1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/kvm_host.h>
5
6 #include <asm/irq_remapping.h>
7 #include <asm/cpu.h>
8
9 #include "lapic.h"
10 #include "irq.h"
11 #include "posted_intr.h"
12 #include "trace.h"
13 #include "vmx.h"
14
15 /*
16 * Maintain a per-CPU list of vCPUs that need to be awakened by wakeup_handler()
17 * when a WAKEUP_VECTOR interrupted is posted. vCPUs are added to the list when
18 * the vCPU is scheduled out and is blocking (e.g. in HLT) with IRQs enabled.
19 * The vCPUs posted interrupt descriptor is updated at the same time to set its
20 * notification vector to WAKEUP_VECTOR, so that posted interrupt from devices
21 * wake the target vCPUs. vCPUs are removed from the list and the notification
22 * vector is reset when the vCPU is scheduled in.
23 */
24 static DEFINE_PER_CPU(struct list_head, wakeup_vcpus_on_cpu);
25 /*
26 * Protect the per-CPU list with a per-CPU spinlock to handle task migration.
27 * When a blocking vCPU is awakened _and_ migrated to a different pCPU, the
28 * ->sched_in() path will need to take the vCPU off the list of the _previous_
29 * CPU. IRQs must be disabled when taking this lock, otherwise deadlock will
30 * occur if a wakeup IRQ arrives and attempts to acquire the lock.
31 */
32 static DEFINE_PER_CPU(raw_spinlock_t, wakeup_vcpus_on_cpu_lock);
33
vcpu_to_pi_desc(struct kvm_vcpu * vcpu)34 static inline struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
35 {
36 return &(to_vmx(vcpu)->pi_desc);
37 }
38
pi_try_set_control(struct pi_desc * pi_desc,u64 * pold,u64 new)39 static int pi_try_set_control(struct pi_desc *pi_desc, u64 *pold, u64 new)
40 {
41 /*
42 * PID.ON can be set at any time by a different vCPU or by hardware,
43 * e.g. a device. PID.control must be written atomically, and the
44 * update must be retried with a fresh snapshot an ON change causes
45 * the cmpxchg to fail.
46 */
47 if (!try_cmpxchg64(&pi_desc->control, pold, new))
48 return -EBUSY;
49
50 return 0;
51 }
52
vmx_vcpu_pi_load(struct kvm_vcpu * vcpu,int cpu)53 void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
54 {
55 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
56 struct vcpu_vmx *vmx = to_vmx(vcpu);
57 struct pi_desc old, new;
58 unsigned long flags;
59 unsigned int dest;
60
61 /*
62 * To simplify hot-plug and dynamic toggling of APICv, keep PI.NDST and
63 * PI.SN up-to-date even if there is no assigned device or if APICv is
64 * deactivated due to a dynamic inhibit bit, e.g. for Hyper-V's SyncIC.
65 */
66 if (!enable_apicv || !lapic_in_kernel(vcpu))
67 return;
68
69 /*
70 * If the vCPU wasn't on the wakeup list and wasn't migrated, then the
71 * full update can be skipped as neither the vector nor the destination
72 * needs to be changed.
73 */
74 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR && vcpu->cpu == cpu) {
75 /*
76 * Clear SN if it was set due to being preempted. Again, do
77 * this even if there is no assigned device for simplicity.
78 */
79 if (pi_test_and_clear_sn(pi_desc))
80 goto after_clear_sn;
81 return;
82 }
83
84 local_irq_save(flags);
85
86 /*
87 * If the vCPU was waiting for wakeup, remove the vCPU from the wakeup
88 * list of the _previous_ pCPU, which will not be the same as the
89 * current pCPU if the task was migrated.
90 */
91 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR) {
92 raw_spin_lock(&per_cpu(wakeup_vcpus_on_cpu_lock, vcpu->cpu));
93 list_del(&vmx->pi_wakeup_list);
94 raw_spin_unlock(&per_cpu(wakeup_vcpus_on_cpu_lock, vcpu->cpu));
95 }
96
97 dest = cpu_physical_id(cpu);
98 if (!x2apic_mode)
99 dest = (dest << 8) & 0xFF00;
100
101 old.control = READ_ONCE(pi_desc->control);
102 do {
103 new.control = old.control;
104
105 /*
106 * Clear SN (as above) and refresh the destination APIC ID to
107 * handle task migration (@cpu != vcpu->cpu).
108 */
109 new.ndst = dest;
110 new.sn = 0;
111
112 /*
113 * Restore the notification vector; in the blocking case, the
114 * descriptor was modified on "put" to use the wakeup vector.
115 */
116 new.nv = POSTED_INTR_VECTOR;
117 } while (pi_try_set_control(pi_desc, &old.control, new.control));
118
119 local_irq_restore(flags);
120
121 after_clear_sn:
122
123 /*
124 * Clear SN before reading the bitmap. The VT-d firmware
125 * writes the bitmap and reads SN atomically (5.2.3 in the
126 * spec), so it doesn't really have a memory barrier that
127 * pairs with this, but we cannot do that and we need one.
128 */
129 smp_mb__after_atomic();
130
131 if (!pi_is_pir_empty(pi_desc))
132 pi_set_on(pi_desc);
133 }
134
vmx_can_use_vtd_pi(struct kvm * kvm)135 static bool vmx_can_use_vtd_pi(struct kvm *kvm)
136 {
137 return irqchip_in_kernel(kvm) && enable_apicv &&
138 kvm_arch_has_assigned_device(kvm) &&
139 irq_remapping_cap(IRQ_POSTING_CAP);
140 }
141
142 /*
143 * Put the vCPU on this pCPU's list of vCPUs that needs to be awakened and set
144 * WAKEUP as the notification vector in the PI descriptor.
145 */
pi_enable_wakeup_handler(struct kvm_vcpu * vcpu)146 static void pi_enable_wakeup_handler(struct kvm_vcpu *vcpu)
147 {
148 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
149 struct vcpu_vmx *vmx = to_vmx(vcpu);
150 struct pi_desc old, new;
151 unsigned long flags;
152
153 local_irq_save(flags);
154
155 raw_spin_lock(&per_cpu(wakeup_vcpus_on_cpu_lock, vcpu->cpu));
156 list_add_tail(&vmx->pi_wakeup_list,
157 &per_cpu(wakeup_vcpus_on_cpu, vcpu->cpu));
158 raw_spin_unlock(&per_cpu(wakeup_vcpus_on_cpu_lock, vcpu->cpu));
159
160 WARN(pi_desc->sn, "PI descriptor SN field set before blocking");
161
162 old.control = READ_ONCE(pi_desc->control);
163 do {
164 /* set 'NV' to 'wakeup vector' */
165 new.control = old.control;
166 new.nv = POSTED_INTR_WAKEUP_VECTOR;
167 } while (pi_try_set_control(pi_desc, &old.control, new.control));
168
169 /*
170 * Send a wakeup IPI to this CPU if an interrupt may have been posted
171 * before the notification vector was updated, in which case the IRQ
172 * will arrive on the non-wakeup vector. An IPI is needed as calling
173 * try_to_wake_up() from ->sched_out() isn't allowed (IRQs are not
174 * enabled until it is safe to call try_to_wake_up() on the task being
175 * scheduled out).
176 */
177 if (pi_test_on(&new))
178 apic->send_IPI_self(POSTED_INTR_WAKEUP_VECTOR);
179
180 local_irq_restore(flags);
181 }
182
vmx_needs_pi_wakeup(struct kvm_vcpu * vcpu)183 static bool vmx_needs_pi_wakeup(struct kvm_vcpu *vcpu)
184 {
185 /*
186 * The default posted interrupt vector does nothing when
187 * invoked outside guest mode. Return whether a blocked vCPU
188 * can be the target of posted interrupts, as is the case when
189 * using either IPI virtualization or VT-d PI, so that the
190 * notification vector is switched to the one that calls
191 * back to the pi_wakeup_handler() function.
192 */
193 return vmx_can_use_ipiv(vcpu) || vmx_can_use_vtd_pi(vcpu->kvm);
194 }
195
vmx_vcpu_pi_put(struct kvm_vcpu * vcpu)196 void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
197 {
198 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
199
200 if (!vmx_needs_pi_wakeup(vcpu))
201 return;
202
203 if (kvm_vcpu_is_blocking(vcpu) && !vmx_interrupt_blocked(vcpu))
204 pi_enable_wakeup_handler(vcpu);
205
206 /*
207 * Set SN when the vCPU is preempted. Note, the vCPU can both be seen
208 * as blocking and preempted, e.g. if it's preempted between setting
209 * its wait state and manually scheduling out.
210 */
211 if (vcpu->preempted)
212 pi_set_sn(pi_desc);
213 }
214
215 /*
216 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
217 */
pi_wakeup_handler(void)218 void pi_wakeup_handler(void)
219 {
220 int cpu = smp_processor_id();
221 struct list_head *wakeup_list = &per_cpu(wakeup_vcpus_on_cpu, cpu);
222 raw_spinlock_t *spinlock = &per_cpu(wakeup_vcpus_on_cpu_lock, cpu);
223 struct vcpu_vmx *vmx;
224
225 raw_spin_lock(spinlock);
226 list_for_each_entry(vmx, wakeup_list, pi_wakeup_list) {
227
228 if (pi_test_on(&vmx->pi_desc))
229 kvm_vcpu_wake_up(&vmx->vcpu);
230 }
231 raw_spin_unlock(spinlock);
232 }
233
pi_init_cpu(int cpu)234 void __init pi_init_cpu(int cpu)
235 {
236 INIT_LIST_HEAD(&per_cpu(wakeup_vcpus_on_cpu, cpu));
237 raw_spin_lock_init(&per_cpu(wakeup_vcpus_on_cpu_lock, cpu));
238 }
239
pi_has_pending_interrupt(struct kvm_vcpu * vcpu)240 bool pi_has_pending_interrupt(struct kvm_vcpu *vcpu)
241 {
242 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
243
244 return pi_test_on(pi_desc) ||
245 (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
246 }
247
248
249 /*
250 * Bail out of the block loop if the VM has an assigned
251 * device, but the blocking vCPU didn't reconfigure the
252 * PI.NV to the wakeup vector, i.e. the assigned device
253 * came along after the initial check in vmx_vcpu_pi_put().
254 */
vmx_pi_start_assignment(struct kvm * kvm)255 void vmx_pi_start_assignment(struct kvm *kvm)
256 {
257 if (!irq_remapping_cap(IRQ_POSTING_CAP))
258 return;
259
260 kvm_make_all_cpus_request(kvm, KVM_REQ_UNBLOCK);
261 }
262
263 /*
264 * vmx_pi_update_irte - set IRTE for Posted-Interrupts
265 *
266 * @kvm: kvm
267 * @host_irq: host irq of the interrupt
268 * @guest_irq: gsi of the interrupt
269 * @set: set or unset PI
270 * returns 0 on success, < 0 on failure
271 */
vmx_pi_update_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)272 int vmx_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
273 uint32_t guest_irq, bool set)
274 {
275 struct kvm_kernel_irq_routing_entry *e;
276 struct kvm_irq_routing_table *irq_rt;
277 struct kvm_lapic_irq irq;
278 struct kvm_vcpu *vcpu;
279 struct vcpu_data vcpu_info;
280 int idx, ret = 0;
281
282 if (!vmx_can_use_vtd_pi(kvm))
283 return 0;
284
285 idx = srcu_read_lock(&kvm->irq_srcu);
286 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
287 if (guest_irq >= irq_rt->nr_rt_entries ||
288 hlist_empty(&irq_rt->map[guest_irq])) {
289 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
290 guest_irq, irq_rt->nr_rt_entries);
291 goto out;
292 }
293
294 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
295 if (e->type != KVM_IRQ_ROUTING_MSI)
296 continue;
297 /*
298 * VT-d PI cannot support posting multicast/broadcast
299 * interrupts to a vCPU, we still use interrupt remapping
300 * for these kind of interrupts.
301 *
302 * For lowest-priority interrupts, we only support
303 * those with single CPU as the destination, e.g. user
304 * configures the interrupts via /proc/irq or uses
305 * irqbalance to make the interrupts single-CPU.
306 *
307 * We will support full lowest-priority interrupt later.
308 *
309 * In addition, we can only inject generic interrupts using
310 * the PI mechanism, refuse to route others through it.
311 */
312
313 kvm_set_msi_irq(kvm, e, &irq);
314 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
315 !kvm_irq_is_postable(&irq)) {
316 /*
317 * Make sure the IRTE is in remapped mode if
318 * we don't handle it in posted mode.
319 */
320 ret = irq_set_vcpu_affinity(host_irq, NULL);
321 if (ret < 0) {
322 printk(KERN_INFO
323 "failed to back to remapped mode, irq: %u\n",
324 host_irq);
325 goto out;
326 }
327
328 continue;
329 }
330
331 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
332 vcpu_info.vector = irq.vector;
333
334 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
335 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
336
337 if (set)
338 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
339 else
340 ret = irq_set_vcpu_affinity(host_irq, NULL);
341
342 if (ret < 0) {
343 printk(KERN_INFO "%s: failed to update PI IRTE\n",
344 __func__);
345 goto out;
346 }
347 }
348
349 ret = 0;
350 out:
351 srcu_read_unlock(&kvm->irq_srcu, idx);
352 return ret;
353 }
354