1 /*
2 * Copyright 2012 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #include "priv.h"
25 #include "chan.h"
26 #include "head.h"
27 #include "ior.h"
28 #include "outp.h"
29
30 #include <core/client.h>
31 #include <core/ramht.h>
32 #include <subdev/bios.h>
33 #include <subdev/bios/disp.h>
34 #include <subdev/bios/init.h>
35 #include <subdev/bios/pll.h>
36 #include <subdev/devinit.h>
37 #include <subdev/i2c.h>
38 #include <subdev/mmu.h>
39 #include <subdev/timer.h>
40
41 #include <nvif/class.h>
42 #include <nvif/unpack.h>
43
44 static void
nv50_pior_clock(struct nvkm_ior * pior)45 nv50_pior_clock(struct nvkm_ior *pior)
46 {
47 struct nvkm_device *device = pior->disp->engine.subdev.device;
48 const u32 poff = nv50_ior_base(pior);
49
50 nvkm_mask(device, 0x614380 + poff, 0x00000707, 0x00000001);
51 }
52
53 static int
nv50_pior_dp_links(struct nvkm_ior * pior,struct nvkm_i2c_aux * aux)54 nv50_pior_dp_links(struct nvkm_ior *pior, struct nvkm_i2c_aux *aux)
55 {
56 int ret = nvkm_i2c_aux_lnk_ctl(aux, pior->dp.nr, pior->dp.bw, pior->dp.ef);
57 if (ret)
58 return ret;
59
60 return 1;
61 }
62
63 static const struct nvkm_ior_func_dp
64 nv50_pior_dp = {
65 .links = nv50_pior_dp_links,
66 };
67
68 static void
nv50_pior_power_wait(struct nvkm_device * device,u32 poff)69 nv50_pior_power_wait(struct nvkm_device *device, u32 poff)
70 {
71 nvkm_msec(device, 2000,
72 if (!(nvkm_rd32(device, 0x61e004 + poff) & 0x80000000))
73 break;
74 );
75 }
76
77 static void
nv50_pior_power(struct nvkm_ior * pior,bool normal,bool pu,bool data,bool vsync,bool hsync)78 nv50_pior_power(struct nvkm_ior *pior, bool normal, bool pu, bool data, bool vsync, bool hsync)
79 {
80 struct nvkm_device *device = pior->disp->engine.subdev.device;
81 const u32 poff = nv50_ior_base(pior);
82 const u32 shift = normal ? 0 : 16;
83 const u32 state = 0x80000000 | (0x00000001 * !!pu) << shift;
84 const u32 field = 0x80000000 | (0x00000101 << shift);
85
86 nv50_pior_power_wait(device, poff);
87 nvkm_mask(device, 0x61e004 + poff, field, state);
88 nv50_pior_power_wait(device, poff);
89 }
90
91 void
nv50_pior_depth(struct nvkm_ior * ior,struct nvkm_ior_state * state,u32 ctrl)92 nv50_pior_depth(struct nvkm_ior *ior, struct nvkm_ior_state *state, u32 ctrl)
93 {
94 /* GF119 moves this information to per-head methods, which is
95 * a lot more convenient, and where our shared code expect it.
96 */
97 if (state->head && state == &ior->asy) {
98 struct nvkm_head *head = nvkm_head_find(ior->disp, __ffs(state->head));
99
100 if (!WARN_ON(!head)) {
101 struct nvkm_head_state *state = &head->asy;
102 switch ((ctrl & 0x000f0000) >> 16) {
103 case 6: state->or.depth = 30; break;
104 case 5: state->or.depth = 24; break;
105 case 2: state->or.depth = 18; break;
106 case 0: state->or.depth = 18; break; /*XXX*/
107 default:
108 state->or.depth = 18;
109 WARN_ON(1);
110 break;
111 }
112 }
113 }
114 }
115
116 static void
nv50_pior_state(struct nvkm_ior * pior,struct nvkm_ior_state * state)117 nv50_pior_state(struct nvkm_ior *pior, struct nvkm_ior_state *state)
118 {
119 struct nvkm_device *device = pior->disp->engine.subdev.device;
120 const u32 coff = pior->id * 8 + (state == &pior->arm) * 4;
121 u32 ctrl = nvkm_rd32(device, 0x610b80 + coff);
122
123 state->proto_evo = (ctrl & 0x00000f00) >> 8;
124 state->rgdiv = 1;
125 switch (state->proto_evo) {
126 case 0: state->proto = TMDS; break;
127 default:
128 state->proto = UNKNOWN;
129 break;
130 }
131
132 state->head = ctrl & 0x00000003;
133 nv50_pior_depth(pior, state, ctrl);
134 }
135
136 static const struct nvkm_ior_func
137 nv50_pior = {
138 .state = nv50_pior_state,
139 .power = nv50_pior_power,
140 .clock = nv50_pior_clock,
141 .dp = &nv50_pior_dp,
142 };
143
144 int
nv50_pior_new(struct nvkm_disp * disp,int id)145 nv50_pior_new(struct nvkm_disp *disp, int id)
146 {
147 return nvkm_ior_new_(&nv50_pior, disp, PIOR, id, false);
148 }
149
150 int
nv50_pior_cnt(struct nvkm_disp * disp,unsigned long * pmask)151 nv50_pior_cnt(struct nvkm_disp *disp, unsigned long *pmask)
152 {
153 struct nvkm_device *device = disp->engine.subdev.device;
154
155 *pmask = (nvkm_rd32(device, 0x610184) & 0x70000000) >> 28;
156 return 3;
157 }
158
159 void
nv50_sor_clock(struct nvkm_ior * sor)160 nv50_sor_clock(struct nvkm_ior *sor)
161 {
162 struct nvkm_device *device = sor->disp->engine.subdev.device;
163 const int div = sor->asy.link == 3;
164 const u32 soff = nv50_ior_base(sor);
165
166 nvkm_mask(device, 0x614300 + soff, 0x00000707, (div << 8) | div);
167 }
168
169 static void
nv50_sor_power_wait(struct nvkm_device * device,u32 soff)170 nv50_sor_power_wait(struct nvkm_device *device, u32 soff)
171 {
172 nvkm_msec(device, 2000,
173 if (!(nvkm_rd32(device, 0x61c004 + soff) & 0x80000000))
174 break;
175 );
176 }
177
178 void
nv50_sor_power(struct nvkm_ior * sor,bool normal,bool pu,bool data,bool vsync,bool hsync)179 nv50_sor_power(struct nvkm_ior *sor, bool normal, bool pu, bool data, bool vsync, bool hsync)
180 {
181 struct nvkm_device *device = sor->disp->engine.subdev.device;
182 const u32 soff = nv50_ior_base(sor);
183 const u32 shift = normal ? 0 : 16;
184 const u32 state = 0x80000000 | (0x00000001 * !!pu) << shift;
185 const u32 field = 0x80000000 | (0x00000001 << shift);
186
187 nv50_sor_power_wait(device, soff);
188 nvkm_mask(device, 0x61c004 + soff, field, state);
189 nv50_sor_power_wait(device, soff);
190
191 nvkm_msec(device, 2000,
192 if (!(nvkm_rd32(device, 0x61c030 + soff) & 0x10000000))
193 break;
194 );
195 }
196
197 void
nv50_sor_state(struct nvkm_ior * sor,struct nvkm_ior_state * state)198 nv50_sor_state(struct nvkm_ior *sor, struct nvkm_ior_state *state)
199 {
200 struct nvkm_device *device = sor->disp->engine.subdev.device;
201 const u32 coff = sor->id * 8 + (state == &sor->arm) * 4;
202 u32 ctrl = nvkm_rd32(device, 0x610b70 + coff);
203
204 state->proto_evo = (ctrl & 0x00000f00) >> 8;
205 switch (state->proto_evo) {
206 case 0: state->proto = LVDS; state->link = 1; break;
207 case 1: state->proto = TMDS; state->link = 1; break;
208 case 2: state->proto = TMDS; state->link = 2; break;
209 case 5: state->proto = TMDS; state->link = 3; break;
210 default:
211 state->proto = UNKNOWN;
212 break;
213 }
214
215 state->head = ctrl & 0x00000003;
216 }
217
218 static const struct nvkm_ior_func
219 nv50_sor = {
220 .state = nv50_sor_state,
221 .power = nv50_sor_power,
222 .clock = nv50_sor_clock,
223 };
224
225 static int
nv50_sor_new(struct nvkm_disp * disp,int id)226 nv50_sor_new(struct nvkm_disp *disp, int id)
227 {
228 return nvkm_ior_new_(&nv50_sor, disp, SOR, id, false);
229 }
230
231 int
nv50_sor_cnt(struct nvkm_disp * disp,unsigned long * pmask)232 nv50_sor_cnt(struct nvkm_disp *disp, unsigned long *pmask)
233 {
234 struct nvkm_device *device = disp->engine.subdev.device;
235
236 *pmask = (nvkm_rd32(device, 0x610184) & 0x03000000) >> 24;
237 return 2;
238 }
239
240 static void
nv50_dac_clock(struct nvkm_ior * dac)241 nv50_dac_clock(struct nvkm_ior *dac)
242 {
243 struct nvkm_device *device = dac->disp->engine.subdev.device;
244 const u32 doff = nv50_ior_base(dac);
245
246 nvkm_mask(device, 0x614280 + doff, 0x07070707, 0x00000000);
247 }
248
249 int
nv50_dac_sense(struct nvkm_ior * dac,u32 loadval)250 nv50_dac_sense(struct nvkm_ior *dac, u32 loadval)
251 {
252 struct nvkm_device *device = dac->disp->engine.subdev.device;
253 const u32 doff = nv50_ior_base(dac);
254
255 dac->func->power(dac, false, true, false, false, false);
256
257 nvkm_wr32(device, 0x61a00c + doff, 0x00100000 | loadval);
258 mdelay(9);
259 udelay(500);
260 loadval = nvkm_mask(device, 0x61a00c + doff, 0xffffffff, 0x00000000);
261
262 dac->func->power(dac, false, false, false, false, false);
263 if (!(loadval & 0x80000000))
264 return -ETIMEDOUT;
265
266 return (loadval & 0x38000000) >> 27;
267 }
268
269 static void
nv50_dac_power_wait(struct nvkm_device * device,const u32 doff)270 nv50_dac_power_wait(struct nvkm_device *device, const u32 doff)
271 {
272 nvkm_msec(device, 2000,
273 if (!(nvkm_rd32(device, 0x61a004 + doff) & 0x80000000))
274 break;
275 );
276 }
277
278 void
nv50_dac_power(struct nvkm_ior * dac,bool normal,bool pu,bool data,bool vsync,bool hsync)279 nv50_dac_power(struct nvkm_ior *dac, bool normal, bool pu, bool data, bool vsync, bool hsync)
280 {
281 struct nvkm_device *device = dac->disp->engine.subdev.device;
282 const u32 doff = nv50_ior_base(dac);
283 const u32 shift = normal ? 0 : 16;
284 const u32 state = 0x80000000 | (0x00000040 * ! pu |
285 0x00000010 * ! data |
286 0x00000004 * ! vsync |
287 0x00000001 * ! hsync) << shift;
288 const u32 field = 0xc0000000 | (0x00000055 << shift);
289
290 nv50_dac_power_wait(device, doff);
291 nvkm_mask(device, 0x61a004 + doff, field, state);
292 nv50_dac_power_wait(device, doff);
293 }
294
295 static void
nv50_dac_state(struct nvkm_ior * dac,struct nvkm_ior_state * state)296 nv50_dac_state(struct nvkm_ior *dac, struct nvkm_ior_state *state)
297 {
298 struct nvkm_device *device = dac->disp->engine.subdev.device;
299 const u32 coff = dac->id * 8 + (state == &dac->arm) * 4;
300 u32 ctrl = nvkm_rd32(device, 0x610b58 + coff);
301
302 state->proto_evo = (ctrl & 0x00000f00) >> 8;
303 switch (state->proto_evo) {
304 case 0: state->proto = CRT; break;
305 default:
306 state->proto = UNKNOWN;
307 break;
308 }
309
310 state->head = ctrl & 0x00000003;
311 }
312
313 static const struct nvkm_ior_func
314 nv50_dac = {
315 .state = nv50_dac_state,
316 .power = nv50_dac_power,
317 .sense = nv50_dac_sense,
318 .clock = nv50_dac_clock,
319 };
320
321 int
nv50_dac_new(struct nvkm_disp * disp,int id)322 nv50_dac_new(struct nvkm_disp *disp, int id)
323 {
324 return nvkm_ior_new_(&nv50_dac, disp, DAC, id, false);
325 }
326
327 int
nv50_dac_cnt(struct nvkm_disp * disp,unsigned long * pmask)328 nv50_dac_cnt(struct nvkm_disp *disp, unsigned long *pmask)
329 {
330 struct nvkm_device *device = disp->engine.subdev.device;
331
332 *pmask = (nvkm_rd32(device, 0x610184) & 0x00700000) >> 20;
333 return 3;
334 }
335
336 static void
nv50_head_vblank_put(struct nvkm_head * head)337 nv50_head_vblank_put(struct nvkm_head *head)
338 {
339 struct nvkm_device *device = head->disp->engine.subdev.device;
340
341 nvkm_mask(device, 0x61002c, (4 << head->id), 0);
342 }
343
344 static void
nv50_head_vblank_get(struct nvkm_head * head)345 nv50_head_vblank_get(struct nvkm_head *head)
346 {
347 struct nvkm_device *device = head->disp->engine.subdev.device;
348
349 nvkm_mask(device, 0x61002c, (4 << head->id), (4 << head->id));
350 }
351
352 static void
nv50_head_rgclk(struct nvkm_head * head,int div)353 nv50_head_rgclk(struct nvkm_head *head, int div)
354 {
355 struct nvkm_device *device = head->disp->engine.subdev.device;
356
357 nvkm_mask(device, 0x614200 + (head->id * 0x800), 0x0000000f, div);
358 }
359
360 void
nv50_head_rgpos(struct nvkm_head * head,u16 * hline,u16 * vline)361 nv50_head_rgpos(struct nvkm_head *head, u16 *hline, u16 *vline)
362 {
363 struct nvkm_device *device = head->disp->engine.subdev.device;
364 const u32 hoff = head->id * 0x800;
365
366 /* vline read locks hline. */
367 *vline = nvkm_rd32(device, 0x616340 + hoff) & 0x0000ffff;
368 *hline = nvkm_rd32(device, 0x616344 + hoff) & 0x0000ffff;
369 }
370
371 static void
nv50_head_state(struct nvkm_head * head,struct nvkm_head_state * state)372 nv50_head_state(struct nvkm_head *head, struct nvkm_head_state *state)
373 {
374 struct nvkm_device *device = head->disp->engine.subdev.device;
375 const u32 hoff = head->id * 0x540 + (state == &head->arm) * 4;
376 u32 data;
377
378 data = nvkm_rd32(device, 0x610ae8 + hoff);
379 state->vblanke = (data & 0xffff0000) >> 16;
380 state->hblanke = (data & 0x0000ffff);
381 data = nvkm_rd32(device, 0x610af0 + hoff);
382 state->vblanks = (data & 0xffff0000) >> 16;
383 state->hblanks = (data & 0x0000ffff);
384 data = nvkm_rd32(device, 0x610af8 + hoff);
385 state->vtotal = (data & 0xffff0000) >> 16;
386 state->htotal = (data & 0x0000ffff);
387 data = nvkm_rd32(device, 0x610b00 + hoff);
388 state->vsynce = (data & 0xffff0000) >> 16;
389 state->hsynce = (data & 0x0000ffff);
390 state->hz = (nvkm_rd32(device, 0x610ad0 + hoff) & 0x003fffff) * 1000;
391 }
392
393 static const struct nvkm_head_func
394 nv50_head = {
395 .state = nv50_head_state,
396 .rgpos = nv50_head_rgpos,
397 .rgclk = nv50_head_rgclk,
398 .vblank_get = nv50_head_vblank_get,
399 .vblank_put = nv50_head_vblank_put,
400 };
401
402 int
nv50_head_new(struct nvkm_disp * disp,int id)403 nv50_head_new(struct nvkm_disp *disp, int id)
404 {
405 return nvkm_head_new_(&nv50_head, disp, id);
406 }
407
408 int
nv50_head_cnt(struct nvkm_disp * disp,unsigned long * pmask)409 nv50_head_cnt(struct nvkm_disp *disp, unsigned long *pmask)
410 {
411 *pmask = 3;
412 return 2;
413 }
414
415
416 static void
nv50_disp_mthd_list(struct nvkm_disp * disp,int debug,u32 base,int c,const struct nvkm_disp_mthd_list * list,int inst)417 nv50_disp_mthd_list(struct nvkm_disp *disp, int debug, u32 base, int c,
418 const struct nvkm_disp_mthd_list *list, int inst)
419 {
420 struct nvkm_subdev *subdev = &disp->engine.subdev;
421 struct nvkm_device *device = subdev->device;
422 int i;
423
424 for (i = 0; list->data[i].mthd; i++) {
425 if (list->data[i].addr) {
426 u32 next = nvkm_rd32(device, list->data[i].addr + base + 0);
427 u32 prev = nvkm_rd32(device, list->data[i].addr + base + c);
428 u32 mthd = list->data[i].mthd + (list->mthd * inst);
429 const char *name = list->data[i].name;
430 char mods[16];
431
432 if (prev != next)
433 snprintf(mods, sizeof(mods), "-> %08x", next);
434 else
435 snprintf(mods, sizeof(mods), "%13c", ' ');
436
437 nvkm_printk_(subdev, debug, info,
438 "\t%04x: %08x %s%s%s\n",
439 mthd, prev, mods, name ? " // " : "",
440 name ? name : "");
441 }
442 }
443 }
444
445 void
nv50_disp_chan_mthd(struct nvkm_disp_chan * chan,int debug)446 nv50_disp_chan_mthd(struct nvkm_disp_chan *chan, int debug)
447 {
448 struct nvkm_disp *disp = chan->disp;
449 struct nvkm_subdev *subdev = &disp->engine.subdev;
450 const struct nvkm_disp_chan_mthd *mthd = chan->mthd;
451 const struct nvkm_disp_mthd_list *list;
452 int i, j;
453
454 if (debug > subdev->debug)
455 return;
456 if (!mthd)
457 return;
458
459 for (i = 0; (list = mthd->data[i].mthd) != NULL; i++) {
460 u32 base = chan->head * mthd->addr;
461 for (j = 0; j < mthd->data[i].nr; j++, base += list->addr) {
462 const char *cname = mthd->name;
463 const char *sname = "";
464 char cname_[16], sname_[16];
465
466 if (mthd->addr) {
467 snprintf(cname_, sizeof(cname_), "%s %d",
468 mthd->name, chan->chid.user);
469 cname = cname_;
470 }
471
472 if (mthd->data[i].nr > 1) {
473 snprintf(sname_, sizeof(sname_), " - %s %d",
474 mthd->data[i].name, j);
475 sname = sname_;
476 }
477
478 nvkm_printk_(subdev, debug, info, "%s%s:\n", cname, sname);
479 nv50_disp_mthd_list(disp, debug, base, mthd->prev,
480 list, j);
481 }
482 }
483 }
484
485 static void
nv50_disp_chan_uevent_fini(struct nvkm_event * event,int type,int index)486 nv50_disp_chan_uevent_fini(struct nvkm_event *event, int type, int index)
487 {
488 struct nvkm_disp *disp = container_of(event, typeof(*disp), uevent);
489 struct nvkm_device *device = disp->engine.subdev.device;
490 nvkm_mask(device, 0x610028, 0x00000001 << index, 0x00000000 << index);
491 nvkm_wr32(device, 0x610020, 0x00000001 << index);
492 }
493
494 static void
nv50_disp_chan_uevent_init(struct nvkm_event * event,int types,int index)495 nv50_disp_chan_uevent_init(struct nvkm_event *event, int types, int index)
496 {
497 struct nvkm_disp *disp = container_of(event, typeof(*disp), uevent);
498 struct nvkm_device *device = disp->engine.subdev.device;
499 nvkm_wr32(device, 0x610020, 0x00000001 << index);
500 nvkm_mask(device, 0x610028, 0x00000001 << index, 0x00000001 << index);
501 }
502
503 void
nv50_disp_chan_uevent_send(struct nvkm_disp * disp,int chid)504 nv50_disp_chan_uevent_send(struct nvkm_disp *disp, int chid)
505 {
506 nvkm_event_ntfy(&disp->uevent, chid, NVKM_DISP_EVENT_CHAN_AWAKEN);
507 }
508
509 const struct nvkm_event_func
510 nv50_disp_chan_uevent = {
511 .init = nv50_disp_chan_uevent_init,
512 .fini = nv50_disp_chan_uevent_fini,
513 };
514
515 u64
nv50_disp_chan_user(struct nvkm_disp_chan * chan,u64 * psize)516 nv50_disp_chan_user(struct nvkm_disp_chan *chan, u64 *psize)
517 {
518 *psize = 0x1000;
519 return 0x640000 + (chan->chid.user * 0x1000);
520 }
521
522 void
nv50_disp_chan_intr(struct nvkm_disp_chan * chan,bool en)523 nv50_disp_chan_intr(struct nvkm_disp_chan *chan, bool en)
524 {
525 struct nvkm_device *device = chan->disp->engine.subdev.device;
526 const u32 mask = 0x00010001 << chan->chid.user;
527 const u32 data = en ? 0x00010000 << chan->chid.user : 0x00000000;
528 nvkm_mask(device, 0x610028, mask, data);
529 }
530
531 static void
nv50_disp_pioc_fini(struct nvkm_disp_chan * chan)532 nv50_disp_pioc_fini(struct nvkm_disp_chan *chan)
533 {
534 struct nvkm_disp *disp = chan->disp;
535 struct nvkm_subdev *subdev = &disp->engine.subdev;
536 struct nvkm_device *device = subdev->device;
537 int ctrl = chan->chid.ctrl;
538 int user = chan->chid.user;
539
540 nvkm_mask(device, 0x610200 + (ctrl * 0x10), 0x00000001, 0x00000000);
541 if (nvkm_msec(device, 2000,
542 if (!(nvkm_rd32(device, 0x610200 + (ctrl * 0x10)) & 0x00030000))
543 break;
544 ) < 0) {
545 nvkm_error(subdev, "ch %d timeout: %08x\n", user,
546 nvkm_rd32(device, 0x610200 + (ctrl * 0x10)));
547 }
548 }
549
550 static int
nv50_disp_pioc_init(struct nvkm_disp_chan * chan)551 nv50_disp_pioc_init(struct nvkm_disp_chan *chan)
552 {
553 struct nvkm_disp *disp = chan->disp;
554 struct nvkm_subdev *subdev = &disp->engine.subdev;
555 struct nvkm_device *device = subdev->device;
556 int ctrl = chan->chid.ctrl;
557 int user = chan->chid.user;
558
559 nvkm_wr32(device, 0x610200 + (ctrl * 0x10), 0x00002000);
560 if (nvkm_msec(device, 2000,
561 if (!(nvkm_rd32(device, 0x610200 + (ctrl * 0x10)) & 0x00030000))
562 break;
563 ) < 0) {
564 nvkm_error(subdev, "ch %d timeout0: %08x\n", user,
565 nvkm_rd32(device, 0x610200 + (ctrl * 0x10)));
566 return -EBUSY;
567 }
568
569 nvkm_wr32(device, 0x610200 + (ctrl * 0x10), 0x00000001);
570 if (nvkm_msec(device, 2000,
571 u32 tmp = nvkm_rd32(device, 0x610200 + (ctrl * 0x10));
572 if ((tmp & 0x00030000) == 0x00010000)
573 break;
574 ) < 0) {
575 nvkm_error(subdev, "ch %d timeout1: %08x\n", user,
576 nvkm_rd32(device, 0x610200 + (ctrl * 0x10)));
577 return -EBUSY;
578 }
579
580 return 0;
581 }
582
583 const struct nvkm_disp_chan_func
584 nv50_disp_pioc_func = {
585 .init = nv50_disp_pioc_init,
586 .fini = nv50_disp_pioc_fini,
587 .intr = nv50_disp_chan_intr,
588 .user = nv50_disp_chan_user,
589 };
590
591 int
nv50_disp_dmac_bind(struct nvkm_disp_chan * chan,struct nvkm_object * object,u32 handle)592 nv50_disp_dmac_bind(struct nvkm_disp_chan *chan, struct nvkm_object *object, u32 handle)
593 {
594 return nvkm_ramht_insert(chan->disp->ramht, object, chan->chid.user, -10, handle,
595 chan->chid.user << 28 | chan->chid.user);
596 }
597
598 static void
nv50_disp_dmac_fini(struct nvkm_disp_chan * chan)599 nv50_disp_dmac_fini(struct nvkm_disp_chan *chan)
600 {
601 struct nvkm_subdev *subdev = &chan->disp->engine.subdev;
602 struct nvkm_device *device = subdev->device;
603 int ctrl = chan->chid.ctrl;
604 int user = chan->chid.user;
605
606 /* deactivate channel */
607 nvkm_mask(device, 0x610200 + (ctrl * 0x0010), 0x00001010, 0x00001000);
608 nvkm_mask(device, 0x610200 + (ctrl * 0x0010), 0x00000003, 0x00000000);
609 if (nvkm_msec(device, 2000,
610 if (!(nvkm_rd32(device, 0x610200 + (ctrl * 0x10)) & 0x001e0000))
611 break;
612 ) < 0) {
613 nvkm_error(subdev, "ch %d fini timeout, %08x\n", user,
614 nvkm_rd32(device, 0x610200 + (ctrl * 0x10)));
615 }
616
617 chan->suspend_put = nvkm_rd32(device, 0x640000 + (ctrl * 0x1000));
618 }
619
620 static int
nv50_disp_dmac_init(struct nvkm_disp_chan * chan)621 nv50_disp_dmac_init(struct nvkm_disp_chan *chan)
622 {
623 struct nvkm_subdev *subdev = &chan->disp->engine.subdev;
624 struct nvkm_device *device = subdev->device;
625 int ctrl = chan->chid.ctrl;
626 int user = chan->chid.user;
627
628 /* initialise channel for dma command submission */
629 nvkm_wr32(device, 0x610204 + (ctrl * 0x0010), chan->push);
630 nvkm_wr32(device, 0x610208 + (ctrl * 0x0010), 0x00010000);
631 nvkm_wr32(device, 0x61020c + (ctrl * 0x0010), ctrl);
632 nvkm_mask(device, 0x610200 + (ctrl * 0x0010), 0x00000010, 0x00000010);
633 nvkm_wr32(device, 0x640000 + (ctrl * 0x1000), chan->suspend_put);
634 nvkm_wr32(device, 0x610200 + (ctrl * 0x0010), 0x00000013);
635
636 /* wait for it to go inactive */
637 if (nvkm_msec(device, 2000,
638 if (!(nvkm_rd32(device, 0x610200 + (ctrl * 0x10)) & 0x80000000))
639 break;
640 ) < 0) {
641 nvkm_error(subdev, "ch %d init timeout, %08x\n", user,
642 nvkm_rd32(device, 0x610200 + (ctrl * 0x10)));
643 return -EBUSY;
644 }
645
646 return 0;
647 }
648
649 int
nv50_disp_dmac_push(struct nvkm_disp_chan * chan,u64 object)650 nv50_disp_dmac_push(struct nvkm_disp_chan *chan, u64 object)
651 {
652 chan->memory = nvkm_umem_search(chan->object.client, object);
653 if (IS_ERR(chan->memory))
654 return PTR_ERR(chan->memory);
655
656 if (nvkm_memory_size(chan->memory) < 0x1000)
657 return -EINVAL;
658
659 switch (nvkm_memory_target(chan->memory)) {
660 case NVKM_MEM_TARGET_VRAM: chan->push = 0x00000001; break;
661 case NVKM_MEM_TARGET_NCOH: chan->push = 0x00000002; break;
662 case NVKM_MEM_TARGET_HOST: chan->push = 0x00000003; break;
663 default:
664 return -EINVAL;
665 }
666
667 chan->push |= nvkm_memory_addr(chan->memory) >> 8;
668 return 0;
669 }
670
671 const struct nvkm_disp_chan_func
672 nv50_disp_dmac_func = {
673 .push = nv50_disp_dmac_push,
674 .init = nv50_disp_dmac_init,
675 .fini = nv50_disp_dmac_fini,
676 .intr = nv50_disp_chan_intr,
677 .user = nv50_disp_chan_user,
678 .bind = nv50_disp_dmac_bind,
679 };
680
681 const struct nvkm_disp_chan_user
682 nv50_disp_curs = {
683 .func = &nv50_disp_pioc_func,
684 .ctrl = 7,
685 .user = 7,
686 };
687
688 const struct nvkm_disp_chan_user
689 nv50_disp_oimm = {
690 .func = &nv50_disp_pioc_func,
691 .ctrl = 5,
692 .user = 5,
693 };
694
695 static const struct nvkm_disp_mthd_list
696 nv50_disp_ovly_mthd_base = {
697 .mthd = 0x0000,
698 .addr = 0x000000,
699 .data = {
700 { 0x0080, 0x000000 },
701 { 0x0084, 0x0009a0 },
702 { 0x0088, 0x0009c0 },
703 { 0x008c, 0x0009c8 },
704 { 0x0090, 0x6109b4 },
705 { 0x0094, 0x610970 },
706 { 0x00a0, 0x610998 },
707 { 0x00a4, 0x610964 },
708 { 0x00c0, 0x610958 },
709 { 0x00e0, 0x6109a8 },
710 { 0x00e4, 0x6109d0 },
711 { 0x00e8, 0x6109d8 },
712 { 0x0100, 0x61094c },
713 { 0x0104, 0x610984 },
714 { 0x0108, 0x61098c },
715 { 0x0800, 0x6109f8 },
716 { 0x0808, 0x610a08 },
717 { 0x080c, 0x610a10 },
718 { 0x0810, 0x610a00 },
719 {}
720 }
721 };
722
723 static const struct nvkm_disp_chan_mthd
724 nv50_disp_ovly_mthd = {
725 .name = "Overlay",
726 .addr = 0x000540,
727 .prev = 0x000004,
728 .data = {
729 { "Global", 1, &nv50_disp_ovly_mthd_base },
730 {}
731 }
732 };
733
734 static const struct nvkm_disp_chan_user
735 nv50_disp_ovly = {
736 .func = &nv50_disp_dmac_func,
737 .ctrl = 3,
738 .user = 3,
739 .mthd = &nv50_disp_ovly_mthd,
740 };
741
742 static const struct nvkm_disp_mthd_list
743 nv50_disp_base_mthd_base = {
744 .mthd = 0x0000,
745 .addr = 0x000000,
746 .data = {
747 { 0x0080, 0x000000 },
748 { 0x0084, 0x0008c4 },
749 { 0x0088, 0x0008d0 },
750 { 0x008c, 0x0008dc },
751 { 0x0090, 0x0008e4 },
752 { 0x0094, 0x610884 },
753 { 0x00a0, 0x6108a0 },
754 { 0x00a4, 0x610878 },
755 { 0x00c0, 0x61086c },
756 { 0x00e0, 0x610858 },
757 { 0x00e4, 0x610860 },
758 { 0x00e8, 0x6108ac },
759 { 0x00ec, 0x6108b4 },
760 { 0x0100, 0x610894 },
761 { 0x0110, 0x6108bc },
762 { 0x0114, 0x61088c },
763 {}
764 }
765 };
766
767 const struct nvkm_disp_mthd_list
768 nv50_disp_base_mthd_image = {
769 .mthd = 0x0400,
770 .addr = 0x000000,
771 .data = {
772 { 0x0800, 0x6108f0 },
773 { 0x0804, 0x6108fc },
774 { 0x0808, 0x61090c },
775 { 0x080c, 0x610914 },
776 { 0x0810, 0x610904 },
777 {}
778 }
779 };
780
781 static const struct nvkm_disp_chan_mthd
782 nv50_disp_base_mthd = {
783 .name = "Base",
784 .addr = 0x000540,
785 .prev = 0x000004,
786 .data = {
787 { "Global", 1, &nv50_disp_base_mthd_base },
788 { "Image", 2, &nv50_disp_base_mthd_image },
789 {}
790 }
791 };
792
793 static const struct nvkm_disp_chan_user
794 nv50_disp_base = {
795 .func = &nv50_disp_dmac_func,
796 .ctrl = 1,
797 .user = 1,
798 .mthd = &nv50_disp_base_mthd,
799 };
800
801 const struct nvkm_disp_mthd_list
802 nv50_disp_core_mthd_base = {
803 .mthd = 0x0000,
804 .addr = 0x000000,
805 .data = {
806 { 0x0080, 0x000000 },
807 { 0x0084, 0x610bb8 },
808 { 0x0088, 0x610b9c },
809 { 0x008c, 0x000000 },
810 {}
811 }
812 };
813
814 static const struct nvkm_disp_mthd_list
815 nv50_disp_core_mthd_dac = {
816 .mthd = 0x0080,
817 .addr = 0x000008,
818 .data = {
819 { 0x0400, 0x610b58 },
820 { 0x0404, 0x610bdc },
821 { 0x0420, 0x610828 },
822 {}
823 }
824 };
825
826 const struct nvkm_disp_mthd_list
827 nv50_disp_core_mthd_sor = {
828 .mthd = 0x0040,
829 .addr = 0x000008,
830 .data = {
831 { 0x0600, 0x610b70 },
832 {}
833 }
834 };
835
836 const struct nvkm_disp_mthd_list
837 nv50_disp_core_mthd_pior = {
838 .mthd = 0x0040,
839 .addr = 0x000008,
840 .data = {
841 { 0x0700, 0x610b80 },
842 {}
843 }
844 };
845
846 static const struct nvkm_disp_mthd_list
847 nv50_disp_core_mthd_head = {
848 .mthd = 0x0400,
849 .addr = 0x000540,
850 .data = {
851 { 0x0800, 0x610ad8 },
852 { 0x0804, 0x610ad0 },
853 { 0x0808, 0x610a48 },
854 { 0x080c, 0x610a78 },
855 { 0x0810, 0x610ac0 },
856 { 0x0814, 0x610af8 },
857 { 0x0818, 0x610b00 },
858 { 0x081c, 0x610ae8 },
859 { 0x0820, 0x610af0 },
860 { 0x0824, 0x610b08 },
861 { 0x0828, 0x610b10 },
862 { 0x082c, 0x610a68 },
863 { 0x0830, 0x610a60 },
864 { 0x0834, 0x000000 },
865 { 0x0838, 0x610a40 },
866 { 0x0840, 0x610a24 },
867 { 0x0844, 0x610a2c },
868 { 0x0848, 0x610aa8 },
869 { 0x084c, 0x610ab0 },
870 { 0x0860, 0x610a84 },
871 { 0x0864, 0x610a90 },
872 { 0x0868, 0x610b18 },
873 { 0x086c, 0x610b20 },
874 { 0x0870, 0x610ac8 },
875 { 0x0874, 0x610a38 },
876 { 0x0880, 0x610a58 },
877 { 0x0884, 0x610a9c },
878 { 0x08a0, 0x610a70 },
879 { 0x08a4, 0x610a50 },
880 { 0x08a8, 0x610ae0 },
881 { 0x08c0, 0x610b28 },
882 { 0x08c4, 0x610b30 },
883 { 0x08c8, 0x610b40 },
884 { 0x08d4, 0x610b38 },
885 { 0x08d8, 0x610b48 },
886 { 0x08dc, 0x610b50 },
887 { 0x0900, 0x610a18 },
888 { 0x0904, 0x610ab8 },
889 {}
890 }
891 };
892
893 static const struct nvkm_disp_chan_mthd
894 nv50_disp_core_mthd = {
895 .name = "Core",
896 .addr = 0x000000,
897 .prev = 0x000004,
898 .data = {
899 { "Global", 1, &nv50_disp_core_mthd_base },
900 { "DAC", 3, &nv50_disp_core_mthd_dac },
901 { "SOR", 2, &nv50_disp_core_mthd_sor },
902 { "PIOR", 3, &nv50_disp_core_mthd_pior },
903 { "HEAD", 2, &nv50_disp_core_mthd_head },
904 {}
905 }
906 };
907
908 static void
nv50_disp_core_fini(struct nvkm_disp_chan * chan)909 nv50_disp_core_fini(struct nvkm_disp_chan *chan)
910 {
911 struct nvkm_subdev *subdev = &chan->disp->engine.subdev;
912 struct nvkm_device *device = subdev->device;
913
914 /* deactivate channel */
915 nvkm_mask(device, 0x610200, 0x00000010, 0x00000000);
916 nvkm_mask(device, 0x610200, 0x00000003, 0x00000000);
917 if (nvkm_msec(device, 2000,
918 if (!(nvkm_rd32(device, 0x610200) & 0x001e0000))
919 break;
920 ) < 0) {
921 nvkm_error(subdev, "core fini: %08x\n",
922 nvkm_rd32(device, 0x610200));
923 }
924
925 chan->suspend_put = nvkm_rd32(device, 0x640000);
926 }
927
928 static int
nv50_disp_core_init(struct nvkm_disp_chan * chan)929 nv50_disp_core_init(struct nvkm_disp_chan *chan)
930 {
931 struct nvkm_subdev *subdev = &chan->disp->engine.subdev;
932 struct nvkm_device *device = subdev->device;
933
934 /* attempt to unstick channel from some unknown state */
935 if ((nvkm_rd32(device, 0x610200) & 0x009f0000) == 0x00020000)
936 nvkm_mask(device, 0x610200, 0x00800000, 0x00800000);
937 if ((nvkm_rd32(device, 0x610200) & 0x003f0000) == 0x00030000)
938 nvkm_mask(device, 0x610200, 0x00600000, 0x00600000);
939
940 /* initialise channel for dma command submission */
941 nvkm_wr32(device, 0x610204, chan->push);
942 nvkm_wr32(device, 0x610208, 0x00010000);
943 nvkm_wr32(device, 0x61020c, 0x00000000);
944 nvkm_mask(device, 0x610200, 0x00000010, 0x00000010);
945 nvkm_wr32(device, 0x640000, chan->suspend_put);
946 nvkm_wr32(device, 0x610200, 0x01000013);
947
948 /* wait for it to go inactive */
949 if (nvkm_msec(device, 2000,
950 if (!(nvkm_rd32(device, 0x610200) & 0x80000000))
951 break;
952 ) < 0) {
953 nvkm_error(subdev, "core init: %08x\n",
954 nvkm_rd32(device, 0x610200));
955 return -EBUSY;
956 }
957
958 return 0;
959 }
960
961 const struct nvkm_disp_chan_func
962 nv50_disp_core_func = {
963 .push = nv50_disp_dmac_push,
964 .init = nv50_disp_core_init,
965 .fini = nv50_disp_core_fini,
966 .intr = nv50_disp_chan_intr,
967 .user = nv50_disp_chan_user,
968 .bind = nv50_disp_dmac_bind,
969 };
970
971 static const struct nvkm_disp_chan_user
972 nv50_disp_core = {
973 .func = &nv50_disp_core_func,
974 .ctrl = 0,
975 .user = 0,
976 .mthd = &nv50_disp_core_mthd,
977 };
978
979 static u32
nv50_disp_super_iedt(struct nvkm_head * head,struct nvkm_outp * outp,u8 * ver,u8 * hdr,u8 * cnt,u8 * len,struct nvbios_outp * iedt)980 nv50_disp_super_iedt(struct nvkm_head *head, struct nvkm_outp *outp,
981 u8 *ver, u8 *hdr, u8 *cnt, u8 *len,
982 struct nvbios_outp *iedt)
983 {
984 struct nvkm_bios *bios = head->disp->engine.subdev.device->bios;
985 const u8 l = ffs(outp->info.link);
986 const u16 t = outp->info.hasht;
987 const u16 m = (0x0100 << head->id) | (l << 6) | outp->info.or;
988 u32 data = nvbios_outp_match(bios, t, m, ver, hdr, cnt, len, iedt);
989 if (!data)
990 OUTP_DBG(outp, "missing IEDT for %04x:%04x", t, m);
991 return data;
992 }
993
994 static void
nv50_disp_super_ied_on(struct nvkm_head * head,struct nvkm_ior * ior,int id,u32 khz)995 nv50_disp_super_ied_on(struct nvkm_head *head,
996 struct nvkm_ior *ior, int id, u32 khz)
997 {
998 struct nvkm_subdev *subdev = &head->disp->engine.subdev;
999 struct nvkm_bios *bios = subdev->device->bios;
1000 struct nvkm_outp *outp = ior->asy.outp;
1001 struct nvbios_ocfg iedtrs;
1002 struct nvbios_outp iedt;
1003 u8 ver, hdr, cnt, len, flags = 0x00;
1004 u32 data;
1005
1006 if (!outp) {
1007 IOR_DBG(ior, "nothing to attach");
1008 return;
1009 }
1010
1011 /* Lookup IED table for the device. */
1012 data = nv50_disp_super_iedt(head, outp, &ver, &hdr, &cnt, &len, &iedt);
1013 if (!data)
1014 return;
1015
1016 /* Lookup IEDT runtime settings for the current configuration. */
1017 if (ior->type == SOR) {
1018 if (ior->asy.proto == LVDS) {
1019 if (head->asy.or.depth == 24)
1020 flags |= 0x02;
1021 }
1022 if (ior->asy.link == 3)
1023 flags |= 0x01;
1024 }
1025
1026 data = nvbios_ocfg_match(bios, data, ior->asy.proto_evo, flags,
1027 &ver, &hdr, &cnt, &len, &iedtrs);
1028 if (!data) {
1029 OUTP_DBG(outp, "missing IEDT RS for %02x:%02x",
1030 ior->asy.proto_evo, flags);
1031 return;
1032 }
1033
1034 /* Execute the OnInt[23] script for the current frequency. */
1035 data = nvbios_oclk_match(bios, iedtrs.clkcmp[id], khz);
1036 if (!data) {
1037 OUTP_DBG(outp, "missing IEDT RSS %d for %02x:%02x %d khz",
1038 id, ior->asy.proto_evo, flags, khz);
1039 return;
1040 }
1041
1042 nvbios_init(subdev, data,
1043 init.outp = &outp->info;
1044 init.or = ior->id;
1045 init.link = ior->asy.link;
1046 init.head = head->id;
1047 );
1048 }
1049
1050 static void
nv50_disp_super_ied_off(struct nvkm_head * head,struct nvkm_ior * ior,int id)1051 nv50_disp_super_ied_off(struct nvkm_head *head, struct nvkm_ior *ior, int id)
1052 {
1053 struct nvkm_outp *outp = ior->arm.outp;
1054 struct nvbios_outp iedt;
1055 u8 ver, hdr, cnt, len;
1056 u32 data;
1057
1058 if (!outp) {
1059 IOR_DBG(ior, "nothing attached");
1060 return;
1061 }
1062
1063 data = nv50_disp_super_iedt(head, outp, &ver, &hdr, &cnt, &len, &iedt);
1064 if (!data)
1065 return;
1066
1067 nvbios_init(&head->disp->engine.subdev, iedt.script[id],
1068 init.outp = &outp->info;
1069 init.or = ior->id;
1070 init.link = ior->arm.link;
1071 init.head = head->id;
1072 );
1073 }
1074
1075 static struct nvkm_ior *
nv50_disp_super_ior_asy(struct nvkm_head * head)1076 nv50_disp_super_ior_asy(struct nvkm_head *head)
1077 {
1078 struct nvkm_ior *ior;
1079 list_for_each_entry(ior, &head->disp->iors, head) {
1080 if (ior->asy.head & (1 << head->id)) {
1081 HEAD_DBG(head, "to %s", ior->name);
1082 return ior;
1083 }
1084 }
1085 HEAD_DBG(head, "nothing to attach");
1086 return NULL;
1087 }
1088
1089 static struct nvkm_ior *
nv50_disp_super_ior_arm(struct nvkm_head * head)1090 nv50_disp_super_ior_arm(struct nvkm_head *head)
1091 {
1092 struct nvkm_ior *ior;
1093 list_for_each_entry(ior, &head->disp->iors, head) {
1094 if (ior->arm.head & (1 << head->id)) {
1095 HEAD_DBG(head, "on %s", ior->name);
1096 return ior;
1097 }
1098 }
1099 HEAD_DBG(head, "nothing attached");
1100 return NULL;
1101 }
1102
1103 void
nv50_disp_super_3_0(struct nvkm_disp * disp,struct nvkm_head * head)1104 nv50_disp_super_3_0(struct nvkm_disp *disp, struct nvkm_head *head)
1105 {
1106 struct nvkm_ior *ior;
1107
1108 /* Determine which OR, if any, we're attaching to the head. */
1109 HEAD_DBG(head, "supervisor 3.0");
1110 ior = nv50_disp_super_ior_asy(head);
1111 if (!ior)
1112 return;
1113
1114 /* Execute OnInt3 IED script. */
1115 nv50_disp_super_ied_on(head, ior, 1, head->asy.hz / 1000);
1116
1117 /* OR-specific handling. */
1118 if (ior->func->war_3)
1119 ior->func->war_3(ior);
1120 }
1121
1122 static void
nv50_disp_super_2_2_dp(struct nvkm_head * head,struct nvkm_ior * ior)1123 nv50_disp_super_2_2_dp(struct nvkm_head *head, struct nvkm_ior *ior)
1124 {
1125 struct nvkm_subdev *subdev = &head->disp->engine.subdev;
1126 const u32 khz = head->asy.hz / 1000;
1127 const u32 linkKBps = ior->dp.bw * 27000;
1128 const u32 symbol = 100000;
1129 int bestTU = 0, bestVTUi = 0, bestVTUf = 0, bestVTUa = 0;
1130 int TU, VTUi, VTUf, VTUa;
1131 u64 link_data_rate, link_ratio, unk;
1132 u32 best_diff = 64 * symbol;
1133 u64 h, v;
1134
1135 /* symbols/hblank - algorithm taken from comments in tegra driver */
1136 h = head->asy.hblanke + head->asy.htotal - head->asy.hblanks - 7;
1137 h = h * linkKBps;
1138 do_div(h, khz);
1139 h = h - (3 * ior->dp.ef) - (12 / ior->dp.nr);
1140
1141 /* symbols/vblank - algorithm taken from comments in tegra driver */
1142 v = head->asy.vblanks - head->asy.vblanke - 25;
1143 v = v * linkKBps;
1144 do_div(v, khz);
1145 v = v - ((36 / ior->dp.nr) + 3) - 1;
1146
1147 ior->func->dp->audio_sym(ior, head->id, h, v);
1148
1149 /* watermark / activesym */
1150 link_data_rate = (khz * head->asy.or.depth / 8) / ior->dp.nr;
1151
1152 /* calculate ratio of packed data rate to link symbol rate */
1153 link_ratio = link_data_rate * symbol;
1154 do_div(link_ratio, linkKBps);
1155
1156 for (TU = 64; ior->func->dp->activesym && TU >= 32; TU--) {
1157 /* calculate average number of valid symbols in each TU */
1158 u32 tu_valid = link_ratio * TU;
1159 u32 calc, diff;
1160
1161 /* find a hw representation for the fraction.. */
1162 VTUi = tu_valid / symbol;
1163 calc = VTUi * symbol;
1164 diff = tu_valid - calc;
1165 if (diff) {
1166 if (diff >= (symbol / 2)) {
1167 VTUf = symbol / (symbol - diff);
1168 if (symbol - (VTUf * diff))
1169 VTUf++;
1170
1171 if (VTUf <= 15) {
1172 VTUa = 1;
1173 calc += symbol - (symbol / VTUf);
1174 } else {
1175 VTUa = 0;
1176 VTUf = 1;
1177 calc += symbol;
1178 }
1179 } else {
1180 VTUa = 0;
1181 VTUf = min((int)(symbol / diff), 15);
1182 calc += symbol / VTUf;
1183 }
1184
1185 diff = calc - tu_valid;
1186 } else {
1187 /* no remainder, but the hw doesn't like the fractional
1188 * part to be zero. decrement the integer part and
1189 * have the fraction add a whole symbol back
1190 */
1191 VTUa = 0;
1192 VTUf = 1;
1193 VTUi--;
1194 }
1195
1196 if (diff < best_diff) {
1197 best_diff = diff;
1198 bestTU = TU;
1199 bestVTUa = VTUa;
1200 bestVTUf = VTUf;
1201 bestVTUi = VTUi;
1202 if (diff == 0)
1203 break;
1204 }
1205 }
1206
1207 if (ior->func->dp->activesym) {
1208 if (!bestTU) {
1209 nvkm_error(subdev, "unable to determine dp config\n");
1210 return;
1211 }
1212
1213 ior->func->dp->activesym(ior, head->id, bestTU, bestVTUa, bestVTUf, bestVTUi);
1214 } else {
1215 bestTU = 64;
1216 }
1217
1218 /* XXX close to vbios numbers, but not right */
1219 unk = (symbol - link_ratio) * bestTU;
1220 unk *= link_ratio;
1221 do_div(unk, symbol);
1222 do_div(unk, symbol);
1223 unk += 6;
1224
1225 ior->func->dp->watermark(ior, head->id, unk);
1226 }
1227
1228 void
nv50_disp_super_2_2(struct nvkm_disp * disp,struct nvkm_head * head)1229 nv50_disp_super_2_2(struct nvkm_disp *disp, struct nvkm_head *head)
1230 {
1231 const u32 khz = head->asy.hz / 1000;
1232 struct nvkm_outp *outp;
1233 struct nvkm_ior *ior;
1234
1235 /* Determine which OR, if any, we're attaching from the head. */
1236 HEAD_DBG(head, "supervisor 2.2");
1237 ior = nv50_disp_super_ior_asy(head);
1238 if (!ior)
1239 return;
1240
1241 outp = ior->asy.outp;
1242
1243 /* For some reason, NVIDIA decided not to:
1244 *
1245 * A) Give dual-link LVDS a separate EVO protocol, like for TMDS.
1246 * and
1247 * B) Use SetControlOutputResource.PixelDepth on LVDS.
1248 *
1249 * Override the values we usually read from HW with the same
1250 * data we pass though an ioctl instead.
1251 */
1252 if (outp && ior->type == SOR && ior->asy.proto == LVDS) {
1253 head->asy.or.depth = outp->lvds.bpc8 ? 24 : 18;
1254 ior->asy.link = outp->lvds.dual ? 3 : 1;
1255 }
1256
1257 /* Handle any link training, etc. */
1258 if (outp && outp->func->acquire)
1259 outp->func->acquire(outp);
1260
1261 /* Execute OnInt2 IED script. */
1262 nv50_disp_super_ied_on(head, ior, 0, khz);
1263
1264 /* Program RG clock divider. */
1265 head->func->rgclk(head, ior->asy.rgdiv);
1266
1267 /* Mode-specific internal DP configuration. */
1268 if (ior->type == SOR && ior->asy.proto == DP)
1269 nv50_disp_super_2_2_dp(head, ior);
1270
1271 /* OR-specific handling. */
1272 ior->func->clock(ior);
1273 if (ior->func->war_2)
1274 ior->func->war_2(ior);
1275 }
1276
1277 void
nv50_disp_super_2_1(struct nvkm_disp * disp,struct nvkm_head * head)1278 nv50_disp_super_2_1(struct nvkm_disp *disp, struct nvkm_head *head)
1279 {
1280 struct nvkm_devinit *devinit = disp->engine.subdev.device->devinit;
1281 const u32 khz = head->asy.hz / 1000;
1282 HEAD_DBG(head, "supervisor 2.1 - %d khz", khz);
1283 if (khz)
1284 nvkm_devinit_pll_set(devinit, PLL_VPLL0 + head->id, khz);
1285 }
1286
1287 void
nv50_disp_super_2_0(struct nvkm_disp * disp,struct nvkm_head * head)1288 nv50_disp_super_2_0(struct nvkm_disp *disp, struct nvkm_head *head)
1289 {
1290 struct nvkm_outp *outp;
1291 struct nvkm_ior *ior;
1292
1293 /* Determine which OR, if any, we're detaching from the head. */
1294 HEAD_DBG(head, "supervisor 2.0");
1295 ior = nv50_disp_super_ior_arm(head);
1296 if (!ior)
1297 return;
1298
1299 /* Execute OffInt2 IED script. */
1300 nv50_disp_super_ied_off(head, ior, 2);
1301
1302 /* If we're shutting down the OR's only active head, execute
1303 * the output path's disable function.
1304 */
1305 if (ior->arm.head == (1 << head->id)) {
1306 if ((outp = ior->arm.outp) && outp->func->disable)
1307 outp->func->disable(outp, ior);
1308 }
1309 }
1310
1311 void
nv50_disp_super_1_0(struct nvkm_disp * disp,struct nvkm_head * head)1312 nv50_disp_super_1_0(struct nvkm_disp *disp, struct nvkm_head *head)
1313 {
1314 struct nvkm_ior *ior;
1315
1316 /* Determine which OR, if any, we're detaching from the head. */
1317 HEAD_DBG(head, "supervisor 1.0");
1318 ior = nv50_disp_super_ior_arm(head);
1319 if (!ior)
1320 return;
1321
1322 /* Execute OffInt1 IED script. */
1323 nv50_disp_super_ied_off(head, ior, 1);
1324 }
1325
1326 void
nv50_disp_super_1(struct nvkm_disp * disp)1327 nv50_disp_super_1(struct nvkm_disp *disp)
1328 {
1329 struct nvkm_head *head;
1330 struct nvkm_ior *ior;
1331
1332 list_for_each_entry(head, &disp->heads, head) {
1333 head->func->state(head, &head->arm);
1334 head->func->state(head, &head->asy);
1335 }
1336
1337 list_for_each_entry(ior, &disp->iors, head) {
1338 ior->func->state(ior, &ior->arm);
1339 ior->func->state(ior, &ior->asy);
1340 }
1341 }
1342
1343 void
nv50_disp_super(struct work_struct * work)1344 nv50_disp_super(struct work_struct *work)
1345 {
1346 struct nvkm_disp *disp = container_of(work, struct nvkm_disp, super.work);
1347 struct nvkm_subdev *subdev = &disp->engine.subdev;
1348 struct nvkm_device *device = subdev->device;
1349 struct nvkm_head *head;
1350 u32 super;
1351
1352 mutex_lock(&disp->super.mutex);
1353 super = nvkm_rd32(device, 0x610030);
1354
1355 nvkm_debug(subdev, "supervisor %08x %08x\n", disp->super.pending, super);
1356
1357 if (disp->super.pending & 0x00000010) {
1358 nv50_disp_chan_mthd(disp->chan[0], NV_DBG_DEBUG);
1359 nv50_disp_super_1(disp);
1360 list_for_each_entry(head, &disp->heads, head) {
1361 if (!(super & (0x00000020 << head->id)))
1362 continue;
1363 if (!(super & (0x00000080 << head->id)))
1364 continue;
1365 nv50_disp_super_1_0(disp, head);
1366 }
1367 } else
1368 if (disp->super.pending & 0x00000020) {
1369 list_for_each_entry(head, &disp->heads, head) {
1370 if (!(super & (0x00000080 << head->id)))
1371 continue;
1372 nv50_disp_super_2_0(disp, head);
1373 }
1374 nvkm_outp_route(disp);
1375 list_for_each_entry(head, &disp->heads, head) {
1376 if (!(super & (0x00000200 << head->id)))
1377 continue;
1378 nv50_disp_super_2_1(disp, head);
1379 }
1380 list_for_each_entry(head, &disp->heads, head) {
1381 if (!(super & (0x00000080 << head->id)))
1382 continue;
1383 nv50_disp_super_2_2(disp, head);
1384 }
1385 } else
1386 if (disp->super.pending & 0x00000040) {
1387 list_for_each_entry(head, &disp->heads, head) {
1388 if (!(super & (0x00000080 << head->id)))
1389 continue;
1390 nv50_disp_super_3_0(disp, head);
1391 }
1392 }
1393
1394 nvkm_wr32(device, 0x610030, 0x80000000);
1395 mutex_unlock(&disp->super.mutex);
1396 }
1397
1398 const struct nvkm_enum
1399 nv50_disp_intr_error_type[] = {
1400 { 0, "NONE" },
1401 { 1, "PUSHBUFFER_ERR" },
1402 { 2, "TRAP" },
1403 { 3, "RESERVED_METHOD" },
1404 { 4, "INVALID_ARG" },
1405 { 5, "INVALID_STATE" },
1406 { 7, "UNRESOLVABLE_HANDLE" },
1407 {}
1408 };
1409
1410 static const struct nvkm_enum
1411 nv50_disp_intr_error_code[] = {
1412 { 0x00, "" },
1413 {}
1414 };
1415
1416 static void
nv50_disp_intr_error(struct nvkm_disp * disp,int chid)1417 nv50_disp_intr_error(struct nvkm_disp *disp, int chid)
1418 {
1419 struct nvkm_subdev *subdev = &disp->engine.subdev;
1420 struct nvkm_device *device = subdev->device;
1421 u32 data = nvkm_rd32(device, 0x610084 + (chid * 0x08));
1422 u32 addr = nvkm_rd32(device, 0x610080 + (chid * 0x08));
1423 u32 code = (addr & 0x00ff0000) >> 16;
1424 u32 type = (addr & 0x00007000) >> 12;
1425 u32 mthd = (addr & 0x00000ffc);
1426 const struct nvkm_enum *ec, *et;
1427
1428 et = nvkm_enum_find(nv50_disp_intr_error_type, type);
1429 ec = nvkm_enum_find(nv50_disp_intr_error_code, code);
1430
1431 nvkm_error(subdev,
1432 "ERROR %d [%s] %02x [%s] chid %d mthd %04x data %08x\n",
1433 type, et ? et->name : "", code, ec ? ec->name : "",
1434 chid, mthd, data);
1435
1436 if (chid < ARRAY_SIZE(disp->chan)) {
1437 switch (mthd) {
1438 case 0x0080:
1439 nv50_disp_chan_mthd(disp->chan[chid], NV_DBG_ERROR);
1440 break;
1441 default:
1442 break;
1443 }
1444 }
1445
1446 nvkm_wr32(device, 0x610020, 0x00010000 << chid);
1447 nvkm_wr32(device, 0x610080 + (chid * 0x08), 0x90000000);
1448 }
1449
1450 void
nv50_disp_intr(struct nvkm_disp * disp)1451 nv50_disp_intr(struct nvkm_disp *disp)
1452 {
1453 struct nvkm_device *device = disp->engine.subdev.device;
1454 u32 intr0 = nvkm_rd32(device, 0x610020);
1455 u32 intr1 = nvkm_rd32(device, 0x610024);
1456
1457 while (intr0 & 0x001f0000) {
1458 u32 chid = __ffs(intr0 & 0x001f0000) - 16;
1459 nv50_disp_intr_error(disp, chid);
1460 intr0 &= ~(0x00010000 << chid);
1461 }
1462
1463 while (intr0 & 0x0000001f) {
1464 u32 chid = __ffs(intr0 & 0x0000001f);
1465 nv50_disp_chan_uevent_send(disp, chid);
1466 intr0 &= ~(0x00000001 << chid);
1467 }
1468
1469 if (intr1 & 0x00000004) {
1470 nvkm_disp_vblank(disp, 0);
1471 nvkm_wr32(device, 0x610024, 0x00000004);
1472 }
1473
1474 if (intr1 & 0x00000008) {
1475 nvkm_disp_vblank(disp, 1);
1476 nvkm_wr32(device, 0x610024, 0x00000008);
1477 }
1478
1479 if (intr1 & 0x00000070) {
1480 disp->super.pending = (intr1 & 0x00000070);
1481 queue_work(disp->super.wq, &disp->super.work);
1482 nvkm_wr32(device, 0x610024, disp->super.pending);
1483 }
1484 }
1485
1486 void
nv50_disp_fini(struct nvkm_disp * disp)1487 nv50_disp_fini(struct nvkm_disp *disp)
1488 {
1489 struct nvkm_device *device = disp->engine.subdev.device;
1490 /* disable all interrupts */
1491 nvkm_wr32(device, 0x610024, 0x00000000);
1492 nvkm_wr32(device, 0x610020, 0x00000000);
1493 }
1494
1495 int
nv50_disp_init(struct nvkm_disp * disp)1496 nv50_disp_init(struct nvkm_disp *disp)
1497 {
1498 struct nvkm_device *device = disp->engine.subdev.device;
1499 struct nvkm_head *head;
1500 u32 tmp;
1501 int i;
1502
1503 /* The below segments of code copying values from one register to
1504 * another appear to inform EVO of the display capabilities or
1505 * something similar. NFI what the 0x614004 caps are for..
1506 */
1507 tmp = nvkm_rd32(device, 0x614004);
1508 nvkm_wr32(device, 0x610184, tmp);
1509
1510 /* ... CRTC caps */
1511 list_for_each_entry(head, &disp->heads, head) {
1512 tmp = nvkm_rd32(device, 0x616100 + (head->id * 0x800));
1513 nvkm_wr32(device, 0x610190 + (head->id * 0x10), tmp);
1514 tmp = nvkm_rd32(device, 0x616104 + (head->id * 0x800));
1515 nvkm_wr32(device, 0x610194 + (head->id * 0x10), tmp);
1516 tmp = nvkm_rd32(device, 0x616108 + (head->id * 0x800));
1517 nvkm_wr32(device, 0x610198 + (head->id * 0x10), tmp);
1518 tmp = nvkm_rd32(device, 0x61610c + (head->id * 0x800));
1519 nvkm_wr32(device, 0x61019c + (head->id * 0x10), tmp);
1520 }
1521
1522 /* ... DAC caps */
1523 for (i = 0; i < disp->dac.nr; i++) {
1524 tmp = nvkm_rd32(device, 0x61a000 + (i * 0x800));
1525 nvkm_wr32(device, 0x6101d0 + (i * 0x04), tmp);
1526 }
1527
1528 /* ... SOR caps */
1529 for (i = 0; i < disp->sor.nr; i++) {
1530 tmp = nvkm_rd32(device, 0x61c000 + (i * 0x800));
1531 nvkm_wr32(device, 0x6101e0 + (i * 0x04), tmp);
1532 }
1533
1534 /* ... PIOR caps */
1535 for (i = 0; i < disp->pior.nr; i++) {
1536 tmp = nvkm_rd32(device, 0x61e000 + (i * 0x800));
1537 nvkm_wr32(device, 0x6101f0 + (i * 0x04), tmp);
1538 }
1539
1540 /* steal display away from vbios, or something like that */
1541 if (nvkm_rd32(device, 0x610024) & 0x00000100) {
1542 nvkm_wr32(device, 0x610024, 0x00000100);
1543 nvkm_mask(device, 0x6194e8, 0x00000001, 0x00000000);
1544 if (nvkm_msec(device, 2000,
1545 if (!(nvkm_rd32(device, 0x6194e8) & 0x00000002))
1546 break;
1547 ) < 0)
1548 return -EBUSY;
1549 }
1550
1551 /* point at display engine memory area (hash table, objects) */
1552 nvkm_wr32(device, 0x610010, (disp->inst->addr >> 8) | 9);
1553
1554 /* enable supervisor interrupts, disable everything else */
1555 nvkm_wr32(device, 0x61002c, 0x00000370);
1556 nvkm_wr32(device, 0x610028, 0x00000000);
1557 return 0;
1558 }
1559
1560 int
nv50_disp_oneinit(struct nvkm_disp * disp)1561 nv50_disp_oneinit(struct nvkm_disp *disp)
1562 {
1563 const struct nvkm_disp_func *func = disp->func;
1564 struct nvkm_subdev *subdev = &disp->engine.subdev;
1565 struct nvkm_device *device = subdev->device;
1566 int ret, i;
1567
1568 if (func->wndw.cnt) {
1569 disp->wndw.nr = func->wndw.cnt(disp, &disp->wndw.mask);
1570 nvkm_debug(subdev, "Window(s): %d (%08lx)\n", disp->wndw.nr, disp->wndw.mask);
1571 }
1572
1573 disp->head.nr = func->head.cnt(disp, &disp->head.mask);
1574 nvkm_debug(subdev, " Head(s): %d (%02lx)\n", disp->head.nr, disp->head.mask);
1575 for_each_set_bit(i, &disp->head.mask, disp->head.nr) {
1576 ret = func->head.new(disp, i);
1577 if (ret)
1578 return ret;
1579 }
1580
1581 if (func->dac.cnt) {
1582 disp->dac.nr = func->dac.cnt(disp, &disp->dac.mask);
1583 nvkm_debug(subdev, " DAC(s): %d (%02lx)\n", disp->dac.nr, disp->dac.mask);
1584 for_each_set_bit(i, &disp->dac.mask, disp->dac.nr) {
1585 ret = func->dac.new(disp, i);
1586 if (ret)
1587 return ret;
1588 }
1589 }
1590
1591 if (func->pior.cnt) {
1592 disp->pior.nr = func->pior.cnt(disp, &disp->pior.mask);
1593 nvkm_debug(subdev, " PIOR(s): %d (%02lx)\n", disp->pior.nr, disp->pior.mask);
1594 for_each_set_bit(i, &disp->pior.mask, disp->pior.nr) {
1595 ret = func->pior.new(disp, i);
1596 if (ret)
1597 return ret;
1598 }
1599 }
1600
1601 disp->sor.nr = func->sor.cnt(disp, &disp->sor.mask);
1602 nvkm_debug(subdev, " SOR(s): %d (%02lx)\n", disp->sor.nr, disp->sor.mask);
1603 for_each_set_bit(i, &disp->sor.mask, disp->sor.nr) {
1604 ret = func->sor.new(disp, i);
1605 if (ret)
1606 return ret;
1607 }
1608
1609 ret = nvkm_gpuobj_new(device, 0x10000, 0x10000, false, NULL, &disp->inst);
1610 if (ret)
1611 return ret;
1612
1613 return nvkm_ramht_new(device, func->ramht_size ? func->ramht_size :
1614 0x1000, 0, disp->inst, &disp->ramht);
1615 }
1616
1617 static const struct nvkm_disp_func
1618 nv50_disp = {
1619 .oneinit = nv50_disp_oneinit,
1620 .init = nv50_disp_init,
1621 .fini = nv50_disp_fini,
1622 .intr = nv50_disp_intr,
1623 .super = nv50_disp_super,
1624 .uevent = &nv50_disp_chan_uevent,
1625 .head = { .cnt = nv50_head_cnt, .new = nv50_head_new },
1626 .dac = { .cnt = nv50_dac_cnt, .new = nv50_dac_new },
1627 .sor = { .cnt = nv50_sor_cnt, .new = nv50_sor_new },
1628 .pior = { .cnt = nv50_pior_cnt, .new = nv50_pior_new },
1629 .root = { 0, 0, NV50_DISP },
1630 .user = {
1631 {{0,0,NV50_DISP_CURSOR }, nvkm_disp_chan_new, &nv50_disp_curs },
1632 {{0,0,NV50_DISP_OVERLAY }, nvkm_disp_chan_new, &nv50_disp_oimm },
1633 {{0,0,NV50_DISP_BASE_CHANNEL_DMA }, nvkm_disp_chan_new, &nv50_disp_base },
1634 {{0,0,NV50_DISP_CORE_CHANNEL_DMA }, nvkm_disp_core_new, &nv50_disp_core },
1635 {{0,0,NV50_DISP_OVERLAY_CHANNEL_DMA}, nvkm_disp_chan_new, &nv50_disp_ovly },
1636 {}
1637 }
1638 };
1639
1640 int
nv50_disp_new(struct nvkm_device * device,enum nvkm_subdev_type type,int inst,struct nvkm_disp ** pdisp)1641 nv50_disp_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
1642 struct nvkm_disp **pdisp)
1643 {
1644 return nvkm_disp_new_(&nv50_disp, device, type, inst, pdisp);
1645 }
1646