
2146 /* Try to be nice and wait for any queued DMA engine
2147 * transactions to process before smashing it with a rock
2148 */
2149 dma_sync_wait(chan, qp->last_cookie);
2150 dmaengine_terminate_all(chan);
2151 dma_release_channel(chan);
2152 }
2153
2154 qp_bit = BIT_ULL(qp->qp_num);
2155
2156 ntb_db_set_mask(qp->ndev, qp_bit);
2157 tasklet_kill(&qp->rxc_db_work);
2158
2159 cancel_delayed_work_sync(&qp->link_work);
2160
2161 qp->cb_data = NULL;
2162 qp->rx_handler = NULL;
2163 qp->tx_handler = NULL;
2164 qp->event_handler = NULL;
2165
2166 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
2167 kfree(entry);
2168
2169 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
2170 dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
2171 kfree(entry);
2172 }
2173
2174 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
2175 dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
2176 kfree(entry);
2177 }
2178
2179 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
2180 kfree(entry);
2181
2182 qp->transport->qp_bitmap_free |= qp_bit;
2183
2184 dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
2185 }
2186 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
2187
2188 /**
2189 * ntb_transport_rx_remove - Dequeues enqueued rx packet
2190 * @qp: NTB queue to be freed
2191 * @len: pointer to variable to write enqueued buffers length
2192 *
2193 * Dequeues unused buffers from receive queue. Should only be used during
2194 * shutdown of qp.
2195 *
2196 * RETURNS: NULL error value on error, or void* for success.
2197 */
ntb_transport_rx_remove(struct ntb_transport_qp * qp,unsigned int * len)2198 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
2199 {
2200 struct ntb_queue_entry *entry;
2201 void *buf;
2202
2203 if (!qp || qp->client_ready)
2204 return NULL;
2205
2206 entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
2207 if (!entry)
2208 return NULL;
2209
2210 buf = entry->cb_data;
2211 *len = entry->len;
2212
2213 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
2214
2215 return buf;
2216 }
2217 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
2218
2219 /**
2220 * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
2221 * @qp: NTB transport layer queue the entry is to be enqueued on
2222 * @cb: per buffer pointer for callback function to use
2223 * @data: pointer to data buffer that incoming packets will be copied into
2224 * @len: length of the data buffer
2225 *
2226 * Enqueue a new receive buffer onto the transport queue into which a NTB
2227 * payload can be received into.
2228 *
2229 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2230 */
ntb_transport_rx_enqueue(struct ntb_transport_qp * qp,void * cb,void * data,unsigned int len)2231 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2232 unsigned int len)
2233 {
2234 struct ntb_queue_entry *entry;
2235
2236 if (!qp)
2237 return -EINVAL;
2238
2239 entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
2240 if (!entry)
2241 return -ENOMEM;
2242
2243 entry->cb_data = cb;
2244 entry->buf = data;
2245 entry->len = len;
2246 entry->flags = 0;
2247 entry->retries = 0;
2248 entry->errors = 0;
2249 entry->rx_index = 0;
2250
2251 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2252
2253 if (qp->active)
2254 tasklet_schedule(&qp->rxc_db_work);
2255
2256 return 0;
2257 }
2258 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2259
2260 /**
2261 * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2262 * @qp: NTB transport layer queue the entry is to be enqueued on
2263 * @cb: per buffer pointer for callback function to use
2264 * @data: pointer to data buffer that will be sent
2265 * @len: length of the data buffer
2266 *
2267 * Enqueue a new transmit buffer onto the transport queue from which a NTB
2268 * payload will be transmitted. This assumes that a lock is being held to
2269 * serialize access to the qp.
2270 *
2271 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2272 */
ntb_transport_tx_enqueue(struct ntb_transport_qp * qp,void * cb,void * data,unsigned int len)2273 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2274 unsigned int len)
2275 {
2276 struct ntb_queue_entry *entry;
2277 int rc;
2278
2279 if (!qp || !qp->link_is_up || !len)
2280 return -EINVAL;
2281
2282 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2283 if (!entry) {
2284 qp->tx_err_no_buf++;
2285 return -EBUSY;
2286 }
2287
2288 entry->cb_data = cb;
2289 entry->buf = data;
2290 entry->len = len;
2291 entry->flags = 0;
2292 entry->errors = 0;
2293 entry->retries = 0;
2294 entry->tx_index = 0;
2295
2296 rc = ntb_process_tx(qp, entry);
2297 if (rc)
2298 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2299 &qp->tx_free_q);
2300
2301 return rc;
2302 }
2303 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2304
2305 /**
2306 * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2307 * @qp: NTB transport layer queue to be enabled
2308 *
2309 * Notify NTB transport layer of client readiness to use queue
2310 */
ntb_transport_link_up(struct ntb_transport_qp * qp)2311 void ntb_transport_link_up(struct ntb_transport_qp *qp)
2312 {
2313 if (!qp)
2314 return;
2315
2316 qp->client_ready = true;
2317
2318 if (qp->transport->link_is_up)
2319 schedule_delayed_work(&qp->link_work, 0);
2320 }
2321 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2322
2323 /**
2324 * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2325 * @qp: NTB transport layer queue to be disabled
2326 *
2327 * Notify NTB transport layer of client's desire to no longer receive data on
2328 * transport queue specified. It is the client's responsibility to ensure all
2329 * entries on queue are purged or otherwise handled appropriately.
2330 */
ntb_transport_link_down(struct ntb_transport_qp * qp)2331 void ntb_transport_link_down(struct ntb_transport_qp *qp)
2332 {
2333 int val;
2334
2335 if (!qp)
2336 return;
2337
2338 qp->client_ready = false;
2339
2340 val = ntb_spad_read(qp->ndev, QP_LINKS);
2341
2342 ntb_peer_spad_write(qp->ndev, PIDX, QP_LINKS, val & ~BIT(qp->qp_num));
2343
2344 if (qp->link_is_up)
2345 ntb_send_link_down(qp);
2346 else
2347 cancel_delayed_work_sync(&qp->link_work);
2348 }
2349 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2350
2351 /**
2352 * ntb_transport_link_query - Query transport link state
2353 * @qp: NTB transport layer queue to be queried
2354 *
2355 * Query connectivity to the remote system of the NTB transport queue
2356 *
2357 * RETURNS: true for link up or false for link down
2358 */
ntb_transport_link_query(struct ntb_transport_qp * qp)2359 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2360 {
2361 if (!qp)
2362 return false;
2363
2364 return qp->link_is_up;
2365 }
2366 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2367
2368 /**
2369 * ntb_transport_qp_num - Query the qp number
2370 * @qp: NTB transport layer queue to be queried
2371 *
2372 * Query qp number of the NTB transport queue
2373 *
2374 * RETURNS: a zero based number specifying the qp number
2375 */
ntb_transport_qp_num(struct ntb_transport_qp * qp)2376 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2377 {
2378 if (!qp)
2379 return 0;
2380
2381 return qp->qp_num;
2382 }
2383 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2384
2385 /**
2386 * ntb_transport_max_size - Query the max payload size of a qp
2387 * @qp: NTB transport layer queue to be queried
2388 *
2389 * Query the maximum payload size permissible on the given qp
2390 *
2391 * RETURNS: the max payload size of a qp
2392 */
ntb_transport_max_size(struct ntb_transport_qp * qp)2393 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2394 {
2395 unsigned int max_size;
2396 unsigned int copy_align;
2397 struct dma_chan *rx_chan, *tx_chan;
2398
2399 if (!qp)
2400 return 0;
2401
2402 rx_chan = qp->rx_dma_chan;
2403 tx_chan = qp->tx_dma_chan;
2404
2405 copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2406 tx_chan ? tx_chan->device->copy_align : 0);
2407
2408 /* If DMA engine usage is possible, try to find the max size for that */
2409 max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2410 max_size = round_down(max_size, 1 << copy_align);
2411
2412 return max_size;
2413 }
2414 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2415
ntb_transport_tx_free_entry(struct ntb_transport_qp * qp)2416 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2417 {
2418 unsigned int head = qp->tx_index;
2419 unsigned int tail = qp->remote_rx_info->entry;
2420
2421 return tail > head ? tail - head : qp->tx_max_entry + tail - head;
2422 }
2423 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2424
ntb_transport_doorbell_callback(void * data,int vector)2425 static void ntb_transport_doorbell_callback(void *data, int vector)
2426 {
2427 struct ntb_transport_ctx *nt = data;
2428 struct ntb_transport_qp *qp;
2429 u64 db_bits;
2430 unsigned int qp_num;
2431
2432 if (ntb_db_read(nt->ndev) & nt->msi_db_mask) {
2433 ntb_transport_msi_peer_desc_changed(nt);
2434 ntb_db_clear(nt->ndev, nt->msi_db_mask);
2435 }
2436
2437 db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2438 ntb_db_vector_mask(nt->ndev, vector));
2439
2440 while (db_bits) {
2441 qp_num = __ffs(db_bits);
2442 qp = &nt->qp_vec[qp_num];
2443
2444 if (qp->active)
2445 tasklet_schedule(&qp->rxc_db_work);
2446
2447 db_bits &= ~BIT_ULL(qp_num);
2448 }
2449 }
2450
2451 static const struct ntb_ctx_ops ntb_transport_ops = {
2452 .link_event = ntb_transport_event_callback,
2453 .db_event = ntb_transport_doorbell_callback,
2454 };
2455
2456 static struct ntb_client ntb_transport_client = {
2457 .ops = {
2458 .probe = ntb_transport_probe,
2459 .remove = ntb_transport_free,
2460 },
2461 };
2462
ntb_transport_init(void)2463 static int __init ntb_transport_init(void)
2464 {
2465 int rc;
2466
2467 pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2468
2469 if (debugfs_initialized())
2470 nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2471
2472 rc = bus_register(&ntb_transport_bus);
2473 if (rc)
2474 goto err_bus;
2475
2476 rc = ntb_register_client(&ntb_transport_client);
2477 if (rc)
2478 goto err_client;
2479
2480 return 0;
2481
2482 err_client:
2483 bus_unregister(&ntb_transport_bus);
2484 err_bus:
2485 debugfs_remove_recursive(nt_debugfs_dir);
2486 return rc;
2487 }
2488 module_init(ntb_transport_init);
2489
ntb_transport_exit(void)2490 static void __exit ntb_transport_exit(void)
2491 {
2492 ntb_unregister_client(&ntb_transport_client);
2493 bus_unregister(&ntb_transport_bus);
2494 debugfs_remove_recursive(nt_debugfs_dir);
2495 }
2496 module_exit(ntb_transport_exit);
2497