1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24
25 #include "internal.h"
26
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30 };
31
sanity_check_pinned_pages(struct page ** pages,unsigned long npages)32 static inline void sanity_check_pinned_pages(struct page **pages,
33 unsigned long npages)
34 {
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 return;
37
38 /*
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
42 *
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
49 */
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
53
54 if (!folio_test_anon(folio))
55 continue;
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 else
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
62 }
63 }
64
65 /*
66 * Return the folio with ref appropriately incremented,
67 * or NULL if that failed.
68 */
try_get_folio(struct page * page,int refs)69 static inline struct folio *try_get_folio(struct page *page, int refs)
70 {
71 struct folio *folio;
72
73 retry:
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76 return NULL;
77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78 return NULL;
79
80 /*
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
85 * we were given anymore.
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
88 */
89 if (unlikely(page_folio(page) != folio)) {
90 if (!put_devmap_managed_page_refs(&folio->page, refs))
91 folio_put_refs(folio, refs);
92 goto retry;
93 }
94
95 return folio;
96 }
97
98 /**
99 * try_grab_folio() - Attempt to get or pin a folio.
100 * @page: pointer to page to be grabbed
101 * @refs: the value to (effectively) add to the folio's refcount
102 * @flags: gup flags: these are the FOLL_* flag values.
103 *
104 * "grab" names in this file mean, "look at flags to decide whether to use
105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
106 *
107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108 * same time. (That's true throughout the get_user_pages*() and
109 * pin_user_pages*() APIs.) Cases:
110 *
111 * FOLL_GET: folio's refcount will be incremented by @refs.
112 *
113 * FOLL_PIN on large folios: folio's refcount will be incremented by
114 * @refs, and its pincount will be incremented by @refs.
115 *
116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
117 * @refs * GUP_PIN_COUNTING_BIAS.
118 *
119 * Return: The folio containing @page (with refcount appropriately
120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
122 * a likely bug in the caller, so a warning is also emitted.
123 */
try_grab_folio(struct page * page,int refs,unsigned int flags)124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
125 {
126 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
127 return NULL;
128
129 if (flags & FOLL_GET)
130 return try_get_folio(page, refs);
131 else if (flags & FOLL_PIN) {
132 struct folio *folio;
133
134 /*
135 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
136 * right zone, so fail and let the caller fall back to the slow
137 * path.
138 */
139 if (unlikely((flags & FOLL_LONGTERM) &&
140 !is_longterm_pinnable_page(page)))
141 return NULL;
142
143 /*
144 * CAUTION: Don't use compound_head() on the page before this
145 * point, the result won't be stable.
146 */
147 folio = try_get_folio(page, refs);
148 if (!folio)
149 return NULL;
150
151 /*
152 * When pinning a large folio, use an exact count to track it.
153 *
154 * However, be sure to *also* increment the normal folio
155 * refcount field at least once, so that the folio really
156 * is pinned. That's why the refcount from the earlier
157 * try_get_folio() is left intact.
158 */
159 if (folio_test_large(folio))
160 atomic_add(refs, &folio->_pincount);
161 else
162 folio_ref_add(folio,
163 refs * (GUP_PIN_COUNTING_BIAS - 1));
164 /*
165 * Adjust the pincount before re-checking the PTE for changes.
166 * This is essentially a smp_mb() and is paired with a memory
167 * barrier in page_try_share_anon_rmap().
168 */
169 smp_mb__after_atomic();
170
171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
172
173 return folio;
174 }
175
176 WARN_ON_ONCE(1);
177 return NULL;
178 }
179
gup_put_folio(struct folio * folio,int refs,unsigned int flags)180 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
181 {
182 if (flags & FOLL_PIN) {
183 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
184 if (folio_test_large(folio))
185 atomic_sub(refs, &folio->_pincount);
186 else
187 refs *= GUP_PIN_COUNTING_BIAS;
188 }
189
190 if (!put_devmap_managed_page_refs(&folio->page, refs))
191 folio_put_refs(folio, refs);
192 }
193
194 /**
195 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
196 * @page: pointer to page to be grabbed
197 * @flags: gup flags: these are the FOLL_* flag values.
198 *
199 * This might not do anything at all, depending on the flags argument.
200 *
201 * "grab" names in this file mean, "look at flags to decide whether to use
202 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
203 *
204 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
205 * time. Cases: please see the try_grab_folio() documentation, with
206 * "refs=1".
207 *
208 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
209 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
210 *
211 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
212 * be grabbed.
213 */
try_grab_page(struct page * page,unsigned int flags)214 int __must_check try_grab_page(struct page *page, unsigned int flags)
215 {
216 struct folio *folio = page_folio(page);
217
218 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
219 return -ENOMEM;
220
221 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
222 return -EREMOTEIO;
223
224 if (flags & FOLL_GET)
225 folio_ref_inc(folio);
226 else if (flags & FOLL_PIN) {
227 /*
228 * Similar to try_grab_folio(): be sure to *also*
229 * increment the normal page refcount field at least once,
230 * so that the page really is pinned.
231 */
232 if (folio_test_large(folio)) {
233 folio_ref_add(folio, 1);
234 atomic_add(1, &folio->_pincount);
235 } else {
236 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
237 }
238
239 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
240 }
241
242 return 0;
243 }
244
245 /**
246 * unpin_user_page() - release a dma-pinned page
247 * @page: pointer to page to be released
248 *
249 * Pages that were pinned via pin_user_pages*() must be released via either
250 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
251 * that such pages can be separately tracked and uniquely handled. In
252 * particular, interactions with RDMA and filesystems need special handling.
253 */
unpin_user_page(struct page * page)254 void unpin_user_page(struct page *page)
255 {
256 sanity_check_pinned_pages(&page, 1);
257 gup_put_folio(page_folio(page), 1, FOLL_PIN);
258 }
259 EXPORT_SYMBOL(unpin_user_page);
260
gup_folio_range_next(struct page * start,unsigned long npages,unsigned long i,unsigned int * ntails)261 static inline struct folio *gup_folio_range_next(struct page *start,
262 unsigned long npages, unsigned long i, unsigned int *ntails)
263 {
264 struct page *next = nth_page(start, i);
265 struct folio *folio = page_folio(next);
266 unsigned int nr = 1;
267
268 if (folio_test_large(folio))
269 nr = min_t(unsigned int, npages - i,
270 folio_nr_pages(folio) - folio_page_idx(folio, next));
271
272 *ntails = nr;
273 return folio;
274 }
275
gup_folio_next(struct page ** list,unsigned long npages,unsigned long i,unsigned int * ntails)276 static inline struct folio *gup_folio_next(struct page **list,
277 unsigned long npages, unsigned long i, unsigned int *ntails)
278 {
279 struct folio *folio = page_folio(list[i]);
280 unsigned int nr;
281
282 for (nr = i + 1; nr < npages; nr++) {
283 if (page_folio(list[nr]) != folio)
284 break;
285 }
286
287 *ntails = nr - i;
288 return folio;
289 }
290
291 /**
292 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
293 * @pages: array of pages to be maybe marked dirty, and definitely released.
294 * @npages: number of pages in the @pages array.
295 * @make_dirty: whether to mark the pages dirty
296 *
297 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
298 * variants called on that page.
299 *
300 * For each page in the @pages array, make that page (or its head page, if a
301 * compound page) dirty, if @make_dirty is true, and if the page was previously
302 * listed as clean. In any case, releases all pages using unpin_user_page(),
303 * possibly via unpin_user_pages(), for the non-dirty case.
304 *
305 * Please see the unpin_user_page() documentation for details.
306 *
307 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
308 * required, then the caller should a) verify that this is really correct,
309 * because _lock() is usually required, and b) hand code it:
310 * set_page_dirty_lock(), unpin_user_page().
311 *
312 */
unpin_user_pages_dirty_lock(struct page ** pages,unsigned long npages,bool make_dirty)313 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
314 bool make_dirty)
315 {
316 unsigned long i;
317 struct folio *folio;
318 unsigned int nr;
319
320 if (!make_dirty) {
321 unpin_user_pages(pages, npages);
322 return;
323 }
324
325 sanity_check_pinned_pages(pages, npages);
326 for (i = 0; i < npages; i += nr) {
327 folio = gup_folio_next(pages, npages, i, &nr);
328 /*
329 * Checking PageDirty at this point may race with
330 * clear_page_dirty_for_io(), but that's OK. Two key
331 * cases:
332 *
333 * 1) This code sees the page as already dirty, so it
334 * skips the call to set_page_dirty(). That could happen
335 * because clear_page_dirty_for_io() called
336 * page_mkclean(), followed by set_page_dirty().
337 * However, now the page is going to get written back,
338 * which meets the original intention of setting it
339 * dirty, so all is well: clear_page_dirty_for_io() goes
340 * on to call TestClearPageDirty(), and write the page
341 * back.
342 *
343 * 2) This code sees the page as clean, so it calls
344 * set_page_dirty(). The page stays dirty, despite being
345 * written back, so it gets written back again in the
346 * next writeback cycle. This is harmless.
347 */
348 if (!folio_test_dirty(folio)) {
349 folio_lock(folio);
350 folio_mark_dirty(folio);
351 folio_unlock(folio);
352 }
353 gup_put_folio(folio, nr, FOLL_PIN);
354 }
355 }
356 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
357
358 /**
359 * unpin_user_page_range_dirty_lock() - release and optionally dirty
360 * gup-pinned page range
361 *
362 * @page: the starting page of a range maybe marked dirty, and definitely released.
363 * @npages: number of consecutive pages to release.
364 * @make_dirty: whether to mark the pages dirty
365 *
366 * "gup-pinned page range" refers to a range of pages that has had one of the
367 * pin_user_pages() variants called on that page.
368 *
369 * For the page ranges defined by [page .. page+npages], make that range (or
370 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
371 * page range was previously listed as clean.
372 *
373 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
374 * required, then the caller should a) verify that this is really correct,
375 * because _lock() is usually required, and b) hand code it:
376 * set_page_dirty_lock(), unpin_user_page().
377 *
378 */
unpin_user_page_range_dirty_lock(struct page * page,unsigned long npages,bool make_dirty)379 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
380 bool make_dirty)
381 {
382 unsigned long i;
383 struct folio *folio;
384 unsigned int nr;
385
386 for (i = 0; i < npages; i += nr) {
387 folio = gup_folio_range_next(page, npages, i, &nr);
388 if (make_dirty && !folio_test_dirty(folio)) {
389 folio_lock(folio);
390 folio_mark_dirty(folio);
391 folio_unlock(folio);
392 }
393 gup_put_folio(folio, nr, FOLL_PIN);
394 }
395 }
396 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
397
unpin_user_pages_lockless(struct page ** pages,unsigned long npages)398 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
399 {
400 unsigned long i;
401 struct folio *folio;
402 unsigned int nr;
403
404 /*
405 * Don't perform any sanity checks because we might have raced with
406 * fork() and some anonymous pages might now actually be shared --
407 * which is why we're unpinning after all.
408 */
409 for (i = 0; i < npages; i += nr) {
410 folio = gup_folio_next(pages, npages, i, &nr);
411 gup_put_folio(folio, nr, FOLL_PIN);
412 }
413 }
414
415 /**
416 * unpin_user_pages() - release an array of gup-pinned pages.
417 * @pages: array of pages to be marked dirty and released.
418 * @npages: number of pages in the @pages array.
419 *
420 * For each page in the @pages array, release the page using unpin_user_page().
421 *
422 * Please see the unpin_user_page() documentation for details.
423 */
unpin_user_pages(struct page ** pages,unsigned long npages)424 void unpin_user_pages(struct page **pages, unsigned long npages)
425 {
426 unsigned long i;
427 struct folio *folio;
428 unsigned int nr;
429
430 /*
431 * If this WARN_ON() fires, then the system *might* be leaking pages (by
432 * leaving them pinned), but probably not. More likely, gup/pup returned
433 * a hard -ERRNO error to the caller, who erroneously passed it here.
434 */
435 if (WARN_ON(IS_ERR_VALUE(npages)))
436 return;
437
438 sanity_check_pinned_pages(pages, npages);
439 for (i = 0; i < npages; i += nr) {
440 folio = gup_folio_next(pages, npages, i, &nr);
441 gup_put_folio(folio, nr, FOLL_PIN);
442 }
443 }
444 EXPORT_SYMBOL(unpin_user_pages);
445
446 /*
447 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
448 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
449 * cache bouncing on large SMP machines for concurrent pinned gups.
450 */
mm_set_has_pinned_flag(unsigned long * mm_flags)451 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
452 {
453 if (!test_bit(MMF_HAS_PINNED, mm_flags))
454 set_bit(MMF_HAS_PINNED, mm_flags);
455 }
456
457 #ifdef CONFIG_MMU
no_page_table(struct vm_area_struct * vma,unsigned int flags)458 static struct page *no_page_table(struct vm_area_struct *vma,
459 unsigned int flags)
460 {
461 /*
462 * When core dumping an enormous anonymous area that nobody
463 * has touched so far, we don't want to allocate unnecessary pages or
464 * page tables. Return error instead of NULL to skip handle_mm_fault,
465 * then get_dump_page() will return NULL to leave a hole in the dump.
466 * But we can only make this optimization where a hole would surely
467 * be zero-filled if handle_mm_fault() actually did handle it.
468 */
469 if ((flags & FOLL_DUMP) &&
470 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
471 return ERR_PTR(-EFAULT);
472 return NULL;
473 }
474
follow_pfn_pte(struct vm_area_struct * vma,unsigned long address,pte_t * pte,unsigned int flags)475 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
476 pte_t *pte, unsigned int flags)
477 {
478 if (flags & FOLL_TOUCH) {
479 pte_t entry = *pte;
480
481 if (flags & FOLL_WRITE)
482 entry = pte_mkdirty(entry);
483 entry = pte_mkyoung(entry);
484
485 if (!pte_same(*pte, entry)) {
486 set_pte_at(vma->vm_mm, address, pte, entry);
487 update_mmu_cache(vma, address, pte);
488 }
489 }
490
491 /* Proper page table entry exists, but no corresponding struct page */
492 return -EEXIST;
493 }
494
495 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
can_follow_write_pte(pte_t pte,struct page * page,struct vm_area_struct * vma,unsigned int flags)496 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
497 struct vm_area_struct *vma,
498 unsigned int flags)
499 {
500 /* If the pte is writable, we can write to the page. */
501 if (pte_write(pte))
502 return true;
503
504 /* Maybe FOLL_FORCE is set to override it? */
505 if (!(flags & FOLL_FORCE))
506 return false;
507
508 /* But FOLL_FORCE has no effect on shared mappings */
509 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
510 return false;
511
512 /* ... or read-only private ones */
513 if (!(vma->vm_flags & VM_MAYWRITE))
514 return false;
515
516 /* ... or already writable ones that just need to take a write fault */
517 if (vma->vm_flags & VM_WRITE)
518 return false;
519
520 /*
521 * See can_change_pte_writable(): we broke COW and could map the page
522 * writable if we have an exclusive anonymous page ...
523 */
524 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
525 return false;
526
527 /* ... and a write-fault isn't required for other reasons. */
528 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
529 return false;
530 return !userfaultfd_pte_wp(vma, pte);
531 }
532
follow_page_pte(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags,struct dev_pagemap ** pgmap)533 static struct page *follow_page_pte(struct vm_area_struct *vma,
534 unsigned long address, pmd_t *pmd, unsigned int flags,
535 struct dev_pagemap **pgmap)
536 {
537 struct mm_struct *mm = vma->vm_mm;
538 struct page *page;
539 spinlock_t *ptl;
540 pte_t *ptep, pte;
541 int ret;
542
543 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
544 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
545 (FOLL_PIN | FOLL_GET)))
546 return ERR_PTR(-EINVAL);
547 if (unlikely(pmd_bad(*pmd)))
548 return no_page_table(vma, flags);
549
550 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
551 pte = *ptep;
552 if (!pte_present(pte))
553 goto no_page;
554 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
555 goto no_page;
556
557 page = vm_normal_page(vma, address, pte);
558
559 /*
560 * We only care about anon pages in can_follow_write_pte() and don't
561 * have to worry about pte_devmap() because they are never anon.
562 */
563 if ((flags & FOLL_WRITE) &&
564 !can_follow_write_pte(pte, page, vma, flags)) {
565 page = NULL;
566 goto out;
567 }
568
569 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
570 /*
571 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
572 * case since they are only valid while holding the pgmap
573 * reference.
574 */
575 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
576 if (*pgmap)
577 page = pte_page(pte);
578 else
579 goto no_page;
580 } else if (unlikely(!page)) {
581 if (flags & FOLL_DUMP) {
582 /* Avoid special (like zero) pages in core dumps */
583 page = ERR_PTR(-EFAULT);
584 goto out;
585 }
586
587 if (is_zero_pfn(pte_pfn(pte))) {
588 page = pte_page(pte);
589 } else {
590 ret = follow_pfn_pte(vma, address, ptep, flags);
591 page = ERR_PTR(ret);
592 goto out;
593 }
594 }
595
596 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
597 page = ERR_PTR(-EMLINK);
598 goto out;
599 }
600
601 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
602 !PageAnonExclusive(page), page);
603
604 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
605 ret = try_grab_page(page, flags);
606 if (unlikely(ret)) {
607 page = ERR_PTR(ret);
608 goto out;
609 }
610
611 /*
612 * We need to make the page accessible if and only if we are going
613 * to access its content (the FOLL_PIN case). Please see
614 * Documentation/core-api/pin_user_pages.rst for details.
615 */
616 if (flags & FOLL_PIN) {
617 ret = arch_make_page_accessible(page);
618 if (ret) {
619 unpin_user_page(page);
620 page = ERR_PTR(ret);
621 goto out;
622 }
623 }
624 if (flags & FOLL_TOUCH) {
625 if ((flags & FOLL_WRITE) &&
626 !pte_dirty(pte) && !PageDirty(page))
627 set_page_dirty(page);
628 /*
629 * pte_mkyoung() would be more correct here, but atomic care
630 * is needed to avoid losing the dirty bit: it is easier to use
631 * mark_page_accessed().
632 */
633 mark_page_accessed(page);
634 }
635 out:
636 pte_unmap_unlock(ptep, ptl);
637 return page;
638 no_page:
639 pte_unmap_unlock(ptep, ptl);
640 if (!pte_none(pte))
641 return NULL;
642 return no_page_table(vma, flags);
643 }
644
follow_pmd_mask(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,unsigned int flags,struct follow_page_context * ctx)645 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
646 unsigned long address, pud_t *pudp,
647 unsigned int flags,
648 struct follow_page_context *ctx)
649 {
650 pmd_t *pmd, pmdval;
651 spinlock_t *ptl;
652 struct page *page;
653 struct mm_struct *mm = vma->vm_mm;
654
655 pmd = pmd_offset(pudp, address);
656 /*
657 * The READ_ONCE() will stabilize the pmdval in a register or
658 * on the stack so that it will stop changing under the code.
659 */
660 pmdval = READ_ONCE(*pmd);
661 if (pmd_none(pmdval))
662 return no_page_table(vma, flags);
663 if (!pmd_present(pmdval))
664 return no_page_table(vma, flags);
665 if (pmd_devmap(pmdval)) {
666 ptl = pmd_lock(mm, pmd);
667 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
668 spin_unlock(ptl);
669 if (page)
670 return page;
671 }
672 if (likely(!pmd_trans_huge(pmdval)))
673 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
674
675 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
676 return no_page_table(vma, flags);
677
678 ptl = pmd_lock(mm, pmd);
679 if (unlikely(!pmd_present(*pmd))) {
680 spin_unlock(ptl);
681 return no_page_table(vma, flags);
682 }
683 if (unlikely(!pmd_trans_huge(*pmd))) {
684 spin_unlock(ptl);
685 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
686 }
687 if (flags & FOLL_SPLIT_PMD) {
688 int ret;
689 page = pmd_page(*pmd);
690 if (is_huge_zero_page(page)) {
691 spin_unlock(ptl);
692 ret = 0;
693 split_huge_pmd(vma, pmd, address);
694 if (pmd_trans_unstable(pmd))
695 ret = -EBUSY;
696 } else {
697 spin_unlock(ptl);
698 split_huge_pmd(vma, pmd, address);
699 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
700 }
701
702 return ret ? ERR_PTR(ret) :
703 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
704 }
705 page = follow_trans_huge_pmd(vma, address, pmd, flags);
706 spin_unlock(ptl);
707 ctx->page_mask = HPAGE_PMD_NR - 1;
708 return page;
709 }
710
follow_pud_mask(struct vm_area_struct * vma,unsigned long address,p4d_t * p4dp,unsigned int flags,struct follow_page_context * ctx)711 static struct page *follow_pud_mask(struct vm_area_struct *vma,
712 unsigned long address, p4d_t *p4dp,
713 unsigned int flags,
714 struct follow_page_context *ctx)
715 {
716 pud_t *pud;
717 spinlock_t *ptl;
718 struct page *page;
719 struct mm_struct *mm = vma->vm_mm;
720
721 pud = pud_offset(p4dp, address);
722 if (pud_none(*pud))
723 return no_page_table(vma, flags);
724 if (pud_devmap(*pud)) {
725 ptl = pud_lock(mm, pud);
726 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
727 spin_unlock(ptl);
728 if (page)
729 return page;
730 }
731 if (unlikely(pud_bad(*pud)))
732 return no_page_table(vma, flags);
733
734 return follow_pmd_mask(vma, address, pud, flags, ctx);
735 }
736
follow_p4d_mask(struct vm_area_struct * vma,unsigned long address,pgd_t * pgdp,unsigned int flags,struct follow_page_context * ctx)737 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
738 unsigned long address, pgd_t *pgdp,
739 unsigned int flags,
740 struct follow_page_context *ctx)
741 {
742 p4d_t *p4d;
743
744 p4d = p4d_offset(pgdp, address);
745 if (p4d_none(*p4d))
746 return no_page_table(vma, flags);
747 BUILD_BUG_ON(p4d_huge(*p4d));
748 if (unlikely(p4d_bad(*p4d)))
749 return no_page_table(vma, flags);
750
751 return follow_pud_mask(vma, address, p4d, flags, ctx);
752 }
753
754 /**
755 * follow_page_mask - look up a page descriptor from a user-virtual address
756 * @vma: vm_area_struct mapping @address
757 * @address: virtual address to look up
758 * @flags: flags modifying lookup behaviour
759 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
760 * pointer to output page_mask
761 *
762 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
763 *
764 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
765 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
766 *
767 * When getting an anonymous page and the caller has to trigger unsharing
768 * of a shared anonymous page first, -EMLINK is returned. The caller should
769 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
770 * relevant with FOLL_PIN and !FOLL_WRITE.
771 *
772 * On output, the @ctx->page_mask is set according to the size of the page.
773 *
774 * Return: the mapped (struct page *), %NULL if no mapping exists, or
775 * an error pointer if there is a mapping to something not represented
776 * by a page descriptor (see also vm_normal_page()).
777 */
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct follow_page_context * ctx)778 static struct page *follow_page_mask(struct vm_area_struct *vma,
779 unsigned long address, unsigned int flags,
780 struct follow_page_context *ctx)
781 {
782 pgd_t *pgd;
783 struct page *page;
784 struct mm_struct *mm = vma->vm_mm;
785
786 ctx->page_mask = 0;
787
788 /*
789 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
790 * special hugetlb page table walking code. This eliminates the
791 * need to check for hugetlb entries in the general walking code.
792 *
793 * hugetlb_follow_page_mask is only for follow_page() handling here.
794 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
795 */
796 if (is_vm_hugetlb_page(vma)) {
797 page = hugetlb_follow_page_mask(vma, address, flags);
798 if (!page)
799 page = no_page_table(vma, flags);
800 return page;
801 }
802
803 pgd = pgd_offset(mm, address);
804
805 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
806 return no_page_table(vma, flags);
807
808 return follow_p4d_mask(vma, address, pgd, flags, ctx);
809 }
810
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)811 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
812 unsigned int foll_flags)
813 {
814 struct follow_page_context ctx = { NULL };
815 struct page *page;
816
817 if (vma_is_secretmem(vma))
818 return NULL;
819
820 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
821 return NULL;
822
823 page = follow_page_mask(vma, address, foll_flags, &ctx);
824 if (ctx.pgmap)
825 put_dev_pagemap(ctx.pgmap);
826 return page;
827 }
828
get_gate_page(struct mm_struct * mm,unsigned long address,unsigned int gup_flags,struct vm_area_struct ** vma,struct page ** page)829 static int get_gate_page(struct mm_struct *mm, unsigned long address,
830 unsigned int gup_flags, struct vm_area_struct **vma,
831 struct page **page)
832 {
833 pgd_t *pgd;
834 p4d_t *p4d;
835 pud_t *pud;
836 pmd_t *pmd;
837 pte_t *pte;
838 int ret = -EFAULT;
839
840 /* user gate pages are read-only */
841 if (gup_flags & FOLL_WRITE)
842 return -EFAULT;
843 if (address > TASK_SIZE)
844 pgd = pgd_offset_k(address);
845 else
846 pgd = pgd_offset_gate(mm, address);
847 if (pgd_none(*pgd))
848 return -EFAULT;
849 p4d = p4d_offset(pgd, address);
850 if (p4d_none(*p4d))
851 return -EFAULT;
852 pud = pud_offset(p4d, address);
853 if (pud_none(*pud))
854 return -EFAULT;
855 pmd = pmd_offset(pud, address);
856 if (!pmd_present(*pmd))
857 return -EFAULT;
858 VM_BUG_ON(pmd_trans_huge(*pmd));
859 pte = pte_offset_map(pmd, address);
860 if (pte_none(*pte))
861 goto unmap;
862 *vma = get_gate_vma(mm);
863 if (!page)
864 goto out;
865 *page = vm_normal_page(*vma, address, *pte);
866 if (!*page) {
867 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
868 goto unmap;
869 *page = pte_page(*pte);
870 }
871 ret = try_grab_page(*page, gup_flags);
872 if (unlikely(ret))
873 goto unmap;
874 out:
875 ret = 0;
876 unmap:
877 pte_unmap(pte);
878 return ret;
879 }
880
881 /*
882 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
883 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
884 * to 0 and -EBUSY returned.
885 */
faultin_page(struct vm_area_struct * vma,unsigned long address,unsigned int * flags,bool unshare,int * locked)886 static int faultin_page(struct vm_area_struct *vma,
887 unsigned long address, unsigned int *flags, bool unshare,
888 int *locked)
889 {
890 unsigned int fault_flags = 0;
891 vm_fault_t ret;
892
893 if (*flags & FOLL_NOFAULT)
894 return -EFAULT;
895 if (*flags & FOLL_WRITE)
896 fault_flags |= FAULT_FLAG_WRITE;
897 if (*flags & FOLL_REMOTE)
898 fault_flags |= FAULT_FLAG_REMOTE;
899 if (*flags & FOLL_UNLOCKABLE) {
900 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
901 /*
902 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
903 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
904 * That's because some callers may not be prepared to
905 * handle early exits caused by non-fatal signals.
906 */
907 if (*flags & FOLL_INTERRUPTIBLE)
908 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
909 }
910 if (*flags & FOLL_NOWAIT)
911 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
912 if (*flags & FOLL_TRIED) {
913 /*
914 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
915 * can co-exist
916 */
917 fault_flags |= FAULT_FLAG_TRIED;
918 }
919 if (unshare) {
920 fault_flags |= FAULT_FLAG_UNSHARE;
921 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
922 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
923 }
924
925 ret = handle_mm_fault(vma, address, fault_flags, NULL);
926
927 if (ret & VM_FAULT_COMPLETED) {
928 /*
929 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
930 * mmap lock in the page fault handler. Sanity check this.
931 */
932 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
933 *locked = 0;
934
935 /*
936 * We should do the same as VM_FAULT_RETRY, but let's not
937 * return -EBUSY since that's not reflecting the reality of
938 * what has happened - we've just fully completed a page
939 * fault, with the mmap lock released. Use -EAGAIN to show
940 * that we want to take the mmap lock _again_.
941 */
942 return -EAGAIN;
943 }
944
945 if (ret & VM_FAULT_ERROR) {
946 int err = vm_fault_to_errno(ret, *flags);
947
948 if (err)
949 return err;
950 BUG();
951 }
952
953 if (ret & VM_FAULT_RETRY) {
954 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
955 *locked = 0;
956 return -EBUSY;
957 }
958
959 return 0;
960 }
961
check_vma_flags(struct vm_area_struct * vma,unsigned long gup_flags)962 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
963 {
964 vm_flags_t vm_flags = vma->vm_flags;
965 int write = (gup_flags & FOLL_WRITE);
966 int foreign = (gup_flags & FOLL_REMOTE);
967
968 if (vm_flags & (VM_IO | VM_PFNMAP))
969 return -EFAULT;
970
971 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
972 return -EFAULT;
973
974 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
975 return -EOPNOTSUPP;
976
977 if (vma_is_secretmem(vma))
978 return -EFAULT;
979
980 if (write) {
981 if (!(vm_flags & VM_WRITE)) {
982 if (!(gup_flags & FOLL_FORCE))
983 return -EFAULT;
984 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
985 if (is_vm_hugetlb_page(vma))
986 return -EFAULT;
987 /*
988 * We used to let the write,force case do COW in a
989 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
990 * set a breakpoint in a read-only mapping of an
991 * executable, without corrupting the file (yet only
992 * when that file had been opened for writing!).
993 * Anon pages in shared mappings are surprising: now
994 * just reject it.
995 */
996 if (!is_cow_mapping(vm_flags))
997 return -EFAULT;
998 }
999 } else if (!(vm_flags & VM_READ)) {
1000 if (!(gup_flags & FOLL_FORCE))
1001 return -EFAULT;
1002 /*
1003 * Is there actually any vma we can reach here which does not
1004 * have VM_MAYREAD set?
1005 */
1006 if (!(vm_flags & VM_MAYREAD))
1007 return -EFAULT;
1008 }
1009 /*
1010 * gups are always data accesses, not instruction
1011 * fetches, so execute=false here
1012 */
1013 if (!arch_vma_access_permitted(vma, write, false, foreign))
1014 return -EFAULT;
1015 return 0;
1016 }
1017
1018 /**
1019 * __get_user_pages() - pin user pages in memory
1020 * @mm: mm_struct of target mm
1021 * @start: starting user address
1022 * @nr_pages: number of pages from start to pin
1023 * @gup_flags: flags modifying pin behaviour
1024 * @pages: array that receives pointers to the pages pinned.
1025 * Should be at least nr_pages long. Or NULL, if caller
1026 * only intends to ensure the pages are faulted in.
1027 * @vmas: array of pointers to vmas corresponding to each page.
1028 * Or NULL if the caller does not require them.
1029 * @locked: whether we're still with the mmap_lock held
1030 *
1031 * Returns either number of pages pinned (which may be less than the
1032 * number requested), or an error. Details about the return value:
1033 *
1034 * -- If nr_pages is 0, returns 0.
1035 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1036 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1037 * pages pinned. Again, this may be less than nr_pages.
1038 * -- 0 return value is possible when the fault would need to be retried.
1039 *
1040 * The caller is responsible for releasing returned @pages, via put_page().
1041 *
1042 * @vmas are valid only as long as mmap_lock is held.
1043 *
1044 * Must be called with mmap_lock held. It may be released. See below.
1045 *
1046 * __get_user_pages walks a process's page tables and takes a reference to
1047 * each struct page that each user address corresponds to at a given
1048 * instant. That is, it takes the page that would be accessed if a user
1049 * thread accesses the given user virtual address at that instant.
1050 *
1051 * This does not guarantee that the page exists in the user mappings when
1052 * __get_user_pages returns, and there may even be a completely different
1053 * page there in some cases (eg. if mmapped pagecache has been invalidated
1054 * and subsequently re-faulted). However it does guarantee that the page
1055 * won't be freed completely. And mostly callers simply care that the page
1056 * contains data that was valid *at some point in time*. Typically, an IO
1057 * or similar operation cannot guarantee anything stronger anyway because
1058 * locks can't be held over the syscall boundary.
1059 *
1060 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1061 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1062 * appropriate) must be called after the page is finished with, and
1063 * before put_page is called.
1064 *
1065 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1066 * be released. If this happens *@locked will be set to 0 on return.
1067 *
1068 * A caller using such a combination of @gup_flags must therefore hold the
1069 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1070 * it must be held for either reading or writing and will not be released.
1071 *
1072 * In most cases, get_user_pages or get_user_pages_fast should be used
1073 * instead of __get_user_pages. __get_user_pages should be used only if
1074 * you need some special @gup_flags.
1075 */
__get_user_pages(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1076 static long __get_user_pages(struct mm_struct *mm,
1077 unsigned long start, unsigned long nr_pages,
1078 unsigned int gup_flags, struct page **pages,
1079 struct vm_area_struct **vmas, int *locked)
1080 {
1081 long ret = 0, i = 0;
1082 struct vm_area_struct *vma = NULL;
1083 struct follow_page_context ctx = { NULL };
1084
1085 if (!nr_pages)
1086 return 0;
1087
1088 start = untagged_addr(start);
1089
1090 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1091
1092 do {
1093 struct page *page;
1094 unsigned int foll_flags = gup_flags;
1095 unsigned int page_increm;
1096
1097 /* first iteration or cross vma bound */
1098 if (!vma || start >= vma->vm_end) {
1099 vma = find_extend_vma(mm, start);
1100 if (!vma && in_gate_area(mm, start)) {
1101 ret = get_gate_page(mm, start & PAGE_MASK,
1102 gup_flags, &vma,
1103 pages ? &pages[i] : NULL);
1104 if (ret)
1105 goto out;
1106 ctx.page_mask = 0;
1107 goto next_page;
1108 }
1109
1110 if (!vma) {
1111 ret = -EFAULT;
1112 goto out;
1113 }
1114 ret = check_vma_flags(vma, gup_flags);
1115 if (ret)
1116 goto out;
1117
1118 if (is_vm_hugetlb_page(vma)) {
1119 i = follow_hugetlb_page(mm, vma, pages, vmas,
1120 &start, &nr_pages, i,
1121 gup_flags, locked);
1122 if (!*locked) {
1123 /*
1124 * We've got a VM_FAULT_RETRY
1125 * and we've lost mmap_lock.
1126 * We must stop here.
1127 */
1128 BUG_ON(gup_flags & FOLL_NOWAIT);
1129 goto out;
1130 }
1131 continue;
1132 }
1133 }
1134 retry:
1135 /*
1136 * If we have a pending SIGKILL, don't keep faulting pages and
1137 * potentially allocating memory.
1138 */
1139 if (fatal_signal_pending(current)) {
1140 ret = -EINTR;
1141 goto out;
1142 }
1143 cond_resched();
1144
1145 page = follow_page_mask(vma, start, foll_flags, &ctx);
1146 if (!page || PTR_ERR(page) == -EMLINK) {
1147 ret = faultin_page(vma, start, &foll_flags,
1148 PTR_ERR(page) == -EMLINK, locked);
1149 switch (ret) {
1150 case 0:
1151 goto retry;
1152 case -EBUSY:
1153 case -EAGAIN:
1154 ret = 0;
1155 fallthrough;
1156 case -EFAULT:
1157 case -ENOMEM:
1158 case -EHWPOISON:
1159 goto out;
1160 }
1161 BUG();
1162 } else if (PTR_ERR(page) == -EEXIST) {
1163 /*
1164 * Proper page table entry exists, but no corresponding
1165 * struct page. If the caller expects **pages to be
1166 * filled in, bail out now, because that can't be done
1167 * for this page.
1168 */
1169 if (pages) {
1170 ret = PTR_ERR(page);
1171 goto out;
1172 }
1173
1174 goto next_page;
1175 } else if (IS_ERR(page)) {
1176 ret = PTR_ERR(page);
1177 goto out;
1178 }
1179 if (pages) {
1180 pages[i] = page;
1181 flush_anon_page(vma, page, start);
1182 flush_dcache_page(page);
1183 ctx.page_mask = 0;
1184 }
1185 next_page:
1186 if (vmas) {
1187 vmas[i] = vma;
1188 ctx.page_mask = 0;
1189 }
1190 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1191 if (page_increm > nr_pages)
1192 page_increm = nr_pages;
1193 i += page_increm;
1194 start += page_increm * PAGE_SIZE;
1195 nr_pages -= page_increm;
1196 } while (nr_pages);
1197 out:
1198 if (ctx.pgmap)
1199 put_dev_pagemap(ctx.pgmap);
1200 return i ? i : ret;
1201 }
1202
vma_permits_fault(struct vm_area_struct * vma,unsigned int fault_flags)1203 static bool vma_permits_fault(struct vm_area_struct *vma,
1204 unsigned int fault_flags)
1205 {
1206 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1207 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1208 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1209
1210 if (!(vm_flags & vma->vm_flags))
1211 return false;
1212
1213 /*
1214 * The architecture might have a hardware protection
1215 * mechanism other than read/write that can deny access.
1216 *
1217 * gup always represents data access, not instruction
1218 * fetches, so execute=false here:
1219 */
1220 if (!arch_vma_access_permitted(vma, write, false, foreign))
1221 return false;
1222
1223 return true;
1224 }
1225
1226 /**
1227 * fixup_user_fault() - manually resolve a user page fault
1228 * @mm: mm_struct of target mm
1229 * @address: user address
1230 * @fault_flags:flags to pass down to handle_mm_fault()
1231 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1232 * does not allow retry. If NULL, the caller must guarantee
1233 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1234 *
1235 * This is meant to be called in the specific scenario where for locking reasons
1236 * we try to access user memory in atomic context (within a pagefault_disable()
1237 * section), this returns -EFAULT, and we want to resolve the user fault before
1238 * trying again.
1239 *
1240 * Typically this is meant to be used by the futex code.
1241 *
1242 * The main difference with get_user_pages() is that this function will
1243 * unconditionally call handle_mm_fault() which will in turn perform all the
1244 * necessary SW fixup of the dirty and young bits in the PTE, while
1245 * get_user_pages() only guarantees to update these in the struct page.
1246 *
1247 * This is important for some architectures where those bits also gate the
1248 * access permission to the page because they are maintained in software. On
1249 * such architectures, gup() will not be enough to make a subsequent access
1250 * succeed.
1251 *
1252 * This function will not return with an unlocked mmap_lock. So it has not the
1253 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1254 */
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1255 int fixup_user_fault(struct mm_struct *mm,
1256 unsigned long address, unsigned int fault_flags,
1257 bool *unlocked)
1258 {
1259 struct vm_area_struct *vma;
1260 vm_fault_t ret;
1261
1262 address = untagged_addr(address);
1263
1264 if (unlocked)
1265 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1266
1267 retry:
1268 vma = find_extend_vma(mm, address);
1269 if (!vma || address < vma->vm_start)
1270 return -EFAULT;
1271
1272 if (!vma_permits_fault(vma, fault_flags))
1273 return -EFAULT;
1274
1275 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1276 fatal_signal_pending(current))
1277 return -EINTR;
1278
1279 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1280
1281 if (ret & VM_FAULT_COMPLETED) {
1282 /*
1283 * NOTE: it's a pity that we need to retake the lock here
1284 * to pair with the unlock() in the callers. Ideally we
1285 * could tell the callers so they do not need to unlock.
1286 */
1287 mmap_read_lock(mm);
1288 *unlocked = true;
1289 return 0;
1290 }
1291
1292 if (ret & VM_FAULT_ERROR) {
1293 int err = vm_fault_to_errno(ret, 0);
1294
1295 if (err)
1296 return err;
1297 BUG();
1298 }
1299
1300 if (ret & VM_FAULT_RETRY) {
1301 mmap_read_lock(mm);
1302 *unlocked = true;
1303 fault_flags |= FAULT_FLAG_TRIED;
1304 goto retry;
1305 }
1306
1307 return 0;
1308 }
1309 EXPORT_SYMBOL_GPL(fixup_user_fault);
1310
1311 /*
1312 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1313 * specified, it'll also respond to generic signals. The caller of GUP
1314 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1315 */
gup_signal_pending(unsigned int flags)1316 static bool gup_signal_pending(unsigned int flags)
1317 {
1318 if (fatal_signal_pending(current))
1319 return true;
1320
1321 if (!(flags & FOLL_INTERRUPTIBLE))
1322 return false;
1323
1324 return signal_pending(current);
1325 }
1326
1327 /*
1328 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1329 * the caller. This function may drop the mmap_lock. If it does so, then it will
1330 * set (*locked = 0).
1331 *
1332 * (*locked == 0) means that the caller expects this function to acquire and
1333 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1334 * the function returns, even though it may have changed temporarily during
1335 * function execution.
1336 *
1337 * Please note that this function, unlike __get_user_pages(), will not return 0
1338 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1339 */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int flags)1340 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1341 unsigned long start,
1342 unsigned long nr_pages,
1343 struct page **pages,
1344 struct vm_area_struct **vmas,
1345 int *locked,
1346 unsigned int flags)
1347 {
1348 long ret, pages_done;
1349 bool must_unlock = false;
1350
1351 /*
1352 * The internal caller expects GUP to manage the lock internally and the
1353 * lock must be released when this returns.
1354 */
1355 if (!*locked) {
1356 if (mmap_read_lock_killable(mm))
1357 return -EAGAIN;
1358 must_unlock = true;
1359 *locked = 1;
1360 }
1361 else
1362 mmap_assert_locked(mm);
1363
1364 if (flags & FOLL_PIN)
1365 mm_set_has_pinned_flag(&mm->flags);
1366
1367 /*
1368 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1369 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1370 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1371 * for FOLL_GET, not for the newer FOLL_PIN.
1372 *
1373 * FOLL_PIN always expects pages to be non-null, but no need to assert
1374 * that here, as any failures will be obvious enough.
1375 */
1376 if (pages && !(flags & FOLL_PIN))
1377 flags |= FOLL_GET;
1378
1379 pages_done = 0;
1380 for (;;) {
1381 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1382 vmas, locked);
1383 if (!(flags & FOLL_UNLOCKABLE)) {
1384 /* VM_FAULT_RETRY couldn't trigger, bypass */
1385 pages_done = ret;
1386 break;
1387 }
1388
1389 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1390 if (!*locked) {
1391 BUG_ON(ret < 0);
1392 BUG_ON(ret >= nr_pages);
1393 }
1394
1395 if (ret > 0) {
1396 nr_pages -= ret;
1397 pages_done += ret;
1398 if (!nr_pages)
1399 break;
1400 }
1401 if (*locked) {
1402 /*
1403 * VM_FAULT_RETRY didn't trigger or it was a
1404 * FOLL_NOWAIT.
1405 */
1406 if (!pages_done)
1407 pages_done = ret;
1408 break;
1409 }
1410 /*
1411 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1412 * For the prefault case (!pages) we only update counts.
1413 */
1414 if (likely(pages))
1415 pages += ret;
1416 start += ret << PAGE_SHIFT;
1417
1418 /* The lock was temporarily dropped, so we must unlock later */
1419 must_unlock = true;
1420
1421 retry:
1422 /*
1423 * Repeat on the address that fired VM_FAULT_RETRY
1424 * with both FAULT_FLAG_ALLOW_RETRY and
1425 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1426 * by fatal signals of even common signals, depending on
1427 * the caller's request. So we need to check it before we
1428 * start trying again otherwise it can loop forever.
1429 */
1430 if (gup_signal_pending(flags)) {
1431 if (!pages_done)
1432 pages_done = -EINTR;
1433 break;
1434 }
1435
1436 ret = mmap_read_lock_killable(mm);
1437 if (ret) {
1438 BUG_ON(ret > 0);
1439 if (!pages_done)
1440 pages_done = ret;
1441 break;
1442 }
1443
1444 *locked = 1;
1445 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1446 pages, NULL, locked);
1447 if (!*locked) {
1448 /* Continue to retry until we succeeded */
1449 BUG_ON(ret != 0);
1450 goto retry;
1451 }
1452 if (ret != 1) {
1453 BUG_ON(ret > 1);
1454 if (!pages_done)
1455 pages_done = ret;
1456 break;
1457 }
1458 nr_pages--;
1459 pages_done++;
1460 if (!nr_pages)
1461 break;
1462 if (likely(pages))
1463 pages++;
1464 start += PAGE_SIZE;
1465 }
1466 if (must_unlock && *locked) {
1467 /*
1468 * We either temporarily dropped the lock, or the caller
1469 * requested that we both acquire and drop the lock. Either way,
1470 * we must now unlock, and notify the caller of that state.
1471 */
1472 mmap_read_unlock(mm);
1473 *locked = 0;
1474 }
1475 return pages_done;
1476 }
1477
1478 /**
1479 * populate_vma_page_range() - populate a range of pages in the vma.
1480 * @vma: target vma
1481 * @start: start address
1482 * @end: end address
1483 * @locked: whether the mmap_lock is still held
1484 *
1485 * This takes care of mlocking the pages too if VM_LOCKED is set.
1486 *
1487 * Return either number of pages pinned in the vma, or a negative error
1488 * code on error.
1489 *
1490 * vma->vm_mm->mmap_lock must be held.
1491 *
1492 * If @locked is NULL, it may be held for read or write and will
1493 * be unperturbed.
1494 *
1495 * If @locked is non-NULL, it must held for read only and may be
1496 * released. If it's released, *@locked will be set to 0.
1497 */
populate_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int * locked)1498 long populate_vma_page_range(struct vm_area_struct *vma,
1499 unsigned long start, unsigned long end, int *locked)
1500 {
1501 struct mm_struct *mm = vma->vm_mm;
1502 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1503 int local_locked = 1;
1504 int gup_flags;
1505 long ret;
1506
1507 VM_BUG_ON(!PAGE_ALIGNED(start));
1508 VM_BUG_ON(!PAGE_ALIGNED(end));
1509 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1510 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1511 mmap_assert_locked(mm);
1512
1513 /*
1514 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1515 * faultin_page() to break COW, so it has no work to do here.
1516 */
1517 if (vma->vm_flags & VM_LOCKONFAULT)
1518 return nr_pages;
1519
1520 gup_flags = FOLL_TOUCH;
1521 /*
1522 * We want to touch writable mappings with a write fault in order
1523 * to break COW, except for shared mappings because these don't COW
1524 * and we would not want to dirty them for nothing.
1525 */
1526 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1527 gup_flags |= FOLL_WRITE;
1528
1529 /*
1530 * We want mlock to succeed for regions that have any permissions
1531 * other than PROT_NONE.
1532 */
1533 if (vma_is_accessible(vma))
1534 gup_flags |= FOLL_FORCE;
1535
1536 if (locked)
1537 gup_flags |= FOLL_UNLOCKABLE;
1538
1539 /*
1540 * We made sure addr is within a VMA, so the following will
1541 * not result in a stack expansion that recurses back here.
1542 */
1543 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1544 NULL, NULL, locked ? locked : &local_locked);
1545 lru_add_drain();
1546 return ret;
1547 }
1548
1549 /*
1550 * faultin_vma_page_range() - populate (prefault) page tables inside the
1551 * given VMA range readable/writable
1552 *
1553 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1554 *
1555 * @vma: target vma
1556 * @start: start address
1557 * @end: end address
1558 * @write: whether to prefault readable or writable
1559 * @locked: whether the mmap_lock is still held
1560 *
1561 * Returns either number of processed pages in the vma, or a negative error
1562 * code on error (see __get_user_pages()).
1563 *
1564 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1565 * covered by the VMA. If it's released, *@locked will be set to 0.
1566 */
faultin_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool write,int * locked)1567 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1568 unsigned long end, bool write, int *locked)
1569 {
1570 struct mm_struct *mm = vma->vm_mm;
1571 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1572 int gup_flags;
1573 long ret;
1574
1575 VM_BUG_ON(!PAGE_ALIGNED(start));
1576 VM_BUG_ON(!PAGE_ALIGNED(end));
1577 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1578 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1579 mmap_assert_locked(mm);
1580
1581 /*
1582 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1583 * the page dirty with FOLL_WRITE -- which doesn't make a
1584 * difference with !FOLL_FORCE, because the page is writable
1585 * in the page table.
1586 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1587 * a poisoned page.
1588 * !FOLL_FORCE: Require proper access permissions.
1589 */
1590 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
1591 if (write)
1592 gup_flags |= FOLL_WRITE;
1593
1594 /*
1595 * We want to report -EINVAL instead of -EFAULT for any permission
1596 * problems or incompatible mappings.
1597 */
1598 if (check_vma_flags(vma, gup_flags))
1599 return -EINVAL;
1600
1601 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1602 NULL, NULL, locked);
1603 lru_add_drain();
1604 return ret;
1605 }
1606
1607 /*
1608 * __mm_populate - populate and/or mlock pages within a range of address space.
1609 *
1610 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1611 * flags. VMAs must be already marked with the desired vm_flags, and
1612 * mmap_lock must not be held.
1613 */
__mm_populate(unsigned long start,unsigned long len,int ignore_errors)1614 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1615 {
1616 struct mm_struct *mm = current->mm;
1617 unsigned long end, nstart, nend;
1618 struct vm_area_struct *vma = NULL;
1619 int locked = 0;
1620 long ret = 0;
1621
1622 end = start + len;
1623
1624 for (nstart = start; nstart < end; nstart = nend) {
1625 /*
1626 * We want to fault in pages for [nstart; end) address range.
1627 * Find first corresponding VMA.
1628 */
1629 if (!locked) {
1630 locked = 1;
1631 mmap_read_lock(mm);
1632 vma = find_vma_intersection(mm, nstart, end);
1633 } else if (nstart >= vma->vm_end)
1634 vma = find_vma_intersection(mm, vma->vm_end, end);
1635
1636 if (!vma)
1637 break;
1638 /*
1639 * Set [nstart; nend) to intersection of desired address
1640 * range with the first VMA. Also, skip undesirable VMA types.
1641 */
1642 nend = min(end, vma->vm_end);
1643 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1644 continue;
1645 if (nstart < vma->vm_start)
1646 nstart = vma->vm_start;
1647 /*
1648 * Now fault in a range of pages. populate_vma_page_range()
1649 * double checks the vma flags, so that it won't mlock pages
1650 * if the vma was already munlocked.
1651 */
1652 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1653 if (ret < 0) {
1654 if (ignore_errors) {
1655 ret = 0;
1656 continue; /* continue at next VMA */
1657 }
1658 break;
1659 }
1660 nend = nstart + ret * PAGE_SIZE;
1661 ret = 0;
1662 }
1663 if (locked)
1664 mmap_read_unlock(mm);
1665 return ret; /* 0 or negative error code */
1666 }
1667 #else /* CONFIG_MMU */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int foll_flags)1668 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1669 unsigned long nr_pages, struct page **pages,
1670 struct vm_area_struct **vmas, int *locked,
1671 unsigned int foll_flags)
1672 {
1673 struct vm_area_struct *vma;
1674 bool must_unlock = false;
1675 unsigned long vm_flags;
1676 long i;
1677
1678 if (!nr_pages)
1679 return 0;
1680
1681 /*
1682 * The internal caller expects GUP to manage the lock internally and the
1683 * lock must be released when this returns.
1684 */
1685 if (!*locked) {
1686 if (mmap_read_lock_killable(mm))
1687 return -EAGAIN;
1688 must_unlock = true;
1689 *locked = 1;
1690 }
1691
1692 /* calculate required read or write permissions.
1693 * If FOLL_FORCE is set, we only require the "MAY" flags.
1694 */
1695 vm_flags = (foll_flags & FOLL_WRITE) ?
1696 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1697 vm_flags &= (foll_flags & FOLL_FORCE) ?
1698 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1699
1700 for (i = 0; i < nr_pages; i++) {
1701 vma = find_vma(mm, start);
1702 if (!vma)
1703 break;
1704
1705 /* protect what we can, including chardevs */
1706 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1707 !(vm_flags & vma->vm_flags))
1708 break;
1709
1710 if (pages) {
1711 pages[i] = virt_to_page((void *)start);
1712 if (pages[i])
1713 get_page(pages[i]);
1714 }
1715 if (vmas)
1716 vmas[i] = vma;
1717 start = (start + PAGE_SIZE) & PAGE_MASK;
1718 }
1719
1720 if (must_unlock && *locked) {
1721 mmap_read_unlock(mm);
1722 *locked = 0;
1723 }
1724
1725 return i ? : -EFAULT;
1726 }
1727 #endif /* !CONFIG_MMU */
1728
1729 /**
1730 * fault_in_writeable - fault in userspace address range for writing
1731 * @uaddr: start of address range
1732 * @size: size of address range
1733 *
1734 * Returns the number of bytes not faulted in (like copy_to_user() and
1735 * copy_from_user()).
1736 */
fault_in_writeable(char __user * uaddr,size_t size)1737 size_t fault_in_writeable(char __user *uaddr, size_t size)
1738 {
1739 char __user *start = uaddr, *end;
1740
1741 if (unlikely(size == 0))
1742 return 0;
1743 if (!user_write_access_begin(uaddr, size))
1744 return size;
1745 if (!PAGE_ALIGNED(uaddr)) {
1746 unsafe_put_user(0, uaddr, out);
1747 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1748 }
1749 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1750 if (unlikely(end < start))
1751 end = NULL;
1752 while (uaddr != end) {
1753 unsafe_put_user(0, uaddr, out);
1754 uaddr += PAGE_SIZE;
1755 }
1756
1757 out:
1758 user_write_access_end();
1759 if (size > uaddr - start)
1760 return size - (uaddr - start);
1761 return 0;
1762 }
1763 EXPORT_SYMBOL(fault_in_writeable);
1764
1765 /**
1766 * fault_in_subpage_writeable - fault in an address range for writing
1767 * @uaddr: start of address range
1768 * @size: size of address range
1769 *
1770 * Fault in a user address range for writing while checking for permissions at
1771 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1772 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1773 *
1774 * Returns the number of bytes not faulted in (like copy_to_user() and
1775 * copy_from_user()).
1776 */
fault_in_subpage_writeable(char __user * uaddr,size_t size)1777 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1778 {
1779 size_t faulted_in;
1780
1781 /*
1782 * Attempt faulting in at page granularity first for page table
1783 * permission checking. The arch-specific probe_subpage_writeable()
1784 * functions may not check for this.
1785 */
1786 faulted_in = size - fault_in_writeable(uaddr, size);
1787 if (faulted_in)
1788 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1789
1790 return size - faulted_in;
1791 }
1792 EXPORT_SYMBOL(fault_in_subpage_writeable);
1793
1794 /*
1795 * fault_in_safe_writeable - fault in an address range for writing
1796 * @uaddr: start of address range
1797 * @size: length of address range
1798 *
1799 * Faults in an address range for writing. This is primarily useful when we
1800 * already know that some or all of the pages in the address range aren't in
1801 * memory.
1802 *
1803 * Unlike fault_in_writeable(), this function is non-destructive.
1804 *
1805 * Note that we don't pin or otherwise hold the pages referenced that we fault
1806 * in. There's no guarantee that they'll stay in memory for any duration of
1807 * time.
1808 *
1809 * Returns the number of bytes not faulted in, like copy_to_user() and
1810 * copy_from_user().
1811 */
fault_in_safe_writeable(const char __user * uaddr,size_t size)1812 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1813 {
1814 unsigned long start = (unsigned long)uaddr, end;
1815 struct mm_struct *mm = current->mm;
1816 bool unlocked = false;
1817
1818 if (unlikely(size == 0))
1819 return 0;
1820 end = PAGE_ALIGN(start + size);
1821 if (end < start)
1822 end = 0;
1823
1824 mmap_read_lock(mm);
1825 do {
1826 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1827 break;
1828 start = (start + PAGE_SIZE) & PAGE_MASK;
1829 } while (start != end);
1830 mmap_read_unlock(mm);
1831
1832 if (size > (unsigned long)uaddr - start)
1833 return size - ((unsigned long)uaddr - start);
1834 return 0;
1835 }
1836 EXPORT_SYMBOL(fault_in_safe_writeable);
1837
1838 /**
1839 * fault_in_readable - fault in userspace address range for reading
1840 * @uaddr: start of user address range
1841 * @size: size of user address range
1842 *
1843 * Returns the number of bytes not faulted in (like copy_to_user() and
1844 * copy_from_user()).
1845 */
fault_in_readable(const char __user * uaddr,size_t size)1846 size_t fault_in_readable(const char __user *uaddr, size_t size)
1847 {
1848 const char __user *start = uaddr, *end;
1849 volatile char c;
1850
1851 if (unlikely(size == 0))
1852 return 0;
1853 if (!user_read_access_begin(uaddr, size))
1854 return size;
1855 if (!PAGE_ALIGNED(uaddr)) {
1856 unsafe_get_user(c, uaddr, out);
1857 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1858 }
1859 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1860 if (unlikely(end < start))
1861 end = NULL;
1862 while (uaddr != end) {
1863 unsafe_get_user(c, uaddr, out);
1864 uaddr += PAGE_SIZE;
1865 }
1866
1867 out:
1868 user_read_access_end();
1869 (void)c;
1870 if (size > uaddr - start)
1871 return size - (uaddr - start);
1872 return 0;
1873 }
1874 EXPORT_SYMBOL(fault_in_readable);
1875
1876 /**
1877 * get_dump_page() - pin user page in memory while writing it to core dump
1878 * @addr: user address
1879 *
1880 * Returns struct page pointer of user page pinned for dump,
1881 * to be freed afterwards by put_page().
1882 *
1883 * Returns NULL on any kind of failure - a hole must then be inserted into
1884 * the corefile, to preserve alignment with its headers; and also returns
1885 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1886 * allowing a hole to be left in the corefile to save disk space.
1887 *
1888 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1889 */
1890 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr)1891 struct page *get_dump_page(unsigned long addr)
1892 {
1893 struct page *page;
1894 int locked = 0;
1895 int ret;
1896
1897 ret = __get_user_pages_locked(current->mm, addr, 1, &page, NULL,
1898 &locked,
1899 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1900 return (ret == 1) ? page : NULL;
1901 }
1902 #endif /* CONFIG_ELF_CORE */
1903
1904 #ifdef CONFIG_MIGRATION
1905 /*
1906 * Returns the number of collected pages. Return value is always >= 0.
1907 */
collect_longterm_unpinnable_pages(struct list_head * movable_page_list,unsigned long nr_pages,struct page ** pages)1908 static unsigned long collect_longterm_unpinnable_pages(
1909 struct list_head *movable_page_list,
1910 unsigned long nr_pages,
1911 struct page **pages)
1912 {
1913 unsigned long i, collected = 0;
1914 struct folio *prev_folio = NULL;
1915 bool drain_allow = true;
1916
1917 for (i = 0; i < nr_pages; i++) {
1918 struct folio *folio = page_folio(pages[i]);
1919
1920 if (folio == prev_folio)
1921 continue;
1922 prev_folio = folio;
1923
1924 if (folio_is_longterm_pinnable(folio))
1925 continue;
1926
1927 collected++;
1928
1929 if (folio_is_device_coherent(folio))
1930 continue;
1931
1932 if (folio_test_hugetlb(folio)) {
1933 isolate_hugetlb(folio, movable_page_list);
1934 continue;
1935 }
1936
1937 if (!folio_test_lru(folio) && drain_allow) {
1938 lru_add_drain_all();
1939 drain_allow = false;
1940 }
1941
1942 if (!folio_isolate_lru(folio))
1943 continue;
1944
1945 list_add_tail(&folio->lru, movable_page_list);
1946 node_stat_mod_folio(folio,
1947 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1948 folio_nr_pages(folio));
1949 }
1950
1951 return collected;
1952 }
1953
1954 /*
1955 * Unpins all pages and migrates device coherent pages and movable_page_list.
1956 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1957 * (or partial success).
1958 */
migrate_longterm_unpinnable_pages(struct list_head * movable_page_list,unsigned long nr_pages,struct page ** pages)1959 static int migrate_longterm_unpinnable_pages(
1960 struct list_head *movable_page_list,
1961 unsigned long nr_pages,
1962 struct page **pages)
1963 {
1964 int ret;
1965 unsigned long i;
1966
1967 for (i = 0; i < nr_pages; i++) {
1968 struct folio *folio = page_folio(pages[i]);
1969
1970 if (folio_is_device_coherent(folio)) {
1971 /*
1972 * Migration will fail if the page is pinned, so convert
1973 * the pin on the source page to a normal reference.
1974 */
1975 pages[i] = NULL;
1976 folio_get(folio);
1977 gup_put_folio(folio, 1, FOLL_PIN);
1978
1979 if (migrate_device_coherent_page(&folio->page)) {
1980 ret = -EBUSY;
1981 goto err;
1982 }
1983
1984 continue;
1985 }
1986
1987 /*
1988 * We can't migrate pages with unexpected references, so drop
1989 * the reference obtained by __get_user_pages_locked().
1990 * Migrating pages have been added to movable_page_list after
1991 * calling folio_isolate_lru() which takes a reference so the
1992 * page won't be freed if it's migrating.
1993 */
1994 unpin_user_page(pages[i]);
1995 pages[i] = NULL;
1996 }
1997
1998 if (!list_empty(movable_page_list)) {
1999 struct migration_target_control mtc = {
2000 .nid = NUMA_NO_NODE,
2001 .gfp_mask = GFP_USER | __GFP_NOWARN,
2002 };
2003
2004 if (migrate_pages(movable_page_list, alloc_migration_target,
2005 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2006 MR_LONGTERM_PIN, NULL)) {
2007 ret = -ENOMEM;
2008 goto err;
2009 }
2010 }
2011
2012 putback_movable_pages(movable_page_list);
2013
2014 return -EAGAIN;
2015
2016 err:
2017 for (i = 0; i < nr_pages; i++)
2018 if (pages[i])
2019 unpin_user_page(pages[i]);
2020 putback_movable_pages(movable_page_list);
2021
2022 return ret;
2023 }
2024
2025 /*
2026 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2027 * pages in the range are required to be pinned via FOLL_PIN, before calling
2028 * this routine.
2029 *
2030 * If any pages in the range are not allowed to be pinned, then this routine
2031 * will migrate those pages away, unpin all the pages in the range and return
2032 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2033 * call this routine again.
2034 *
2035 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2036 * The caller should give up, and propagate the error back up the call stack.
2037 *
2038 * If everything is OK and all pages in the range are allowed to be pinned, then
2039 * this routine leaves all pages pinned and returns zero for success.
2040 */
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2041 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2042 struct page **pages)
2043 {
2044 unsigned long collected;
2045 LIST_HEAD(movable_page_list);
2046
2047 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2048 nr_pages, pages);
2049 if (!collected)
2050 return 0;
2051
2052 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2053 pages);
2054 }
2055 #else
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2056 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2057 struct page **pages)
2058 {
2059 return 0;
2060 }
2061 #endif /* CONFIG_MIGRATION */
2062
2063 /*
2064 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2065 * allows us to process the FOLL_LONGTERM flag.
2066 */
__gup_longterm_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int gup_flags)2067 static long __gup_longterm_locked(struct mm_struct *mm,
2068 unsigned long start,
2069 unsigned long nr_pages,
2070 struct page **pages,
2071 struct vm_area_struct **vmas,
2072 int *locked,
2073 unsigned int gup_flags)
2074 {
2075 unsigned int flags;
2076 long rc, nr_pinned_pages;
2077
2078 if (!(gup_flags & FOLL_LONGTERM))
2079 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2080 locked, gup_flags);
2081
2082 flags = memalloc_pin_save();
2083 do {
2084 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2085 pages, vmas, locked,
2086 gup_flags);
2087 if (nr_pinned_pages <= 0) {
2088 rc = nr_pinned_pages;
2089 break;
2090 }
2091
2092 /* FOLL_LONGTERM implies FOLL_PIN */
2093 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2094 } while (rc == -EAGAIN);
2095 memalloc_pin_restore(flags);
2096 return rc ? rc : nr_pinned_pages;
2097 }
2098
2099 /*
2100 * Check that the given flags are valid for the exported gup/pup interface, and
2101 * update them with the required flags that the caller must have set.
2102 */
is_valid_gup_args(struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int * gup_flags_p,unsigned int to_set)2103 static bool is_valid_gup_args(struct page **pages, struct vm_area_struct **vmas,
2104 int *locked, unsigned int *gup_flags_p,
2105 unsigned int to_set)
2106 {
2107 unsigned int gup_flags = *gup_flags_p;
2108
2109 /*
2110 * These flags not allowed to be specified externally to the gup
2111 * interfaces:
2112 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2113 * - FOLL_REMOTE is internal only and used on follow_page()
2114 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2115 */
2116 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
2117 FOLL_REMOTE | FOLL_FAST_ONLY)))
2118 return false;
2119
2120 gup_flags |= to_set;
2121 if (locked) {
2122 /* At the external interface locked must be set */
2123 if (WARN_ON_ONCE(*locked != 1))
2124 return false;
2125
2126 gup_flags |= FOLL_UNLOCKABLE;
2127 }
2128
2129 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2130 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2131 (FOLL_PIN | FOLL_GET)))
2132 return false;
2133
2134 /* LONGTERM can only be specified when pinning */
2135 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2136 return false;
2137
2138 /* Pages input must be given if using GET/PIN */
2139 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2140 return false;
2141
2142 /* We want to allow the pgmap to be hot-unplugged at all times */
2143 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2144 (gup_flags & FOLL_PCI_P2PDMA)))
2145 return false;
2146
2147 /*
2148 * Can't use VMAs with locked, as locked allows GUP to unlock
2149 * which invalidates the vmas array
2150 */
2151 if (WARN_ON_ONCE(vmas && (gup_flags & FOLL_UNLOCKABLE)))
2152 return false;
2153
2154 *gup_flags_p = gup_flags;
2155 return true;
2156 }
2157
2158 #ifdef CONFIG_MMU
2159 /**
2160 * get_user_pages_remote() - pin user pages in memory
2161 * @mm: mm_struct of target mm
2162 * @start: starting user address
2163 * @nr_pages: number of pages from start to pin
2164 * @gup_flags: flags modifying lookup behaviour
2165 * @pages: array that receives pointers to the pages pinned.
2166 * Should be at least nr_pages long. Or NULL, if caller
2167 * only intends to ensure the pages are faulted in.
2168 * @vmas: array of pointers to vmas corresponding to each page.
2169 * Or NULL if the caller does not require them.
2170 * @locked: pointer to lock flag indicating whether lock is held and
2171 * subsequently whether VM_FAULT_RETRY functionality can be
2172 * utilised. Lock must initially be held.
2173 *
2174 * Returns either number of pages pinned (which may be less than the
2175 * number requested), or an error. Details about the return value:
2176 *
2177 * -- If nr_pages is 0, returns 0.
2178 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2179 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2180 * pages pinned. Again, this may be less than nr_pages.
2181 *
2182 * The caller is responsible for releasing returned @pages, via put_page().
2183 *
2184 * @vmas are valid only as long as mmap_lock is held.
2185 *
2186 * Must be called with mmap_lock held for read or write.
2187 *
2188 * get_user_pages_remote walks a process's page tables and takes a reference
2189 * to each struct page that each user address corresponds to at a given
2190 * instant. That is, it takes the page that would be accessed if a user
2191 * thread accesses the given user virtual address at that instant.
2192 *
2193 * This does not guarantee that the page exists in the user mappings when
2194 * get_user_pages_remote returns, and there may even be a completely different
2195 * page there in some cases (eg. if mmapped pagecache has been invalidated
2196 * and subsequently re faulted). However it does guarantee that the page
2197 * won't be freed completely. And mostly callers simply care that the page
2198 * contains data that was valid *at some point in time*. Typically, an IO
2199 * or similar operation cannot guarantee anything stronger anyway because
2200 * locks can't be held over the syscall boundary.
2201 *
2202 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2203 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2204 * be called after the page is finished with, and before put_page is called.
2205 *
2206 * get_user_pages_remote is typically used for fewer-copy IO operations,
2207 * to get a handle on the memory by some means other than accesses
2208 * via the user virtual addresses. The pages may be submitted for
2209 * DMA to devices or accessed via their kernel linear mapping (via the
2210 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2211 *
2212 * See also get_user_pages_fast, for performance critical applications.
2213 *
2214 * get_user_pages_remote should be phased out in favor of
2215 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2216 * should use get_user_pages_remote because it cannot pass
2217 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2218 */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2219 long get_user_pages_remote(struct mm_struct *mm,
2220 unsigned long start, unsigned long nr_pages,
2221 unsigned int gup_flags, struct page **pages,
2222 struct vm_area_struct **vmas, int *locked)
2223 {
2224 int local_locked = 1;
2225
2226 if (!is_valid_gup_args(pages, vmas, locked, &gup_flags,
2227 FOLL_TOUCH | FOLL_REMOTE))
2228 return -EINVAL;
2229
2230 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2231 locked ? locked : &local_locked,
2232 gup_flags);
2233 }
2234 EXPORT_SYMBOL(get_user_pages_remote);
2235
2236 #else /* CONFIG_MMU */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2237 long get_user_pages_remote(struct mm_struct *mm,
2238 unsigned long start, unsigned long nr_pages,
2239 unsigned int gup_flags, struct page **pages,
2240 struct vm_area_struct **vmas, int *locked)
2241 {
2242 return 0;
2243 }
2244 #endif /* !CONFIG_MMU */
2245
2246 /**
2247 * get_user_pages() - pin user pages in memory
2248 * @start: starting user address
2249 * @nr_pages: number of pages from start to pin
2250 * @gup_flags: flags modifying lookup behaviour
2251 * @pages: array that receives pointers to the pages pinned.
2252 * Should be at least nr_pages long. Or NULL, if caller
2253 * only intends to ensure the pages are faulted in.
2254 * @vmas: array of pointers to vmas corresponding to each page.
2255 * Or NULL if the caller does not require them.
2256 *
2257 * This is the same as get_user_pages_remote(), just with a less-flexible
2258 * calling convention where we assume that the mm being operated on belongs to
2259 * the current task, and doesn't allow passing of a locked parameter. We also
2260 * obviously don't pass FOLL_REMOTE in here.
2261 */
get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)2262 long get_user_pages(unsigned long start, unsigned long nr_pages,
2263 unsigned int gup_flags, struct page **pages,
2264 struct vm_area_struct **vmas)
2265 {
2266 int locked = 1;
2267
2268 if (!is_valid_gup_args(pages, vmas, NULL, &gup_flags, FOLL_TOUCH))
2269 return -EINVAL;
2270
2271 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2272 vmas, &locked, gup_flags);
2273 }
2274 EXPORT_SYMBOL(get_user_pages);
2275
2276 /*
2277 * get_user_pages_unlocked() is suitable to replace the form:
2278 *
2279 * mmap_read_lock(mm);
2280 * get_user_pages(mm, ..., pages, NULL);
2281 * mmap_read_unlock(mm);
2282 *
2283 * with:
2284 *
2285 * get_user_pages_unlocked(mm, ..., pages);
2286 *
2287 * It is functionally equivalent to get_user_pages_fast so
2288 * get_user_pages_fast should be used instead if specific gup_flags
2289 * (e.g. FOLL_FORCE) are not required.
2290 */
get_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)2291 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2292 struct page **pages, unsigned int gup_flags)
2293 {
2294 int locked = 0;
2295
2296 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
2297 FOLL_TOUCH | FOLL_UNLOCKABLE))
2298 return -EINVAL;
2299
2300 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2301 NULL, &locked, gup_flags);
2302 }
2303 EXPORT_SYMBOL(get_user_pages_unlocked);
2304
2305 /*
2306 * Fast GUP
2307 *
2308 * get_user_pages_fast attempts to pin user pages by walking the page
2309 * tables directly and avoids taking locks. Thus the walker needs to be
2310 * protected from page table pages being freed from under it, and should
2311 * block any THP splits.
2312 *
2313 * One way to achieve this is to have the walker disable interrupts, and
2314 * rely on IPIs from the TLB flushing code blocking before the page table
2315 * pages are freed. This is unsuitable for architectures that do not need
2316 * to broadcast an IPI when invalidating TLBs.
2317 *
2318 * Another way to achieve this is to batch up page table containing pages
2319 * belonging to more than one mm_user, then rcu_sched a callback to free those
2320 * pages. Disabling interrupts will allow the fast_gup walker to both block
2321 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2322 * (which is a relatively rare event). The code below adopts this strategy.
2323 *
2324 * Before activating this code, please be aware that the following assumptions
2325 * are currently made:
2326 *
2327 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2328 * free pages containing page tables or TLB flushing requires IPI broadcast.
2329 *
2330 * *) ptes can be read atomically by the architecture.
2331 *
2332 * *) access_ok is sufficient to validate userspace address ranges.
2333 *
2334 * The last two assumptions can be relaxed by the addition of helper functions.
2335 *
2336 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2337 */
2338 #ifdef CONFIG_HAVE_FAST_GUP
2339
undo_dev_pagemap(int * nr,int nr_start,unsigned int flags,struct page ** pages)2340 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2341 unsigned int flags,
2342 struct page **pages)
2343 {
2344 while ((*nr) - nr_start) {
2345 struct page *page = pages[--(*nr)];
2346
2347 ClearPageReferenced(page);
2348 if (flags & FOLL_PIN)
2349 unpin_user_page(page);
2350 else
2351 put_page(page);
2352 }
2353 }
2354
2355 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2356 /*
2357 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2358 * operations.
2359 *
2360 * To pin the page, fast-gup needs to do below in order:
2361 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2362 *
2363 * For the rest of pgtable operations where pgtable updates can be racy
2364 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2365 * is pinned.
2366 *
2367 * Above will work for all pte-level operations, including THP split.
2368 *
2369 * For THP collapse, it's a bit more complicated because fast-gup may be
2370 * walking a pgtable page that is being freed (pte is still valid but pmd
2371 * can be cleared already). To avoid race in such condition, we need to
2372 * also check pmd here to make sure pmd doesn't change (corresponds to
2373 * pmdp_collapse_flush() in the THP collapse code path).
2374 */
gup_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2375 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2376 unsigned long end, unsigned int flags,
2377 struct page **pages, int *nr)
2378 {
2379 struct dev_pagemap *pgmap = NULL;
2380 int nr_start = *nr, ret = 0;
2381 pte_t *ptep, *ptem;
2382
2383 ptem = ptep = pte_offset_map(&pmd, addr);
2384 do {
2385 pte_t pte = ptep_get_lockless(ptep);
2386 struct page *page;
2387 struct folio *folio;
2388
2389 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2390 goto pte_unmap;
2391
2392 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2393 goto pte_unmap;
2394
2395 if (pte_devmap(pte)) {
2396 if (unlikely(flags & FOLL_LONGTERM))
2397 goto pte_unmap;
2398
2399 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2400 if (unlikely(!pgmap)) {
2401 undo_dev_pagemap(nr, nr_start, flags, pages);
2402 goto pte_unmap;
2403 }
2404 } else if (pte_special(pte))
2405 goto pte_unmap;
2406
2407 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2408 page = pte_page(pte);
2409
2410 folio = try_grab_folio(page, 1, flags);
2411 if (!folio)
2412 goto pte_unmap;
2413
2414 if (unlikely(page_is_secretmem(page))) {
2415 gup_put_folio(folio, 1, flags);
2416 goto pte_unmap;
2417 }
2418
2419 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2420 unlikely(pte_val(pte) != pte_val(*ptep))) {
2421 gup_put_folio(folio, 1, flags);
2422 goto pte_unmap;
2423 }
2424
2425 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2426 gup_put_folio(folio, 1, flags);
2427 goto pte_unmap;
2428 }
2429
2430 /*
2431 * We need to make the page accessible if and only if we are
2432 * going to access its content (the FOLL_PIN case). Please
2433 * see Documentation/core-api/pin_user_pages.rst for
2434 * details.
2435 */
2436 if (flags & FOLL_PIN) {
2437 ret = arch_make_page_accessible(page);
2438 if (ret) {
2439 gup_put_folio(folio, 1, flags);
2440 goto pte_unmap;
2441 }
2442 }
2443 folio_set_referenced(folio);
2444 pages[*nr] = page;
2445 (*nr)++;
2446 } while (ptep++, addr += PAGE_SIZE, addr != end);
2447
2448 ret = 1;
2449
2450 pte_unmap:
2451 if (pgmap)
2452 put_dev_pagemap(pgmap);
2453 pte_unmap(ptem);
2454 return ret;
2455 }
2456 #else
2457
2458 /*
2459 * If we can't determine whether or not a pte is special, then fail immediately
2460 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2461 * to be special.
2462 *
2463 * For a futex to be placed on a THP tail page, get_futex_key requires a
2464 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2465 * useful to have gup_huge_pmd even if we can't operate on ptes.
2466 */
gup_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2467 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2468 unsigned long end, unsigned int flags,
2469 struct page **pages, int *nr)
2470 {
2471 return 0;
2472 }
2473 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2474
2475 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
__gup_device_huge(unsigned long pfn,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2476 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2477 unsigned long end, unsigned int flags,
2478 struct page **pages, int *nr)
2479 {
2480 int nr_start = *nr;
2481 struct dev_pagemap *pgmap = NULL;
2482
2483 do {
2484 struct page *page = pfn_to_page(pfn);
2485
2486 pgmap = get_dev_pagemap(pfn, pgmap);
2487 if (unlikely(!pgmap)) {
2488 undo_dev_pagemap(nr, nr_start, flags, pages);
2489 break;
2490 }
2491
2492 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2493 undo_dev_pagemap(nr, nr_start, flags, pages);
2494 break;
2495 }
2496
2497 SetPageReferenced(page);
2498 pages[*nr] = page;
2499 if (unlikely(try_grab_page(page, flags))) {
2500 undo_dev_pagemap(nr, nr_start, flags, pages);
2501 break;
2502 }
2503 (*nr)++;
2504 pfn++;
2505 } while (addr += PAGE_SIZE, addr != end);
2506
2507 put_dev_pagemap(pgmap);
2508 return addr == end;
2509 }
2510
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2511 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2512 unsigned long end, unsigned int flags,
2513 struct page **pages, int *nr)
2514 {
2515 unsigned long fault_pfn;
2516 int nr_start = *nr;
2517
2518 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2519 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2520 return 0;
2521
2522 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2523 undo_dev_pagemap(nr, nr_start, flags, pages);
2524 return 0;
2525 }
2526 return 1;
2527 }
2528
__gup_device_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2529 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2530 unsigned long end, unsigned int flags,
2531 struct page **pages, int *nr)
2532 {
2533 unsigned long fault_pfn;
2534 int nr_start = *nr;
2535
2536 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2537 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2538 return 0;
2539
2540 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2541 undo_dev_pagemap(nr, nr_start, flags, pages);
2542 return 0;
2543 }
2544 return 1;
2545 }
2546 #else
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2547 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2548 unsigned long end, unsigned int flags,
2549 struct page **pages, int *nr)
2550 {
2551 BUILD_BUG();
2552 return 0;
2553 }
2554
__gup_device_huge_pud(pud_t pud,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2555 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2556 unsigned long end, unsigned int flags,
2557 struct page **pages, int *nr)
2558 {
2559 BUILD_BUG();
2560 return 0;
2561 }
2562 #endif
2563
record_subpages(struct page * page,unsigned long addr,unsigned long end,struct page ** pages)2564 static int record_subpages(struct page *page, unsigned long addr,
2565 unsigned long end, struct page **pages)
2566 {
2567 int nr;
2568
2569 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2570 pages[nr] = nth_page(page, nr);
2571
2572 return nr;
2573 }
2574
2575 #ifdef CONFIG_ARCH_HAS_HUGEPD
hugepte_addr_end(unsigned long addr,unsigned long end,unsigned long sz)2576 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2577 unsigned long sz)
2578 {
2579 unsigned long __boundary = (addr + sz) & ~(sz-1);
2580 return (__boundary - 1 < end - 1) ? __boundary : end;
2581 }
2582
gup_hugepte(pte_t * ptep,unsigned long sz,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2583 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2584 unsigned long end, unsigned int flags,
2585 struct page **pages, int *nr)
2586 {
2587 unsigned long pte_end;
2588 struct page *page;
2589 struct folio *folio;
2590 pte_t pte;
2591 int refs;
2592
2593 pte_end = (addr + sz) & ~(sz-1);
2594 if (pte_end < end)
2595 end = pte_end;
2596
2597 pte = huge_ptep_get(ptep);
2598
2599 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2600 return 0;
2601
2602 /* hugepages are never "special" */
2603 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2604
2605 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2606 refs = record_subpages(page, addr, end, pages + *nr);
2607
2608 folio = try_grab_folio(page, refs, flags);
2609 if (!folio)
2610 return 0;
2611
2612 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2613 gup_put_folio(folio, refs, flags);
2614 return 0;
2615 }
2616
2617 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2618 gup_put_folio(folio, refs, flags);
2619 return 0;
2620 }
2621
2622 *nr += refs;
2623 folio_set_referenced(folio);
2624 return 1;
2625 }
2626
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned int pdshift,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2627 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2628 unsigned int pdshift, unsigned long end, unsigned int flags,
2629 struct page **pages, int *nr)
2630 {
2631 pte_t *ptep;
2632 unsigned long sz = 1UL << hugepd_shift(hugepd);
2633 unsigned long next;
2634
2635 ptep = hugepte_offset(hugepd, addr, pdshift);
2636 do {
2637 next = hugepte_addr_end(addr, end, sz);
2638 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2639 return 0;
2640 } while (ptep++, addr = next, addr != end);
2641
2642 return 1;
2643 }
2644 #else
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned int pdshift,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2645 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2646 unsigned int pdshift, unsigned long end, unsigned int flags,
2647 struct page **pages, int *nr)
2648 {
2649 return 0;
2650 }
2651 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2652
gup_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2653 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2654 unsigned long end, unsigned int flags,
2655 struct page **pages, int *nr)
2656 {
2657 struct page *page;
2658 struct folio *folio;
2659 int refs;
2660
2661 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2662 return 0;
2663
2664 if (pmd_devmap(orig)) {
2665 if (unlikely(flags & FOLL_LONGTERM))
2666 return 0;
2667 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2668 pages, nr);
2669 }
2670
2671 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2672 refs = record_subpages(page, addr, end, pages + *nr);
2673
2674 folio = try_grab_folio(page, refs, flags);
2675 if (!folio)
2676 return 0;
2677
2678 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2679 gup_put_folio(folio, refs, flags);
2680 return 0;
2681 }
2682
2683 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2684 gup_put_folio(folio, refs, flags);
2685 return 0;
2686 }
2687
2688 *nr += refs;
2689 folio_set_referenced(folio);
2690 return 1;
2691 }
2692
gup_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2693 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2694 unsigned long end, unsigned int flags,
2695 struct page **pages, int *nr)
2696 {
2697 struct page *page;
2698 struct folio *folio;
2699 int refs;
2700
2701 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2702 return 0;
2703
2704 if (pud_devmap(orig)) {
2705 if (unlikely(flags & FOLL_LONGTERM))
2706 return 0;
2707 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2708 pages, nr);
2709 }
2710
2711 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2712 refs = record_subpages(page, addr, end, pages + *nr);
2713
2714 folio = try_grab_folio(page, refs, flags);
2715 if (!folio)
2716 return 0;
2717
2718 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2719 gup_put_folio(folio, refs, flags);
2720 return 0;
2721 }
2722
2723 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2724 gup_put_folio(folio, refs, flags);
2725 return 0;
2726 }
2727
2728 *nr += refs;
2729 folio_set_referenced(folio);
2730 return 1;
2731 }
2732
gup_huge_pgd(pgd_t orig,pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2733 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2734 unsigned long end, unsigned int flags,
2735 struct page **pages, int *nr)
2736 {
2737 int refs;
2738 struct page *page;
2739 struct folio *folio;
2740
2741 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2742 return 0;
2743
2744 BUILD_BUG_ON(pgd_devmap(orig));
2745
2746 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2747 refs = record_subpages(page, addr, end, pages + *nr);
2748
2749 folio = try_grab_folio(page, refs, flags);
2750 if (!folio)
2751 return 0;
2752
2753 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2754 gup_put_folio(folio, refs, flags);
2755 return 0;
2756 }
2757
2758 *nr += refs;
2759 folio_set_referenced(folio);
2760 return 1;
2761 }
2762
gup_pmd_range(pud_t * pudp,pud_t pud,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2763 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2764 unsigned int flags, struct page **pages, int *nr)
2765 {
2766 unsigned long next;
2767 pmd_t *pmdp;
2768
2769 pmdp = pmd_offset_lockless(pudp, pud, addr);
2770 do {
2771 pmd_t pmd = pmdp_get_lockless(pmdp);
2772
2773 next = pmd_addr_end(addr, end);
2774 if (!pmd_present(pmd))
2775 return 0;
2776
2777 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2778 pmd_devmap(pmd))) {
2779 if (pmd_protnone(pmd) &&
2780 !gup_can_follow_protnone(flags))
2781 return 0;
2782
2783 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2784 pages, nr))
2785 return 0;
2786
2787 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2788 /*
2789 * architecture have different format for hugetlbfs
2790 * pmd format and THP pmd format
2791 */
2792 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2793 PMD_SHIFT, next, flags, pages, nr))
2794 return 0;
2795 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2796 return 0;
2797 } while (pmdp++, addr = next, addr != end);
2798
2799 return 1;
2800 }
2801
gup_pud_range(p4d_t * p4dp,p4d_t p4d,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2802 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2803 unsigned int flags, struct page **pages, int *nr)
2804 {
2805 unsigned long next;
2806 pud_t *pudp;
2807
2808 pudp = pud_offset_lockless(p4dp, p4d, addr);
2809 do {
2810 pud_t pud = READ_ONCE(*pudp);
2811
2812 next = pud_addr_end(addr, end);
2813 if (unlikely(!pud_present(pud)))
2814 return 0;
2815 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2816 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2817 pages, nr))
2818 return 0;
2819 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2820 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2821 PUD_SHIFT, next, flags, pages, nr))
2822 return 0;
2823 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2824 return 0;
2825 } while (pudp++, addr = next, addr != end);
2826
2827 return 1;
2828 }
2829
gup_p4d_range(pgd_t * pgdp,pgd_t pgd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2830 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2831 unsigned int flags, struct page **pages, int *nr)
2832 {
2833 unsigned long next;
2834 p4d_t *p4dp;
2835
2836 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2837 do {
2838 p4d_t p4d = READ_ONCE(*p4dp);
2839
2840 next = p4d_addr_end(addr, end);
2841 if (p4d_none(p4d))
2842 return 0;
2843 BUILD_BUG_ON(p4d_huge(p4d));
2844 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2845 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2846 P4D_SHIFT, next, flags, pages, nr))
2847 return 0;
2848 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2849 return 0;
2850 } while (p4dp++, addr = next, addr != end);
2851
2852 return 1;
2853 }
2854
gup_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2855 static void gup_pgd_range(unsigned long addr, unsigned long end,
2856 unsigned int flags, struct page **pages, int *nr)
2857 {
2858 unsigned long next;
2859 pgd_t *pgdp;
2860
2861 pgdp = pgd_offset(current->mm, addr);
2862 do {
2863 pgd_t pgd = READ_ONCE(*pgdp);
2864
2865 next = pgd_addr_end(addr, end);
2866 if (pgd_none(pgd))
2867 return;
2868 if (unlikely(pgd_huge(pgd))) {
2869 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2870 pages, nr))
2871 return;
2872 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2873 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2874 PGDIR_SHIFT, next, flags, pages, nr))
2875 return;
2876 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2877 return;
2878 } while (pgdp++, addr = next, addr != end);
2879 }
2880 #else
gup_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2881 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2882 unsigned int flags, struct page **pages, int *nr)
2883 {
2884 }
2885 #endif /* CONFIG_HAVE_FAST_GUP */
2886
2887 #ifndef gup_fast_permitted
2888 /*
2889 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2890 * we need to fall back to the slow version:
2891 */
gup_fast_permitted(unsigned long start,unsigned long end)2892 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2893 {
2894 return true;
2895 }
2896 #endif
2897
lockless_pages_from_mm(unsigned long start,unsigned long end,unsigned int gup_flags,struct page ** pages)2898 static unsigned long lockless_pages_from_mm(unsigned long start,
2899 unsigned long end,
2900 unsigned int gup_flags,
2901 struct page **pages)
2902 {
2903 unsigned long flags;
2904 int nr_pinned = 0;
2905 unsigned seq;
2906
2907 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2908 !gup_fast_permitted(start, end))
2909 return 0;
2910
2911 if (gup_flags & FOLL_PIN) {
2912 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2913 if (seq & 1)
2914 return 0;
2915 }
2916
2917 /*
2918 * Disable interrupts. The nested form is used, in order to allow full,
2919 * general purpose use of this routine.
2920 *
2921 * With interrupts disabled, we block page table pages from being freed
2922 * from under us. See struct mmu_table_batch comments in
2923 * include/asm-generic/tlb.h for more details.
2924 *
2925 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2926 * that come from THPs splitting.
2927 */
2928 local_irq_save(flags);
2929 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2930 local_irq_restore(flags);
2931
2932 /*
2933 * When pinning pages for DMA there could be a concurrent write protect
2934 * from fork() via copy_page_range(), in this case always fail fast GUP.
2935 */
2936 if (gup_flags & FOLL_PIN) {
2937 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
2938 unpin_user_pages_lockless(pages, nr_pinned);
2939 return 0;
2940 } else {
2941 sanity_check_pinned_pages(pages, nr_pinned);
2942 }
2943 }
2944 return nr_pinned;
2945 }
2946
internal_get_user_pages_fast(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)2947 static int internal_get_user_pages_fast(unsigned long start,
2948 unsigned long nr_pages,
2949 unsigned int gup_flags,
2950 struct page **pages)
2951 {
2952 unsigned long len, end;
2953 unsigned long nr_pinned;
2954 int locked = 0;
2955 int ret;
2956
2957 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2958 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2959 FOLL_FAST_ONLY | FOLL_NOFAULT |
2960 FOLL_PCI_P2PDMA)))
2961 return -EINVAL;
2962
2963 if (gup_flags & FOLL_PIN)
2964 mm_set_has_pinned_flag(¤t->mm->flags);
2965
2966 if (!(gup_flags & FOLL_FAST_ONLY))
2967 might_lock_read(¤t->mm->mmap_lock);
2968
2969 start = untagged_addr(start) & PAGE_MASK;
2970 len = nr_pages << PAGE_SHIFT;
2971 if (check_add_overflow(start, len, &end))
2972 return 0;
2973 if (unlikely(!access_ok((void __user *)start, len)))
2974 return -EFAULT;
2975
2976 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2977 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2978 return nr_pinned;
2979
2980 /* Slow path: try to get the remaining pages with get_user_pages */
2981 start += nr_pinned << PAGE_SHIFT;
2982 pages += nr_pinned;
2983 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
2984 pages, NULL, &locked,
2985 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
2986 if (ret < 0) {
2987 /*
2988 * The caller has to unpin the pages we already pinned so
2989 * returning -errno is not an option
2990 */
2991 if (nr_pinned)
2992 return nr_pinned;
2993 return ret;
2994 }
2995 return ret + nr_pinned;
2996 }
2997
2998 /**
2999 * get_user_pages_fast_only() - pin user pages in memory
3000 * @start: starting user address
3001 * @nr_pages: number of pages from start to pin
3002 * @gup_flags: flags modifying pin behaviour
3003 * @pages: array that receives pointers to the pages pinned.
3004 * Should be at least nr_pages long.
3005 *
3006 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3007 * the regular GUP.
3008 *
3009 * If the architecture does not support this function, simply return with no
3010 * pages pinned.
3011 *
3012 * Careful, careful! COW breaking can go either way, so a non-write
3013 * access can get ambiguous page results. If you call this function without
3014 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3015 */
get_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3016 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3017 unsigned int gup_flags, struct page **pages)
3018 {
3019 /*
3020 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3021 * because gup fast is always a "pin with a +1 page refcount" request.
3022 *
3023 * FOLL_FAST_ONLY is required in order to match the API description of
3024 * this routine: no fall back to regular ("slow") GUP.
3025 */
3026 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
3027 FOLL_GET | FOLL_FAST_ONLY))
3028 return -EINVAL;
3029
3030 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3031 }
3032 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3033
3034 /**
3035 * get_user_pages_fast() - pin user pages in memory
3036 * @start: starting user address
3037 * @nr_pages: number of pages from start to pin
3038 * @gup_flags: flags modifying pin behaviour
3039 * @pages: array that receives pointers to the pages pinned.
3040 * Should be at least nr_pages long.
3041 *
3042 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3043 * If not successful, it will fall back to taking the lock and
3044 * calling get_user_pages().
3045 *
3046 * Returns number of pages pinned. This may be fewer than the number requested.
3047 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3048 * -errno.
3049 */
get_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3050 int get_user_pages_fast(unsigned long start, int nr_pages,
3051 unsigned int gup_flags, struct page **pages)
3052 {
3053 /*
3054 * The caller may or may not have explicitly set FOLL_GET; either way is
3055 * OK. However, internally (within mm/gup.c), gup fast variants must set
3056 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3057 * request.
3058 */
3059 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_GET))
3060 return -EINVAL;
3061 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3062 }
3063 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3064
3065 /**
3066 * pin_user_pages_fast() - pin user pages in memory without taking locks
3067 *
3068 * @start: starting user address
3069 * @nr_pages: number of pages from start to pin
3070 * @gup_flags: flags modifying pin behaviour
3071 * @pages: array that receives pointers to the pages pinned.
3072 * Should be at least nr_pages long.
3073 *
3074 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3075 * get_user_pages_fast() for documentation on the function arguments, because
3076 * the arguments here are identical.
3077 *
3078 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3079 * see Documentation/core-api/pin_user_pages.rst for further details.
3080 */
pin_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3081 int pin_user_pages_fast(unsigned long start, int nr_pages,
3082 unsigned int gup_flags, struct page **pages)
3083 {
3084 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_PIN))
3085 return -EINVAL;
3086 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3087 }
3088 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3089
3090 /**
3091 * pin_user_pages_remote() - pin pages of a remote process
3092 *
3093 * @mm: mm_struct of target mm
3094 * @start: starting user address
3095 * @nr_pages: number of pages from start to pin
3096 * @gup_flags: flags modifying lookup behaviour
3097 * @pages: array that receives pointers to the pages pinned.
3098 * Should be at least nr_pages long.
3099 * @vmas: array of pointers to vmas corresponding to each page.
3100 * Or NULL if the caller does not require them.
3101 * @locked: pointer to lock flag indicating whether lock is held and
3102 * subsequently whether VM_FAULT_RETRY functionality can be
3103 * utilised. Lock must initially be held.
3104 *
3105 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3106 * get_user_pages_remote() for documentation on the function arguments, because
3107 * the arguments here are identical.
3108 *
3109 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3110 * see Documentation/core-api/pin_user_pages.rst for details.
3111 */
pin_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)3112 long pin_user_pages_remote(struct mm_struct *mm,
3113 unsigned long start, unsigned long nr_pages,
3114 unsigned int gup_flags, struct page **pages,
3115 struct vm_area_struct **vmas, int *locked)
3116 {
3117 int local_locked = 1;
3118
3119 if (!is_valid_gup_args(pages, vmas, locked, &gup_flags,
3120 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3121 return 0;
3122 return __gup_longterm_locked(mm, start, nr_pages, pages, vmas,
3123 locked ? locked : &local_locked,
3124 gup_flags);
3125 }
3126 EXPORT_SYMBOL(pin_user_pages_remote);
3127
3128 /**
3129 * pin_user_pages() - pin user pages in memory for use by other devices
3130 *
3131 * @start: starting user address
3132 * @nr_pages: number of pages from start to pin
3133 * @gup_flags: flags modifying lookup behaviour
3134 * @pages: array that receives pointers to the pages pinned.
3135 * Should be at least nr_pages long.
3136 * @vmas: array of pointers to vmas corresponding to each page.
3137 * Or NULL if the caller does not require them.
3138 *
3139 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3140 * FOLL_PIN is set.
3141 *
3142 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3143 * see Documentation/core-api/pin_user_pages.rst for details.
3144 */
pin_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)3145 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3146 unsigned int gup_flags, struct page **pages,
3147 struct vm_area_struct **vmas)
3148 {
3149 int locked = 1;
3150
3151 if (!is_valid_gup_args(pages, vmas, NULL, &gup_flags, FOLL_PIN))
3152 return 0;
3153 return __gup_longterm_locked(current->mm, start, nr_pages,
3154 pages, vmas, &locked, gup_flags);
3155 }
3156 EXPORT_SYMBOL(pin_user_pages);
3157
3158 /*
3159 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3160 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3161 * FOLL_PIN and rejects FOLL_GET.
3162 */
pin_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)3163 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3164 struct page **pages, unsigned int gup_flags)
3165 {
3166 int locked = 0;
3167
3168 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
3169 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3170 return 0;
3171
3172 return __gup_longterm_locked(current->mm, start, nr_pages, pages, NULL,
3173 &locked, gup_flags);
3174 }
3175 EXPORT_SYMBOL(pin_user_pages_unlocked);
3176